numam-dpdk/app/test/test_memzone.c
Josh Soref 7be78d0279 fix spelling in comments and strings
The tool comes from https://github.com/jsoref

Signed-off-by: Josh Soref <jsoref@gmail.com>
Signed-off-by: Thomas Monjalon <thomas@monjalon.net>
2022-01-11 12:16:53 +01:00

1155 lines
29 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <inttypes.h>
#include <sys/queue.h>
#include <rte_random.h>
#include <rte_cycles.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_eal.h>
#include <rte_lcore.h>
#include <rte_common.h>
#include <rte_string_fns.h>
#include <rte_errno.h>
#include <rte_malloc.h>
#include "malloc_elem.h"
#include "test.h"
/*
* Memzone
* =======
*
* - Search for three reserved zones or reserve them if they do not exist:
*
* - One is on any socket id.
* - The second is on socket 0.
* - The last one is on socket 1 (if socket 1 exists).
*
* - Check that the zones exist.
*
* - Check that the zones are cache-aligned.
*
* - Check that zones do not overlap.
*
* - Check that the zones are on the correct socket id.
*
* - Check that a lookup of the first zone returns the same pointer.
*
* - Check that it is not possible to create another zone with the
* same name as an existing zone.
*
* - Check flags for specific huge page size reservation
*/
#define TEST_MEMZONE_NAME(suffix) "MZ_TEST_" suffix
/* Test if memory overlaps: return 1 if true, or 0 if false. */
static int
is_memory_overlap(rte_iova_t ptr1, size_t len1, rte_iova_t ptr2, size_t len2)
{
if (ptr2 >= ptr1 && (ptr2 - ptr1) < len1)
return 1;
else if (ptr2 < ptr1 && (ptr1 - ptr2) < len2)
return 1;
return 0;
}
static int
test_memzone_invalid_alignment(void)
{
const struct rte_memzone * mz;
mz = rte_memzone_lookup(TEST_MEMZONE_NAME("invalid_alignment"));
if (mz != NULL) {
printf("Zone with invalid alignment has been reserved\n");
return -1;
}
mz = rte_memzone_reserve_aligned(TEST_MEMZONE_NAME("invalid_alignment"),
100, SOCKET_ID_ANY, 0, 100);
if (mz != NULL) {
printf("Zone with invalid alignment has been reserved\n");
return -1;
}
return 0;
}
static int
test_memzone_invalid_flags(void)
{
const struct rte_memzone *mz;
mz = rte_memzone_lookup(TEST_MEMZONE_NAME("invalid_flags"));
if (mz != NULL) {
printf("Zone with invalid flags has been reserved\n");
return -1;
}
mz = rte_memzone_reserve(TEST_MEMZONE_NAME("invalid_flags"),
100, SOCKET_ID_ANY, RTE_MEMZONE_IOVA_CONTIG << 1);
if (mz != NULL) {
printf("Zone with invalid flags has been reserved\n");
return -1;
}
return 0;
}
static int
test_memzone_reserving_zone_size_bigger_than_the_maximum(void)
{
const struct rte_memzone * mz;
mz = rte_memzone_lookup(
TEST_MEMZONE_NAME("zone_size_bigger_than_the_maximum"));
if (mz != NULL) {
printf("zone_size_bigger_than_the_maximum has been reserved\n");
return -1;
}
mz = rte_memzone_reserve(
TEST_MEMZONE_NAME("zone_size_bigger_than_the_maximum"),
(size_t)-1, SOCKET_ID_ANY, 0);
if (mz != NULL) {
printf("It is impossible to reserve such big a memzone\n");
return -1;
}
return 0;
}
struct walk_arg {
int hugepage_2MB_avail;
int hugepage_1GB_avail;
int hugepage_16MB_avail;
int hugepage_16GB_avail;
};
static int
find_available_pagesz(const struct rte_memseg_list *msl, void *arg)
{
struct walk_arg *wa = arg;
if (msl->external)
return 0;
if (msl->page_sz == RTE_PGSIZE_2M)
wa->hugepage_2MB_avail = 1;
if (msl->page_sz == RTE_PGSIZE_1G)
wa->hugepage_1GB_avail = 1;
if (msl->page_sz == RTE_PGSIZE_16M)
wa->hugepage_16MB_avail = 1;
if (msl->page_sz == RTE_PGSIZE_16G)
wa->hugepage_16GB_avail = 1;
return 0;
}
static int
test_memzone_reserve_flags(void)
{
const struct rte_memzone *mz;
struct walk_arg wa;
int hugepage_2MB_avail, hugepage_1GB_avail;
int hugepage_16MB_avail, hugepage_16GB_avail;
const size_t size = 100;
memset(&wa, 0, sizeof(wa));
rte_memseg_list_walk(find_available_pagesz, &wa);
hugepage_2MB_avail = wa.hugepage_2MB_avail;
hugepage_1GB_avail = wa.hugepage_1GB_avail;
hugepage_16MB_avail = wa.hugepage_16MB_avail;
hugepage_16GB_avail = wa.hugepage_16GB_avail;
/* Display the availability of 2MB ,1GB, 16MB, 16GB pages */
if (hugepage_2MB_avail)
printf("2MB Huge pages available\n");
if (hugepage_1GB_avail)
printf("1GB Huge pages available\n");
if (hugepage_16MB_avail)
printf("16MB Huge pages available\n");
if (hugepage_16GB_avail)
printf("16GB Huge pages available\n");
/*
* If 2MB pages available, check that a small memzone is correctly
* reserved from 2MB huge pages when requested by the RTE_MEMZONE_2MB flag.
