973320514f
Add support in existing bbdev PMDs for the explicit number of queues and priority for each operation type configured on the device. Signed-off-by: Nicolas Chautru <nicolas.chautru@intel.com> Acked-by: Maxime Coquelin <maxime.coquelin@redhat.com> Acked-by: Hemant Agrawal <hemant.agrawal@nxp.com> Acked-by: Akhil Goyal <gakhil@marvell.com>
2499 lines
69 KiB
C
2499 lines
69 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2020 Intel Corporation
|
|
*/
|
|
|
|
#include <unistd.h>
|
|
|
|
#include <rte_common.h>
|
|
#include <rte_log.h>
|
|
#include <dev_driver.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_mempool.h>
|
|
#include <rte_errno.h>
|
|
#include <rte_pci.h>
|
|
#include <bus_pci_driver.h>
|
|
#include <rte_byteorder.h>
|
|
#ifdef RTE_BBDEV_OFFLOAD_COST
|
|
#include <rte_cycles.h>
|
|
#endif
|
|
|
|
#include <rte_bbdev.h>
|
|
#include <rte_bbdev_pmd.h>
|
|
|
|
#include "fpga_5gnr_fec.h"
|
|
#include "rte_pmd_fpga_5gnr_fec.h"
|
|
|
|
#ifdef RTE_LIBRTE_BBDEV_DEBUG
|
|
RTE_LOG_REGISTER_DEFAULT(fpga_5gnr_fec_logtype, DEBUG);
|
|
#else
|
|
RTE_LOG_REGISTER_DEFAULT(fpga_5gnr_fec_logtype, NOTICE);
|
|
#endif
|
|
|
|
#ifdef RTE_LIBRTE_BBDEV_DEBUG
|
|
|
|
/* Read Ring Control Register of FPGA 5GNR FEC device */
|
|
static inline void
|
|
print_ring_reg_debug_info(void *mmio_base, uint32_t offset)
|
|
{
|
|
rte_bbdev_log_debug(
|
|
"FPGA MMIO base address @ %p | Ring Control Register @ offset = 0x%08"
|
|
PRIx32, mmio_base, offset);
|
|
rte_bbdev_log_debug(
|
|
"RING_BASE_ADDR = 0x%016"PRIx64,
|
|
fpga_reg_read_64(mmio_base, offset));
|
|
rte_bbdev_log_debug(
|
|
"RING_HEAD_ADDR = 0x%016"PRIx64,
|
|
fpga_reg_read_64(mmio_base, offset +
|
|
FPGA_5GNR_FEC_RING_HEAD_ADDR));
|
|
rte_bbdev_log_debug(
|
|
"RING_SIZE = 0x%04"PRIx16,
|
|
fpga_reg_read_16(mmio_base, offset +
|
|
FPGA_5GNR_FEC_RING_SIZE));
|
|
rte_bbdev_log_debug(
|
|
"RING_MISC = 0x%02"PRIx8,
|
|
fpga_reg_read_8(mmio_base, offset +
|
|
FPGA_5GNR_FEC_RING_MISC));
|
|
rte_bbdev_log_debug(
|
|
"RING_ENABLE = 0x%02"PRIx8,
|
|
fpga_reg_read_8(mmio_base, offset +
|
|
FPGA_5GNR_FEC_RING_ENABLE));
|
|
rte_bbdev_log_debug(
|
|
"RING_FLUSH_QUEUE_EN = 0x%02"PRIx8,
|
|
fpga_reg_read_8(mmio_base, offset +
|
|
FPGA_5GNR_FEC_RING_FLUSH_QUEUE_EN));
|
|
rte_bbdev_log_debug(
|
|
"RING_SHADOW_TAIL = 0x%04"PRIx16,
|
|
fpga_reg_read_16(mmio_base, offset +
|
|
FPGA_5GNR_FEC_RING_SHADOW_TAIL));
|
|
rte_bbdev_log_debug(
|
|
"RING_HEAD_POINT = 0x%04"PRIx16,
|
|
fpga_reg_read_16(mmio_base, offset +
|
|
FPGA_5GNR_FEC_RING_HEAD_POINT));
|
|
}
|
|
|
|
/* Read Static Register of FPGA 5GNR FEC device */
|
|
static inline void
|
|
print_static_reg_debug_info(void *mmio_base)
|
|
{
|
|
uint16_t config = fpga_reg_read_16(mmio_base,
|
|
FPGA_5GNR_FEC_CONFIGURATION);
|
|
uint8_t qmap_done = fpga_reg_read_8(mmio_base,
|
|
FPGA_5GNR_FEC_QUEUE_PF_VF_MAP_DONE);
|
|
uint16_t lb_factor = fpga_reg_read_16(mmio_base,
|
|
FPGA_5GNR_FEC_LOAD_BALANCE_FACTOR);
|
|
uint16_t ring_desc_len = fpga_reg_read_16(mmio_base,
|
|
FPGA_5GNR_FEC_RING_DESC_LEN);
|
|
|
|
rte_bbdev_log_debug("UL.DL Weights = %u.%u",
|
|
((uint8_t)config), ((uint8_t)(config >> 8)));
|
|
rte_bbdev_log_debug("UL.DL Load Balance = %u.%u",
|
|
((uint8_t)lb_factor), ((uint8_t)(lb_factor >> 8)));
|
|
rte_bbdev_log_debug("Queue-PF/VF Mapping Table = %s",
|
|
(qmap_done > 0) ? "READY" : "NOT-READY");
|
|
rte_bbdev_log_debug("Ring Descriptor Size = %u bytes",
|
|
ring_desc_len*FPGA_RING_DESC_LEN_UNIT_BYTES);
|
|
}
|
|
|
|
/* Print decode DMA Descriptor of FPGA 5GNR Decoder device */
|
|
static void
|
|
print_dma_dec_desc_debug_info(union fpga_dma_desc *desc)
|
|
{
|
|
rte_bbdev_log_debug("DMA response desc %p\n"
|
|
"\t-- done(%"PRIu32") | iter(%"PRIu32") | et_pass(%"PRIu32")"
|
|
" | crcb_pass (%"PRIu32") | error(%"PRIu32")\n"
|
|
"\t-- qm_idx(%"PRIu32") | max_iter(%"PRIu32") | "
|
|
"bg_idx (%"PRIu32") | harqin_en(%"PRIu32") | zc(%"PRIu32")\n"
|
|
"\t-- hbstroe_offset(%"PRIu32") | num_null (%"PRIu32") "
|
|
"| irq_en(%"PRIu32")\n"
|
|
"\t-- ncb(%"PRIu32") | desc_idx (%"PRIu32") | "
|
|
"drop_crc24b(%"PRIu32") | RV (%"PRIu32")\n"
|
|
"\t-- crc24b_ind(%"PRIu32") | et_dis (%"PRIu32")\n"
|
|
"\t-- harq_input_length(%"PRIu32") | rm_e(%"PRIu32")\n"
|
|
"\t-- cbs_in_op(%"PRIu32") | in_add (0x%08"PRIx32"%08"PRIx32")"
|
|
"| out_add (0x%08"PRIx32"%08"PRIx32")",
|
|
desc,
|
|
(uint32_t)desc->dec_req.done,
|
|
(uint32_t)desc->dec_req.iter,
|
|
(uint32_t)desc->dec_req.et_pass,
|
|
(uint32_t)desc->dec_req.crcb_pass,
|
|
(uint32_t)desc->dec_req.error,
|
|
(uint32_t)desc->dec_req.qm_idx,
|
|
(uint32_t)desc->dec_req.max_iter,
|
|
(uint32_t)desc->dec_req.bg_idx,
|
|
(uint32_t)desc->dec_req.harqin_en,
|
|
(uint32_t)desc->dec_req.zc,
|
|
(uint32_t)desc->dec_req.hbstroe_offset,
|
|
(uint32_t)desc->dec_req.num_null,
|
|
(uint32_t)desc->dec_req.irq_en,
|
|
(uint32_t)desc->dec_req.ncb,
|
|
(uint32_t)desc->dec_req.desc_idx,
|
|
(uint32_t)desc->dec_req.drop_crc24b,
|
|
(uint32_t)desc->dec_req.rv,
|
|
(uint32_t)desc->dec_req.crc24b_ind,
|
|
(uint32_t)desc->dec_req.et_dis,
|
|
(uint32_t)desc->dec_req.harq_input_length,
|
|
(uint32_t)desc->dec_req.rm_e,
|
|
(uint32_t)desc->dec_req.cbs_in_op,
|
|
(uint32_t)desc->dec_req.in_addr_hi,
|
|
(uint32_t)desc->dec_req.in_addr_lw,
|
|
(uint32_t)desc->dec_req.out_addr_hi,
|
|
(uint32_t)desc->dec_req.out_addr_lw);
|
|
uint32_t *word = (uint32_t *) desc;
|
|
rte_bbdev_log_debug("%08"PRIx32"\n%08"PRIx32"\n%08"PRIx32"\n%08"PRIx32"\n"
|
|
"%08"PRIx32"\n%08"PRIx32"\n%08"PRIx32"\n%08"PRIx32"\n",
|
|
word[0], word[1], word[2], word[3],
|
|
word[4], word[5], word[6], word[7]);
|
|
}
|
|
|
|
/* Print decode DMA Descriptor of FPGA 5GNR encoder device */
|
|
static void
|
|
print_dma_enc_desc_debug_info(union fpga_dma_desc *desc)
|
|
{
|
|
rte_bbdev_log_debug("DMA response desc %p\n"
|
|
"%"PRIu32" %"PRIu32"\n"
|
|
"K' %"PRIu32" E %"PRIu32" desc %"PRIu32" Z %"PRIu32"\n"
|
|
"BG %"PRIu32" Qm %"PRIu32" CRC %"PRIu32" IRQ %"PRIu32"\n"
|
|
"k0 %"PRIu32" Ncb %"PRIu32" F %"PRIu32"\n",
|
|
desc,
|
|
(uint32_t)desc->enc_req.done,
|
|
(uint32_t)desc->enc_req.error,
|
|
|
|
(uint32_t)desc->enc_req.k_,
|
|
(uint32_t)desc->enc_req.rm_e,
|
|
(uint32_t)desc->enc_req.desc_idx,
|
|
(uint32_t)desc->enc_req.zc,
|
|
|
|
(uint32_t)desc->enc_req.bg_idx,
|
|
(uint32_t)desc->enc_req.qm_idx,
|
|
(uint32_t)desc->enc_req.crc_en,
|
|
(uint32_t)desc->enc_req.irq_en,
|
|
|
|
(uint32_t)desc->enc_req.k0,
|
|
(uint32_t)desc->enc_req.ncb,
|
|
(uint32_t)desc->enc_req.num_null);
|
|
uint32_t *word = (uint32_t *) desc;
|
|
rte_bbdev_log_debug("%08"PRIx32"\n%08"PRIx32"\n%08"PRIx32"\n%08"PRIx32"\n"
|
|
"%08"PRIx32"\n%08"PRIx32"\n%08"PRIx32"\n%08"PRIx32"\n",
|
|
word[0], word[1], word[2], word[3],
|
|
word[4], word[5], word[6], word[7]);
|
|
}
|
|
|
|
#endif
|
|
|
|
static int
|
|
fpga_setup_queues(struct rte_bbdev *dev, uint16_t num_queues, int socket_id)
|
|
{
|
|
/* Number of queues bound to a PF/VF */
|
|
uint32_t hw_q_num = 0;
|
|
uint32_t ring_size, payload, address, q_id, offset;
|
|
rte_iova_t phys_addr;
|
|
struct fpga_ring_ctrl_reg ring_reg;
|
|
struct fpga_5gnr_fec_device *fpga_dev = dev->data->dev_private;
|
|
|
|
address = FPGA_5GNR_FEC_QUEUE_PF_VF_MAP_DONE;
|
|
if (!(fpga_reg_read_32(fpga_dev->mmio_base, address) & 0x1)) {
|
|
rte_bbdev_log(ERR,
|
|
"Queue-PF/VF mapping is not set! Was PF configured for device (%s) ?",
|
|
dev->data->name);
|
|
return -EPERM;
|
|
}
|
|
|
|
/* Clear queue registers structure */
|
|
memset(&ring_reg, 0, sizeof(struct fpga_ring_ctrl_reg));
|
|
|
|
/* Scan queue map.
