numam-dpdk/app/test/test_compressdev.c
Artur Trybula 6bbc5a9236 test/compress: refactor unit tests
Core engine refactoring (test_deflate_comp_decomp function).
Smaller specialized functions created.

Signed-off-by: Artur Trybula <arturx.trybula@intel.com>
Acked-by: Adam Dybkowski <adamx.dybkowski@intel.com>
Acked-by: Shally Verma <shallyv@marvell.com>
2019-11-08 13:53:09 +01:00

3223 lines
86 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 - 2019 Intel Corporation
*/
#include <string.h>
#include <zlib.h>
#include <math.h>
#include <stdlib.h>
#include <unistd.h>
#include <rte_cycles.h>
#include <rte_malloc.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_compressdev.h>
#include <rte_string_fns.h>
#include "test_compressdev_test_buffer.h"
#include "test.h"
#define DIV_CEIL(a, b) ((a) / (b) + ((a) % (b) != 0))
#define DEFAULT_WINDOW_SIZE 15
#define DEFAULT_MEM_LEVEL 8
#define MAX_DEQD_RETRIES 10
#define DEQUEUE_WAIT_TIME 10000
/*
* 30% extra size for compressed data compared to original data,
* in case data size cannot be reduced and it is actually bigger
* due to the compress block headers
*/
#define COMPRESS_BUF_SIZE_RATIO 1.3
#define COMPRESS_BUF_SIZE_RATIO_OVERFLOW 0.2
#define NUM_LARGE_MBUFS 16
#define SMALL_SEG_SIZE 256
#define MAX_SEGS 16
#define NUM_OPS 16
#define NUM_MAX_XFORMS 16
#define NUM_MAX_INFLIGHT_OPS 128
#define CACHE_SIZE 0
#define ZLIB_CRC_CHECKSUM_WINDOW_BITS 31
#define ZLIB_HEADER_SIZE 2
#define ZLIB_TRAILER_SIZE 4
#define GZIP_HEADER_SIZE 10
#define GZIP_TRAILER_SIZE 8
#define OUT_OF_SPACE_BUF 1
#define MAX_MBUF_SEGMENT_SIZE 65535
#define MAX_DATA_MBUF_SIZE (MAX_MBUF_SEGMENT_SIZE - RTE_PKTMBUF_HEADROOM)
#define NUM_BIG_MBUFS 4
#define BIG_DATA_TEST_SIZE (MAX_DATA_MBUF_SIZE * NUM_BIG_MBUFS / 2)
const char *
huffman_type_strings[] = {
[RTE_COMP_HUFFMAN_DEFAULT] = "PMD default",
[RTE_COMP_HUFFMAN_FIXED] = "Fixed",
[RTE_COMP_HUFFMAN_DYNAMIC] = "Dynamic"
};
enum zlib_direction {
ZLIB_NONE,
ZLIB_COMPRESS,
ZLIB_DECOMPRESS,
ZLIB_ALL
};
enum varied_buff {
LB_BOTH = 0, /* both input and output are linear*/
SGL_BOTH, /* both input and output are chained */
SGL_TO_LB, /* input buffer is chained */
LB_TO_SGL /* output buffer is chained */
};
enum overflow_test {
OVERFLOW_DISABLED,
OVERFLOW_ENABLED
};
enum operation_type {
OPERATION_COMPRESSION,
OPERATION_DECOMPRESSION
};
struct priv_op_data {
uint16_t orig_idx;
};
struct comp_testsuite_params {
struct rte_mempool *large_mbuf_pool;
struct rte_mempool *small_mbuf_pool;
struct rte_mempool *big_mbuf_pool;
struct rte_mempool *op_pool;
struct rte_comp_xform *def_comp_xform;
struct rte_comp_xform *def_decomp_xform;
};
struct interim_data_params {
const char * const *test_bufs;
unsigned int num_bufs;
uint16_t *buf_idx;
struct rte_comp_xform **compress_xforms;
struct rte_comp_xform **decompress_xforms;
unsigned int num_xforms;
};
struct test_data_params {
enum rte_comp_op_type compress_state;
enum rte_comp_op_type decompress_state;
enum varied_buff buff_type;
enum zlib_direction zlib_dir;
unsigned int out_of_space;
unsigned int big_data;
/* stateful decompression specific parameters */
unsigned int decompress_output_block_size;
unsigned int decompress_steps_max;
/* external mbufs specific parameters */
unsigned int use_external_mbufs;
unsigned int inbuf_data_size;
const struct rte_memzone *inbuf_memzone;
const struct rte_memzone *compbuf_memzone;
const struct rte_memzone *uncompbuf_memzone;
/* overflow test activation */
enum overflow_test overflow;
};
struct test_private_arrays {
struct rte_mbuf **uncomp_bufs;
struct rte_mbuf **comp_bufs;
struct rte_comp_op **ops;
struct rte_comp_op **ops_processed;
void **priv_xforms;
uint64_t *compress_checksum;
uint32_t *compressed_data_size;
void **stream;
char **all_decomp_data;
unsigned int *decomp_produced_data_size;
uint16_t num_priv_xforms;
};
static struct comp_testsuite_params testsuite_params = { 0 };
static void
testsuite_teardown(void)
{
struct comp_testsuite_params *ts_params = &testsuite_params;
if (rte_mempool_in_use_count(ts_params->large_mbuf_pool))
RTE_LOG(ERR, USER1, "Large mbuf pool still has unfreed bufs\n");
if (rte_mempool_in_use_count(ts_params->small_mbuf_pool))
RTE_LOG(ERR, USER1, "Small mbuf pool still has unfreed bufs\n");
if (rte_mempool_in_use_count(ts_params->big_mbuf_pool))
RTE_LOG(ERR, USER1, "Big mbuf pool still has unfreed bufs\n");
if (rte_mempool_in_use_count(ts_params->op_pool))
RTE_LOG(ERR, USER1, "op pool still has unfreed ops\n");
rte_mempool_free(ts_params->large_mbuf_pool);
rte_mempool_free(ts_params->small_mbuf_pool);
rte_mempool_free(ts_params->big_mbuf_pool);
rte_mempool_free(ts_params->op_pool);
rte_free(ts_params->def_comp_xform);
rte_free(ts_params->def_decomp_xform);
}
static int
testsuite_setup(void)
{
struct comp_testsuite_params *ts_params = &testsuite_params;
uint32_t max_buf_size = 0;
unsigned int i;
if (rte_compressdev_count() == 0) {
RTE_LOG(WARNING, USER1, "Need at least one compress device\n");
return TEST_SKIPPED;
}
RTE_LOG(NOTICE, USER1, "Running tests on device %s\n",
rte_compressdev_name_get(0));
for (i = 0; i < RTE_DIM(compress_test_bufs); i++)
max_buf_size = RTE_MAX(max_buf_size,
strlen(compress_test_bufs[i]) + 1);
/*
* Buffers to be used in compression and decompression.
* Since decompressed data might be larger than
* compressed data (due to block header),
* buffers should be big enough for both cases.
*/
max_buf_size *= COMPRESS_BUF_SIZE_RATIO;
ts_params->large_mbuf_pool = rte_pktmbuf_pool_create("large_mbuf_pool",
NUM_LARGE_MBUFS,
CACHE_SIZE, 0,
max_buf_size + RTE_PKTMBUF_HEADROOM,
rte_socket_id());
if (ts_params->large_mbuf_pool == NULL) {
RTE_LOG(ERR, USER1, "Large mbuf pool could not be created\n");
return TEST_FAILED;
}
/* Create mempool with smaller buffers for SGL testing */
ts_params->small_mbuf_pool = rte_pktmbuf_pool_create("small_mbuf_pool",
NUM_LARGE_MBUFS * MAX_SEGS,
CACHE_SIZE, 0,
SMALL_SEG_SIZE + RTE_PKTMBUF_HEADROOM,
rte_socket_id());
if (ts_params->small_mbuf_pool == NULL) {
RTE_LOG(ERR, USER1, "Small mbuf pool could not be created\n");
goto exit;
}
/* Create mempool with big buffers for SGL testing */
ts_params->big_mbuf_pool = rte_pktmbuf_pool_create("big_mbuf_pool",
NUM_BIG_MBUFS + 1,
CACHE_SIZE, 0,
MAX_MBUF_SEGMENT_SIZE,
rte_socket_id());
if (ts_params->big_mbuf_pool == NULL) {
RTE_LOG(ERR, USER1, "Big mbuf pool could not be created\n");
goto exit;
}
ts_params->op_pool = rte_comp_op_pool_create("op_pool", NUM_OPS,
0, sizeof(struct priv_op_data),
rte_socket_id());
if (ts_params->op_pool == NULL) {
RTE_LOG(ERR, USER1, "Operation pool could not be created\n");
goto exit;
}
ts_params->def_comp_xform =
rte_malloc(NULL, sizeof(struct rte_comp_xform), 0);
if (ts_params->def_comp_xform == NULL) {
RTE_LOG(ERR, USER1,
"Default compress xform could not be created\n");
goto exit;
}
ts_params->def_decomp_xform =
rte_malloc(NULL, sizeof(struct rte_comp_xform), 0);
if (ts_params->def_decomp_xform == NULL) {
RTE_LOG(ERR, USER1,
"Default decompress xform could not be created\n");
goto exit;
}
/* Initializes default values for compress/decompress xforms */
ts_params->def_comp_xform->type = RTE_COMP_COMPRESS;
ts_params->def_comp_xform->compress.algo = RTE_COMP_ALGO_DEFLATE,
ts_params->def_comp_xform->compress.deflate.huffman =
RTE_COMP_HUFFMAN_DEFAULT;
ts_params->def_comp_xform->compress.level = RTE_COMP_LEVEL_PMD_DEFAULT;
ts_params->def_comp_xform->compress.chksum = RTE_COMP_CHECKSUM_NONE;
ts_params->def_comp_xform->compress.window_size = DEFAULT_WINDOW_SIZE;
ts_params->def_decomp_xform->type = RTE_COMP_DECOMPRESS;
ts_params->def_decomp_xform->decompress.algo = RTE_COMP_ALGO_DEFLATE,
ts_params->def_decomp_xform->decompress.chksum = RTE_COMP_CHECKSUM_NONE;
ts_params->def_decomp_xform->decompress.window_size = DEFAULT_WINDOW_SIZE;
return TEST_SUCCESS;
exit:
testsuite_teardown();
return TEST_FAILED;
}
static int
generic_ut_setup(void)
{
/* Configure compressdev (one device, one queue pair) */
struct rte_compressdev_config config = {
.socket_id = rte_socket_id(),
.nb_queue_pairs = 1,
.max_nb_priv_xforms = NUM_MAX_XFORMS,
.max_nb_streams = 1
};
if (rte_compressdev_configure(0, &config) < 0) {
RTE_LOG(ERR, USER1, "Device configuration failed\n");
return -1;
}
if (rte_compressdev_queue_pair_setup(0, 0, NUM_MAX_INFLIGHT_OPS,
rte_socket_id()) < 0) {
RTE_LOG(ERR, USER1, "Queue pair setup failed\n");
return -1;
}
if (rte_compressdev_start(0) < 0) {
RTE_LOG(ERR, USER1, "Device could not be started\n");
return -1;
}
return 0;
}
static void
generic_ut_teardown(void)
{
rte_compressdev_stop(0);
if (rte_compressdev_close(0) < 0)
RTE_LOG(ERR, USER1, "Device could not be closed\n");
}
static int
test_compressdev_invalid_configuration(void)
{
struct rte_compressdev_config invalid_config;
struct rte_compressdev_config valid_config = {
.socket_id = rte_socket_id(),
.nb_queue_pairs = 1,
.max_nb_priv_xforms = NUM_MAX_XFORMS,
.max_nb_streams = 1
};
struct rte_compressdev_info dev_info;
/* Invalid configuration with 0 queue pairs */
memcpy(&invalid_config, &valid_config,
sizeof(struct rte_compressdev_config));
invalid_config.nb_queue_pairs = 0;
TEST_ASSERT_FAIL(rte_compressdev_configure(0, &invalid_config),
"Device configuration was successful "
"with no queue pairs (invalid)\n");
/*
* Invalid configuration with too many queue pairs
* (if there is an actual maximum number of queue pairs)
*/
rte_compressdev_info_get(0, &dev_info);
if (dev_info.max_nb_queue_pairs != 0) {
memcpy(&invalid_config, &valid_config,
sizeof(struct rte_compressdev_config));
invalid_config.nb_queue_pairs = dev_info.max_nb_queue_pairs + 1;
TEST_ASSERT_FAIL(rte_compressdev_configure(0, &invalid_config),
"Device configuration was successful "
"with too many queue pairs (invalid)\n");
}
/* Invalid queue pair setup, with no number of queue pairs set */
TEST_ASSERT_FAIL(rte_compressdev_queue_pair_setup(0, 0,
NUM_MAX_INFLIGHT_OPS, rte_socket_id()),
"Queue pair setup was successful "
"with no queue pairs set (invalid)\n");
return TEST_SUCCESS;
}
static int
compare_buffers(const char *buffer1, uint32_t buffer1_len,
const char *buffer2, uint32_t buffer2_len)
{
if (buffer1_len != buffer2_len) {
RTE_LOG(ERR, USER1, "Buffer lengths are different\n");
return -1;
}
if (memcmp(buffer1, buffer2, buffer1_len) != 0) {
RTE_LOG(ERR, USER1, "Buffers are different\n");
return -1;
}
return 0;
}
/*
* Maps compressdev and Zlib flush flags
*/
static int
map_zlib_flush_flag(enum rte_comp_flush_flag flag)
{
switch (flag) {
case RTE_COMP_FLUSH_NONE:
return Z_NO_FLUSH;
case RTE_COMP_FLUSH_SYNC:
return Z_SYNC_FLUSH;
case RTE_COMP_FLUSH_FULL:
return Z_FULL_FLUSH;
case RTE_COMP_FLUSH_FINAL:
return Z_FINISH;
/*
* There should be only the values above,
* so this should never happen
*/
default:
return -1;
}
}
static int
compress_zlib(struct rte_comp_op *op,
const struct rte_comp_xform *xform, int mem_level)
{
z_stream stream;
int zlib_flush;
int strategy, window_bits, comp_level;
int ret = TEST_FAILED;
uint8_t *single_src_buf = NULL;
uint8_t *single_dst_buf = NULL;
/* initialize zlib stream */
stream.zalloc = Z_NULL;
stream.zfree = Z_NULL;
stream.opaque = Z_NULL;
if (xform->compress.deflate.huffman == RTE_COMP_HUFFMAN_FIXED)
strategy = Z_FIXED;
else
strategy = Z_DEFAULT_STRATEGY;
/*
* Window bits is the base two logarithm of the window size (in bytes).