* Also check that RTE_MEMZONE_SIZE_HINT_ONLY flag only defaults to an
* available page size (i.e 1GB ) when 2MB pages are unavailable.
*/
if (hugepage_2MB_avail) {
mz = rte_memzone_reserve(TEST_MEMZONE_NAME("flag_zone_2M"),
size, SOCKET_ID_ANY, RTE_MEMZONE_2MB);
if (mz == NULL) {
printf("MEMZONE FLAG 2MB\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_2M) {
printf("hugepage_sz not equal 2M\n");
return -1;
}
if (rte_memzone_free(mz)) {
printf("Fail memzone free\n");
return -1;
}
mz = rte_memzone_reserve(TEST_MEMZONE_NAME("flag_zone_2M_HINT"),
size, SOCKET_ID_ANY,
RTE_MEMZONE_2MB|RTE_MEMZONE_SIZE_HINT_ONLY);
if (mz == NULL) {
printf("MEMZONE FLAG 2MB\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_2M) {
printf("hugepage_sz not equal 2M\n");
return -1;
}
if (rte_memzone_free(mz)) {
printf("Fail memzone free\n");
return -1;
}
/* Check if 1GB huge pages are unavailable, that function fails unless
* HINT flag is indicated
*/
if (!hugepage_1GB_avail) {
mz = rte_memzone_reserve(
TEST_MEMZONE_NAME("flag_zone_1G_HINT"),
size, SOCKET_ID_ANY,
RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY);
if (mz == NULL) {
printf("MEMZONE FLAG 1GB & HINT\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_2M) {
printf("hugepage_sz not equal 2M\n");
return -1;
}
if (rte_memzone_free(mz)) {
printf("Fail memzone free\n");
return -1;
}
mz = rte_memzone_reserve(
TEST_MEMZONE_NAME("flag_zone_1G"), size,
SOCKET_ID_ANY, RTE_MEMZONE_1GB);
if (mz != NULL) {
printf("MEMZONE FLAG 1GB\n");
return -1;
}
}
}
/*As with 2MB tests above for 1GB huge page requests*/
if (hugepage_1GB_avail) {
mz = rte_memzone_reserve(TEST_MEMZONE_NAME("flag_zone_1G"),
size, SOCKET_ID_ANY, RTE_MEMZONE_1GB);
if (mz == NULL) {
printf("MEMZONE FLAG 1GB\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_1G) {
printf("hugepage_sz not equal 1G\n");
return -1;
}
if (rte_memzone_free(mz)) {
printf("Fail memzone free\n");
return -1;
}
mz = rte_memzone_reserve(TEST_MEMZONE_NAME("flag_zone_1G_HINT"),
size, SOCKET_ID_ANY,
RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY);
if (mz == NULL) {
printf("MEMZONE FLAG 1GB\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_1G) {
printf("hugepage_sz not equal 1G\n");
return -1;
}
if (rte_memzone_free(mz)) {
printf("Fail memzone free\n");
return -1;
}
/* Check if 1GB huge pages are unavailable, that function fails unless
* HINT flag is indicated
*/
if (!hugepage_2MB_avail) {
mz = rte_memzone_reserve(
TEST_MEMZONE_NAME("flag_zone_2M_HINT"),
size, SOCKET_ID_ANY,
RTE_MEMZONE_2MB|RTE_MEMZONE_SIZE_HINT_ONLY);
if (mz == NULL){
printf("MEMZONE FLAG 2MB & HINT\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_1G) {
printf("hugepage_sz not equal 1G\n");
return -1;
}
if (rte_memzone_free(mz)) {
printf("Fail memzone free\n");
return -1;
}
mz = rte_memzone_reserve(
TEST_MEMZONE_NAME("flag_zone_2M"), size,
SOCKET_ID_ANY, RTE_MEMZONE_2MB);
if (mz != NULL) {
printf("MEMZONE FLAG 2MB\n");
return -1;
}
}
if (hugepage_2MB_avail && hugepage_1GB_avail) {
mz = rte_memzone_reserve(
TEST_MEMZONE_NAME("flag_zone_2M_HINT"),
size, SOCKET_ID_ANY,
RTE_MEMZONE_2MB|RTE_MEMZONE_1GB);
if (mz == NULL) {
printf("BOTH SIZES SET\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_1G &&
mz->hugepage_sz != RTE_PGSIZE_2M) {
printf("Wrong size when both sizes set\n");
return -1;
}
if (rte_memzone_free(mz)) {
printf("Fail memzone free\n");
return -1;
}
}
}
/*
* This option is for IBM Power. If 16MB pages available, check
* that a small memzone is correctly reserved from 16MB huge pages
* when requested by the RTE_MEMZONE_16MB flag. Also check that
* RTE_MEMZONE_SIZE_HINT_ONLY flag only defaults to an available
* page size (i.e 16GB ) when 16MB pages are unavailable.