|
|
* If a queue is valid and mapped to a calling PF/VF the read value is
|
|
* replaced with a queue ID and if it's not then
|
|
* FPGA_INVALID_HW_QUEUE_ID is returned.
|
|
*/
|
|
for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) {
|
|
uint32_t hw_q_id = fpga_reg_read_32(fpga_dev->mmio_base,
|
|
FPGA_5GNR_FEC_QUEUE_MAP + (q_id << 2));
|
|
|
|
rte_bbdev_log_debug("%s: queue ID: %u, registry queue ID: %u",
|
|
dev->device->name, q_id, hw_q_id);
|
|
|
|
if (hw_q_id != FPGA_INVALID_HW_QUEUE_ID) {
|
|
fpga_dev->q_bound_bit_map |= (1ULL << q_id);
|
|
/* Clear queue register of found queue */
|
|
offset = FPGA_5GNR_FEC_RING_CTRL_REGS +
|
|
(sizeof(struct fpga_ring_ctrl_reg) * q_id);
|
|
fpga_ring_reg_write(fpga_dev->mmio_base,
|
|
offset, ring_reg);
|
|
++hw_q_num;
|
|
}
|
|
}
|
|
if (hw_q_num == 0) {
|
|
rte_bbdev_log(ERR,
|
|
"No HW queues assigned to this device. Probably this is a VF configured for PF mode. Check device configuration!");
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (num_queues > hw_q_num) {
|
|
rte_bbdev_log(ERR,
|
|
"Not enough queues for device %s! Requested: %u, available: %u",
|
|
dev->device->name, num_queues, hw_q_num);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ring_size = FPGA_RING_MAX_SIZE * sizeof(struct fpga_dma_dec_desc);
|
|
|
|
/* Enforce 32 byte alignment */
|
|
RTE_BUILD_BUG_ON((RTE_CACHE_LINE_SIZE % 32) != 0);
|
|
|
|
/* Allocate memory for SW descriptor rings */
|
|
fpga_dev->sw_rings = rte_zmalloc_socket(dev->device->driver->name,
|
|
num_queues * ring_size, RTE_CACHE_LINE_SIZE,
|
|
socket_id);
|
|
if (fpga_dev->sw_rings == NULL) {
|
|
rte_bbdev_log(ERR,
|
|
"Failed to allocate memory for %s:%u sw_rings",
|
|
dev->device->driver->name, dev->data->dev_id);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
fpga_dev->sw_rings_phys = rte_malloc_virt2iova(fpga_dev->sw_rings);
|
|
fpga_dev->sw_ring_size = ring_size;
|
|
fpga_dev->sw_ring_max_depth = FPGA_RING_MAX_SIZE;
|
|
|
|
/* Allocate memory for ring flush status */
|
|
fpga_dev->flush_queue_status = rte_zmalloc_socket(NULL,
|
|
sizeof(uint64_t), RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (fpga_dev->flush_queue_status == NULL) {
|
|
rte_bbdev_log(ERR,
|
|
"Failed to allocate memory for %s:%u flush_queue_status",
|
|
dev->device->driver->name, dev->data->dev_id);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Set the flush status address registers */
|
|
phys_addr = rte_malloc_virt2iova(fpga_dev->flush_queue_status);
|
|
|
|
address = FPGA_5GNR_FEC_VFQ_FLUSH_STATUS_LW;
|
|
payload = (uint32_t)(phys_addr);
|
|
fpga_reg_write_32(fpga_dev->mmio_base, address, payload);
|
|
|
|
address = FPGA_5GNR_FEC_VFQ_FLUSH_STATUS_HI;
|
|
payload = (uint32_t)(phys_addr >> 32);
|
|
fpga_reg_write_32(fpga_dev->mmio_base, address, payload);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
fpga_dev_close(struct rte_bbdev *dev)
|
|
{
|
|
struct fpga_5gnr_fec_device *fpga_dev = dev->data->dev_private;
|
|
|
|
rte_free(fpga_dev->sw_rings);
|
|
rte_free(fpga_dev->flush_queue_status);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
fpga_dev_info_get(struct rte_bbdev *dev,
|
|
struct rte_bbdev_driver_info *dev_info)
|
|
{
|
|
struct fpga_5gnr_fec_device *d = dev->data->dev_private;
|
|
uint32_t q_id = 0;
|
|
|
|
static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
|
|
{
|
|
.type = RTE_BBDEV_OP_LDPC_ENC,
|
|
.cap.ldpc_enc = {
|
|
.capability_flags =
|
|
RTE_BBDEV_LDPC_RATE_MATCH |
|
|
RTE_BBDEV_LDPC_ENC_INTERRUPTS |
|
|
RTE_BBDEV_LDPC_CRC_24B_ATTACH,
|
|
.num_buffers_src =
|
|
RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
|
|
.num_buffers_dst =
|
|
RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
|
|
}
|
|
},
|
|
{
|
|
.type = RTE_BBDEV_OP_LDPC_DEC,
|
|
.cap.ldpc_dec = {
|
|
.capability_flags =
|
|
RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK |
|
|
RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP |
|
|
RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE |
|
|
RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE |
|
|
RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE |
|
|
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_IN_ENABLE |
|
|
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE |
|
|
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK |
|
|
RTE_BBDEV_LDPC_DEC_INTERRUPTS |
|
|
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_FILLERS,
|
|
.llr_size = 6,
|
|
.llr_decimals = 2,
|
|
.num_buffers_src =
|
|
RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
|
|
.num_buffers_hard_out =
|
|
RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
|
|
.num_buffers_soft_out = 0,
|
|
}
|
|
},
|
|
RTE_BBDEV_END_OF_CAPABILITIES_LIST()
|
|
};
|
|
|
|
/* Check the HARQ DDR size available */
|
|
uint8_t timeout_counter = 0;
|
|
uint32_t harq_buf_ready = fpga_reg_read_32(d->mmio_base,
|
|
FPGA_5GNR_FEC_HARQ_BUF_SIZE_RDY_REGS);
|
|
while (harq_buf_ready != 1) {
|
|
usleep(FPGA_TIMEOUT_CHECK_INTERVAL);
|
|
timeout_counter++;
|
|
harq_buf_ready = fpga_reg_read_32(d->mmio_base,
|
|
FPGA_5GNR_FEC_HARQ_BUF_SIZE_RDY_REGS);
|
|
if (timeout_counter > FPGA_HARQ_RDY_TIMEOUT) {
|
|
rte_bbdev_log(ERR, "HARQ Buffer not ready %d",
|
|
harq_buf_ready);
|
|
harq_buf_ready = 1;
|
|
}
|
|
}
|
|
uint32_t harq_buf_size = fpga_reg_read_32(d->mmio_base,
|
|
FPGA_5GNR_FEC_HARQ_BUF_SIZE_REGS);
|
|
|
|
static struct rte_bbdev_queue_conf default_queue_conf;
|
|
default_queue_conf.socket = dev->data->socket_id;
|
|
default_queue_conf.queue_size = FPGA_RING_MAX_SIZE;
|
|
|
|
dev_info->driver_name = dev->device->driver->name;
|
|
dev_info->queue_size_lim = FPGA_RING_MAX_SIZE;
|
|
dev_info->hardware_accelerated = true;
|
|
dev_info->min_alignment = 64;
|
|
dev_info->harq_buffer_size = (harq_buf_size >> 10) + 1;
|
|
dev_info->default_queue_conf = default_queue_conf;
|
|
dev_info->capabilities = bbdev_capabilities;
|
|
dev_info->cpu_flag_reqs = NULL;
|
|
dev_info->data_endianness = RTE_LITTLE_ENDIAN;
|
|
dev_info->device_status = RTE_BBDEV_DEV_NOT_SUPPORTED;
|
|
|
|
/* Calculates number of queues assigned to device */
|
|
dev_info->max_num_queues = 0;
|
|
for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) {
|
|
uint32_t hw_q_id = fpga_reg_read_32(d->mmio_base,
|
|
FPGA_5GNR_FEC_QUEUE_MAP + (q_id << 2));
|
|
if (hw_q_id != FPGA_INVALID_HW_QUEUE_ID)
|
|
dev_info->max_num_queues++;
|
|
}
|
|
/* Expose number of queue per operation type */
|
|
dev_info->num_queues[RTE_BBDEV_OP_NONE] = 0;
|
|
dev_info->num_queues[RTE_BBDEV_OP_TURBO_DEC] = 0;
|
|
dev_info->num_queues[RTE_BBDEV_OP_TURBO_ENC] = 0;
|
|
dev_info->num_queues[RTE_BBDEV_OP_LDPC_DEC] = dev_info->max_num_queues / 2;
|
|
dev_info->num_queues[RTE_BBDEV_OP_LDPC_ENC] = dev_info->max_num_queues / 2;
|
|
dev_info->queue_priority[RTE_BBDEV_OP_LDPC_DEC] = 1;
|
|
dev_info->queue_priority[RTE_BBDEV_OP_LDPC_ENC] = 1;
|
|
}
|
|
|
|
/**
|
|
* Find index of queue bound to current PF/VF which is unassigned. Return -1
|
|
* when there is no available queue
|
|
*/
|
|
static inline int
|
|
fpga_find_free_queue_idx(struct rte_bbdev *dev,
|
|
const struct rte_bbdev_queue_conf *conf)
|
|
{
|
|
struct fpga_5gnr_fec_device *d = dev->data->dev_private;
|
|
uint64_t q_idx;
|
|
uint8_t i = 0;
|
|
uint8_t range = FPGA_TOTAL_NUM_QUEUES >> 1;
|
|
|
|
if (conf->op_type == RTE_BBDEV_OP_LDPC_ENC) {
|
|
i = FPGA_NUM_DL_QUEUES;
|
|
range = FPGA_TOTAL_NUM_QUEUES;
|
|
}
|
|
|
|
for (; i < range; ++i) {
|
|
q_idx = 1ULL << i;
|
|
/* Check if index of queue is bound to current PF/VF */
|
|
if (d->q_bound_bit_map & q_idx)
|
|
/* Check if found queue was not already assigned */
|
|
if (!(d->q_assigned_bit_map & q_idx)) {
|
|
d->q_assigned_bit_map |= q_idx;
|
|
return i;
|
|
}
|
|
}
|
|
|
|
rte_bbdev_log(INFO, "Failed to find free queue on %s", dev->data->name);
|
|
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
fpga_queue_setup(struct rte_bbdev *dev, uint16_t queue_id,
|
|
const struct rte_bbdev_queue_conf *conf)
|
|
{
|
|
uint32_t address, ring_offset;
|
|
struct fpga_5gnr_fec_device *d = dev->data->dev_private;
|
|
struct fpga_queue *q;
|
|
int8_t q_idx;
|
|
|
|
/* Check if there is a free queue to assign */
|
|
q_idx = fpga_find_free_queue_idx(dev, conf);
|
|
if (q_idx == -1)
|
|
return -1;
|
|
|
|
/* Allocate the queue data structure. */
|
|
q = rte_zmalloc_socket(dev->device->driver->name, sizeof(*q),
|
|
RTE_CACHE_LINE_SIZE, conf->socket);
|
|
if (q == NULL) {
|
|
/* Mark queue as un-assigned */
|
|
d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q_idx));
|
|
rte_bbdev_log(ERR, "Failed to allocate queue memory");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
q->d = d;
|
|
q->q_idx = q_idx;
|
|
|
|
/* Set ring_base_addr */
|
|