* When doing raw DEFLATE, this number will be negative.
*/
window_bits = -(xform->compress.window_size);
if (xform->compress.chksum == RTE_COMP_CHECKSUM_ADLER32)
window_bits *= -1;
else if (xform->compress.chksum == RTE_COMP_CHECKSUM_CRC32)
window_bits = ZLIB_CRC_CHECKSUM_WINDOW_BITS;
comp_level = xform->compress.level;
if (comp_level != RTE_COMP_LEVEL_NONE)
ret = deflateInit2(&stream, comp_level, Z_DEFLATED,
window_bits, mem_level, strategy);
else
ret = deflateInit(&stream, Z_NO_COMPRESSION);
if (ret != Z_OK) {
printf("Zlib deflate could not be initialized\n");
goto exit;
}
/* Assuming stateless operation */
/* SGL Input */
if (op->m_src->nb_segs > 1) {
single_src_buf = rte_malloc(NULL,
rte_pktmbuf_pkt_len(op->m_src), 0);
if (single_src_buf == NULL) {
RTE_LOG(ERR, USER1, "Buffer could not be allocated\n");
goto exit;
}
if (rte_pktmbuf_read(op->m_src, op->src.offset,
rte_pktmbuf_pkt_len(op->m_src) -
op->src.offset,
single_src_buf) == NULL) {
RTE_LOG(ERR, USER1,
"Buffer could not be read entirely\n");
goto exit;
}
stream.avail_in = op->src.length;
stream.next_in = single_src_buf;
} else {
stream.avail_in = op->src.length;
stream.next_in = rte_pktmbuf_mtod_offset(op->m_src, uint8_t *,
op->src.offset);
}
/* SGL output */
if (op->m_dst->nb_segs > 1) {
single_dst_buf = rte_malloc(NULL,
rte_pktmbuf_pkt_len(op->m_dst), 0);
if (single_dst_buf == NULL) {
RTE_LOG(ERR, USER1,
"Buffer could not be allocated\n");
goto exit;
}
stream.avail_out = op->m_dst->pkt_len;
stream.next_out = single_dst_buf;
} else {/* linear output */
stream.avail_out = op->m_dst->data_len;
stream.next_out = rte_pktmbuf_mtod_offset(op->m_dst, uint8_t *,
op->dst.offset);
}
/* Stateless operation, all buffer will be compressed in one go */
zlib_flush = map_zlib_flush_flag(op->flush_flag);
ret = deflate(&stream, zlib_flush);
if (stream.avail_in != 0) {
RTE_LOG(ERR, USER1, "Buffer could not be read entirely\n");
goto exit;
}
if (ret != Z_STREAM_END)
goto exit;
/* Copy data to destination SGL */
if (op->m_dst->nb_segs > 1) {
uint32_t remaining_data = stream.total_out;
uint8_t *src_data = single_dst_buf;
struct rte_mbuf *dst_buf = op->m_dst;
while (remaining_data > 0) {
uint8_t *dst_data = rte_pktmbuf_mtod_offset(dst_buf,
uint8_t *, op->dst.offset);
/* Last segment */
if (remaining_data < dst_buf->data_len) {
memcpy(dst_data, src_data, remaining_data);
remaining_data = 0;
} else {
memcpy(dst_data, src_data, dst_buf->data_len);
remaining_data -= dst_buf->data_len;
src_data += dst_buf->data_len;
dst_buf = dst_buf->next;
}
}
}
op->consumed = stream.total_in;
if (xform->compress.chksum == RTE_COMP_CHECKSUM_ADLER32) {
rte_pktmbuf_adj(op->m_dst, ZLIB_HEADER_SIZE);
rte_pktmbuf_trim(op->m_dst, ZLIB_TRAILER_SIZE);
op->produced = stream.total_out - (ZLIB_HEADER_SIZE +
ZLIB_TRAILER_SIZE);
} else if (xform->compress.chksum == RTE_COMP_CHECKSUM_CRC32) {
rte_pktmbuf_adj(op->m_dst, GZIP_HEADER_SIZE);
rte_pktmbuf_trim(op->m_dst, GZIP_TRAILER_SIZE);
op->produced = stream.total_out - (GZIP_HEADER_SIZE +
GZIP_TRAILER_SIZE);
} else
op->produced = stream.total_out;
op->status = RTE_COMP_OP_STATUS_SUCCESS;
op->output_chksum = stream.adler;
deflateReset(&stream);
ret = 0;
exit:
deflateEnd(&stream);
rte_free(single_src_buf);
rte_free(single_dst_buf);
return ret;
}
static int
decompress_zlib(struct rte_comp_op *op,
const struct rte_comp_xform *xform)
{
z_stream stream;
int window_bits;
int zlib_flush;
int ret = TEST_FAILED;
uint8_t *single_src_buf = NULL;
uint8_t *single_dst_buf = NULL;
/* initialize zlib stream */
stream.zalloc = Z_NULL;
stream.zfree = Z_NULL;
stream.opaque = Z_NULL;
/*
* Window bits is the base two logarithm of the window size (in bytes).
* When doing raw DEFLATE, this number will be negative.
*/
window_bits = -(xform->decompress.window_size);
ret = inflateInit2(&stream, window_bits);
if (ret != Z_OK) {
printf("Zlib deflate could not be initialized\n");
goto exit;
}
/* Assuming stateless operation */
/* SGL */
if (op->m_src->nb_segs > 1) {
single_src_buf = rte_malloc(NULL,
rte_pktmbuf_pkt_len(op->m_src), 0);
if (single_src_buf == NULL) {
RTE_LOG(ERR, USER1, "Buffer could not be allocated\n");
goto exit;
}
single_dst_buf = rte_malloc(NULL,
rte_pktmbuf_pkt_len(op->m_dst), 0);
if (single_dst_buf == NULL) {
RTE_LOG(ERR, USER1, "Buffer could not be allocated\n");
goto exit;
}
if (rte_pktmbuf_read(op->m_src, 0,
rte_pktmbuf_pkt_len(op->m_src),
single_src_buf) == NULL) {
RTE_LOG(ERR, USER1,
"Buffer could not be read entirely\n");
goto exit;
}
stream.avail_in = op->src.length;
stream.next_in = single_src_buf;
stream.avail_out = rte_pktmbuf_pkt_len(op->m_dst);
stream.next_out = single_dst_buf;
} else {
stream.avail_in = op->src.length;
stream.next_in = rte_pktmbuf_mtod(op->m_src, uint8_t *);
stream.avail_out = op->m_dst->data_len;
stream.next_out = rte_pktmbuf_mtod(op->m_dst, uint8_t *);
}
/* Stateless operation, all buffer will be compressed in one go */
zlib_flush = map_zlib_flush_flag(op->flush_flag);
ret = inflate(&stream, zlib_flush);
if (stream.avail_in != 0) {
RTE_LOG(ERR, USER1, "Buffer could not be read entirely\n");
goto exit;
}
if (ret != Z_STREAM_END)
goto exit;
if (op->m_src->nb_segs > 1) {
uint32_t remaining_data = stream.total_out;
uint8_t *src_data = single_dst_buf;
struct rte_mbuf *dst_buf = op->m_dst;
while (remaining_data > 0) {
uint8_t *dst_data = rte_pktmbuf_mtod(dst_buf,
uint8_t *);
/* Last segment */
if (remaining_data < dst_buf->data_len) {
memcpy(dst_data, src_data, remaining_data);
remaining_data = 0;
} else {
memcpy(dst_data, src_data, dst_buf->data_len);
remaining_data -= dst_buf->data_len;
src_data += dst_buf->data_len;
dst_buf = dst_buf->next;
}
}
}
op->consumed = stream.total_in;
op->produced = stream.total_out;
op->status = RTE_COMP_OP_STATUS_SUCCESS;
inflateReset(&stream);
ret = 0;
exit:
inflateEnd(&stream);
return ret;
}
static int
prepare_sgl_bufs(const char *test_buf, struct rte_mbuf *head_buf,
uint32_t total_data_size,
struct rte_mempool *small_mbuf_pool,
struct rte_mempool *large_mbuf_pool,
uint8_t limit_segs_in_sgl,
uint16_t seg_size)
{
uint32_t remaining_data = total_data_size;
uint16_t num_remaining_segs = DIV_CEIL(remaining_data, seg_size);
struct rte_mempool *pool;
struct rte_mbuf *next_seg;
uint32_t data_size;
char *buf_ptr;
const char *data_ptr = test_buf;
uint16_t i;
int ret;
if (limit_segs_in_sgl != 0 && num_remaining_segs > limit_segs_in_sgl)
num_remaining_segs = limit_segs_in_sgl - 1;
/*
* Allocate data in the first segment (header) and
* copy data if test buffer is provided
*/
if (remaining_data < seg_size)
data_size = remaining_data;
else
data_size = seg_size;
buf_ptr = rte_pktmbuf_append(head_buf, data_size);
if (buf_ptr == NULL) {
RTE_LOG(ERR, USER1,
"Not enough space in the 1st buffer\n");
return -1;
}
if (data_ptr != NULL) {
/* Copy characters without NULL terminator */
strncpy(buf_ptr, data_ptr, data_size);
data_ptr += data_size;
}
remaining_data -= data_size;
num_remaining_segs--;
/*
* Allocate the rest of the segments,
* copy the rest of the data and chain the segments.
*/
for (i = 0; i < num_remaining_segs; i++) {
if (i == (num_remaining_segs - 1)) {
/* last segment */
if (remaining_data > seg_size)
pool = large_mbuf_pool;
else
pool = small_mbuf_pool;
data_size = remaining_data;
} else {
data_size = seg_size;
pool = small_mbuf_pool;
}
next_seg = rte_pktmbuf_alloc(pool);
if (next_seg == NULL) {
RTE_LOG(ERR, USER1,
"New segment could not be allocated "
"from the mempool\n");
return -1;
}
buf_ptr = rte_pktmbuf_append(next_seg, data_size);
if (buf_ptr == NULL) {
RTE_LOG(ERR, USER1,
"Not enough space in the buffer\n");
rte_pktmbuf_free(next_seg);
return -1;
}
if (data_ptr != NULL) {
/* Copy characters without NULL terminator */
strncpy(buf_ptr, data_ptr, data_size);
data_ptr += data_size;
}
remaining_data -= data_size;
ret = rte_pktmbuf_chain(head_buf, next_seg);
if (ret != 0) {
rte_pktmbuf_free(next_seg);
RTE_LOG(ERR, USER1,
"Segment could not chained\n");
return -1;
}
}
return 0;
}
static void
extbuf_free_callback(void *addr __rte_unused, void *opaque __rte_unused)
{
}
static int
test_run_enqueue_dequeue(struct rte_comp_op **ops,
struct rte_comp_op **ops_processed,
unsigned int num_bufs)
{
uint16_t num_enqd, num_deqd, num_total_deqd;
unsigned int deqd_retries = 0;
/* Enqueue and dequeue all operations */
num_enqd = rte_compressdev_enqueue_burst(0, 0, ops, num_bufs);
if (num_enqd < num_bufs) {
RTE_LOG(ERR, USER1,
"Some operations could not be enqueued\n");
return -1;
}
num_total_deqd = 0;
do {
/*
* If retrying a dequeue call, wait for 10 ms to allow
* enough time to the driver to process the operations
*/
if (deqd_retries != 0) {
/*
* Avoid infinite loop if not all the
* operations get out of the device
*/
if (deqd_retries == MAX_DEQD_RETRIES) {
RTE_LOG(ERR, USER1,
"Not all operations could be dequeued\n");
return -1;
}
usleep(DEQUEUE_WAIT_TIME);
}
num_deqd = rte_compressdev_dequeue_burst(0, 0,
&ops_processed[num_total_deqd], num_bufs);
num_total_deqd += num_deqd;
deqd_retries++;
} while (num_total_deqd < num_enqd);
return 0;
}
/**
* Arrays initialization. Input buffers preparation for compression.