*/
if (hugepage_16MB_avail) {
mz = rte_memzone_reserve(TEST_MEMZONE_NAME("flag_zone_16M"),
size, SOCKET_ID_ANY, RTE_MEMZONE_16MB);
if (mz == NULL) {
printf("MEMZONE FLAG 16MB\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_16M) {
printf("hugepage_sz not equal 16M\n");
return -1;
}
if (rte_memzone_free(mz)) {
printf("Fail memzone free\n");
return -1;
}
mz = rte_memzone_reserve(
TEST_MEMZONE_NAME("flag_zone_16M_HINT"), size,
SOCKET_ID_ANY,
RTE_MEMZONE_16MB|RTE_MEMZONE_SIZE_HINT_ONLY);
if (mz == NULL) {
printf("MEMZONE FLAG 16MB\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_16M) {
printf("hugepage_sz not equal 16M\n");
return -1;
}
if (rte_memzone_free(mz)) {
printf("Fail memzone free\n");
return -1;
}
/* Check if 1GB huge pages are unavailable, that function fails
* unless HINT flag is indicated
*/
if (!hugepage_16GB_avail) {
mz = rte_memzone_reserve(
TEST_MEMZONE_NAME("flag_zone_16G_HINT"),
size, SOCKET_ID_ANY,
RTE_MEMZONE_16GB |
RTE_MEMZONE_SIZE_HINT_ONLY);
if (mz == NULL) {
printf("MEMZONE FLAG 16GB & HINT\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_16M) {
printf("hugepage_sz not equal 16M\n");
return -1;
}
if (rte_memzone_free(mz)) {
printf("Fail memzone free\n");
return -1;
}
mz = rte_memzone_reserve(
TEST_MEMZONE_NAME("flag_zone_16G"),
size,
SOCKET_ID_ANY, RTE_MEMZONE_16GB);
if (mz != NULL) {
printf("MEMZONE FLAG 16GB\n");
return -1;
}
}
}
/*As with 16MB tests above for 16GB huge page requests*/
if (hugepage_16GB_avail) {
mz = rte_memzone_reserve(TEST_MEMZONE_NAME("flag_zone_16G"),
size, SOCKET_ID_ANY, RTE_MEMZONE_16GB);
if (mz == NULL) {
printf("MEMZONE FLAG 16GB\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_16G) {
printf("hugepage_sz not equal 16G\n");
return -1;
}
if (rte_memzone_free(mz)) {
printf("Fail memzone free\n");
return -1;
}
mz = rte_memzone_reserve(
TEST_MEMZONE_NAME("flag_zone_16G_HINT"), size,
SOCKET_ID_ANY,
RTE_MEMZONE_16GB|RTE_MEMZONE_SIZE_HINT_ONLY);
if (mz == NULL) {
printf("MEMZONE FLAG 16GB\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_16G) {
printf("hugepage_sz not equal 16G\n");
return -1;
}
if (rte_memzone_free(mz)) {
printf("Fail memzone free\n");
return -1;
}
/* Check if 1GB huge pages are unavailable, that function fails
* unless HINT flag is indicated
*/
if (!hugepage_16MB_avail) {
mz = rte_memzone_reserve(
TEST_MEMZONE_NAME("flag_zone_16M_HINT"),
size, SOCKET_ID_ANY,
RTE_MEMZONE_16MB |
RTE_MEMZONE_SIZE_HINT_ONLY);
if (mz == NULL) {
printf("MEMZONE FLAG 16MB & HINT\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_16G) {
printf("hugepage_sz not equal 16G\n");
return -1;
}
if (rte_memzone_free(mz)) {
printf("Fail memzone free\n");
return -1;
}
mz = rte_memzone_reserve(
TEST_MEMZONE_NAME("flag_zone_16M"),
size, SOCKET_ID_ANY, RTE_MEMZONE_16MB);
if (mz != NULL) {
printf("MEMZONE FLAG 16MB\n");
return -1;
}
}
if (hugepage_16MB_avail && hugepage_16GB_avail) {
mz = rte_memzone_reserve(
TEST_MEMZONE_NAME("flag_zone_16M_HINT"),
size, SOCKET_ID_ANY,
RTE_MEMZONE_16MB|RTE_MEMZONE_16GB);
if (mz == NULL) {
printf("BOTH SIZES SET\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_16G &&
mz->hugepage_sz != RTE_PGSIZE_16M) {
printf("Wrong size when both sizes set\n");
return -1;
}
if (rte_memzone_free(mz)) {
printf("Fail memzone free\n");
return -1;
}
}
}
return 0;
}
/* Find the heap with the greatest free block size */