q->ring_addr = RTE_PTR_ADD(d->sw_rings, (d->sw_ring_size * queue_id));
|
|
q->ring_ctrl_reg.ring_base_addr = d->sw_rings_phys +
|
|
(d->sw_ring_size * queue_id);
|
|
|
|
/* Allocate memory for Completion Head variable*/
|
|
q->ring_head_addr = rte_zmalloc_socket(dev->device->driver->name,
|
|
sizeof(uint64_t), RTE_CACHE_LINE_SIZE, conf->socket);
|
|
if (q->ring_head_addr == NULL) {
|
|
/* Mark queue as un-assigned */
|
|
d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q_idx));
|
|
rte_free(q);
|
|
rte_bbdev_log(ERR,
|
|
"Failed to allocate memory for %s:%u completion_head",
|
|
dev->device->driver->name, dev->data->dev_id);
|
|
return -ENOMEM;
|
|
}
|
|
/* Set ring_head_addr */
|
|
q->ring_ctrl_reg.ring_head_addr =
|
|
rte_malloc_virt2iova(q->ring_head_addr);
|
|
|
|
/* Clear shadow_completion_head */
|
|
q->shadow_completion_head = 0;
|
|
|
|
/* Set ring_size */
|
|
if (conf->queue_size > FPGA_RING_MAX_SIZE) {
|
|
/* Mark queue as un-assigned */
|
|
d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q_idx));
|
|
rte_free(q->ring_head_addr);
|
|
rte_free(q);
|
|
rte_bbdev_log(ERR,
|
|
"Size of queue is too big %d (MAX: %d ) for %s:%u",
|
|
conf->queue_size, FPGA_RING_MAX_SIZE,
|
|
dev->device->driver->name, dev->data->dev_id);
|
|
return -EINVAL;
|
|
}
|
|
q->ring_ctrl_reg.ring_size = conf->queue_size;
|
|
|
|
/* Set Miscellaneous FPGA register*/
|
|
/* Max iteration number for TTI mitigation - todo */
|
|
q->ring_ctrl_reg.max_ul_dec = 0;
|
|
/* Enable max iteration number for TTI - todo */
|
|
q->ring_ctrl_reg.max_ul_dec_en = 0;
|
|
|
|
/* Enable the ring */
|
|
q->ring_ctrl_reg.enable = 1;
|
|
|
|
/* Set FPGA head_point and tail registers */
|
|
q->ring_ctrl_reg.head_point = q->tail = 0;
|
|
|
|
/* Set FPGA shadow_tail register */
|
|
q->ring_ctrl_reg.shadow_tail = q->tail;
|
|
|
|
/* Calculates the ring offset for found queue */
|
|
ring_offset = FPGA_5GNR_FEC_RING_CTRL_REGS +
|
|
(sizeof(struct fpga_ring_ctrl_reg) * q_idx);
|
|
|
|
/* Set FPGA Ring Control Registers */
|
|
fpga_ring_reg_write(d->mmio_base, ring_offset, q->ring_ctrl_reg);
|
|
|
|
/* Store MMIO register of shadow_tail */
|
|
address = ring_offset + FPGA_5GNR_FEC_RING_SHADOW_TAIL;
|
|
q->shadow_tail_addr = RTE_PTR_ADD(d->mmio_base, address);
|
|
|
|
q->head_free_desc = q->tail;
|
|
|
|
/* Set wrap mask */
|
|
q->sw_ring_wrap_mask = conf->queue_size - 1;
|
|
|
|
rte_bbdev_log_debug("Setup dev%u q%u: queue_idx=%u",
|
|
dev->data->dev_id, queue_id, q->q_idx);
|
|
|
|
dev->data->queues[queue_id].queue_private = q;
|
|
|
|
rte_bbdev_log_debug("BBDEV queue[%d] set up for FPGA queue[%d]",
|
|
queue_id, q_idx);
|
|
|
|
#ifdef RTE_LIBRTE_BBDEV_DEBUG
|
|
/* Read FPGA Ring Control Registers after configuration*/
|
|
print_ring_reg_debug_info(d->mmio_base, ring_offset);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
fpga_queue_release(struct rte_bbdev *dev, uint16_t queue_id)
|
|
{
|
|
struct fpga_5gnr_fec_device *d = dev->data->dev_private;
|
|
struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
|
|
struct fpga_ring_ctrl_reg ring_reg;
|
|
uint32_t offset;
|
|
|
|
rte_bbdev_log_debug("FPGA Queue[%d] released", queue_id);
|
|
|
|
if (q != NULL) {
|
|
memset(&ring_reg, 0, sizeof(struct fpga_ring_ctrl_reg));
|
|
offset = FPGA_5GNR_FEC_RING_CTRL_REGS +
|
|
(sizeof(struct fpga_ring_ctrl_reg) * q->q_idx);
|
|
/* Disable queue */
|
|
fpga_reg_write_8(d->mmio_base,
|
|
offset + FPGA_5GNR_FEC_RING_ENABLE, 0x00);
|
|
/* Clear queue registers */
|
|
fpga_ring_reg_write(d->mmio_base, offset, ring_reg);
|
|
|
|
/* Mark the Queue as un-assigned */
|
|
d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q->q_idx));
|
|
rte_free(q->ring_head_addr);
|
|
rte_free(q);
|
|
dev->data->queues[queue_id].queue_private = NULL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Function starts a device queue. */
|
|
static int
|
|
fpga_queue_start(struct rte_bbdev *dev, uint16_t queue_id)
|
|
{
|
|
struct fpga_5gnr_fec_device *d = dev->data->dev_private;
|
|
#ifdef RTE_LIBRTE_BBDEV_DEBUG
|
|
if (d == NULL) {
|
|
rte_bbdev_log(ERR, "Invalid device pointer");
|
|
return -1;
|
|
}
|
|
#endif
|
|
struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
|
|
uint32_t offset = FPGA_5GNR_FEC_RING_CTRL_REGS +
|
|
(sizeof(struct fpga_ring_ctrl_reg) * q->q_idx);
|
|
uint8_t enable = 0x01;
|
|
uint16_t zero = 0x0000;
|
|
|
|
/* Clear queue head and tail variables */
|
|
q->tail = q->head_free_desc = 0;
|
|
|
|
/* Clear FPGA head_point and tail registers */
|
|
fpga_reg_write_16(d->mmio_base, offset + FPGA_5GNR_FEC_RING_HEAD_POINT,
|
|
zero);
|
|
fpga_reg_write_16(d->mmio_base, offset + FPGA_5GNR_FEC_RING_SHADOW_TAIL,
|
|
zero);
|
|
|
|
/* Enable queue */
|
|
fpga_reg_write_8(d->mmio_base, offset + FPGA_5GNR_FEC_RING_ENABLE,
|
|
enable);
|
|
|
|
rte_bbdev_log_debug("FPGA Queue[%d] started", queue_id);
|
|
return 0;
|
|
}
|
|
|
|
/* Function stops a device queue. */
|
|
static int
|
|
fpga_queue_stop(struct rte_bbdev *dev, uint16_t queue_id)
|
|
{
|
|
struct fpga_5gnr_fec_device *d = dev->data->dev_private;
|
|
#ifdef RTE_LIBRTE_BBDEV_DEBUG
|
|
if (d == NULL) {
|
|
rte_bbdev_log(ERR, "Invalid device pointer");
|
|
return -1;
|
|
}
|
|
#endif
|
|
struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
|
|
uint32_t offset = FPGA_5GNR_FEC_RING_CTRL_REGS +
|
|
(sizeof(struct fpga_ring_ctrl_reg) * q->q_idx);
|
|
uint8_t payload = 0x01;
|
|
uint8_t counter = 0;
|
|
uint8_t timeout = FPGA_QUEUE_FLUSH_TIMEOUT_US /
|
|
FPGA_TIMEOUT_CHECK_INTERVAL;
|
|
|
|
/* Set flush_queue_en bit to trigger queue flushing */
|
|
fpga_reg_write_8(d->mmio_base,
|
|
offset + FPGA_5GNR_FEC_RING_FLUSH_QUEUE_EN, payload);
|
|
|
|
/** Check if queue flush is completed.
|
|
* FPGA will update the completion flag after queue flushing is
|
|
* completed. If completion flag is not updated within 1ms it is
|
|
* considered as a failure.
|
|
*/
|
|
while (!(*((volatile uint8_t *)d->flush_queue_status + q->q_idx)
|
|
& payload)) {
|
|
if (counter > timeout) {
|
|
rte_bbdev_log(ERR, "FPGA Queue Flush failed for queue %d",
|
|
queue_id);
|
|
return -1;
|
|
}
|
|
usleep(FPGA_TIMEOUT_CHECK_INTERVAL);
|
|
counter++;
|
|
}
|
|
|
|
/* Disable queue */
|
|
payload = 0x00;
|
|
fpga_reg_write_8(d->mmio_base, offset + FPGA_5GNR_FEC_RING_ENABLE,
|
|
payload);
|
|
|
|
rte_bbdev_log_debug("FPGA Queue[%d] stopped", queue_id);
|
|
return 0;
|
|
}
|
|
|
|
static inline uint16_t
|
|
get_queue_id(struct rte_bbdev_data *data, uint8_t q_idx)
|
|
{
|
|
uint16_t queue_id;
|
|
|
|
for (queue_id = 0; queue_id < data->num_queues; ++queue_id) {
|
|
struct fpga_queue *q = data->queues[queue_id].queue_private;
|
|
if (q != NULL && q->q_idx == q_idx)
|
|
return queue_id;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
/* Interrupt handler triggered by FPGA dev for handling specific interrupt */
|
|
static void
|
|
fpga_dev_interrupt_handler(void *cb_arg)
|
|
{
|
|
struct rte_bbdev *dev = cb_arg;
|
|
struct fpga_5gnr_fec_device *fpga_dev = dev->data->dev_private;
|
|
struct fpga_queue *q;
|
|
uint64_t ring_head;
|
|
uint64_t q_idx;
|
|
uint16_t queue_id;
|
|
uint8_t i;
|
|
|
|
/* Scan queue assigned to this device */
|
|
for (i = 0; i < FPGA_TOTAL_NUM_QUEUES; ++i) {
|
|
q_idx = 1ULL << i;
|
|
if (fpga_dev->q_bound_bit_map & q_idx) {
|
|
queue_id = get_queue_id(dev->data, i);
|
|
if (queue_id == (uint16_t) -1)
|
|
continue;
|
|
|
|
/* Check if completion head was changed */
|
|
q = dev->data->queues[queue_id].queue_private;
|
|
ring_head = *q->ring_head_addr;
|
|
if (q->shadow_completion_head != ring_head &&
|
|
q->irq_enable == 1) {
|
|
q->shadow_completion_head = ring_head;
|
|
rte_bbdev_pmd_callback_process(
|
|
dev,
|
|
RTE_BBDEV_EVENT_DEQUEUE,
|
|
&queue_id);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
fpga_queue_intr_enable(struct rte_bbdev *dev, uint16_t queue_id)
|
|
{
|
|
struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
|
|
|
|
if (!rte_intr_cap_multiple(dev->intr_handle))
|
|
return -ENOTSUP;
|
|
|
|
q->irq_enable = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
fpga_queue_intr_disable(struct rte_bbdev *dev, uint16_t queue_id)
|
|
{
|
|
struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
|
|
q->irq_enable = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
fpga_intr_enable(struct rte_bbdev *dev)
|
|
{
|
|
int ret;
|
|
uint8_t i;
|
|
|
|
if (!rte_intr_cap_multiple(dev->intr_handle)) {
|
|
rte_bbdev_log(ERR, "Multiple intr vector is not supported by FPGA (%s)",
|
|
dev->data->name);
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
/* Create event file descriptors for each of 64 queue. Event fds will be
|
|
* mapped to FPGA IRQs in rte_intr_enable(). This is a 1:1 mapping where
|
|
* the IRQ number is a direct translation to the queue number.