*
* API that initializes all the private arrays to NULL
* and allocates input buffers to perform compression operations.
*
* @param int_data
* Interim data containing session/transformation objects.
* @param test_data
* The test parameters set by users (command line parameters).
* @param test_priv_data
* A container used for aggregation all the private test arrays.
* @return
* - 0: On success.
* - -1: On error.
*/
static int
test_setup_com_bufs(const struct interim_data_params *int_data,
const struct test_data_params *test_data,
const struct test_private_arrays *test_priv_data)
{
/* local variables: */
unsigned int i;
uint32_t data_size;
char *buf_ptr;
int ret;
char **all_decomp_data = test_priv_data->all_decomp_data;
struct comp_testsuite_params *ts_params = &testsuite_params;
/* from int_data: */
const char * const *test_bufs = int_data->test_bufs;
unsigned int num_bufs = int_data->num_bufs;
/* from test_data: */
unsigned int buff_type = test_data->buff_type;
unsigned int big_data = test_data->big_data;
/* from test_priv_data: */
struct rte_mbuf **uncomp_bufs = test_priv_data->uncomp_bufs;
struct rte_mempool *buf_pool;
static struct rte_mbuf_ext_shared_info inbuf_info;
size_t array_size = sizeof(void *) * num_bufs;
/* Initialize all arrays to NULL */
memset(test_priv_data->uncomp_bufs, 0, array_size);
memset(test_priv_data->comp_bufs, 0, array_size);
memset(test_priv_data->ops, 0, array_size);
memset(test_priv_data->ops_processed, 0, array_size);
memset(test_priv_data->priv_xforms, 0, array_size);
memset(test_priv_data->compressed_data_size,
0, sizeof(uint32_t) * num_bufs);
if (test_data->decompress_state == RTE_COMP_OP_STATEFUL) {
data_size = strlen(test_bufs[0]) + 1;
*all_decomp_data = rte_malloc(NULL, data_size,
RTE_CACHE_LINE_SIZE);
}
if (big_data)
buf_pool = ts_params->big_mbuf_pool;
else if (buff_type == SGL_BOTH)
buf_pool = ts_params->small_mbuf_pool;
else
buf_pool = ts_params->large_mbuf_pool;
/* for compression uncomp_bufs is used as a source buffer */
/* allocation from buf_pool (mempool type) */
ret = rte_pktmbuf_alloc_bulk(buf_pool,
uncomp_bufs, num_bufs);
if (ret < 0) {
RTE_LOG(ERR, USER1,
"Source mbufs could not be allocated "
"from the mempool\n");
return -1;
}
if (test_data->use_external_mbufs) {
inbuf_info.free_cb = extbuf_free_callback;
inbuf_info.fcb_opaque = NULL;
rte_mbuf_ext_refcnt_set(&inbuf_info, 1);
for (i = 0; i < num_bufs; i++) {
rte_pktmbuf_attach_extbuf(uncomp_bufs[i],
test_data->inbuf_memzone->addr,
test_data->inbuf_memzone->iova,
test_data->inbuf_data_size,
&inbuf_info);
buf_ptr = rte_pktmbuf_append(uncomp_bufs[i],
test_data->inbuf_data_size);
if (buf_ptr == NULL) {
RTE_LOG(ERR, USER1,
"Append extra bytes to the source mbuf failed\n");
return -1;
}
}
} else if (buff_type == SGL_BOTH || buff_type == SGL_TO_LB) {
for (i = 0; i < num_bufs; i++) {
data_size = strlen(test_bufs[i]) + 1;
if (prepare_sgl_bufs(test_bufs[i], uncomp_bufs[i],
data_size,
big_data ? buf_pool : ts_params->small_mbuf_pool,
big_data ? buf_pool : ts_params->large_mbuf_pool,
big_data ? 0 : MAX_SEGS,
big_data ? MAX_DATA_MBUF_SIZE : SMALL_SEG_SIZE) < 0)
return -1;
}
} else {
for (i = 0; i < num_bufs; i++) {
data_size = strlen(test_bufs[i]) + 1;
buf_ptr = rte_pktmbuf_append(uncomp_bufs[i], data_size);
if (buf_ptr == NULL) {
RTE_LOG(ERR, USER1,
"Append extra bytes to the source mbuf failed\n");
return -1;
}
strlcpy(buf_ptr, test_bufs[i], data_size);
}
}
return 0;
}
/**
* Data size calculation (for both compression and decompression).
*
* Calculate size of anticipated output buffer required for both
* compression and decompression operations based on input int_data.
*
* @param op_type
* Operation type: compress or decompress
* @param out_of_space_and_zlib
* Boolean value to switch into "out of space" buffer if set.
* To test "out-of-space" data size, zlib_decompress must be set as well.
* @param test_priv_data
* A container used for aggregation all the private test arrays.
* @param int_data
* Interim data containing session/transformation objects.
* @param test_data
* The test parameters set by users (command line parameters).
* @param i
* current buffer index
* @return
* data size
*/
static inline uint32_t
test_mbufs_calculate_data_size(
enum operation_type op_type,
unsigned int out_of_space_and_zlib,
const struct test_private_arrays *test_priv_data,
const struct interim_data_params *int_data,
const struct test_data_params *test_data,
unsigned int i)
{
/* local variables: */
uint32_t data_size;
struct priv_op_data *priv_data;
float ratio;
uint8_t not_zlib_compr; /* true if zlib isn't current compression dev */
enum overflow_test overflow = test_data->overflow;
/* from test_priv_data: */
struct rte_comp_op **ops_processed = test_priv_data->ops_processed;
/* from int_data: */
const char * const *test_bufs = int_data->test_bufs;
if (out_of_space_and_zlib)
data_size = OUT_OF_SPACE_BUF;
else {
if (op_type == OPERATION_COMPRESSION) {
not_zlib_compr = (test_data->zlib_dir == ZLIB_DECOMPRESS
|| test_data->zlib_dir == ZLIB_NONE);
ratio = (not_zlib_compr &&
(overflow == OVERFLOW_ENABLED)) ?
COMPRESS_BUF_SIZE_RATIO_OVERFLOW :
COMPRESS_BUF_SIZE_RATIO;
data_size = strlen(test_bufs[i]) * ratio;
} else {
priv_data = (struct priv_op_data *)
(ops_processed[i] + 1);
data_size = strlen(test_bufs[priv_data->orig_idx]) + 1;
}
}
return data_size;
}
/**
* Memory buffers preparation (for both compression and decompression).
*
* Function allocates output buffers to perform compression
* or decompression operations depending on value of op_type.
*
* @param op_type
* Operation type: compress or decompress
* @param out_of_space_and_zlib
* Boolean value to switch into "out of space" buffer if set.
* To test "out-of-space" data size, zlib_decompress must be set as well.
* @param test_priv_data
* A container used for aggregation all the private test arrays.
* @param int_data
* Interim data containing session/transformation objects.
* @param test_data
* The test parameters set by users (command line parameters).
* @param current_extbuf_info,
* The structure containing all the information related to external mbufs
* @return
* - 0: On success.
* - -1: On error.
*/
static int
test_setup_output_bufs(
enum operation_type op_type,
unsigned int out_of_space_and_zlib,
const struct test_private_arrays *test_priv_data,
const struct interim_data_params *int_data,
const struct test_data_params *test_data,
struct rte_mbuf_ext_shared_info *current_extbuf_info)
{
/* local variables: */
unsigned int i;
uint32_t data_size;
int ret;
char *buf_ptr;
/* from test_priv_data: */
struct rte_mbuf **current_bufs;
/* from int_data: */
unsigned int num_bufs = int_data->num_bufs;
/* from test_data: */
unsigned int buff_type = test_data->buff_type;
unsigned int big_data = test_data->big_data;
const struct rte_memzone *current_memzone;
struct comp_testsuite_params *ts_params = &testsuite_params;
struct rte_mempool *buf_pool;
if (big_data)
buf_pool = ts_params->big_mbuf_pool;
else if (buff_type == SGL_BOTH)
buf_pool = ts_params->small_mbuf_pool;
else
buf_pool = ts_params->large_mbuf_pool;
if (op_type == OPERATION_COMPRESSION)
current_bufs = test_priv_data->comp_bufs;
else
current_bufs = test_priv_data->uncomp_bufs;
/* the mbufs allocation*/
ret = rte_pktmbuf_alloc_bulk(buf_pool, current_bufs, num_bufs);
if (ret < 0) {
RTE_LOG(ERR, USER1,
"Destination mbufs could not be allocated "
"from the mempool\n");
return -1;
}
if (test_data->use_external_mbufs) {
current_extbuf_info->free_cb = extbuf_free_callback;
current_extbuf_info->fcb_opaque = NULL;
rte_mbuf_ext_refcnt_set(current_extbuf_info, 1);
if (op_type == OPERATION_COMPRESSION)
current_memzone = test_data->compbuf_memzone;
else
current_memzone = test_data->uncompbuf_memzone;
for (i = 0; i < num_bufs; i++) {
rte_pktmbuf_attach_extbuf(current_bufs[i],
current_memzone->addr,
current_memzone->iova,
current_memzone->len,
current_extbuf_info);
rte_pktmbuf_append(current_bufs[i],
current_memzone->len);
}
} else {
for (i = 0; i < num_bufs; i++) {
/* data size calculation */
data_size = test_mbufs_calculate_data_size(
op_type,
out_of_space_and_zlib,
test_priv_data,
int_data,
test_data,
i);
/* data allocation */
if (buff_type == SGL_BOTH || buff_type == LB_TO_SGL) {
ret = prepare_sgl_bufs(NULL, current_bufs[i],
data_size,
big_data ? buf_pool :
ts_params->small_mbuf_pool,
big_data ? buf_pool :
ts_params->large_mbuf_pool,
big_data ? 0 : MAX_SEGS,
big_data ? MAX_DATA_MBUF_SIZE :
SMALL_SEG_SIZE);
if (ret < 0)
return -1;
} else {
buf_ptr = rte_pktmbuf_append(current_bufs[i],
data_size);
if (buf_ptr == NULL) {
RTE_LOG(ERR, USER1,
"Append extra bytes to the destination mbuf failed\n");
return -1;
}
}
}
}
return 0;
}
/**
* The main compression function.
*
* Function performs compression operation.
* Operation(s) configuration, depending on CLI parameters.
* Operation(s) processing.
*
* @param int_data
* Interim data containing session/transformation objects.
* @param test_data
* The test parameters set by users (command line parameters).
* @param test_priv_data
* A container used for aggregation all the private test arrays.
* @return
* - 0: On success.
* - -1: On error.
*/
static int
test_deflate_comp_run(const struct interim_data_params *int_data,
const struct test_data_params *test_data,
const struct test_private_arrays *test_priv_data)
{
/* local variables: */
struct priv_op_data *priv_data;
unsigned int i;
uint16_t num_priv_xforms = 0;
int ret;
int ret_status = 0;
char *buf_ptr;
struct comp_testsuite_params *ts_params = &testsuite_params;
/* from test_data: */
enum rte_comp_op_type operation_type = test_data->compress_state;
unsigned int zlib_compress =
(test_data->zlib_dir == ZLIB_ALL ||
test_data->zlib_dir == ZLIB_COMPRESS);
/* from int_data: */
struct rte_comp_xform **compress_xforms = int_data->compress_xforms;
unsigned int num_xforms = int_data->num_xforms;
unsigned int num_bufs = int_data->num_bufs;
/* from test_priv_data: */
struct rte_mbuf **comp_bufs = test_priv_data->comp_bufs;
struct rte_mbuf **uncomp_bufs = test_priv_data->uncomp_bufs;
struct rte_comp_op **ops = test_priv_data->ops;
struct rte_comp_op **ops_processed = test_priv_data->ops_processed;
void **priv_xforms = test_priv_data->priv_xforms;
const struct rte_compressdev_capabilities *capa =
rte_compressdev_capability_get(0, RTE_COMP_ALGO_DEFLATE);
/* Build the compression operations */
ret = rte_comp_op_bulk_alloc(ts_params->op_pool, ops, num_bufs);
if (ret < 0) {
RTE_LOG(ERR, USER1,
"Compress operations could not be allocated "
"from the mempool\n");
ret_status = -1;
goto exit;
}
for (i = 0; i < num_bufs; i++) {
ops[i]->m_src = uncomp_bufs[i];
ops[i]->m_dst = comp_bufs[i];
ops[i]->src.offset = 0;
ops[i]->src.length = rte_pktmbuf_pkt_len(uncomp_bufs[i]);
ops[i]->dst.offset = 0;
if (operation_type == RTE_COMP_OP_STATELESS) {
ops[i]->flush_flag = RTE_COMP_FLUSH_FINAL;
} else {
RTE_LOG(ERR, USER1,
"Compression: stateful operations are not "
"supported in these tests yet\n");
ret_status = -1;
goto exit;
}
ops[i]->input_chksum = 0;
/*
* Store original operation index in private data,
* since ordering does not have to be maintained,
* when dequeueing from compressdev, so a comparison
* at the end of the test can be done.