static size_t
find_max_block_free_size(unsigned int align, unsigned int socket_id)
{
struct rte_malloc_socket_stats stats;
size_t len, overhead;
if (rte_malloc_get_socket_stats(socket_id, &stats) < 0)
return 0;
len = stats.greatest_free_size;
overhead = MALLOC_ELEM_OVERHEAD;
if (len == 0)
return 0;
align = RTE_CACHE_LINE_ROUNDUP(align);
overhead += align;
if (len < overhead)
return 0;
return len - overhead;
}
static int
test_memzone_reserve_max(void)
{
unsigned int i;
for (i = 0; i < rte_socket_count(); i++) {
const struct rte_memzone *mz;
size_t maxlen;
int socket;
socket = rte_socket_id_by_idx(i);
maxlen = find_max_block_free_size(0, socket);
if (maxlen == 0) {
printf("There is no space left!\n");
return 0;
}
mz = rte_memzone_reserve(TEST_MEMZONE_NAME("max_zone"), 0,
socket, 0);
if (mz == NULL) {
printf("Failed to reserve a big chunk of memory - %s\n",
rte_strerror(rte_errno));
rte_dump_physmem_layout(stdout);
rte_memzone_dump(stdout);
return -1;
}
if (mz->len != maxlen) {
printf("Memzone reserve with 0 size did not return biggest block\n");
printf("Expected size = %zu, actual size = %zu\n",
maxlen, mz->len);
rte_dump_physmem_layout(stdout);
rte_memzone_dump(stdout);
return -1;
}
if (rte_memzone_free(mz)) {
printf("Fail memzone free\n");
return -1;
}
}
return 0;
}
static int
test_memzone_reserve_max_aligned(void)
{
unsigned int i;
for (i = 0; i < rte_socket_count(); i++) {
const struct rte_memzone *mz;
size_t maxlen, minlen = 0;
int socket;
socket = rte_socket_id_by_idx(i);
/* random alignment */
rte_srand((unsigned int)rte_rdtsc());
const unsigned int align = 1 << ((rte_rand() % 8) + 5); /* from 128 up to 4k alignment */
/* memzone size may be between size and size - align */
minlen = find_max_block_free_size(align, socket);
maxlen = find_max_block_free_size(0, socket);
if (minlen == 0 || maxlen == 0) {
printf("There is no space left for biggest %u-aligned memzone!\n",
align);
return 0;
}
mz = rte_memzone_reserve_aligned(
TEST_MEMZONE_NAME("max_zone_aligned"),
0, socket, 0, align);
if (mz == NULL) {
printf("Failed to reserve a big chunk of memory - %s\n",
rte_strerror(rte_errno));
rte_dump_physmem_layout(stdout);
rte_memzone_dump(stdout);
return -1;
}
if (mz->addr != RTE_PTR_ALIGN(mz->addr, align)) {
printf("Memzone reserve with 0 size and alignment %u did not return aligned block\n",
align);
rte_dump_physmem_layout(stdout);
rte_memzone_dump(stdout);
return -1;
}
if (mz->len < minlen || mz->len > maxlen) {
printf("Memzone reserve with 0 size and alignment %u did not return"
" biggest block\n", align);
printf("Expected size = %zu-%zu, actual size = %zu\n",
minlen, maxlen, mz->len);
rte_dump_physmem_layout(stdout);
rte_memzone_dump(stdout);
return -1;
}
if (rte_memzone_free(mz)) {
printf("Fail memzone free\n");
return -1;
}
}
return 0;
}
static int
test_memzone_aligned(void)
{
const struct rte_memzone *memzone_aligned_32;
const struct rte_memzone *memzone_aligned_128;
const struct rte_memzone *memzone_aligned_256;
const struct rte_memzone *memzone_aligned_512;
const struct rte_memzone *memzone_aligned_1024;
/* memzone that should automatically be adjusted to align on 64 bytes */
memzone_aligned_32 = rte_memzone_reserve_aligned(
TEST_MEMZONE_NAME("aligned_32"), 100, SOCKET_ID_ANY, 0,
32);
/* memzone that is supposed to be aligned on a 128 byte boundary */