|
|
*
|
|
* 63 (FPGA_NUM_INTR_VEC) event fds are created as rte_intr_enable()
|
|
* mapped the first IRQ to already created interrupt event file
|
|
* descriptor (intr_handle->fd).
|
|
*/
|
|
if (rte_intr_efd_enable(dev->intr_handle, FPGA_NUM_INTR_VEC)) {
|
|
rte_bbdev_log(ERR, "Failed to create fds for %u queues",
|
|
dev->data->num_queues);
|
|
return -1;
|
|
}
|
|
|
|
/* TODO Each event file descriptor is overwritten by interrupt event
|
|
* file descriptor. That descriptor is added to epoll observed list.
|
|
* It ensures that callback function assigned to that descriptor will
|
|
* invoked when any FPGA queue issues interrupt.
|
|
*/
|
|
for (i = 0; i < FPGA_NUM_INTR_VEC; ++i) {
|
|
if (rte_intr_efds_index_set(dev->intr_handle, i,
|
|
rte_intr_fd_get(dev->intr_handle)))
|
|
return -rte_errno;
|
|
}
|
|
|
|
if (rte_intr_vec_list_alloc(dev->intr_handle, "intr_vec",
|
|
dev->data->num_queues)) {
|
|
rte_bbdev_log(ERR, "Failed to allocate %u vectors",
|
|
dev->data->num_queues);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ret = rte_intr_enable(dev->intr_handle);
|
|
if (ret < 0) {
|
|
rte_bbdev_log(ERR,
|
|
"Couldn't enable interrupts for device: %s",
|
|
dev->data->name);
|
|
return ret;
|
|
}
|
|
|
|
ret = rte_intr_callback_register(dev->intr_handle,
|
|
fpga_dev_interrupt_handler, dev);
|
|
if (ret < 0) {
|
|
rte_bbdev_log(ERR,
|
|
"Couldn't register interrupt callback for device: %s",
|
|
dev->data->name);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct rte_bbdev_ops fpga_ops = {
|
|
.setup_queues = fpga_setup_queues,
|
|
.intr_enable = fpga_intr_enable,
|
|
.close = fpga_dev_close,
|
|
.info_get = fpga_dev_info_get,
|
|
.queue_setup = fpga_queue_setup,
|
|
.queue_stop = fpga_queue_stop,
|
|
.queue_start = fpga_queue_start,
|
|
.queue_release = fpga_queue_release,
|
|
.queue_intr_enable = fpga_queue_intr_enable,
|
|
.queue_intr_disable = fpga_queue_intr_disable
|
|
};
|
|
|
|
static inline void
|
|
fpga_dma_enqueue(struct fpga_queue *q, uint16_t num_desc,
|
|
struct rte_bbdev_stats *queue_stats)
|
|
{
|
|
#ifdef RTE_BBDEV_OFFLOAD_COST
|
|
uint64_t start_time = 0;
|
|
queue_stats->acc_offload_cycles = 0;
|
|
#else
|
|
RTE_SET_USED(queue_stats);
|
|
#endif
|
|
|
|
/* Update tail and shadow_tail register */
|
|
q->tail = (q->tail + num_desc) & q->sw_ring_wrap_mask;
|
|
|
|
rte_wmb();
|
|
|
|
#ifdef RTE_BBDEV_OFFLOAD_COST
|
|
/* Start time measurement for enqueue function offload. */
|
|
start_time = rte_rdtsc_precise();
|
|
#endif
|
|
mmio_write_16(q->shadow_tail_addr, q->tail);
|
|
|
|
#ifdef RTE_BBDEV_OFFLOAD_COST
|
|
rte_wmb();
|
|
queue_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
|
|
#endif
|
|
}
|
|
|
|
/* Read flag value 0/1/ from bitmap */
|
|
static inline bool
|
|
check_bit(uint32_t bitmap, uint32_t bitmask)
|
|
{
|
|
return bitmap & bitmask;
|
|
}
|
|
|
|
/* Print an error if a descriptor error has occurred.
|
|
* Return 0 on success, 1 on failure
|
|
*/
|
|
static inline int
|
|
check_desc_error(uint32_t error_code) {
|
|
switch (error_code) {
|
|
case DESC_ERR_NO_ERR:
|
|
return 0;
|
|
case DESC_ERR_K_P_OUT_OF_RANGE:
|
|
rte_bbdev_log(ERR, "Encode block size K' is out of range");
|
|
break;
|
|
case DESC_ERR_Z_C_NOT_LEGAL:
|
|
rte_bbdev_log(ERR, "Zc is illegal");
|
|
break;
|
|
case DESC_ERR_DESC_OFFSET_ERR:
|
|
rte_bbdev_log(ERR,
|
|
"Queue offset does not meet the expectation in the FPGA"
|
|
);
|
|
break;
|
|
case DESC_ERR_DESC_READ_FAIL:
|
|
rte_bbdev_log(ERR, "Unsuccessful completion for descriptor read");
|
|
break;
|
|
case DESC_ERR_DESC_READ_TIMEOUT:
|
|
rte_bbdev_log(ERR, "Descriptor read time-out");
|
|
break;
|
|
case DESC_ERR_DESC_READ_TLP_POISONED:
|
|
rte_bbdev_log(ERR, "Descriptor read TLP poisoned");
|
|
break;
|
|
case DESC_ERR_HARQ_INPUT_LEN:
|
|
rte_bbdev_log(ERR, "HARQ input length is invalid");
|
|
break;
|
|
case DESC_ERR_CB_READ_FAIL:
|
|
rte_bbdev_log(ERR, "Unsuccessful completion for code block");
|
|
break;
|
|
case DESC_ERR_CB_READ_TIMEOUT:
|
|
rte_bbdev_log(ERR, "Code block read time-out");
|
|
break;
|
|
case DESC_ERR_CB_READ_TLP_POISONED:
|
|
rte_bbdev_log(ERR, "Code block read TLP poisoned");
|
|
break;
|
|
case DESC_ERR_HBSTORE_ERR:
|
|
rte_bbdev_log(ERR, "Hbstroe exceeds HARQ buffer size.");
|
|
break;
|
|
default:
|
|
rte_bbdev_log(ERR, "Descriptor error unknown error code %u",
|
|
error_code);
|
|
break;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Compute value of k0.
|
|
* Based on 3GPP 38.212 Table 5.4.2.1-2
|
|
* Starting position of different redundancy versions, k0
|
|
*/
|
|
static inline uint16_t
|
|
get_k0(uint16_t n_cb, uint16_t z_c, uint8_t bg, uint8_t rv_index)
|
|
{
|
|
if (rv_index == 0)
|
|
return 0;
|
|
uint16_t n = (bg == 1 ? N_ZC_1 : N_ZC_2) * z_c;
|
|
if (n_cb == n) {
|
|
if (rv_index == 1)
|
|
return (bg == 1 ? K0_1_1 : K0_1_2) * z_c;
|
|
else if (rv_index == 2)
|
|
return (bg == 1 ? K0_2_1 : K0_2_2) * z_c;
|
|
else
|
|
return (bg == 1 ? K0_3_1 : K0_3_2) * z_c;
|
|
}
|
|
/* LBRM case - includes a division by N */
|
|
if (rv_index == 1)
|
|
return (((bg == 1 ? K0_1_1 : K0_1_2) * n_cb)
|
|
/ n) * z_c;
|
|
else if (rv_index == 2)
|
|
return (((bg == 1 ? K0_2_1 : K0_2_2) * n_cb)
|
|
/ n) * z_c;
|
|
else
|
|
return (((bg == 1 ? K0_3_1 : K0_3_2) * n_cb)
|
|
/ n) * z_c;
|
|
}
|
|
|
|
/**
|
|
* Set DMA descriptor for encode operation (1 Code Block)
|
|
*
|
|
* @param op
|
|
* Pointer to a single encode operation.
|
|
* @param desc
|
|
* Pointer to DMA descriptor.
|
|
* @param input
|
|
* Pointer to pointer to input data which will be decoded.
|
|
* @param e
|
|
* E value (length of output in bits).
|
|
* @param ncb
|
|
* Ncb value (size of the soft buffer).
|
|
* @param out_length
|
|
* Length of output buffer
|
|
* @param in_offset
|
|
* Input offset in rte_mbuf structure. It is used for calculating the point
|
|
* where data is starting.
|
|
* @param out_offset
|
|
* Output offset in rte_mbuf structure. It is used for calculating the point
|
|
* where hard output data will be stored.
|
|
* @param cbs_in_op
|
|
* Number of CBs contained in one operation.
|
|
*/
|
|
static inline int
|
|
fpga_dma_desc_te_fill(struct rte_bbdev_enc_op *op,
|
|
struct fpga_dma_enc_desc *desc, struct rte_mbuf *input,
|
|
struct rte_mbuf *output, uint16_t k_, uint16_t e,
|
|
uint32_t in_offset, uint32_t out_offset, uint16_t desc_offset,
|
|
uint8_t cbs_in_op)
|
|
{
|
|
/* reset */
|
|
desc->done = 0;
|
|
desc->error = 0;
|
|
desc->k_ = k_;
|
|
desc->rm_e = e;
|
|
desc->desc_idx = desc_offset;
|
|
desc->zc = op->ldpc_enc.z_c;
|
|
desc->bg_idx = op->ldpc_enc.basegraph - 1;
|
|
desc->qm_idx = op->ldpc_enc.q_m / 2;
|
|
desc->crc_en = check_bit(op->ldpc_enc.op_flags,
|
|
RTE_BBDEV_LDPC_CRC_24B_ATTACH);
|
|
desc->irq_en = 0;
|
|
desc->k0 = get_k0(op->ldpc_enc.n_cb, op->ldpc_enc.z_c,
|
|
op->ldpc_enc.basegraph, op->ldpc_enc.rv_index);
|
|
desc->ncb = op->ldpc_enc.n_cb;
|
|
desc->num_null = op->ldpc_enc.n_filler;
|
|
/* Set inbound data buffer address */
|
|
desc->in_addr_hi = (uint32_t)(
|
|
rte_pktmbuf_iova_offset(input, in_offset) >> 32);
|
|
desc->in_addr_lw = (uint32_t)(
|
|
rte_pktmbuf_iova_offset(input, in_offset));
|
|
|
|
desc->out_addr_hi = (uint32_t)(
|
|
rte_pktmbuf_iova_offset(output, out_offset) >> 32);
|
|
desc->out_addr_lw = (uint32_t)(
|
|
rte_pktmbuf_iova_offset(output, out_offset));
|
|
/* Save software context needed for dequeue */
|
|
desc->op_addr = op;
|
|
/* Set total number of CBs in an op */
|
|
desc->cbs_in_op = cbs_in_op;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Set DMA descriptor for decode operation (1 Code Block)
|
|
*
|
|
* @param op
|
|
* Pointer to a single encode operation.
|
|
* @param desc
|
|
* Pointer to DMA descriptor.
|
|
* @param input
|
|
* Pointer to pointer to input data which will be decoded.
|
|
* @param in_offset
|
|
* Input offset in rte_mbuf structure. It is used for calculating the point
|
|
* where data is starting.
|
|
* @param out_offset
|
|
* Output offset in rte_mbuf structure. It is used for calculating the point
|
|
* where hard output data will be stored.