*/
priv_data = (struct priv_op_data *) (ops[i] + 1);
priv_data->orig_idx = i;
}
/* Compress data (either with Zlib API or compressdev API */
if (zlib_compress) {
for (i = 0; i < num_bufs; i++) {
const struct rte_comp_xform *compress_xform =
compress_xforms[i % num_xforms];
ret = compress_zlib(ops[i], compress_xform,
DEFAULT_MEM_LEVEL);
if (ret < 0) {
ret_status = -1;
goto exit;
}
ops_processed[i] = ops[i];
}
} else {
/* Create compress private xform data */
for (i = 0; i < num_xforms; i++) {
ret = rte_compressdev_private_xform_create(0,
(const struct rte_comp_xform *)
compress_xforms[i],
&priv_xforms[i]);
if (ret < 0) {
RTE_LOG(ERR, USER1,
"Compression private xform "
"could not be created\n");
ret_status = -1;
goto exit;
}
num_priv_xforms++;
}
if (capa->comp_feature_flags &
RTE_COMP_FF_SHAREABLE_PRIV_XFORM) {
/* Attach shareable private xform data to ops */
for (i = 0; i < num_bufs; i++)
ops[i]->private_xform =
priv_xforms[i % num_xforms];
} else {
/* Create rest of the private xforms for the other ops */
for (i = num_xforms; i < num_bufs; i++) {
ret = rte_compressdev_private_xform_create(0,
compress_xforms[i % num_xforms],
&priv_xforms[i]);
if (ret < 0) {
RTE_LOG(ERR, USER1,
"Compression private xform "
"could not be created\n");
ret_status = -1;
goto exit;
}
num_priv_xforms++;
}
/* Attach non shareable private xform data to ops */
for (i = 0; i < num_bufs; i++)
ops[i]->private_xform = priv_xforms[i];
}
recovery_lb:
ret = test_run_enqueue_dequeue(ops, ops_processed, num_bufs);
if (ret < 0) {
RTE_LOG(ERR, USER1,
"Compression: enqueue/dequeue operation failed\n");
ret_status = -1;
goto exit;
}
for (i = 0; i < num_bufs; i++) {
test_priv_data->compressed_data_size[i] +=
ops_processed[i]->produced;
if (ops_processed[i]->status ==
RTE_COMP_OP_STATUS_OUT_OF_SPACE_RECOVERABLE) {
ops[i]->status =
RTE_COMP_OP_STATUS_NOT_PROCESSED;
ops[i]->src.offset +=
ops_processed[i]->consumed;
ops[i]->src.length -=
ops_processed[i]->consumed;
ops[i]->dst.offset +=
ops_processed[i]->produced;
buf_ptr = rte_pktmbuf_append(
ops[i]->m_dst,
ops_processed[i]->produced);
if (buf_ptr == NULL) {
RTE_LOG(ERR, USER1,
"Data recovery: append extra bytes to the current mbuf failed\n");
ret_status = -1;
goto exit;
}
goto recovery_lb;
}
}
}
exit:
/* Free resources */
if (ret_status < 0)
for (i = 0; i < num_bufs; i++) {
rte_comp_op_free(ops[i]);
ops_processed[i] = NULL;
}
/* Free compress private xforms */
for (i = 0; i < num_priv_xforms; i++) {
if (priv_xforms[i] != NULL) {
rte_compressdev_private_xform_free(0, priv_xforms[i]);
priv_xforms[i] = NULL;
}
}
return ret_status;
}
/**
* Prints out the test report. Memory freeing.
*
* Called after successful compression.
* Operation(s) status validation and decompression buffers freeing.
* -1 returned if function fail.
*
* @param int_data
* Interim data containing session/transformation objects.
* @param test_data
* The test parameters set by users (command line parameters).
* @param test_priv_data
* A container used for aggregation all the private test arrays.
* @return
* - 2: Some operation is not supported
* - 1: Decompression should be skipped
* - 0: On success.
* - -1: On error.
*/
static int
test_deflate_comp_finalize(const struct interim_data_params *int_data,
const struct test_data_params *test_data,
const struct test_private_arrays *test_priv_data)
{
/* local variables: */
unsigned int i;
struct priv_op_data *priv_data;
/* from int_data: */
unsigned int num_xforms = int_data->num_xforms;
struct rte_comp_xform **compress_xforms = int_data->compress_xforms;
uint16_t *buf_idx = int_data->buf_idx;
unsigned int num_bufs = int_data->num_bufs;
/* from test_priv_data: */
struct rte_comp_op **ops_processed = test_priv_data->ops_processed;
uint64_t *compress_checksum = test_priv_data->compress_checksum;
struct rte_mbuf **uncomp_bufs = test_priv_data->uncomp_bufs;
struct rte_comp_op **ops = test_priv_data->ops;
/* from test_data: */
unsigned int out_of_space = test_data->out_of_space;
unsigned int zlib_compress =
(test_data->zlib_dir == ZLIB_ALL ||
test_data->zlib_dir == ZLIB_COMPRESS);
unsigned int zlib_decompress =
(test_data->zlib_dir == ZLIB_ALL ||
test_data->zlib_dir == ZLIB_DECOMPRESS);
for (i = 0; i < num_bufs; i++) {
priv_data = (struct priv_op_data *)(ops_processed[i] + 1);
uint16_t xform_idx = priv_data->orig_idx % num_xforms;
const struct rte_comp_compress_xform *compress_xform =
&compress_xforms[xform_idx]->compress;
enum rte_comp_huffman huffman_type =
compress_xform->deflate.huffman;
char engine[] = "zlib (directly, not PMD)";
if (zlib_decompress)
strlcpy(engine, "PMD", sizeof(engine));
RTE_LOG(DEBUG, USER1, "Buffer %u compressed by %s from %u to"
" %u bytes (level = %d, huffman = %s)\n",
buf_idx[priv_data->orig_idx], engine,
ops_processed[i]->consumed, ops_processed[i]->produced,
compress_xform->level,
huffman_type_strings[huffman_type]);
RTE_LOG(DEBUG, USER1, "Compression ratio = %.2f\n",
ops_processed[i]->consumed == 0 ? 0 :
(float)ops_processed[i]->produced /
ops_processed[i]->consumed * 100);
if (compress_xform->chksum != RTE_COMP_CHECKSUM_NONE)
compress_checksum[i] = ops_processed[i]->output_chksum;
ops[i] = NULL;
}
/*
* Check operation status and free source mbufs (destination mbuf and
* compress operation information is needed for the decompression stage)
*/
for (i = 0; i < num_bufs; i++) {
if (out_of_space && !zlib_compress) {
if (ops_processed[i]->status !=
RTE_COMP_OP_STATUS_OUT_OF_SPACE_TERMINATED) {
RTE_LOG(ERR, USER1,
"Operation without expected out of "
"space status error\n");
return -1;
} else
continue;
}
if (ops_processed[i]->status != RTE_COMP_OP_STATUS_SUCCESS) {
if (test_data->overflow == OVERFLOW_ENABLED) {
if (ops_processed[i]->status ==
RTE_COMP_OP_STATUS_OUT_OF_SPACE_TERMINATED) {
RTE_LOG(INFO, USER1,
"Out-of-space-recoverable functionality"
" is not supported on this device\n");
return 2;
}
}
RTE_LOG(ERR, USER1,
"Some operations were not successful\n");
return -1;
}
priv_data = (struct priv_op_data *)(ops_processed[i] + 1);
rte_pktmbuf_free(uncomp_bufs[priv_data->orig_idx]);
uncomp_bufs[priv_data->orig_idx] = NULL;
}
if (out_of_space && !zlib_compress)
return 1;
return 0;
}
/**
* The main decompression function.
*
* Function performs decompression operation.
* Operation(s) configuration, depending on CLI parameters.
* Operation(s) processing.
*
* @param int_data
* Interim data containing session/transformation objects.
* @param test_data
* The test parameters set by users (command line parameters).
* @param test_priv_data
* A container used for aggregation all the private test arrays.
* @return
* - 0: On success.
* - -1: On error.
*/
static int
test_deflate_decomp_run(const struct interim_data_params *int_data,
const struct test_data_params *test_data,
struct test_private_arrays *test_priv_data)
{
/* local variables: */
struct priv_op_data *priv_data;
unsigned int i;
uint16_t num_priv_xforms = 0;
int ret;
int ret_status = 0;
struct comp_testsuite_params *ts_params = &testsuite_params;
/* from test_data: */
enum rte_comp_op_type operation_type = test_data->decompress_state;
unsigned int zlib_decompress =
(test_data->zlib_dir == ZLIB_ALL ||
test_data->zlib_dir == ZLIB_DECOMPRESS);
/* from int_data: */
struct rte_comp_xform **decompress_xforms = int_data->decompress_xforms;
unsigned int num_xforms = int_data->num_xforms;
unsigned int num_bufs = int_data->num_bufs;
/* from test_priv_data: */
struct rte_mbuf **uncomp_bufs = test_priv_data->uncomp_bufs;
struct rte_comp_op **ops = test_priv_data->ops;
struct rte_comp_op **ops_processed = test_priv_data->ops_processed;
void **priv_xforms = test_priv_data->priv_xforms;
uint32_t *compressed_data_size = test_priv_data->compressed_data_size;
void **stream = test_priv_data->stream;
const struct rte_compressdev_capabilities *capa =
rte_compressdev_capability_get(0, RTE_COMP_ALGO_DEFLATE);
ret = rte_comp_op_bulk_alloc(ts_params->op_pool, ops, num_bufs);
if (ret < 0) {
RTE_LOG(ERR, USER1,
"Decompress operations could not be allocated "
"from the mempool\n");
ret_status = -1;
goto exit;
}
/* Source buffer is the compressed data from the previous operations */
for (i = 0; i < num_bufs; i++) {
ops[i]->m_src = ops_processed[i]->m_dst;
ops[i]->m_dst = uncomp_bufs[i];
ops[i]->src.offset = 0;
/*
* Set the length of the compressed data to the
* number of bytes that were produced in the previous stage
*/
if (compressed_data_size[i])
ops[i]->src.length = compressed_data_size[i];
else
ops[i]->src.length = ops_processed[i]->produced;
ops[i]->dst.offset = 0;
if (operation_type == RTE_COMP_OP_STATELESS) {
ops[i]->flush_flag = RTE_COMP_FLUSH_FINAL;
ops[i]->op_type = RTE_COMP_OP_STATELESS;
} else if (!zlib_decompress) {
ops[i]->flush_flag = RTE_COMP_FLUSH_SYNC;
ops[i]->op_type = RTE_COMP_OP_STATEFUL;
} else {
RTE_LOG(ERR, USER1,
"Decompression: stateful operations are"
" not supported in these tests yet\n");
ret_status = -1;
goto exit;
}
ops[i]->input_chksum = 0;
/*
* Copy private data from previous operations,
* to keep the pointer to the original buffer
*/
memcpy(ops[i] + 1, ops_processed[i] + 1,
sizeof(struct priv_op_data));
}
/*
* Free the previous compress operations,
* as they are not needed anymore
*/
rte_comp_op_bulk_free(ops_processed, num_bufs);
/* Decompress data (either with Zlib API or compressdev API */
if (zlib_decompress) {
for (i = 0; i < num_bufs; i++) {
priv_data = (struct priv_op_data *)(ops[i] + 1);
uint16_t xform_idx = priv_data->orig_idx % num_xforms;
const struct rte_comp_xform *decompress_xform =
decompress_xforms[xform_idx];
ret = decompress_zlib(ops[i], decompress_xform);
if (ret < 0) {
ret_status = -1;
goto exit;
}
ops_processed[i] = ops[i];
}
} else {
if (operation_type == RTE_COMP_OP_STATELESS) {
/* Create decompress private xform data */
for (i = 0; i < num_xforms; i++) {
ret = rte_compressdev_private_xform_create(0,
(const struct rte_comp_xform *)
decompress_xforms[i],
&priv_xforms[i]);
if (ret < 0) {
RTE_LOG(ERR, USER1,
"Decompression private xform "
"could not be created\n");
ret_status = -1;
goto exit;
}
num_priv_xforms++;
}
if (capa->comp_feature_flags &
RTE_COMP_FF_SHAREABLE_PRIV_XFORM) {
/* Attach shareable private xform data to ops */
for (i = 0; i < num_bufs; i++) {
priv_data = (struct priv_op_data *)
(ops[i] + 1);
uint16_t xform_idx =
priv_data->orig_idx % num_xforms;
ops[i]->private_xform =
priv_xforms[xform_idx];
}
} else {
/* Create rest of the private xforms */
/* for the other ops */
for (i = num_xforms; i < num_bufs; i++) {
ret =
rte_compressdev_private_xform_create(0,
decompress_xforms[i % num_xforms],
&priv_xforms[i]);
if (ret < 0) {
RTE_LOG(ERR, USER1,
"Decompression private xform"
" could not be created\n");
ret_status = -1;
goto exit;
}
num_priv_xforms++;
}
/* Attach non shareable private xform data */
/* to ops */
for (i = 0; i < num_bufs; i++) {
priv_data = (struct priv_op_data *)
(ops[i] + 1);
uint16_t xform_idx =
priv_data->orig_idx;
ops[i]->private_xform =
priv_xforms[xform_idx];
}
}
} else {
/* Create a stream object for stateful decompression */
ret = rte_compressdev_stream_create(0,
decompress_xforms[0], stream);
if (ret < 0) {
RTE_LOG(ERR, USER1,
"Decompression stream could not be created, error %d\n",
ret);
ret_status = -1;
goto exit;
}
/* Attach stream to ops */
for (i = 0; i < num_bufs; i++)
ops[i]->stream = *stream;
}
test_priv_data->num_priv_xforms = num_priv_xforms;
}
exit:
return ret_status;
}
/**
* Prints out the test report. Memory freeing.