memzone_aligned_128 = rte_memzone_reserve_aligned(
TEST_MEMZONE_NAME("aligned_128"), 100, SOCKET_ID_ANY, 0,
128);
/* memzone that is supposed to be aligned on a 256 byte boundary */
memzone_aligned_256 = rte_memzone_reserve_aligned(
TEST_MEMZONE_NAME("aligned_256"), 100, SOCKET_ID_ANY, 0,
256);
/* memzone that is supposed to be aligned on a 512 byte boundary */
memzone_aligned_512 = rte_memzone_reserve_aligned(
TEST_MEMZONE_NAME("aligned_512"), 100, SOCKET_ID_ANY, 0,
512);
/* memzone that is supposed to be aligned on a 1024 byte boundary */
memzone_aligned_1024 = rte_memzone_reserve_aligned(
TEST_MEMZONE_NAME("aligned_1024"), 100, SOCKET_ID_ANY,
0, 1024);
printf("check alignments and lengths\n");
if (memzone_aligned_32 == NULL) {
printf("Unable to reserve 64-byte aligned memzone!\n");
return -1;
}
if ((memzone_aligned_32->iova & RTE_CACHE_LINE_MASK) != 0)
return -1;
if (((uintptr_t) memzone_aligned_32->addr & RTE_CACHE_LINE_MASK) != 0)
return -1;
if ((memzone_aligned_32->len & RTE_CACHE_LINE_MASK) != 0)
return -1;
if (memzone_aligned_128 == NULL) {
printf("Unable to reserve 128-byte aligned memzone!\n");
return -1;
}
if ((memzone_aligned_128->iova & 127) != 0)
return -1;
if (((uintptr_t) memzone_aligned_128->addr & 127) != 0)
return -1;
if ((memzone_aligned_128->len & RTE_CACHE_LINE_MASK) != 0)
return -1;
if (memzone_aligned_256 == NULL) {
printf("Unable to reserve 256-byte aligned memzone!\n");
return -1;
}
if ((memzone_aligned_256->iova & 255) != 0)
return -1;
if (((uintptr_t) memzone_aligned_256->addr & 255) != 0)
return -1;
if ((memzone_aligned_256->len & RTE_CACHE_LINE_MASK) != 0)
return -1;
if (memzone_aligned_512 == NULL) {
printf("Unable to reserve 512-byte aligned memzone!\n");
return -1;
}
if ((memzone_aligned_512->iova & 511) != 0)
return -1;
if (((uintptr_t) memzone_aligned_512->addr & 511) != 0)
return -1;
if ((memzone_aligned_512->len & RTE_CACHE_LINE_MASK) != 0)
return -1;
if (memzone_aligned_1024 == NULL) {
printf("Unable to reserve 1024-byte aligned memzone!\n");
return -1;
}
if ((memzone_aligned_1024->iova & 1023) != 0)
return -1;
if (((uintptr_t) memzone_aligned_1024->addr & 1023) != 0)
return -1;
if ((memzone_aligned_1024->len & RTE_CACHE_LINE_MASK) != 0)
return -1;
/* check that zones don't overlap */
printf("check overlapping\n");
if (is_memory_overlap(memzone_aligned_32->iova, memzone_aligned_32->len,
memzone_aligned_128->iova, memzone_aligned_128->len))
return -1;
if (is_memory_overlap(memzone_aligned_32->iova, memzone_aligned_32->len,
memzone_aligned_256->iova, memzone_aligned_256->len))
return -1;
if (is_memory_overlap(memzone_aligned_32->iova, memzone_aligned_32->len,
memzone_aligned_512->iova, memzone_aligned_512->len))
return -1;
if (is_memory_overlap(memzone_aligned_32->iova, memzone_aligned_32->len,
memzone_aligned_1024->iova, memzone_aligned_1024->len))
return -1;
if (is_memory_overlap(memzone_aligned_128->iova, memzone_aligned_128->len,
memzone_aligned_256->iova, memzone_aligned_256->len))
return -1;
if (is_memory_overlap(memzone_aligned_128->iova, memzone_aligned_128->len,
memzone_aligned_512->iova, memzone_aligned_512->len))
return -1;
if (is_memory_overlap(memzone_aligned_128->iova, memzone_aligned_128->len,
memzone_aligned_1024->iova, memzone_aligned_1024->len))
return -1;
if (is_memory_overlap(memzone_aligned_256->iova, memzone_aligned_256->len,