|
|
* @param cbs_in_op
|
|
* Number of CBs contained in one operation.
|
|
*/
|
|
static inline int
|
|
fpga_dma_desc_ld_fill(struct rte_bbdev_dec_op *op,
|
|
struct fpga_dma_dec_desc *desc,
|
|
struct rte_mbuf *input, struct rte_mbuf *output,
|
|
uint16_t harq_in_length,
|
|
uint32_t in_offset, uint32_t out_offset,
|
|
uint32_t harq_offset,
|
|
uint16_t desc_offset,
|
|
uint8_t cbs_in_op)
|
|
{
|
|
/* reset */
|
|
desc->done = 0;
|
|
desc->error = 0;
|
|
/* Set inbound data buffer address */
|
|
desc->in_addr_hi = (uint32_t)(
|
|
rte_pktmbuf_iova_offset(input, in_offset) >> 32);
|
|
desc->in_addr_lw = (uint32_t)(
|
|
rte_pktmbuf_iova_offset(input, in_offset));
|
|
desc->rm_e = op->ldpc_dec.cb_params.e;
|
|
desc->harq_input_length = harq_in_length;
|
|
desc->et_dis = !check_bit(op->ldpc_dec.op_flags,
|
|
RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE);
|
|
desc->rv = op->ldpc_dec.rv_index;
|
|
desc->crc24b_ind = check_bit(op->ldpc_dec.op_flags,
|
|
RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK);
|
|
desc->drop_crc24b = check_bit(op->ldpc_dec.op_flags,
|
|
RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP);
|
|
desc->desc_idx = desc_offset;
|
|
desc->ncb = op->ldpc_dec.n_cb;
|
|
desc->num_null = op->ldpc_dec.n_filler;
|
|
desc->hbstroe_offset = harq_offset >> 10;
|
|
desc->zc = op->ldpc_dec.z_c;
|
|
desc->harqin_en = check_bit(op->ldpc_dec.op_flags,
|
|
RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE);
|
|
desc->bg_idx = op->ldpc_dec.basegraph - 1;
|
|
desc->max_iter = op->ldpc_dec.iter_max;
|
|
desc->qm_idx = op->ldpc_dec.q_m / 2;
|
|
desc->out_addr_hi = (uint32_t)(
|
|
rte_pktmbuf_iova_offset(output, out_offset) >> 32);
|
|
desc->out_addr_lw = (uint32_t)(
|
|
rte_pktmbuf_iova_offset(output, out_offset));
|
|
/* Save software context needed for dequeue */
|
|
desc->op_addr = op;
|
|
/* Set total number of CBs in an op */
|
|
desc->cbs_in_op = cbs_in_op;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Validates LDPC encoder parameters */
|
|
static inline int
|
|
validate_ldpc_enc_op(struct rte_bbdev_enc_op *op)
|
|
{
|
|
struct rte_bbdev_op_ldpc_enc *ldpc_enc = &op->ldpc_enc;
|
|
|
|
if (op->mempool == NULL) {
|
|
rte_bbdev_log(ERR, "Invalid mempool pointer");
|
|
return -1;
|
|
}
|
|
if (ldpc_enc->input.data == NULL) {
|
|
rte_bbdev_log(ERR, "Invalid input pointer");
|
|
return -1;
|
|
}
|
|
if (ldpc_enc->output.data == NULL) {
|
|
rte_bbdev_log(ERR, "Invalid output pointer");
|
|
return -1;
|
|
}
|
|
if (ldpc_enc->input.length == 0) {
|
|
rte_bbdev_log(ERR, "CB size (%u) is null",
|
|
ldpc_enc->input.length);
|
|
return -1;
|
|
}
|
|
if ((ldpc_enc->basegraph > 2) || (ldpc_enc->basegraph == 0)) {
|
|
rte_bbdev_log(ERR,
|
|
"BG (%u) is out of range 1 <= value <= 2",
|
|
ldpc_enc->basegraph);
|
|
return -1;
|
|
}
|
|
if (ldpc_enc->rv_index > 3) {
|
|
rte_bbdev_log(ERR,
|
|
"rv_index (%u) is out of range 0 <= value <= 3",
|
|
ldpc_enc->rv_index);
|
|
return -1;
|
|
}
|
|
if (ldpc_enc->code_block_mode > RTE_BBDEV_CODE_BLOCK) {
|
|
rte_bbdev_log(ERR,
|
|
"code_block_mode (%u) is out of range 0 <= value <= 1",
|
|
ldpc_enc->code_block_mode);
|
|
return -1;
|
|
}
|
|
|
|
if (ldpc_enc->input.length >
|
|
RTE_BBDEV_LDPC_MAX_CB_SIZE >> 3) {
|
|
rte_bbdev_log(ERR, "CB size (%u) is too big, max: %d",
|
|
ldpc_enc->input.length,
|
|
RTE_BBDEV_LDPC_MAX_CB_SIZE);
|
|
return -1;
|
|
}
|
|
int z_c = ldpc_enc->z_c;
|
|
/* Check Zc is valid value */
|
|
if ((z_c > 384) || (z_c < 4)) {
|
|
rte_bbdev_log(ERR, "Zc (%u) is out of range", z_c);
|
|
return -1;
|
|
}
|
|
if (z_c > 256) {
|
|
if ((z_c % 32) != 0) {
|
|
rte_bbdev_log(ERR, "Invalid Zc %d", z_c);
|
|
return -1;
|
|
}
|
|
} else if (z_c > 128) {
|
|
if ((z_c % 16) != 0) {
|
|
rte_bbdev_log(ERR, "Invalid Zc %d", z_c);
|
|
return -1;
|
|
}
|
|
} else if (z_c > 64) {
|
|
if ((z_c % 8) != 0) {
|
|
rte_bbdev_log(ERR, "Invalid Zc %d", z_c);
|
|
return -1;
|
|
}
|
|
} else if (z_c > 32) {
|
|
if ((z_c % 4) != 0) {
|
|
rte_bbdev_log(ERR, "Invalid Zc %d", z_c);
|
|
return -1;
|
|
}
|
|
} else if (z_c > 16) {
|
|
if ((z_c % 2) != 0) {
|
|
rte_bbdev_log(ERR, "Invalid Zc %d", z_c);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
int n_filler = ldpc_enc->n_filler;
|
|
int K = (ldpc_enc->basegraph == 1 ? 22 : 10) * ldpc_enc->z_c;
|
|
int Kp = K - n_filler;
|
|
int q_m = ldpc_enc->q_m;
|
|
int n_cb = ldpc_enc->n_cb;
|
|
int N = (ldpc_enc->basegraph == 1 ? N_ZC_1 : N_ZC_2) * z_c;
|
|
int k0 = get_k0(n_cb, z_c, ldpc_enc->basegraph,
|
|
ldpc_enc->rv_index);
|
|
int crc24 = 0;
|
|
int32_t L, Lcb, cw, cw_rm;
|
|
int32_t e = ldpc_enc->cb_params.e;
|
|
if (check_bit(op->ldpc_enc.op_flags,
|
|
RTE_BBDEV_LDPC_CRC_24B_ATTACH))
|
|
crc24 = 24;
|
|
|
|
if (K < (int) (ldpc_enc->input.length * 8 + n_filler) + crc24) {
|
|
rte_bbdev_log(ERR, "K and F not matching input size %u %u %u",
|
|
K, n_filler, ldpc_enc->input.length);
|
|
return -1;
|
|
}
|
|
if (ldpc_enc->code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
|
|
rte_bbdev_log(ERR, "TB mode not supported");
|
|
return -1;
|
|
|
|
}
|
|
|
|
/* K' range check */
|
|
if (Kp % 8 > 0) {
|
|
rte_bbdev_log(ERR, "K' not byte aligned %u", Kp);
|
|
return -1;
|
|
}
|
|
if ((crc24 > 0) && (Kp < 292)) {
|
|
rte_bbdev_log(ERR, "Invalid CRC24 for small block %u", Kp);
|
|
return -1;
|
|
}
|
|
if (Kp < 24) {
|
|
rte_bbdev_log(ERR, "K' too small %u", Kp);
|
|
return -1;
|
|
}
|
|
if (n_filler >= (K - 2 * z_c)) {
|
|
rte_bbdev_log(ERR, "K - F invalid %u %u", K, n_filler);
|
|
return -1;
|
|
}
|
|
/* Ncb range check */
|
|
if ((n_cb > N) || (n_cb < 32) || (n_cb <= (Kp - crc24))) {
|
|
rte_bbdev_log(ERR, "Ncb (%u) is out of range K %d N %d", n_cb, K, N);
|
|
return -1;
|
|
}
|
|
/* Qm range check */
|
|
if (!check_bit(op->ldpc_enc.op_flags, RTE_BBDEV_LDPC_INTERLEAVER_BYPASS) &&
|
|
((q_m == 0) || ((q_m > 2) && ((q_m % 2) == 1)) || (q_m > 8))) {
|
|
rte_bbdev_log(ERR, "Qm (%u) is out of range", q_m);
|
|
return -1;
|
|
}
|
|
/* K0 range check */
|
|
if (((k0 % z_c) > 0) || (k0 >= n_cb) || ((k0 >= (Kp - 2 * z_c))
|
|
&& (k0 < (K - 2 * z_c)))) {
|
|
rte_bbdev_log(ERR, "K0 (%u) is out of range", k0);
|
|
return -1;
|
|
}
|
|
/* E range check */
|
|
if (e <= RTE_MAX(32, z_c)) {
|
|
rte_bbdev_log(ERR, "E is too small %"PRIu32"", e);
|
|
return -1;
|
|
}
|
|
if ((e > 0xFFFF)) {
|
|
rte_bbdev_log(ERR, "E is too large for N3000 %"PRIu32" > 64k", e);
|
|
return -1;
|
|
}
|
|
if (q_m > 0) {
|
|
if (e % q_m > 0) {
|
|
rte_bbdev_log(ERR, "E %"PRIu32" not multiple of qm %d", e, q_m);
|
|
return -1;
|
|
}
|
|
}
|
|
/* Code word in RM range check */
|
|
if (k0 > (Kp - 2 * z_c))
|
|
L = k0 + e;
|
|
else
|
|
L = k0 + e + n_filler;
|
|
Lcb = RTE_MIN(L, n_cb);
|
|
if (ldpc_enc->basegraph == 1) {
|
|
if (Lcb <= 25 * z_c)
|
|
cw = 25 * z_c;
|
|
else if (Lcb <= 27 * z_c)
|
|
cw = 27 * z_c;
|
|
else if (Lcb <= 30 * z_c)
|
|
cw = 30 * z_c;
|
|
else if (Lcb <= 33 * z_c)
|
|
cw = 33 * z_c;
|
|
else if (Lcb <= 44 * z_c)
|
|
cw = 44 * z_c;
|
|
else if (Lcb <= 55 * z_c)
|
|
cw = 55 * z_c;
|
|
else
|
|
cw = 66 * z_c;
|
|
} else {
|
|
if (Lcb <= 15 * z_c)
|
|
cw = 15 * z_c;
|
|
else if (Lcb <= 20 * z_c)
|
|
cw = 20 * z_c;
|
|
else if (Lcb <= 25 * z_c)
|
|
cw = 25 * z_c;
|
|
else if (Lcb <= 30 * z_c)
|
|
cw = 30 * z_c;
|
|
else
|
|
cw = 50 * z_c;
|
|
}
|
|
if (n_cb < Kp - 2 * z_c)
|
|
cw_rm = n_cb;
|
|
else if ((Kp - 2 * z_c <= n_cb) && (n_cb < K - 2 * z_c))
|
|
cw_rm = Kp - 2 * z_c;
|
|
else if ((K - 2 * z_c <= n_cb) && (n_cb < cw))
|
|
cw_rm = n_cb - n_filler;
|
|
else
|
|
cw_rm = cw - n_filler;
|
|
if (cw_rm <= 32) {
|
|
rte_bbdev_log(ERR,
|
|
"Invalid Ratematching");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Validates LDPC decoder parameters */
|
|
static inline int
|
|
validate_ldpc_dec_op(struct rte_bbdev_dec_op *op)
|
|
{
|
|
struct rte_bbdev_op_ldpc_dec *ldpc_dec = &op->ldpc_dec;
|
|
if (check_bit(ldpc_dec->op_flags,
|
|