*
* Called after successful decompression.
* Operation(s) status validation and compression buffers freeing.
* -1 returned if function fail.
*
* @param int_data
* Interim data containing session/transformation objects.
* @param test_data
* The test parameters set by users (command line parameters).
* @param test_priv_data
* A container used for aggregation all the private test arrays.
* @return
* - 2: Next step must be executed by the caller (stateful decompression only)
* - 1: On success (caller should stop and exit)
* - 0: On success.
* - -1: On error.
*/
static int
test_deflate_decomp_finalize(const struct interim_data_params *int_data,
const struct test_data_params *test_data,
const struct test_private_arrays *test_priv_data)
{
/* local variables: */
unsigned int i;
struct priv_op_data *priv_data;
static unsigned int step;
/* from int_data: */
uint16_t *buf_idx = int_data->buf_idx;
unsigned int num_bufs = int_data->num_bufs;
const char * const *test_bufs = int_data->test_bufs;
struct rte_comp_xform **compress_xforms = int_data->compress_xforms;
/* from test_priv_data: */
struct rte_comp_op **ops_processed = test_priv_data->ops_processed;
struct rte_mbuf **comp_bufs = test_priv_data->comp_bufs;
struct rte_comp_op **ops = test_priv_data->ops;
uint64_t *compress_checksum = test_priv_data->compress_checksum;
unsigned int *decomp_produced_data_size =
test_priv_data->decomp_produced_data_size;
char **all_decomp_data = test_priv_data->all_decomp_data;
/* from test_data: */
unsigned int out_of_space = test_data->out_of_space;
enum rte_comp_op_type operation_type = test_data->decompress_state;
unsigned int zlib_compress =
(test_data->zlib_dir == ZLIB_ALL ||
test_data->zlib_dir == ZLIB_COMPRESS);
unsigned int zlib_decompress =
(test_data->zlib_dir == ZLIB_ALL ||
test_data->zlib_dir == ZLIB_DECOMPRESS);
for (i = 0; i < num_bufs; i++) {
priv_data = (struct priv_op_data *)(ops_processed[i] + 1);
char engine[] = "zlib, (directly, no PMD)";
if (zlib_compress)
strlcpy(engine, "pmd", sizeof(engine));
RTE_LOG(DEBUG, USER1,
"Buffer %u decompressed by %s from %u to %u bytes\n",
buf_idx[priv_data->orig_idx], engine,
ops_processed[i]->consumed, ops_processed[i]->produced);
ops[i] = NULL;
}
/*
* Check operation status and free source mbuf (destination mbuf and
* compress operation information is still needed)
*/
for (i = 0; i < num_bufs; i++) {
if (out_of_space && !zlib_decompress) {
if (ops_processed[i]->status !=
RTE_COMP_OP_STATUS_OUT_OF_SPACE_TERMINATED) {
RTE_LOG(ERR, USER1,
"Operation without expected out of "
"space status error\n");
return -1;
} else
continue;
}
if (operation_type == RTE_COMP_OP_STATEFUL
&& (ops_processed[i]->status ==
RTE_COMP_OP_STATUS_OUT_OF_SPACE_RECOVERABLE
|| ops_processed[i]->status ==
RTE_COMP_OP_STATUS_SUCCESS)) {
/* collect the output into all_decomp_data */
const void *ptr = rte_pktmbuf_read(
ops_processed[i]->m_dst,
ops_processed[i]->dst.offset,
ops_processed[i]->produced,
*all_decomp_data +
*decomp_produced_data_size);
if (ptr != *all_decomp_data +
*decomp_produced_data_size)
rte_memcpy(*all_decomp_data +
*decomp_produced_data_size,
ptr, ops_processed[i]->produced);
*decomp_produced_data_size +=
ops_processed[i]->produced;
if (ops_processed[i]->src.length >
ops_processed[i]->consumed) {
if (ops_processed[i]->status ==
RTE_COMP_OP_STATUS_SUCCESS) {
RTE_LOG(ERR, USER1,
"Operation finished too early\n");
return -1;
}
step++;
if (step >= test_data->decompress_steps_max) {
RTE_LOG(ERR, USER1,
"Operation exceeded maximum steps\n");
return -1;
}
ops[i] = ops_processed[i];
ops[i]->status =
RTE_COMP_OP_STATUS_NOT_PROCESSED;
ops[i]->src.offset +=
ops_processed[i]->consumed;
ops[i]->src.length -=
ops_processed[i]->consumed;
/* repeat the operation */
//goto next_step;
return 2;
} else {
/* Compare the original stream with the */
/* decompressed stream (in size and the data) */
priv_data = (struct priv_op_data *)
(ops_processed[i] + 1);
const char *buf1 =
test_bufs[priv_data->orig_idx];
const char *buf2 = *all_decomp_data;
if (compare_buffers(buf1, strlen(buf1) + 1,
buf2, *decomp_produced_data_size) < 0)
return -1;
/* Test checksums */
if (compress_xforms[0]->compress.chksum
!= RTE_COMP_CHECKSUM_NONE) {
if (ops_processed[i]->output_chksum
!= compress_checksum[i]) {
RTE_LOG(ERR, USER1,
"The checksums differ\n"
"Compression Checksum: %" PRIu64 "\tDecompression "
"Checksum: %" PRIu64 "\n", compress_checksum[i],
ops_processed[i]->output_chksum);
return -1;
}
}
}
} else if (ops_processed[i]->status !=
RTE_COMP_OP_STATUS_SUCCESS) {
RTE_LOG(ERR, USER1,
"Some operations were not successful\n");
return -1;
}
priv_data = (struct priv_op_data *)(ops_processed[i] + 1);
rte_pktmbuf_free(comp_bufs[priv_data->orig_idx]);
comp_bufs[priv_data->orig_idx] = NULL;
}
if (out_of_space && !zlib_decompress)
return 1;
return 0;
}
/**
* Validation of the output (compression/decompression) data.
*
* The function compares the source stream with the output stream,
* after decompression, to check if compression/decompression
* was correct.
* -1 returned if function fail.
*
* @param int_data
* Interim data containing session/transformation objects.
* @param test_data
* The test parameters set by users (command line parameters).
* @param test_priv_data
* A container used for aggregation all the private test arrays.
* @return
* - 0: On success.
* - -1: On error.
*/
static int
test_results_validation(const struct interim_data_params *int_data,
const struct test_data_params *test_data,
const struct test_private_arrays *test_priv_data)
{
/* local variables: */
unsigned int i;
struct priv_op_data *priv_data;
const char *buf1;
const char *buf2;
char *contig_buf = NULL;
uint32_t data_size;
/* from int_data: */
struct rte_comp_xform **compress_xforms = int_data->compress_xforms;
unsigned int num_bufs = int_data->num_bufs;
const char * const *test_bufs = int_data->test_bufs;
/* from test_priv_data: */
uint64_t *compress_checksum = test_priv_data->compress_checksum;
struct rte_comp_op **ops_processed = test_priv_data->ops_processed;
/*
* Compare the original stream with the decompressed stream
* (in size and the data)
*/
for (i = 0; i < num_bufs; i++) {
priv_data = (struct priv_op_data *)(ops_processed[i] + 1);
buf1 = test_data->use_external_mbufs ?
test_data->inbuf_memzone->addr :
test_bufs[priv_data->orig_idx];
data_size = test_data->use_external_mbufs ?
test_data->inbuf_data_size :
strlen(buf1) + 1;
contig_buf = rte_malloc(NULL, ops_processed[i]->produced, 0);
if (contig_buf == NULL) {
RTE_LOG(ERR, USER1, "Contiguous buffer could not "
"be allocated\n");
goto exit;
}
buf2 = rte_pktmbuf_read(ops_processed[i]->m_dst, 0,
ops_processed[i]->produced, contig_buf);
if (compare_buffers(buf1, data_size,
buf2, ops_processed[i]->produced) < 0)
goto exit;
/* Test checksums */
if (compress_xforms[0]->compress.chksum !=
RTE_COMP_CHECKSUM_NONE) {
if (ops_processed[i]->output_chksum !=
compress_checksum[i]) {
RTE_LOG(ERR, USER1, "The checksums differ\n"
"Compression Checksum: %" PRIu64 "\tDecompression "
"Checksum: %" PRIu64 "\n", compress_checksum[i],
ops_processed[i]->output_chksum);
goto exit;
}
}
rte_free(contig_buf);
contig_buf = NULL;
}
return 0;
exit:
rte_free(contig_buf);
return -1;
}
/**
* Compresses and decompresses input stream with compressdev API and Zlib API
*
* Basic test function. Common for all the functional tests.
* -1 returned if function fail.
*
* @param int_data
* Interim data containing session/transformation objects.
* @param test_data
* The test parameters set by users (command line parameters).
* @return
* - 1: Some operation not supported
* - 0: On success.
* - -1: On error.