memzone_aligned_512->iova, memzone_aligned_512->len))
return -1;
if (is_memory_overlap(memzone_aligned_256->iova, memzone_aligned_256->len,
memzone_aligned_1024->iova, memzone_aligned_1024->len))
return -1;
if (is_memory_overlap(memzone_aligned_512->iova, memzone_aligned_512->len,
memzone_aligned_1024->iova, memzone_aligned_1024->len))
return -1;
/* free all used zones */
if (rte_memzone_free(memzone_aligned_32)) {
printf("Fail memzone free\n");
return -1;
}
if (rte_memzone_free(memzone_aligned_128)) {
printf("Fail memzone free\n");
return -1;
}
if (rte_memzone_free(memzone_aligned_256)) {
printf("Fail memzone free\n");
return -1;
}
if (rte_memzone_free(memzone_aligned_512)) {
printf("Fail memzone free\n");
return -1;
}
if (rte_memzone_free(memzone_aligned_1024)) {
printf("Fail memzone free\n");
return -1;
}
return 0;
}
static int
check_memzone_bounded(const char *name, uint32_t len, uint32_t align,
uint32_t bound)
{
const struct rte_memzone *mz;
rte_iova_t bmask;
bmask = ~((rte_iova_t)bound - 1);
if ((mz = rte_memzone_reserve_bounded(name, len, SOCKET_ID_ANY, 0,
align, bound)) == NULL) {
printf("%s(%s): memzone creation failed\n",
__func__, name);
return -1;
}
if ((mz->iova & ((rte_iova_t)align - 1)) != 0) {
printf("%s(%s): invalid phys addr alignment\n",
__func__, mz->name);
return -1;
}
if (((uintptr_t) mz->addr & ((uintptr_t)align - 1)) != 0) {
printf("%s(%s): invalid virtual addr alignment\n",
__func__, mz->name);
return -1;
}
if ((mz->len & RTE_CACHE_LINE_MASK) != 0 || mz->len < len ||
mz->len < RTE_CACHE_LINE_SIZE) {
printf("%s(%s): invalid length\n",
__func__, mz->name);
return -1;
}
if ((mz->iova & bmask) !=
((mz->iova + mz->len - 1) & bmask)) {
printf("%s(%s): invalid memzone boundary %u crossed\n",
__func__, mz->name, bound);
return -1;
}
if (rte_memzone_free(mz)) {
printf("Fail memzone free\n");
return -1;
}
return 0;
}
static int
test_memzone_bounded(void)
{
const struct rte_memzone *memzone_err;
int rc;
/* should fail as boundary is not power of two */
memzone_err = rte_memzone_reserve_bounded(
TEST_MEMZONE_NAME("bounded_error_31"), 100,
SOCKET_ID_ANY, 0, 32, UINT32_MAX);
if (memzone_err != NULL) {
printf("%s(%s)created a memzone with invalid boundary "
"conditions\n", __func__, memzone_err->name);
return -1;
}
/* should fail as len is greater then boundary */
memzone_err = rte_memzone_reserve_bounded(
TEST_MEMZONE_NAME("bounded_error_32"), 100,
SOCKET_ID_ANY, 0, 32, 32);
if (memzone_err != NULL) {
printf("%s(%s)created a memzone with invalid boundary "
"conditions\n", __func__, memzone_err->name);
return -1;
}
rc = check_memzone_bounded(TEST_MEMZONE_NAME("bounded_128"), 100, 128,
128);
if (rc != 0)
return rc;
rc = check_memzone_bounded(TEST_MEMZONE_NAME("bounded_256"), 100, 256,
128);
if (rc != 0)
return rc;
rc = check_memzone_bounded(TEST_MEMZONE_NAME("bounded_1K"), 100, 64,
1024);
if (rc != 0)
return rc;
rc = check_memzone_bounded(TEST_MEMZONE_NAME("bounded_1K_MAX"), 0, 64,
1024);
if (rc != 0)
return rc;
return 0;
}
static int
test_memzone_free(void)
{
const struct rte_memzone *mz[RTE_MAX_MEMZONE + 1];
int i;
char name[20];
mz[0] = rte_memzone_reserve(TEST_MEMZONE_NAME("tempzone0"), 2000,
SOCKET_ID_ANY, 0);
mz[1] = rte_memzone_reserve(TEST_MEMZONE_NAME("tempzone1"), 4000,
SOCKET_ID_ANY, 0);
if (mz[0] > mz[1])
return -1;