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK))
|
|
return 0;
|
|
if (ldpc_dec->input.data == NULL) {
|
|
rte_bbdev_log(ERR, "Invalid input pointer");
|
|
return -1;
|
|
}
|
|
if (ldpc_dec->hard_output.data == NULL) {
|
|
rte_bbdev_log(ERR, "Invalid output pointer");
|
|
return -1;
|
|
}
|
|
if (ldpc_dec->input.length == 0) {
|
|
rte_bbdev_log(ERR, "input is null");
|
|
return -1;
|
|
}
|
|
if ((ldpc_dec->basegraph > 2) || (ldpc_dec->basegraph == 0)) {
|
|
rte_bbdev_log(ERR,
|
|
"BG (%u) is out of range 1 <= value <= 2",
|
|
ldpc_dec->basegraph);
|
|
return -1;
|
|
}
|
|
if (ldpc_dec->iter_max == 0) {
|
|
rte_bbdev_log(ERR,
|
|
"iter_max (%u) is equal to 0",
|
|
ldpc_dec->iter_max);
|
|
return -1;
|
|
}
|
|
if (ldpc_dec->rv_index > 3) {
|
|
rte_bbdev_log(ERR,
|
|
"rv_index (%u) is out of range 0 <= value <= 3",
|
|
ldpc_dec->rv_index);
|
|
return -1;
|
|
}
|
|
if (ldpc_dec->code_block_mode > RTE_BBDEV_CODE_BLOCK) {
|
|
rte_bbdev_log(ERR,
|
|
"code_block_mode (%u) is out of range 0 <= value <= 1",
|
|
ldpc_dec->code_block_mode);
|
|
return -1;
|
|
}
|
|
if (check_bit(op->ldpc_dec.op_flags,
|
|
RTE_BBDEV_LDPC_DECODE_BYPASS)) {
|
|
rte_bbdev_log(ERR, "Avoid LDPC Decode bypass");
|
|
return -1;
|
|
}
|
|
int z_c = ldpc_dec->z_c;
|
|
/* Check Zc is valid value */
|
|
if ((z_c > 384) || (z_c < 4)) {
|
|
rte_bbdev_log(ERR,
|
|
"Zc (%u) is out of range",
|
|
z_c);
|
|
return -1;
|
|
}
|
|
if (z_c > 256) {
|
|
if ((z_c % 32) != 0) {
|
|
rte_bbdev_log(ERR, "Invalid Zc %d", z_c);
|
|
return -1;
|
|
}
|
|
} else if (z_c > 128) {
|
|
if ((z_c % 16) != 0) {
|
|
rte_bbdev_log(ERR, "Invalid Zc %d", z_c);
|
|
return -1;
|
|
}
|
|
} else if (z_c > 64) {
|
|
if ((z_c % 8) != 0) {
|
|
rte_bbdev_log(ERR, "Invalid Zc %d", z_c);
|
|
return -1;
|
|
}
|
|
} else if (z_c > 32) {
|
|
if ((z_c % 4) != 0) {
|
|
rte_bbdev_log(ERR, "Invalid Zc %d", z_c);
|
|
return -1;
|
|
}
|
|
} else if (z_c > 16) {
|
|
if ((z_c % 2) != 0) {
|
|
rte_bbdev_log(ERR, "Invalid Zc %d", z_c);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
int n_filler = ldpc_dec->n_filler;
|
|
int K = (ldpc_dec->basegraph == 1 ? 22 : 10) * ldpc_dec->z_c;
|
|
int Kp = K - n_filler;
|
|
int q_m = ldpc_dec->q_m;
|
|
int n_cb = ldpc_dec->n_cb;
|
|
int N = (ldpc_dec->basegraph == 1 ? N_ZC_1 : N_ZC_2) * z_c;
|
|
int k0 = get_k0(n_cb, z_c, ldpc_dec->basegraph,
|
|
ldpc_dec->rv_index);
|
|
int crc24 = 0;
|
|
int32_t L, Lcb, cw, cw_rm;
|
|
int32_t e = ldpc_dec->cb_params.e;
|
|
if (check_bit(op->ldpc_dec.op_flags,
|
|
RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK))
|
|
crc24 = 24;
|
|
|
|
if (ldpc_dec->code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
|
|
rte_bbdev_log(ERR,
|
|
"TB mode not supported");
|
|
return -1;
|
|
}
|
|
/* Enforce HARQ input length */
|
|
ldpc_dec->harq_combined_input.length = RTE_MIN((uint32_t) n_cb,
|
|
ldpc_dec->harq_combined_input.length);
|
|
if ((ldpc_dec->harq_combined_input.length == 0) &&
|
|
check_bit(ldpc_dec->op_flags,
|
|
RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE)) {
|
|
rte_bbdev_log(ERR,
|
|
"HARQ input length (%u) should not be null",
|
|
ldpc_dec->harq_combined_input.length);
|
|
return -1;
|
|
}
|
|
if ((ldpc_dec->harq_combined_input.length > 0) &&
|
|
!check_bit(ldpc_dec->op_flags,
|
|
RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE)) {
|
|
ldpc_dec->harq_combined_input.length = 0;
|
|
}
|
|
|
|
/* K' range check */
|
|
if (Kp % 8 > 0) {
|
|
rte_bbdev_log(ERR,
|
|
"K' not byte aligned %u",
|
|
Kp);
|
|
return -1;
|
|
}
|
|
if ((crc24 > 0) && (Kp < 292)) {
|
|
rte_bbdev_log(ERR,
|
|
"Invalid CRC24 for small block %u",
|
|
Kp);
|
|
return -1;
|
|
}
|
|
if (Kp < 24) {
|
|
rte_bbdev_log(ERR,
|
|
"K' too small %u",
|
|
Kp);
|
|
return -1;
|
|
}
|
|
if (n_filler >= (K - 2 * z_c)) {
|
|
rte_bbdev_log(ERR,
|
|
"K - F invalid %u %u",
|
|
K, n_filler);
|
|
return -1;
|
|
}
|
|
/* Ncb range check */
|
|
if (n_cb != N) {
|
|
rte_bbdev_log(ERR,
|
|
"Ncb (%u) is out of range K %d N %d",
|
|
n_cb, K, N);
|
|
return -1;
|
|
}
|
|
/* Qm range check */
|
|
if (!check_bit(op->ldpc_dec.op_flags,
|
|
RTE_BBDEV_LDPC_INTERLEAVER_BYPASS) &&
|
|
((q_m == 0) || ((q_m > 2) && ((q_m % 2) == 1))
|
|
|| (q_m > 8))) {
|
|
rte_bbdev_log(ERR,
|
|
"Qm (%u) is out of range",
|
|
q_m);
|
|
return -1;
|
|
}
|
|
/* K0 range check */
|
|
if (((k0 % z_c) > 0) || (k0 >= n_cb) || ((k0 >= (Kp - 2 * z_c))
|
|
&& (k0 < (K - 2 * z_c)))) {
|
|
rte_bbdev_log(ERR,
|
|
"K0 (%u) is out of range",
|
|
k0);
|
|
return -1;
|
|
}
|
|
/* E range check */
|
|
if (e <= RTE_MAX(32, z_c)) {
|
|
rte_bbdev_log(ERR,
|
|
"E is too small");
|
|
return -1;
|
|
}
|
|
if ((e > 0xFFFF)) {
|
|
rte_bbdev_log(ERR,
|
|
"E is too large");
|
|
return -1;
|
|
}
|
|
if (q_m > 0) {
|
|
if (e % q_m > 0) {
|
|
rte_bbdev_log(ERR,
|
|
"E not multiple of qm %d", q_m);
|
|
return -1;
|
|
}
|
|
}
|
|
/* Code word in RM range check */
|
|
if (k0 > (Kp - 2 * z_c))
|
|
L = k0 + e;
|
|
else
|
|
L = k0 + e + n_filler;
|
|
Lcb = RTE_MIN(n_cb, RTE_MAX(L,
|
|
(int32_t) ldpc_dec->harq_combined_input.length));
|
|
if (ldpc_dec->basegraph == 1) {
|
|
if (Lcb <= 25 * z_c)
|
|
cw = 25 * z_c;
|
|
else if (Lcb <= 27 * z_c)
|
|
cw = 27 * z_c;
|
|
else if (Lcb <= 30 * z_c)
|
|
cw = 30 * z_c;
|
|
else if (Lcb <= 33 * z_c)
|
|
cw = 33 * z_c;
|
|
else if (Lcb <= 44 * z_c)
|
|
cw = 44 * z_c;
|
|
else if (Lcb <= 55 * z_c)
|
|
cw = 55 * z_c;
|
|
else
|
|
cw = 66 * z_c;
|
|
} else {
|
|
if (Lcb <= 15 * z_c)
|
|
cw = 15 * z_c;
|
|
else if (Lcb <= 20 * z_c)
|
|
cw = 20 * z_c;
|
|
else if (Lcb <= 25 * z_c)
|
|
cw = 25 * z_c;
|
|
else if (Lcb <= 30 * z_c)
|
|
cw = 30 * z_c;
|
|
else
|
|
cw = 50 * z_c;
|
|
}
|
|
cw_rm = cw - n_filler;
|
|
if (cw_rm <= 32) {
|
|
rte_bbdev_log(ERR,
|
|
"Invalid Ratematching");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline char *
|
|
mbuf_append(struct rte_mbuf *m_head, struct rte_mbuf *m, uint16_t len)
|
|
{
|
|
if (unlikely(len > rte_pktmbuf_tailroom(m)))
|
|
return NULL;
|
|
|
|
char *tail = (char *)m->buf_addr + m->data_off + m->data_len;
|
|
m->data_len = (uint16_t)(m->data_len + len);
|
|
m_head->pkt_len = (m_head->pkt_len + len);
|
|
return tail;
|
|
}
|
|
|
|
static inline void
|
|
fpga_mutex_acquisition(struct fpga_queue *q)
|
|
{
|
|
uint32_t mutex_ctrl, mutex_read, cnt = 0;
|
|
/* Assign a unique id for the duration of the DDR access */
|
|
q->ddr_mutex_uuid = rand();
|
|
/* Request and wait for acquisition of the mutex */
|
|
mutex_ctrl = (q->ddr_mutex_uuid << 16) + 1;
|
|
do {
|
|
if (cnt > 0)
|
|
usleep(FPGA_TIMEOUT_CHECK_INTERVAL);
|
|
rte_bbdev_log_debug("Acquiring Mutex for %x\n",
|
|
q->ddr_mutex_uuid);
|
|
fpga_reg_write_32(q->d->mmio_base,
|
|
FPGA_5GNR_FEC_MUTEX,
|
|
mutex_ctrl);
|
|
mutex_read = fpga_reg_read_32(q->d->mmio_base,
|
|
FPGA_5GNR_FEC_MUTEX);
|
|
rte_bbdev_log_debug("Mutex %x cnt %d owner %x\n",
|
|
mutex_read, cnt, q->ddr_mutex_uuid);
|
|
cnt++;
|
|
} while ((mutex_read >> 16) != q->ddr_mutex_uuid);
|
|
}
|
|
|
|
static inline void
|
|
fpga_mutex_free(struct fpga_queue *q)
|
|
{
|
|
uint32_t mutex_ctrl = q->ddr_mutex_uuid << 16;
|
|
fpga_reg_write_32(q->d->mmio_base,
|
|
FPGA_5GNR_FEC_MUTEX,
|
|
mutex_ctrl);
|
|
}
|
|
|
|
static inline int
|
|
fpga_harq_write_loopback(struct fpga_queue *q,
|
|
struct rte_mbuf *harq_input, uint16_t harq_in_length,
|
|
uint32_t harq_in_offset, uint32_t harq_out_offset)
|
|
{
|
|
fpga_mutex_acquisition(q);
|
|
uint32_t out_offset = harq_out_offset;
|
|
uint32_t in_offset = harq_in_offset;
|
|
uint32_t left_length = harq_in_length;
|
|
uint32_t reg_32, increment = 0;
|
|
uint64_t *input = NULL;
|
|
uint32_t last_transaction = left_length
|
|
% FPGA_5GNR_FEC_DDR_WR_DATA_LEN_IN_BYTES;
|
|
uint64_t last_word;
|
|
|
|
if (last_transaction > 0)
|
|
left_length -= last_transaction;
|
|
|
|
/*
|
|
* Get HARQ buffer size for each VF/PF: When 0x00, there is no
|
|
* available DDR space for the corresponding VF/PF.