*/
static int
test_deflate_comp_decomp(const struct interim_data_params *int_data,
const struct test_data_params *test_data)
{
unsigned int num_bufs = int_data->num_bufs;
unsigned int out_of_space = test_data->out_of_space;
void *stream = NULL;
char *all_decomp_data = NULL;
unsigned int decomp_produced_data_size = 0;
int ret_status = -1;
int ret;
struct rte_mbuf *uncomp_bufs[num_bufs];
struct rte_mbuf *comp_bufs[num_bufs];
struct rte_comp_op *ops[num_bufs];
struct rte_comp_op *ops_processed[num_bufs];
void *priv_xforms[num_bufs];
unsigned int i;
uint64_t compress_checksum[num_bufs];
uint32_t compressed_data_size[num_bufs];
char *contig_buf = NULL;
struct rte_mbuf_ext_shared_info compbuf_info;
struct rte_mbuf_ext_shared_info decompbuf_info;
const struct rte_compressdev_capabilities *capa;
/* Compressing with CompressDev */
unsigned int zlib_compress =
(test_data->zlib_dir == ZLIB_ALL ||
test_data->zlib_dir == ZLIB_COMPRESS);
unsigned int zlib_decompress =
(test_data->zlib_dir == ZLIB_ALL ||
test_data->zlib_dir == ZLIB_DECOMPRESS);
struct test_private_arrays test_priv_data;
test_priv_data.uncomp_bufs = uncomp_bufs;
test_priv_data.comp_bufs = comp_bufs;
test_priv_data.ops = ops;
test_priv_data.ops_processed = ops_processed;
test_priv_data.priv_xforms = priv_xforms;
test_priv_data.compress_checksum = compress_checksum;
test_priv_data.compressed_data_size = compressed_data_size;
test_priv_data.stream = &stream;
test_priv_data.all_decomp_data = &all_decomp_data;
test_priv_data.decomp_produced_data_size = &decomp_produced_data_size;
test_priv_data.num_priv_xforms = 0; /* it's used for deompression only */
capa = rte_compressdev_capability_get(0, RTE_COMP_ALGO_DEFLATE);
if (capa == NULL) {
RTE_LOG(ERR, USER1,
"Compress device does not support DEFLATE\n");
return -1;
}
//test_objects_init(&test_priv_data, num_bufs);
/* Prepare the source mbufs with the data */
ret = test_setup_com_bufs(int_data, test_data, &test_priv_data);
if (ret < 0) {
ret_status = -1;
goto exit;
}
/* COMPRESSION */
/* Prepare output (destination) mbufs for compressed data */
ret = test_setup_output_bufs(
OPERATION_COMPRESSION,
out_of_space == 1 && !zlib_compress,
&test_priv_data,
int_data,
test_data,
&compbuf_info);
if (ret < 0) {
ret_status = -1;
goto exit;
}
/* Run compression */
ret = test_deflate_comp_run(int_data, test_data, &test_priv_data);
if (ret < 0) {
ret_status = -1;
goto exit;
}
ret = test_deflate_comp_finalize(int_data, test_data, &test_priv_data);
if (ret < 0) {
ret_status = -1;
goto exit;
} else if (ret == 1) {
ret_status = 0;
goto exit;
} else if (ret == 2) {
ret_status = 1; /* some operation not supported */
goto exit;
}
/* DECOMPRESSION */
/* Prepare output (destination) mbufs for decompressed data */
ret = test_setup_output_bufs(
OPERATION_DECOMPRESSION,
out_of_space == 1 && !zlib_decompress,
&test_priv_data,
int_data,
test_data,
&decompbuf_info);
if (ret < 0) {
ret_status = -1;
goto exit;
}
/* Run decompression */
ret = test_deflate_decomp_run(int_data, test_data, &test_priv_data);
if (ret < 0) {
ret_status = -1;
goto exit;
}
if (!zlib_decompress) {
next_step: /* next step for stateful decompression only */
ret = test_run_enqueue_dequeue(ops, ops_processed, num_bufs);
if (ret < 0) {
ret_status = -1;
RTE_LOG(ERR, USER1,
"Decompression: enqueue/dequeue operation failed\n");
}
}
ret = test_deflate_decomp_finalize(int_data, test_data, &test_priv_data);
if (ret < 0) {
ret_status = -1;
goto exit;
} else if (ret == 1) {
ret_status = 0;
goto exit;
} else if (ret == 2) {
goto next_step;
}
/* FINAL PROCESSING */
ret = test_results_validation(int_data, test_data, &test_priv_data);
if (ret < 0) {
ret_status = -1;
goto exit;
}
ret_status = 0;
exit:
/* Free resources */
if (stream != NULL)
rte_compressdev_stream_free(0, stream);
if (all_decomp_data != NULL)
rte_free(all_decomp_data);
/* Free compress private xforms */
for (i = 0; i < test_priv_data.num_priv_xforms; i++) {
if (priv_xforms[i] != NULL) {
rte_compressdev_private_xform_free(0, priv_xforms[i]);
priv_xforms[i] = NULL;
}
}
for (i = 0; i < num_bufs; i++) {
rte_pktmbuf_free(uncomp_bufs[i]);
rte_pktmbuf_free(comp_bufs[i]);
rte_comp_op_free(ops[i]);
rte_comp_op_free(ops_processed[i]);
}
rte_free(contig_buf);
return ret_status;
}
static int
test_compressdev_deflate_stateless_fixed(void)
{
struct comp_testsuite_params *ts_params = &testsuite_params;
uint16_t i;
int ret;
const struct rte_compressdev_capabilities *capab;
capab = rte_compressdev_capability_get(0, RTE_COMP_ALGO_DEFLATE);
TEST_ASSERT(capab != NULL, "Failed to retrieve device capabilities");
if ((capab->comp_feature_flags & RTE_COMP_FF_HUFFMAN_FIXED) == 0)
return -ENOTSUP;
struct rte_comp_xform *compress_xform =
rte_malloc(NULL, sizeof(struct rte_comp_xform), 0);
if (compress_xform == NULL) {
RTE_LOG(ERR, USER1,
"Compress xform could not be created\n");
ret = TEST_FAILED;
goto exit;
}
memcpy(compress_xform, ts_params->def_comp_xform,
sizeof(struct rte_comp_xform));
compress_xform->compress.deflate.huffman = RTE_COMP_HUFFMAN_FIXED;
struct interim_data_params int_data = {
NULL,
1,
NULL,
&compress_xform,
&ts_params->def_decomp_xform,
1
};
struct test_data_params test_data = {
.compress_state = RTE_COMP_OP_STATELESS,
.decompress_state = RTE_COMP_OP_STATELESS,
.buff_type = LB_BOTH,
.zlib_dir = ZLIB_DECOMPRESS,
.out_of_space = 0,
.big_data = 0,
.overflow = OVERFLOW_DISABLED
};
for (i = 0; i < RTE_DIM(compress_test_bufs); i++) {
int_data.test_bufs = &compress_test_bufs[i];
int_data.buf_idx = &i;
/* Compress with compressdev, decompress with Zlib */
test_data.zlib_dir = ZLIB_DECOMPRESS;
ret = test_deflate_comp_decomp(&int_data, &test_data);
if (ret < 0)
goto exit;
/* Compress with Zlib, decompress with compressdev */
test_data.zlib_dir = ZLIB_COMPRESS;
ret = test_deflate_comp_decomp(&int_data, &test_data);
if (ret < 0)
goto exit;
}
ret = TEST_SUCCESS;
exit:
rte_free(compress_xform);
return ret;
}
static int
test_compressdev_deflate_stateless_dynamic(void)
{
struct comp_testsuite_params *ts_params = &testsuite_params;
uint16_t i;
int ret;
struct rte_comp_xform *compress_xform =
rte_malloc(NULL, sizeof(struct rte_comp_xform), 0);
const struct rte_compressdev_capabilities *capab;
capab = rte_compressdev_capability_get(0, RTE_COMP_ALGO_DEFLATE);
TEST_ASSERT(capab != NULL, "Failed to retrieve device capabilities");
if ((capab->comp_feature_flags & RTE_COMP_FF_HUFFMAN_DYNAMIC) == 0)
return -ENOTSUP;
if (compress_xform == NULL) {
RTE_LOG(ERR, USER1,
"Compress xform could not be created\n");
ret = TEST_FAILED;
goto exit;
}
memcpy(compress_xform, ts_params->def_comp_xform,
sizeof(struct rte_comp_xform));
compress_xform->compress.deflate.huffman = RTE_COMP_HUFFMAN_DYNAMIC;
struct interim_data_params int_data = {
NULL,
1,
NULL,
&compress_xform,
&ts_params->def_decomp_xform,
1
};
struct test_data_params test_data = {
.compress_state = RTE_COMP_OP_STATELESS,
.decompress_state = RTE_COMP_OP_STATELESS,
.buff_type = LB_BOTH,
.zlib_dir = ZLIB_DECOMPRESS,
.out_of_space = 0,
.big_data = 0,
.overflow = OVERFLOW_DISABLED
};
for (i = 0; i < RTE_DIM(compress_test_bufs); i++) {
int_data.test_bufs = &compress_test_bufs[i];
int_data.buf_idx = &i;
/* Compress with compressdev, decompress with Zlib */
test_data.zlib_dir = ZLIB_DECOMPRESS;
ret = test_deflate_comp_decomp(&int_data, &test_data);
if (ret < 0)
goto exit;
/* Compress with Zlib, decompress with compressdev */
test_data.zlib_dir = ZLIB_COMPRESS;
ret = test_deflate_comp_decomp(&int_data, &test_data);
if (ret < 0)
goto exit;
}
ret = TEST_SUCCESS;
exit:
rte_free(compress_xform);
return ret;
}
static int
test_compressdev_deflate_stateless_multi_op(void)
{
struct comp_testsuite_params *ts_params = &testsuite_params;
uint16_t num_bufs = RTE_DIM(compress_test_bufs);
uint16_t buf_idx[num_bufs];
uint16_t i;
int ret;
for (i = 0; i < num_bufs; i++)
buf_idx[i] = i;
struct interim_data_params int_data = {
compress_test_bufs,
num_bufs,
buf_idx,
&ts_params->def_comp_xform,
&ts_params->def_decomp_xform,
1
};
struct test_data_params test_data = {
.compress_state = RTE_COMP_OP_STATELESS,
.decompress_state = RTE_COMP_OP_STATELESS,
.buff_type = LB_BOTH,
.zlib_dir = ZLIB_DECOMPRESS,
.out_of_space = 0,
.big_data = 0,
.overflow = OVERFLOW_DISABLED
};
/* Compress with compressdev, decompress with Zlib */
test_data.zlib_dir = ZLIB_DECOMPRESS;
ret = test_deflate_comp_decomp(&int_data, &test_data);
if (ret < 0)
return ret;
/* Compress with Zlib, decompress with compressdev */
test_data.zlib_dir = ZLIB_COMPRESS;
ret = test_deflate_comp_decomp(&int_data, &test_data);
if (ret < 0)
return ret;
return TEST_SUCCESS;
}
static int
test_compressdev_deflate_stateless_multi_level(void)
{
struct comp_testsuite_params *ts_params = &testsuite_params;
unsigned int level;
uint16_t i;
int ret;
struct rte_comp_xform *compress_xform =
rte_malloc(NULL, sizeof(struct rte_comp_xform), 0);
if (compress_xform == NULL) {
RTE_LOG(ERR, USER1,
"Compress xform could not be created\n");
ret = TEST_FAILED;
goto exit;
}
memcpy(compress_xform, ts_params->def_comp_xform,
sizeof(struct rte_comp_xform));
struct interim_data_params int_data = {
NULL,
1,
NULL,
&compress_xform,
&ts_params->def_decomp_xform,
1
};
struct test_data_params test_data = {
.compress_state = RTE_COMP_OP_STATELESS,
.decompress_state = RTE_COMP_OP_STATELESS,
.buff_type = LB_BOTH,
.zlib_dir = ZLIB_DECOMPRESS,
.out_of_space = 0,
.big_data = 0,
.overflow = OVERFLOW_DISABLED
};
for (i = 0; i < RTE_DIM(compress_test_bufs); i++) {
int_data.test_bufs = &compress_test_bufs[i];
int_data.buf_idx = &i;
for (level = RTE_COMP_LEVEL_MIN; level <= RTE_COMP_LEVEL_MAX;
level++) {
compress_xform->compress.level = level;
/* Compress with compressdev, decompress with Zlib */
test_data.zlib_dir = ZLIB_DECOMPRESS;
ret = test_deflate_comp_decomp(&int_data, &test_data);
if (ret < 0)
goto exit;
}
}
ret = TEST_SUCCESS;
exit:
rte_free(compress_xform);
return ret;
}
#define NUM_XFORMS 3
static int
test_compressdev_deflate_stateless_multi_xform(void)
{
struct comp_testsuite_params *ts_params = &testsuite_params;
uint16_t num_bufs = NUM_XFORMS;
struct rte_comp_xform *compress_xforms[NUM_XFORMS] = {NULL};
struct rte_comp_xform *decompress_xforms[NUM_XFORMS] = {NULL};
const char *test_buffers[NUM_XFORMS];
uint16_t i;
unsigned int level = RTE_COMP_LEVEL_MIN;
uint16_t buf_idx[num_bufs];
int ret;
/* Create multiple xforms with various levels */
for (i = 0; i < NUM_XFORMS; i++) {
compress_xforms[i] = rte_malloc(NULL,
sizeof(struct rte_comp_xform), 0);
if (compress_xforms[i] == NULL) {
RTE_LOG(ERR, USER1,
"Compress xform could not be created\n");
ret = TEST_FAILED;
goto exit;
}
memcpy(compress_xforms[i], ts_params->def_comp_xform,
sizeof(struct rte_comp_xform));
compress_xforms[i]->compress.level = level;
level++;
decompress_xforms[i] = rte_malloc(NULL,
sizeof(struct rte_comp_xform), 0);