if (!rte_memzone_lookup(TEST_MEMZONE_NAME("tempzone0")))
return -1;
if (!rte_memzone_lookup(TEST_MEMZONE_NAME("tempzone1")))
return -1;
if (rte_memzone_free(mz[0])) {
printf("Fail memzone free - tempzone0\n");
return -1;
}
if (rte_memzone_lookup(TEST_MEMZONE_NAME("tempzone0"))) {
printf("Found previously free memzone - tempzone0\n");
return -1;
}
mz[2] = rte_memzone_reserve(TEST_MEMZONE_NAME("tempzone2"), 2000,
SOCKET_ID_ANY, 0);
if (mz[2] > mz[1]) {
printf("tempzone2 should have gotten the free entry from tempzone0\n");
return -1;
}
if (rte_memzone_free(mz[2])) {
printf("Fail memzone free - tempzone2\n");
return -1;
}
if (rte_memzone_lookup(TEST_MEMZONE_NAME("tempzone2"))) {
printf("Found previously free memzone - tempzone2\n");
return -1;
}
if (rte_memzone_free(mz[1])) {
printf("Fail memzone free - tempzone1\n");
return -1;
}
if (rte_memzone_lookup(TEST_MEMZONE_NAME("tempzone1"))) {
printf("Found previously free memzone - tempzone1\n");
return -1;
}
i = 0;
do {
snprintf(name, sizeof(name), TEST_MEMZONE_NAME("tempzone%u"),
i);
mz[i] = rte_memzone_reserve(name, 1, SOCKET_ID_ANY, 0);
} while (mz[i++] != NULL);
if (rte_memzone_free(mz[0])) {
printf("Fail memzone free - tempzone0\n");
return -1;
}
mz[0] = rte_memzone_reserve(TEST_MEMZONE_NAME("tempzone0new"), 0,
SOCKET_ID_ANY, 0);
if (mz[0] == NULL) {
printf("Fail to create memzone - tempzone0new - when MAX memzones were "
"created and one was free\n");
return -1;
}
for (i = i - 2; i >= 0; i--) {
if (rte_memzone_free(mz[i])) {
printf("Fail memzone free - tempzone%d\n", i);
return -1;
}
}
return 0;
}
static int test_memzones_left;
static int memzone_walk_cnt;
static void memzone_walk_clb(const struct rte_memzone *mz,
void *arg __rte_unused)
{
memzone_walk_cnt++;
if (!strncmp(TEST_MEMZONE_NAME(""), mz->name, RTE_MEMZONE_NAMESIZE))
test_memzones_left++;
}
static int
test_memzone_basic(void)
{
const struct rte_memzone *memzone1;
const struct rte_memzone *memzone2;
const struct rte_memzone *memzone3;
const struct rte_memzone *memzone4;
const struct rte_memzone *mz;
int memzone_cnt_after, memzone_cnt_expected;
int memzone_cnt_before;
memzone_walk_cnt = 0;
test_memzones_left = 0;
rte_memzone_walk(memzone_walk_clb, NULL);
memzone_cnt_before = memzone_walk_cnt;
memzone1 = rte_memzone_reserve(TEST_MEMZONE_NAME("testzone1"), 100,
SOCKET_ID_ANY, 0);
memzone2 = rte_memzone_reserve(TEST_MEMZONE_NAME("testzone2"), 1000,
0, 0);
memzone3 = rte_memzone_reserve(TEST_MEMZONE_NAME("testzone3"), 1000,
1, 0);
memzone4 = rte_memzone_reserve(TEST_MEMZONE_NAME("testzone4"), 1024,
SOCKET_ID_ANY, 0);
/* memzone3 may be NULL if we don't have NUMA */
if (memzone1 == NULL || memzone2 == NULL || memzone4 == NULL)
return -1;
/* check how many memzones we are expecting */
memzone_cnt_expected = memzone_cnt_before +
(memzone1 != NULL) + (memzone2 != NULL) +
(memzone3 != NULL) + (memzone4 != NULL);
memzone_walk_cnt = 0;
test_memzones_left = 0;
rte_memzone_walk(memzone_walk_clb, NULL);
memzone_cnt_after = memzone_walk_cnt;
if (memzone_cnt_after != memzone_cnt_expected)
return -1;
rte_memzone_dump(stdout);
/* check cache-line alignments */
printf("check alignments and lengths\n");
if ((memzone1->iova & RTE_CACHE_LINE_MASK) != 0)
return -1;
if ((memzone2->iova & RTE_CACHE_LINE_MASK) != 0)
return -1;
if (memzone3 != NULL && (memzone3->iova & RTE_CACHE_LINE_MASK) != 0)