|
|
*/
|
|
reg_32 = fpga_reg_read_32(q->d->mmio_base,
|
|
FPGA_5GNR_FEC_HARQ_BUF_SIZE_REGS);
|
|
if (reg_32 < harq_in_length) {
|
|
left_length = reg_32;
|
|
rte_bbdev_log(ERR, "HARQ in length > HARQ buffer size\n");
|
|
}
|
|
|
|
input = (uint64_t *)rte_pktmbuf_mtod_offset(harq_input,
|
|
uint8_t *, in_offset);
|
|
|
|
while (left_length > 0) {
|
|
if (fpga_reg_read_8(q->d->mmio_base,
|
|
FPGA_5GNR_FEC_DDR4_ADDR_RDY_REGS) == 1) {
|
|
fpga_reg_write_32(q->d->mmio_base,
|
|
FPGA_5GNR_FEC_DDR4_WR_ADDR_REGS,
|
|
out_offset);
|
|
fpga_reg_write_64(q->d->mmio_base,
|
|
FPGA_5GNR_FEC_DDR4_WR_DATA_REGS,
|
|
input[increment]);
|
|
left_length -= FPGA_5GNR_FEC_DDR_WR_DATA_LEN_IN_BYTES;
|
|
out_offset += FPGA_5GNR_FEC_DDR_WR_DATA_LEN_IN_BYTES;
|
|
increment++;
|
|
fpga_reg_write_8(q->d->mmio_base,
|
|
FPGA_5GNR_FEC_DDR4_WR_DONE_REGS, 1);
|
|
}
|
|
}
|
|
while (last_transaction > 0) {
|
|
if (fpga_reg_read_8(q->d->mmio_base,
|
|
FPGA_5GNR_FEC_DDR4_ADDR_RDY_REGS) == 1) {
|
|
fpga_reg_write_32(q->d->mmio_base,
|
|
FPGA_5GNR_FEC_DDR4_WR_ADDR_REGS,
|
|
out_offset);
|
|
last_word = input[increment];
|
|
last_word &= (uint64_t)(1 << (last_transaction * 4))
|
|
- 1;
|
|
fpga_reg_write_64(q->d->mmio_base,
|
|
FPGA_5GNR_FEC_DDR4_WR_DATA_REGS,
|
|
last_word);
|
|
fpga_reg_write_8(q->d->mmio_base,
|
|
FPGA_5GNR_FEC_DDR4_WR_DONE_REGS, 1);
|
|
last_transaction = 0;
|
|
}
|
|
}
|
|
fpga_mutex_free(q);
|
|
return 1;
|
|
}
|
|
|
|
static inline int
|
|
fpga_harq_read_loopback(struct fpga_queue *q,
|
|
struct rte_mbuf *harq_output, uint16_t harq_in_length,
|
|
uint32_t harq_in_offset, uint32_t harq_out_offset)
|
|
{
|
|
fpga_mutex_acquisition(q);
|
|
uint32_t left_length, in_offset = harq_in_offset;
|
|
uint64_t reg;
|
|
uint32_t increment = 0;
|
|
uint64_t *input = NULL;
|
|
uint32_t last_transaction = harq_in_length
|
|
% FPGA_5GNR_FEC_DDR_WR_DATA_LEN_IN_BYTES;
|
|
|
|
if (last_transaction > 0)
|
|
harq_in_length += (8 - last_transaction);
|
|
|
|
reg = fpga_reg_read_32(q->d->mmio_base,
|
|
FPGA_5GNR_FEC_HARQ_BUF_SIZE_REGS);
|
|
if (reg < harq_in_length) {
|
|
harq_in_length = reg;
|
|
rte_bbdev_log(ERR, "HARQ in length > HARQ buffer size\n");
|
|
}
|
|
|
|
if (!mbuf_append(harq_output, harq_output, harq_in_length)) {
|
|
rte_bbdev_log(ERR, "HARQ output buffer warning %d %d\n",
|
|
harq_output->buf_len -
|
|
rte_pktmbuf_headroom(harq_output),
|
|
harq_in_length);
|
|
harq_in_length = harq_output->buf_len -
|
|
rte_pktmbuf_headroom(harq_output);
|
|
if (!mbuf_append(harq_output, harq_output, harq_in_length)) {
|
|
rte_bbdev_log(ERR, "HARQ output buffer issue %d %d\n",
|
|
harq_output->buf_len, harq_in_length);
|
|
return -1;
|
|
}
|
|
}
|
|
left_length = harq_in_length;
|
|
|
|
input = (uint64_t *)rte_pktmbuf_mtod_offset(harq_output,
|
|
uint8_t *, harq_out_offset);
|
|
|
|
while (left_length > 0) {
|
|
fpga_reg_write_32(q->d->mmio_base,
|
|
FPGA_5GNR_FEC_DDR4_RD_ADDR_REGS, in_offset);
|
|
fpga_reg_write_8(q->d->mmio_base,
|
|
FPGA_5GNR_FEC_DDR4_RD_DONE_REGS, 1);
|
|
reg = fpga_reg_read_8(q->d->mmio_base,
|
|
FPGA_5GNR_FEC_DDR4_RD_RDY_REGS);
|
|
while (reg != 1) {
|
|
reg = fpga_reg_read_8(q->d->mmio_base,
|
|
FPGA_5GNR_FEC_DDR4_RD_RDY_REGS);
|
|
if (reg == FPGA_DDR_OVERFLOW) {
|
|
rte_bbdev_log(ERR,
|
|
"Read address is overflow!\n");
|
|
return -1;
|
|
}
|
|
}
|
|
input[increment] = fpga_reg_read_64(q->d->mmio_base,
|
|
FPGA_5GNR_FEC_DDR4_RD_DATA_REGS);
|
|
left_length -= FPGA_5GNR_FEC_DDR_RD_DATA_LEN_IN_BYTES;
|
|
in_offset += FPGA_5GNR_FEC_DDR_WR_DATA_LEN_IN_BYTES;
|
|
increment++;
|
|
fpga_reg_write_8(q->d->mmio_base,
|
|
FPGA_5GNR_FEC_DDR4_RD_DONE_REGS, 0);
|
|
}
|
|
fpga_mutex_free(q);
|
|
return 1;
|
|
}
|
|
|
|
static inline int
|
|
enqueue_ldpc_enc_one_op_cb(struct fpga_queue *q, struct rte_bbdev_enc_op *op,
|
|
uint16_t desc_offset)
|
|
{
|
|
union fpga_dma_desc *desc;
|
|
int ret;
|
|
uint8_t c, crc24_bits = 0;
|
|
struct rte_bbdev_op_ldpc_enc *enc = &op->ldpc_enc;
|
|
uint16_t in_offset = enc->input.offset;
|
|
uint16_t out_offset = enc->output.offset;
|
|
struct rte_mbuf *m_in = enc->input.data;
|
|
struct rte_mbuf *m_out = enc->output.data;
|
|
struct rte_mbuf *m_out_head = enc->output.data;
|
|
uint32_t in_length, out_length, e;
|
|
uint16_t total_left = enc->input.length;
|
|
uint16_t ring_offset;
|
|
uint16_t K, k_;
|
|
|
|
|
|
if (validate_ldpc_enc_op(op) == -1) {
|
|
rte_bbdev_log(ERR, "LDPC encoder validation rejected");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Clear op status */
|
|
op->status = 0;
|
|
|
|
if (m_in == NULL || m_out == NULL) {
|
|
rte_bbdev_log(ERR, "Invalid mbuf pointer");
|
|
op->status = 1 << RTE_BBDEV_DATA_ERROR;
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (enc->op_flags & RTE_BBDEV_LDPC_CRC_24B_ATTACH)
|
|
crc24_bits = 24;
|
|
|
|
if (enc->code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
|
|
/* For Transport Block mode */
|
|
/* FIXME */
|
|
c = enc->tb_params.c;
|
|
e = enc->tb_params.ea;
|
|
} else { /* For Code Block mode */
|
|
c = 1;
|
|
e = enc->cb_params.e;
|
|
}
|
|
|
|
/* Update total_left */
|
|
K = (enc->basegraph == 1 ? 22 : 10) * enc->z_c;
|
|
k_ = K - enc->n_filler;
|
|
in_length = (k_ - crc24_bits) >> 3;
|
|
out_length = (e + 7) >> 3;
|
|
|
|
total_left = rte_pktmbuf_data_len(m_in) - in_offset;
|
|
|
|
/* Update offsets */
|
|
if (total_left != in_length) {
|
|
op->status |= 1 << RTE_BBDEV_DATA_ERROR;
|
|
rte_bbdev_log(ERR,
|
|
"Mismatch between mbuf length and included CBs sizes %d",
|
|
total_left);
|
|
}
|
|
|
|
mbuf_append(m_out_head, m_out, out_length);
|
|
|
|
/* Offset into the ring */
|
|
ring_offset = ((q->tail + desc_offset) & q->sw_ring_wrap_mask);
|
|
/* Setup DMA Descriptor */
|
|
desc = q->ring_addr + ring_offset;
|
|
|
|
ret = fpga_dma_desc_te_fill(op, &desc->enc_req, m_in, m_out,
|
|
k_, e, in_offset, out_offset, ring_offset, c);
|
|
if (unlikely(ret < 0))
|
|
return ret;
|
|
|
|
/* Update lengths */
|
|
total_left -= in_length;
|
|
op->ldpc_enc.output.length += out_length;
|
|
|
|
if (total_left > 0) {
|
|
rte_bbdev_log(ERR,
|
|
"Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
|
|
total_left, in_length);
|
|
return -1;
|
|
}
|
|
|
|
#ifdef RTE_LIBRTE_BBDEV_DEBUG
|
|
print_dma_enc_desc_debug_info(desc);
|
|
#endif
|
|
return 1;
|
|
}
|
|
|
|
static inline int
|
|
enqueue_ldpc_dec_one_op_cb(struct fpga_queue *q, struct rte_bbdev_dec_op *op,
|
|
uint16_t desc_offset)
|
|
{
|
|
union fpga_dma_desc *desc;
|
|
int ret;
|
|
uint16_t ring_offset;
|
|
uint8_t c;
|
|
uint16_t e, in_length, out_length, k0, l, seg_total_left, sys_cols;
|
|
uint16_t K, parity_offset, harq_in_length = 0, harq_out_length = 0;
|
|
uint16_t crc24_overlap = 0;
|
|
struct rte_bbdev_op_ldpc_dec *dec = &op->ldpc_dec;
|
|
struct rte_mbuf *m_in = dec->input.data;
|
|
struct rte_mbuf *m_out = dec->hard_output.data;
|
|
struct rte_mbuf *m_out_head = dec->hard_output.data;
|
|
uint16_t in_offset = dec->input.offset;
|
|
uint16_t out_offset = dec->hard_output.offset;
|
|
uint32_t harq_offset = 0;
|
|
|
|
if (validate_ldpc_dec_op(op) == -1) {
|
|
rte_bbdev_log(ERR, "LDPC decoder validation rejected");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Clear op status */
|
|
op->status = 0;
|
|
|
|
/* Setup DMA Descriptor */
|
|
ring_offset = ((q->tail + desc_offset) & q->sw_ring_wrap_mask);
|
|
desc = q->ring_addr + ring_offset;
|
|
|
|
if (check_bit(dec->op_flags,
|
|
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK)) {
|
|
struct rte_mbuf *harq_in = dec->harq_combined_input.data;
|
|
struct rte_mbuf *harq_out = dec->harq_combined_output.data;
|
|
harq_in_length = dec->harq_combined_input.length;