if (decompress_xforms[i] == NULL) {
RTE_LOG(ERR, USER1,
"Decompress xform could not be created\n");
ret = TEST_FAILED;
goto exit;
}
memcpy(decompress_xforms[i], ts_params->def_decomp_xform,
sizeof(struct rte_comp_xform));
}
for (i = 0; i < NUM_XFORMS; i++) {
buf_idx[i] = 0;
/* Use the same buffer in all sessions */
test_buffers[i] = compress_test_bufs[0];
}
struct interim_data_params int_data = {
test_buffers,
num_bufs,
buf_idx,
compress_xforms,
decompress_xforms,
NUM_XFORMS
};
struct test_data_params test_data = {
.compress_state = RTE_COMP_OP_STATELESS,
.decompress_state = RTE_COMP_OP_STATELESS,
.buff_type = LB_BOTH,
.zlib_dir = ZLIB_DECOMPRESS,
.out_of_space = 0,
.big_data = 0,
.overflow = OVERFLOW_DISABLED
};
/* Compress with compressdev, decompress with Zlib */
ret = test_deflate_comp_decomp(&int_data, &test_data);
if (ret < 0)
goto exit;
ret = TEST_SUCCESS;
exit:
for (i = 0; i < NUM_XFORMS; i++) {
rte_free(compress_xforms[i]);
rte_free(decompress_xforms[i]);
}
return ret;
}
static int
test_compressdev_deflate_stateless_sgl(void)
{
struct comp_testsuite_params *ts_params = &testsuite_params;
uint16_t i;
int ret;
const struct rte_compressdev_capabilities *capab;
capab = rte_compressdev_capability_get(0, RTE_COMP_ALGO_DEFLATE);
TEST_ASSERT(capab != NULL, "Failed to retrieve device capabilities");
if ((capab->comp_feature_flags & RTE_COMP_FF_OOP_SGL_IN_SGL_OUT) == 0)
return -ENOTSUP;
struct interim_data_params int_data = {
NULL,
1,
NULL,
&ts_params->def_comp_xform,
&ts_params->def_decomp_xform,
1
};
struct test_data_params test_data = {
.compress_state = RTE_COMP_OP_STATELESS,
.decompress_state = RTE_COMP_OP_STATELESS,
.buff_type = SGL_BOTH,
.zlib_dir = ZLIB_DECOMPRESS,
.out_of_space = 0,
.big_data = 0,
.overflow = OVERFLOW_DISABLED
};
for (i = 0; i < RTE_DIM(compress_test_bufs); i++) {
int_data.test_bufs = &compress_test_bufs[i];
int_data.buf_idx = &i;
/* Compress with compressdev, decompress with Zlib */
test_data.zlib_dir = ZLIB_DECOMPRESS;
ret = test_deflate_comp_decomp(&int_data, &test_data);
if (ret < 0)
return ret;
/* Compress with Zlib, decompress with compressdev */
test_data.zlib_dir = ZLIB_COMPRESS;
ret = test_deflate_comp_decomp(&int_data, &test_data);
if (ret < 0)
return ret;
if (capab->comp_feature_flags & RTE_COMP_FF_OOP_SGL_IN_LB_OUT) {
/* Compress with compressdev, decompress with Zlib */
test_data.zlib_dir = ZLIB_DECOMPRESS;
test_data.buff_type = SGL_TO_LB;
ret = test_deflate_comp_decomp(&int_data, &test_data);
if (ret < 0)
return ret;
/* Compress with Zlib, decompress with compressdev */
test_data.zlib_dir = ZLIB_COMPRESS;
test_data.buff_type = SGL_TO_LB;
ret = test_deflate_comp_decomp(&int_data, &test_data);
if (ret < 0)
return ret;
}
if (capab->comp_feature_flags & RTE_COMP_FF_OOP_LB_IN_SGL_OUT) {
/* Compress with compressdev, decompress with Zlib */
test_data.zlib_dir = ZLIB_DECOMPRESS;
test_data.buff_type = LB_TO_SGL;
ret = test_deflate_comp_decomp(&int_data, &test_data);
if (ret < 0)
return ret;
/* Compress with Zlib, decompress with compressdev */
test_data.zlib_dir = ZLIB_COMPRESS;
test_data.buff_type = LB_TO_SGL;
ret = test_deflate_comp_decomp(&int_data, &test_data);
if (ret < 0)
return ret;
}
}
return TEST_SUCCESS;
}
static int
test_compressdev_deflate_stateless_checksum(void)
{
struct comp_testsuite_params *ts_params = &testsuite_params;
uint16_t i;
int ret;
const struct rte_compressdev_capabilities *capab;
capab = rte_compressdev_capability_get(0, RTE_COMP_ALGO_DEFLATE);
TEST_ASSERT(capab != NULL, "Failed to retrieve device capabilities");
/* Check if driver supports any checksum */
if ((capab->comp_feature_flags & RTE_COMP_FF_CRC32_CHECKSUM) == 0 &&
(capab->comp_feature_flags &
RTE_COMP_FF_ADLER32_CHECKSUM) == 0 &&
(capab->comp_feature_flags &
RTE_COMP_FF_CRC32_ADLER32_CHECKSUM) == 0)
return -ENOTSUP;
struct rte_comp_xform *compress_xform =
rte_malloc(NULL, sizeof(struct rte_comp_xform), 0);
if (compress_xform == NULL) {
RTE_LOG(ERR, USER1, "Compress xform could not be created\n");
return TEST_FAILED;
}
memcpy(compress_xform, ts_params->def_comp_xform,
sizeof(struct rte_comp_xform));
struct rte_comp_xform *decompress_xform =
rte_malloc(NULL, sizeof(struct rte_comp_xform), 0);
if (decompress_xform == NULL) {
RTE_LOG(ERR, USER1, "Decompress xform could not be created\n");
rte_free(compress_xform);
return TEST_FAILED;
}
memcpy(decompress_xform, ts_params->def_decomp_xform,
sizeof(struct rte_comp_xform));
struct interim_data_params int_data = {
NULL,
1,
NULL,
&compress_xform,
&decompress_xform,
1
};
struct test_data_params test_data = {
.compress_state = RTE_COMP_OP_STATELESS,
.decompress_state = RTE_COMP_OP_STATELESS,
.buff_type = LB_BOTH,
.zlib_dir = ZLIB_DECOMPRESS,
.out_of_space = 0,
.big_data = 0,
.overflow = OVERFLOW_DISABLED
};
/* Check if driver supports crc32 checksum and test */
if ((capab->comp_feature_flags & RTE_COMP_FF_CRC32_CHECKSUM)) {
compress_xform->compress.chksum = RTE_COMP_CHECKSUM_CRC32;
decompress_xform->decompress.chksum = RTE_COMP_CHECKSUM_CRC32;
for (i = 0; i < RTE_DIM(compress_test_bufs); i++) {
/* Compress with compressdev, decompress with Zlib */
int_data.test_bufs = &compress_test_bufs[i];
int_data.buf_idx = &i;
/* Generate zlib checksum and test against selected
* drivers decompression checksum
*/
test_data.zlib_dir = ZLIB_COMPRESS;
ret = test_deflate_comp_decomp(&int_data, &test_data);
if (ret < 0)
goto exit;
/* Generate compression and decompression
* checksum of selected driver
*/
test_data.zlib_dir = ZLIB_NONE;
ret = test_deflate_comp_decomp(&int_data, &test_data);
if (ret < 0)
goto exit;
}
}
/* Check if driver supports adler32 checksum and test */
if ((capab->comp_feature_flags & RTE_COMP_FF_ADLER32_CHECKSUM)) {
compress_xform->compress.chksum = RTE_COMP_CHECKSUM_ADLER32;
decompress_xform->decompress.chksum = RTE_COMP_CHECKSUM_ADLER32;
for (i = 0; i < RTE_DIM(compress_test_bufs); i++) {
int_data.test_bufs = &compress_test_bufs[i];
int_data.buf_idx = &i;
/* Generate zlib checksum and test against selected
* drivers decompression checksum
*/
test_data.zlib_dir = ZLIB_COMPRESS;
ret = test_deflate_comp_decomp(&int_data, &test_data);
if (ret < 0)
goto exit;
/* Generate compression and decompression
* checksum of selected driver
*/
test_data.zlib_dir = ZLIB_NONE;
ret = test_deflate_comp_decomp(&int_data, &test_data);
if (ret < 0)
goto exit;
}
}
/* Check if driver supports combined crc and adler checksum and test */
if ((capab->comp_feature_flags & RTE_COMP_FF_CRC32_ADLER32_CHECKSUM)) {
compress_xform->compress.chksum =
RTE_COMP_CHECKSUM_CRC32_ADLER32;
decompress_xform->decompress.chksum =
RTE_COMP_CHECKSUM_CRC32_ADLER32;
for (i = 0; i < RTE_DIM(compress_test_bufs); i++) {
int_data.test_bufs = &compress_test_bufs[i];
int_data.buf_idx = &i;
/* Generate compression and decompression
* checksum of selected driver
*/
test_data.zlib_dir = ZLIB_NONE;
ret = test_deflate_comp_decomp(&int_data, &test_data);
if (ret < 0)
goto exit;
}
}
ret = TEST_SUCCESS;
exit:
rte_free(compress_xform);
rte_free(decompress_xform);
return ret;
}
static int
test_compressdev_out_of_space_buffer(void)
{
struct comp_testsuite_params *ts_params = &testsuite_params;
int ret;
uint16_t i;
const struct rte_compressdev_capabilities *capab;
RTE_LOG(INFO, USER1, "This is a negative test, errors are expected\n");
capab = rte_compressdev_capability_get(0, RTE_COMP_ALGO_DEFLATE);
TEST_ASSERT(capab != NULL, "Failed to retrieve device capabilities");
if ((capab->comp_feature_flags & RTE_COMP_FF_HUFFMAN_FIXED) == 0)
return -ENOTSUP;
struct interim_data_params int_data = {
&compress_test_bufs[0],
1,
&i,
&ts_params->def_comp_xform,
&ts_params->def_decomp_xform,
1
};
struct test_data_params test_data = {
.compress_state = RTE_COMP_OP_STATELESS,
.decompress_state = RTE_COMP_OP_STATELESS,
.buff_type = LB_BOTH,
.zlib_dir = ZLIB_DECOMPRESS,
.out_of_space = 1, /* run out-of-space test */
.big_data = 0,
.overflow = OVERFLOW_DISABLED
};
/* Compress with compressdev, decompress with Zlib */
test_data.zlib_dir = ZLIB_DECOMPRESS;
ret = test_deflate_comp_decomp(&int_data, &test_data);
if (ret < 0)
goto exit;
/* Compress with Zlib, decompress with compressdev */
test_data.zlib_dir = ZLIB_COMPRESS;
ret = test_deflate_comp_decomp(&int_data, &test_data);
if (ret < 0)
goto exit;
if (capab->comp_feature_flags & RTE_COMP_FF_OOP_SGL_IN_SGL_OUT) {
/* Compress with compressdev, decompress with Zlib */
test_data.zlib_dir = ZLIB_DECOMPRESS;
test_data.buff_type = SGL_BOTH;
ret = test_deflate_comp_decomp(&int_data, &test_data);
if (ret < 0)
goto exit;
/* Compress with Zlib, decompress with compressdev */
test_data.zlib_dir = ZLIB_COMPRESS;
test_data.buff_type = SGL_BOTH;
ret = test_deflate_comp_decomp(&int_data, &test_data);
if (ret < 0)
goto exit;
}
ret = TEST_SUCCESS;
exit:
return ret;
}
static int
test_compressdev_deflate_stateless_dynamic_big(void)
{
struct comp_testsuite_params *ts_params = &testsuite_params;
uint16_t i = 0;
int ret;
int j;
const struct rte_compressdev_capabilities *capab;
char *test_buffer = NULL;
capab = rte_compressdev_capability_get(0, RTE_COMP_ALGO_DEFLATE);
TEST_ASSERT(capab != NULL, "Failed to retrieve device capabilities");
if ((capab->comp_feature_flags & RTE_COMP_FF_HUFFMAN_DYNAMIC) == 0)
return -ENOTSUP;
if ((capab->comp_feature_flags & RTE_COMP_FF_OOP_SGL_IN_SGL_OUT) == 0)
return -ENOTSUP;
test_buffer = rte_malloc(NULL, BIG_DATA_TEST_SIZE, 0);
if (test_buffer == NULL) {
RTE_LOG(ERR, USER1,
"Can't allocate buffer for big-data\n");
return TEST_FAILED;
}
struct interim_data_params int_data = {
(const char * const *)&test_buffer,
1,
&i,
&ts_params->def_comp_xform,
&ts_params->def_decomp_xform,
1
};
struct test_data_params test_data = {
.compress_state = RTE_COMP_OP_STATELESS,
.decompress_state = RTE_COMP_OP_STATELESS,
.buff_type = SGL_BOTH,
.zlib_dir = ZLIB_DECOMPRESS,
.out_of_space = 0,
.big_data = 1,
.overflow = OVERFLOW_DISABLED
};
ts_params->def_comp_xform->compress.deflate.huffman =
RTE_COMP_HUFFMAN_DYNAMIC;
/* fill the buffer with data based on rand. data */
srand(BIG_DATA_TEST_SIZE);
for (j = 0; j < BIG_DATA_TEST_SIZE - 1; ++j)
test_buffer[j] = (uint8_t)(rand() % ((uint8_t)-1)) | 1;
test_buffer[BIG_DATA_TEST_SIZE-1] = 0;
/* Compress with compressdev, decompress with Zlib */
test_data.zlib_dir = ZLIB_DECOMPRESS;
ret = test_deflate_comp_decomp(&int_data, &test_data);
if (ret < 0)
goto exit;
/* Compress with Zlib, decompress with compressdev */
test_data.zlib_dir = ZLIB_COMPRESS;
ret = test_deflate_comp_decomp(&int_data, &test_data);
if (ret < 0)
goto exit;
ret = TEST_SUCCESS;
exit:
ts_params->def_comp_xform->compress.deflate.huffman =
RTE_COMP_HUFFMAN_DEFAULT;
rte_free(test_buffer);
return ret;
}
static int
test_compressdev_deflate_stateful_decomp(void)
{
struct comp_testsuite_params *ts_params = &testsuite_params;
int ret;
uint16_t i;