return -1;
if ((memzone1->len & RTE_CACHE_LINE_MASK) != 0 || memzone1->len == 0)
return -1;
if ((memzone2->len & RTE_CACHE_LINE_MASK) != 0 || memzone2->len == 0)
return -1;
if (memzone3 != NULL && ((memzone3->len & RTE_CACHE_LINE_MASK) != 0 ||
memzone3->len == 0))
return -1;
if (memzone4->len != 1024)
return -1;
/* check that zones don't overlap */
printf("check overlapping\n");
if (is_memory_overlap(memzone1->iova, memzone1->len,
memzone2->iova, memzone2->len))
return -1;
if (memzone3 != NULL &&
is_memory_overlap(memzone1->iova, memzone1->len,
memzone3->iova, memzone3->len))
return -1;
if (memzone3 != NULL &&
is_memory_overlap(memzone2->iova, memzone2->len,
memzone3->iova, memzone3->len))
return -1;
printf("check socket ID\n");
/* memzone2 must be on socket id 0 and memzone3 on socket 1 */
if (memzone2->socket_id != 0)
return -1;
if (memzone3 != NULL && memzone3->socket_id != 1)
return -1;
printf("test zone lookup\n");
mz = rte_memzone_lookup(TEST_MEMZONE_NAME("testzone1"));
if (mz != memzone1)
return -1;
printf("test duplicate zone name\n");
mz = rte_memzone_reserve(TEST_MEMZONE_NAME("testzone1"), 100,
SOCKET_ID_ANY, 0);
if (mz != NULL)
return -1;
if (rte_memzone_free(memzone1)) {
printf("Fail memzone free - memzone1\n");
return -1;
}
if (rte_memzone_free(memzone2)) {
printf("Fail memzone free - memzone2\n");
return -1;
}
if (memzone3 && rte_memzone_free(memzone3)) {
printf("Fail memzone free - memzone3\n");
return -1;
}
if (rte_memzone_free(memzone4)) {
printf("Fail memzone free - memzone4\n");
return -1;
}
memzone_walk_cnt = 0;
test_memzones_left = 0;
rte_memzone_walk(memzone_walk_clb, NULL);
memzone_cnt_after = memzone_walk_cnt;
if (memzone_cnt_after != memzone_cnt_before)
return -1;
return 0;
}
static int
test_memzone(void)
{
/* take note of how many memzones were allocated before running */
int memzone_cnt;
memzone_walk_cnt = 0;
test_memzones_left = 0;
rte_memzone_walk(memzone_walk_clb, NULL);
memzone_cnt = memzone_walk_cnt;
printf("test basic memzone API\n");
if (test_memzone_basic() < 0)
return -1;
printf("test free memzone\n");
if (test_memzone_free() < 0)
return -1;
printf("test reserving memzone with bigger size than the maximum\n");
if (test_memzone_reserving_zone_size_bigger_than_the_maximum() < 0)
return -1;
printf("test memzone_reserve flags\n");
if (test_memzone_reserve_flags() < 0)
return -1;
printf("test alignment for memzone_reserve\n");
if (test_memzone_aligned() < 0)
return -1;
printf("test boundary alignment for memzone_reserve\n");
if (test_memzone_bounded() < 0)
return -1;
printf("test invalid alignment for memzone_reserve\n");
if (test_memzone_invalid_alignment() < 0)
return -1;
printf("test invalid flags for memzone_reserve\n");
if (test_memzone_invalid_flags() < 0)
return -1;
printf("test reserving the largest size memzone possible\n");
if (test_memzone_reserve_max() < 0)
return -1;
printf("test reserving the largest size aligned memzone possible\n");
if (test_memzone_reserve_max_aligned() < 0)
return -1;
printf("check memzone cleanup\n");
memzone_walk_cnt = 0;
test_memzones_left = 0;
rte_memzone_walk(memzone_walk_clb, NULL);
if (memzone_walk_cnt != memzone_cnt || test_memzones_left > 0) {
printf("there are some memzones left after test\n");
rte_memzone_dump(stdout);
return -1;
}
return 0;
}
REGISTER_TEST_COMMAND(memzone_autotest, test_memzone);