const struct rte_compressdev_capabilities *capab;
capab = rte_compressdev_capability_get(0, RTE_COMP_ALGO_DEFLATE);
TEST_ASSERT(capab != NULL, "Failed to retrieve device capabilities");
if (!(capab->comp_feature_flags & RTE_COMP_FF_STATEFUL_DECOMPRESSION))
return -ENOTSUP;
struct interim_data_params int_data = {
&compress_test_bufs[0],
1,
&i,
&ts_params->def_comp_xform,
&ts_params->def_decomp_xform,
1
};
struct test_data_params test_data = {
.compress_state = RTE_COMP_OP_STATELESS,
.decompress_state = RTE_COMP_OP_STATEFUL,
.buff_type = LB_BOTH,
.zlib_dir = ZLIB_COMPRESS,
.out_of_space = 0,
.big_data = 0,
.decompress_output_block_size = 2000,
.decompress_steps_max = 4,
.overflow = OVERFLOW_DISABLED
};
/* Compress with Zlib, decompress with compressdev */
if (test_deflate_comp_decomp(&int_data, &test_data) < 0) {
ret = TEST_FAILED;
goto exit;
}
if (capab->comp_feature_flags & RTE_COMP_FF_OOP_SGL_IN_SGL_OUT) {
/* Now test with SGL buffers */
test_data.buff_type = SGL_BOTH;
if (test_deflate_comp_decomp(&int_data, &test_data) < 0) {
ret = TEST_FAILED;
goto exit;
}
}
ret = TEST_SUCCESS;
exit:
return ret;
}
static int
test_compressdev_deflate_stateful_decomp_checksum(void)
{
struct comp_testsuite_params *ts_params = &testsuite_params;
int ret;
uint16_t i;
const struct rte_compressdev_capabilities *capab;
capab = rte_compressdev_capability_get(0, RTE_COMP_ALGO_DEFLATE);
TEST_ASSERT(capab != NULL, "Failed to retrieve device capabilities");
if (!(capab->comp_feature_flags & RTE_COMP_FF_STATEFUL_DECOMPRESSION))
return -ENOTSUP;
/* Check if driver supports any checksum */
if (!(capab->comp_feature_flags &
(RTE_COMP_FF_CRC32_CHECKSUM | RTE_COMP_FF_ADLER32_CHECKSUM |
RTE_COMP_FF_CRC32_ADLER32_CHECKSUM)))
return -ENOTSUP;
struct rte_comp_xform *compress_xform =
rte_malloc(NULL, sizeof(struct rte_comp_xform), 0);
if (compress_xform == NULL) {
RTE_LOG(ERR, USER1, "Compress xform could not be created\n");
return TEST_FAILED;
}
memcpy(compress_xform, ts_params->def_comp_xform,
sizeof(struct rte_comp_xform));
struct rte_comp_xform *decompress_xform =
rte_malloc(NULL, sizeof(struct rte_comp_xform), 0);
if (decompress_xform == NULL) {
RTE_LOG(ERR, USER1, "Decompress xform could not be created\n");
rte_free(compress_xform);
return TEST_FAILED;
}
memcpy(decompress_xform, ts_params->def_decomp_xform,
sizeof(struct rte_comp_xform));
struct interim_data_params int_data = {
&compress_test_bufs[0],
1,
&i,
&compress_xform,
&decompress_xform,
1
};
struct test_data_params test_data = {
.compress_state = RTE_COMP_OP_STATELESS,
.decompress_state = RTE_COMP_OP_STATEFUL,
.buff_type = LB_BOTH,
.zlib_dir = ZLIB_COMPRESS,
.out_of_space = 0,
.big_data = 0,
.decompress_output_block_size = 2000,
.decompress_steps_max = 4,
.overflow = OVERFLOW_DISABLED
};
/* Check if driver supports crc32 checksum and test */
if (capab->comp_feature_flags & RTE_COMP_FF_CRC32_CHECKSUM) {
compress_xform->compress.chksum = RTE_COMP_CHECKSUM_CRC32;
decompress_xform->decompress.chksum = RTE_COMP_CHECKSUM_CRC32;
/* Compress with Zlib, decompress with compressdev */
test_data.buff_type = LB_BOTH;
if (test_deflate_comp_decomp(&int_data, &test_data) < 0) {
ret = TEST_FAILED;
goto exit;
}
if (capab->comp_feature_flags &
RTE_COMP_FF_OOP_SGL_IN_SGL_OUT) {
/* Now test with SGL buffers */
test_data.buff_type = SGL_BOTH;
if (test_deflate_comp_decomp(&int_data,
&test_data) < 0) {
ret = TEST_FAILED;
goto exit;
}
}
}
/* Check if driver supports adler32 checksum and test */
if (capab->comp_feature_flags & RTE_COMP_FF_ADLER32_CHECKSUM) {
compress_xform->compress.chksum = RTE_COMP_CHECKSUM_ADLER32;
decompress_xform->decompress.chksum = RTE_COMP_CHECKSUM_ADLER32;
/* Compress with Zlib, decompress with compressdev */
test_data.buff_type = LB_BOTH;
if (test_deflate_comp_decomp(&int_data, &test_data) < 0) {
ret = TEST_FAILED;
goto exit;
}
if (capab->comp_feature_flags &
RTE_COMP_FF_OOP_SGL_IN_SGL_OUT) {
/* Now test with SGL buffers */
test_data.buff_type = SGL_BOTH;
if (test_deflate_comp_decomp(&int_data,
&test_data) < 0) {
ret = TEST_FAILED;
goto exit;
}
}
}
/* Check if driver supports combined crc and adler checksum and test */
if (capab->comp_feature_flags & RTE_COMP_FF_CRC32_ADLER32_CHECKSUM) {
compress_xform->compress.chksum =
RTE_COMP_CHECKSUM_CRC32_ADLER32;
decompress_xform->decompress.chksum =
RTE_COMP_CHECKSUM_CRC32_ADLER32;
/* Zlib doesn't support combined checksum */
test_data.zlib_dir = ZLIB_NONE;
/* Compress stateless, decompress stateful with compressdev */
test_data.buff_type = LB_BOTH;
if (test_deflate_comp_decomp(&int_data, &test_data) < 0) {
ret = TEST_FAILED;
goto exit;
}
if (capab->comp_feature_flags &
RTE_COMP_FF_OOP_SGL_IN_SGL_OUT) {
/* Now test with SGL buffers */
test_data.buff_type = SGL_BOTH;
if (test_deflate_comp_decomp(&int_data,
&test_data) < 0) {
ret = TEST_FAILED;
goto exit;
}
}
}
ret = TEST_SUCCESS;
exit:
rte_free(compress_xform);
rte_free(decompress_xform);
return ret;
}
static const struct rte_memzone *
make_memzone(const char *name, size_t size)
{
unsigned int socket_id = rte_socket_id();
char mz_name[RTE_MEMZONE_NAMESIZE];
const struct rte_memzone *memzone;
snprintf(mz_name, RTE_MEMZONE_NAMESIZE, "%s_%u", name, socket_id);
memzone = rte_memzone_lookup(mz_name);
if (memzone != NULL && memzone->len != size) {
rte_memzone_free(memzone);
memzone = NULL;
}
if (memzone == NULL) {
memzone = rte_memzone_reserve_aligned(mz_name, size, socket_id,
RTE_MEMZONE_IOVA_CONTIG, RTE_CACHE_LINE_SIZE);
if (memzone == NULL)
RTE_LOG(ERR, USER1, "Can't allocate memory zone %s",
mz_name);
}
return memzone;
}
static int
test_compressdev_external_mbufs(void)
{
struct comp_testsuite_params *ts_params = &testsuite_params;
size_t data_len = 0;
uint16_t i;
int ret = TEST_FAILED;
for (i = 0; i < RTE_DIM(compress_test_bufs); i++)
data_len = RTE_MAX(data_len, strlen(compress_test_bufs[i]) + 1);
struct interim_data_params int_data = {
NULL,
1,
NULL,
&ts_params->def_comp_xform,
&ts_params->def_decomp_xform,
1
};
struct test_data_params test_data = {
.compress_state = RTE_COMP_OP_STATELESS,
.decompress_state = RTE_COMP_OP_STATELESS,
.buff_type = LB_BOTH,
.zlib_dir = ZLIB_DECOMPRESS,
.out_of_space = 0,
.big_data = 0,
.use_external_mbufs = 1,
.inbuf_data_size = data_len,
.inbuf_memzone = make_memzone("inbuf", data_len),
.compbuf_memzone = make_memzone("compbuf", data_len *
COMPRESS_BUF_SIZE_RATIO),
.uncompbuf_memzone = make_memzone("decompbuf", data_len),
.overflow = OVERFLOW_DISABLED
};
for (i = 0; i < RTE_DIM(compress_test_bufs); i++) {
/* prepare input data */
data_len = strlen(compress_test_bufs[i]) + 1;
rte_memcpy(test_data.inbuf_memzone->addr, compress_test_bufs[i],
data_len);
test_data.inbuf_data_size = data_len;
int_data.buf_idx = &i;
/* Compress with compressdev, decompress with Zlib */
test_data.zlib_dir = ZLIB_DECOMPRESS;
if (test_deflate_comp_decomp(&int_data, &test_data) < 0)
goto exit;
/* Compress with Zlib, decompress with compressdev */
test_data.zlib_dir = ZLIB_COMPRESS;
if (test_deflate_comp_decomp(&int_data, &test_data) < 0)
goto exit;
}
ret = TEST_SUCCESS;
exit:
rte_memzone_free(test_data.inbuf_memzone);
rte_memzone_free(test_data.compbuf_memzone);
rte_memzone_free(test_data.uncompbuf_memzone);
return ret;
}
static int
test_compressdev_deflate_stateless_fixed_oos_recoverable(void)
{
struct comp_testsuite_params *ts_params = &testsuite_params;
uint16_t i;
int ret;
int comp_result;
const struct rte_compressdev_capabilities *capab;
capab = rte_compressdev_capability_get(0, RTE_COMP_ALGO_DEFLATE);
TEST_ASSERT(capab != NULL, "Failed to retrieve device capabilities");
if ((capab->comp_feature_flags & RTE_COMP_FF_HUFFMAN_FIXED) == 0)
return -ENOTSUP;
struct rte_comp_xform *compress_xform =
rte_malloc(NULL, sizeof(struct rte_comp_xform), 0);
if (compress_xform == NULL) {
RTE_LOG(ERR, USER1,
"Compress xform could not be created\n");
ret = TEST_FAILED;
goto exit;
}
memcpy(compress_xform, ts_params->def_comp_xform,
sizeof(struct rte_comp_xform));
compress_xform->compress.deflate.huffman = RTE_COMP_HUFFMAN_FIXED;
struct interim_data_params int_data = {
NULL,
1,
NULL,
&compress_xform,
&ts_params->def_decomp_xform,
1
};
struct test_data_params test_data = {
.compress_state = RTE_COMP_OP_STATELESS,
.decompress_state = RTE_COMP_OP_STATELESS,
.buff_type = LB_BOTH,
.zlib_dir = ZLIB_DECOMPRESS,
.out_of_space = 0,
.big_data = 0,
.overflow = OVERFLOW_ENABLED
};
for (i = 0; i < RTE_DIM(compress_test_bufs); i++) {
int_data.test_bufs = &compress_test_bufs[i];
int_data.buf_idx = &i;
/* Compress with compressdev, decompress with Zlib */
test_data.zlib_dir = ZLIB_DECOMPRESS;
comp_result = test_deflate_comp_decomp(&int_data, &test_data);
if (comp_result < 0) {
ret = TEST_FAILED;
goto exit;
} else if (comp_result > 0) {
ret = -ENOTSUP;
goto exit;
}
/* Compress with Zlib, decompress with compressdev */
test_data.zlib_dir = ZLIB_COMPRESS;
comp_result = test_deflate_comp_decomp(&int_data, &test_data);
if (comp_result < 0) {
ret = TEST_FAILED;
goto exit;
} else if (comp_result > 0) {
ret = -ENOTSUP;
goto exit;
}
}
ret = TEST_SUCCESS;
exit:
rte_free(compress_xform);
return ret;
}
static struct unit_test_suite compressdev_testsuite = {
.suite_name = "compressdev unit test suite",
.setup = testsuite_setup,
.teardown = testsuite_teardown,
.unit_test_cases = {
TEST_CASE_ST(NULL, NULL,
test_compressdev_invalid_configuration),
TEST_CASE_ST(generic_ut_setup, generic_ut_teardown,
test_compressdev_deflate_stateless_fixed),
TEST_CASE_ST(generic_ut_setup, generic_ut_teardown,
test_compressdev_deflate_stateless_dynamic),
TEST_CASE_ST(generic_ut_setup, generic_ut_teardown,
test_compressdev_deflate_stateless_dynamic_big),
TEST_CASE_ST(generic_ut_setup, generic_ut_teardown,
test_compressdev_deflate_stateless_multi_op),
TEST_CASE_ST(generic_ut_setup, generic_ut_teardown,
test_compressdev_deflate_stateless_multi_level),
TEST_CASE_ST(generic_ut_setup, generic_ut_teardown,
test_compressdev_deflate_stateless_multi_xform),
TEST_CASE_ST(generic_ut_setup, generic_ut_teardown,
test_compressdev_deflate_stateless_sgl),
TEST_CASE_ST(generic_ut_setup, generic_ut_teardown,
test_compressdev_deflate_stateless_checksum),
TEST_CASE_ST(generic_ut_setup, generic_ut_teardown,
test_compressdev_out_of_space_buffer),
TEST_CASE_ST(generic_ut_setup, generic_ut_teardown,
test_compressdev_deflate_stateful_decomp),
TEST_CASE_ST(generic_ut_setup, generic_ut_teardown,
test_compressdev_deflate_stateful_decomp_checksum),
TEST_CASE_ST(generic_ut_setup, generic_ut_teardown,
test_compressdev_external_mbufs),
TEST_CASE_ST(generic_ut_setup, generic_ut_teardown,
test_compressdev_deflate_stateless_fixed_oos_recoverable),
TEST_CASES_END() /**< NULL terminate unit test array */
}
};
static int
test_compressdev(void)
{
return unit_test_suite_runner(&compressdev_testsuite);
}
REGISTER_TEST_COMMAND(compressdev_autotest, test_compressdev);