|
|
uint32_t harq_in_offset = dec->harq_combined_input.offset;
|
|
uint32_t harq_out_offset = dec->harq_combined_output.offset;
|
|
|
|
if (check_bit(dec->op_flags,
|
|
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE
|
|
)) {
|
|
ret = fpga_harq_write_loopback(q, harq_in,
|
|
harq_in_length, harq_in_offset,
|
|
harq_out_offset);
|
|
} else if (check_bit(dec->op_flags,
|
|
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_IN_ENABLE
|
|
)) {
|
|
ret = fpga_harq_read_loopback(q, harq_out,
|
|
harq_in_length, harq_in_offset,
|
|
harq_out_offset);
|
|
dec->harq_combined_output.length = harq_in_length;
|
|
} else {
|
|
rte_bbdev_log(ERR, "OP flag Err!");
|
|
ret = -1;
|
|
}
|
|
/* Set descriptor for dequeue */
|
|
desc->dec_req.done = 1;
|
|
desc->dec_req.error = 0;
|
|
desc->dec_req.op_addr = op;
|
|
desc->dec_req.cbs_in_op = 1;
|
|
/* Mark this dummy descriptor to be dropped by HW */
|
|
desc->dec_req.desc_idx = (ring_offset + 1)
|
|
& q->sw_ring_wrap_mask;
|
|
return ret; /* Error or number of CB */
|
|
}
|
|
|
|
if (m_in == NULL || m_out == NULL) {
|
|
rte_bbdev_log(ERR, "Invalid mbuf pointer");
|
|
op->status = 1 << RTE_BBDEV_DATA_ERROR;
|
|
return -1;
|
|
}
|
|
|
|
c = 1;
|
|
e = dec->cb_params.e;
|
|
|
|
if (check_bit(dec->op_flags, RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP))
|
|
crc24_overlap = 24;
|
|
|
|
sys_cols = (dec->basegraph == 1) ? 22 : 10;
|
|
K = sys_cols * dec->z_c;
|
|
parity_offset = K - 2 * dec->z_c;
|
|
|
|
out_length = ((K - crc24_overlap - dec->n_filler) >> 3);
|
|
in_length = e;
|
|
seg_total_left = dec->input.length;
|
|
|
|
if (check_bit(dec->op_flags, RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE)) {
|
|
harq_in_length = RTE_MIN(dec->harq_combined_input.length,
|
|
(uint32_t)dec->n_cb);
|
|
}
|
|
|
|
if (check_bit(dec->op_flags, RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE)) {
|
|
k0 = get_k0(dec->n_cb, dec->z_c,
|
|
dec->basegraph, dec->rv_index);
|
|
if (k0 > parity_offset)
|
|
l = k0 + e;
|
|
else
|
|
l = k0 + e + dec->n_filler;
|
|
harq_out_length = RTE_MIN(RTE_MAX(harq_in_length, l),
|
|
dec->n_cb);
|
|
dec->harq_combined_output.length = harq_out_length;
|
|
}
|
|
|
|
mbuf_append(m_out_head, m_out, out_length);
|
|
if (check_bit(dec->op_flags, RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE))
|
|
harq_offset = dec->harq_combined_input.offset;
|
|
else if (check_bit(dec->op_flags, RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE))
|
|
harq_offset = dec->harq_combined_output.offset;
|
|
|
|
if ((harq_offset & 0x3FF) > 0) {
|
|
rte_bbdev_log(ERR, "Invalid HARQ offset %d", harq_offset);
|
|
op->status = 1 << RTE_BBDEV_DATA_ERROR;
|
|
return -1;
|
|
}
|
|
|
|
ret = fpga_dma_desc_ld_fill(op, &desc->dec_req, m_in, m_out,
|
|
harq_in_length, in_offset, out_offset, harq_offset,
|
|
ring_offset, c);
|
|
if (unlikely(ret < 0))
|
|
return ret;
|
|
/* Update lengths */
|
|
seg_total_left -= in_length;
|
|
op->ldpc_dec.hard_output.length += out_length;
|
|
if (seg_total_left > 0) {
|
|
rte_bbdev_log(ERR,
|
|
"Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
|
|
seg_total_left, in_length);
|
|
return -1;
|
|
}
|
|
|
|
#ifdef RTE_LIBRTE_BBDEV_DEBUG
|
|
print_dma_dec_desc_debug_info(desc);
|
|
#endif
|
|
|
|
return 1;
|
|
}
|
|
|
|
static uint16_t
|
|
fpga_enqueue_ldpc_enc(struct rte_bbdev_queue_data *q_data,
|
|
struct rte_bbdev_enc_op **ops, uint16_t num)
|
|
{
|
|
uint16_t i, total_enqueued_cbs = 0;
|
|
int32_t avail;
|
|
int enqueued_cbs;
|
|
struct fpga_queue *q = q_data->queue_private;
|
|
union fpga_dma_desc *desc;
|
|
|
|
/* Check if queue is not full */
|
|
if (unlikely(((q->tail + 1) & q->sw_ring_wrap_mask) ==
|
|
q->head_free_desc))
|
|
return 0;
|
|
|
|
/* Calculates available space */
|
|
avail = (q->head_free_desc > q->tail) ?
|
|
q->head_free_desc - q->tail - 1 :
|
|
q->ring_ctrl_reg.ring_size + q->head_free_desc - q->tail - 1;
|
|
|
|
for (i = 0; i < num; ++i) {
|
|
|
|
/* Check if there is available space for further
|
|
* processing
|
|
*/
|
|
if (unlikely(avail - 1 < 0))
|
|
break;
|
|
avail -= 1;
|
|
enqueued_cbs = enqueue_ldpc_enc_one_op_cb(q, ops[i],
|
|
total_enqueued_cbs);
|
|
|
|
if (enqueued_cbs < 0)
|
|
break;
|
|
|
|
total_enqueued_cbs += enqueued_cbs;
|
|
|
|
rte_bbdev_log_debug("enqueuing enc ops [%d/%d] | head %d | tail %d",
|
|
total_enqueued_cbs, num,
|
|
q->head_free_desc, q->tail);
|
|
}
|
|
|
|
/* Set interrupt bit for last CB in enqueued ops. FPGA issues interrupt
|
|
* only when all previous CBs were already processed.
|
|
*/
|
|
desc = q->ring_addr + ((q->tail + total_enqueued_cbs - 1)
|
|
& q->sw_ring_wrap_mask);
|
|
desc->enc_req.irq_en = q->irq_enable;
|
|
|
|
fpga_dma_enqueue(q, total_enqueued_cbs, &q_data->queue_stats);
|
|
|
|
/* Update stats */
|
|
q_data->queue_stats.enqueued_count += i;
|
|
q_data->queue_stats.enqueue_err_count += num - i;
|
|
|
|
return i;
|
|
}
|
|
|
|
static uint16_t
|
|
fpga_enqueue_ldpc_dec(struct rte_bbdev_queue_data *q_data,
|
|
struct rte_bbdev_dec_op **ops, uint16_t num)
|
|
{
|
|
uint16_t i, total_enqueued_cbs = 0;
|
|
int32_t avail;
|
|
int enqueued_cbs;
|
|
struct fpga_queue *q = q_data->queue_private;
|
|
union fpga_dma_desc *desc;
|
|
|
|
/* Check if queue is not full */
|
|
if (unlikely(((q->tail + 1) & q->sw_ring_wrap_mask) ==
|
|
q->head_free_desc))
|
|
return 0;
|
|
|
|
/* Calculates available space */
|
|
avail = (q->head_free_desc > q->tail) ?
|
|
q->head_free_desc - q->tail - 1 :
|
|
q->ring_ctrl_reg.ring_size + q->head_free_desc - q->tail - 1;
|
|
|
|
for (i = 0; i < num; ++i) {
|
|
|
|
/* Check if there is available space for further
|
|
* processing
|
|
*/
|
|
if (unlikely(avail - 1 < 0))
|
|
break;
|
|
avail -= 1;
|
|
enqueued_cbs = enqueue_ldpc_dec_one_op_cb(q, ops[i],
|
|
total_enqueued_cbs);
|
|
|
|
if (enqueued_cbs < 0)
|
|
break;
|
|
|
|
total_enqueued_cbs += enqueued_cbs;
|
|
|
|
rte_bbdev_log_debug("enqueuing dec ops [%d/%d] | head %d | tail %d",
|
|
total_enqueued_cbs, num,
|
|
q->head_free_desc, q->tail);
|
|
}
|
|
|
|
/* Update stats */
|
|
q_data->queue_stats.enqueued_count += i;
|
|
q_data->queue_stats.enqueue_err_count += num - i;
|
|
|
|
/* Set interrupt bit for last CB in enqueued ops. FPGA issues interrupt
|
|
* only when all previous CBs were already processed.
|
|
*/
|
|
desc = q->ring_addr + ((q->tail + total_enqueued_cbs - 1)
|
|
& q->sw_ring_wrap_mask);
|
|
desc->enc_req.irq_en = q->irq_enable;
|
|
fpga_dma_enqueue(q, total_enqueued_cbs, &q_data->queue_stats);
|
|
return i;
|
|
}
|
|
|
|
|
|
static inline int
|
|
dequeue_ldpc_enc_one_op_cb(struct fpga_queue *q, struct rte_bbdev_enc_op **op,
|
|
uint16_t desc_offset)
|
|
{
|
|
union fpga_dma_desc *desc;
|
|
int desc_error;
|
|
/* Set current desc */
|
|
desc = q->ring_addr + ((q->head_free_desc + desc_offset)
|
|
& q->sw_ring_wrap_mask);
|
|
|
|
/*check if done */
|
|
if (desc->enc_req.done == 0)
|
|
return -1;
|
|
|
|
/* make sure the response is read atomically */
|
|
rte_smp_rmb();
|
|
|
|
rte_bbdev_log_debug("DMA response desc %p", desc);
|
|
|
|
#ifdef RTE_LIBRTE_BBDEV_DEBUG
|
|
print_dma_enc_desc_debug_info(desc);
|
|
#endif
|
|
|
|
*op = desc->enc_req.op_addr;
|
|
/* Check the descriptor error field, return 1 on error */
|
|
desc_error = check_desc_error(desc->enc_req.error);
|
|
(*op)->status = desc_error << RTE_BBDEV_DATA_ERROR;
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
static inline int
|
|
dequeue_ldpc_dec_one_op_cb(struct fpga_queue *q, struct rte_bbdev_dec_op **op,
|
|
uint16_t desc_offset)
|
|
{
|
|
union fpga_dma_desc *desc;
|
|
int desc_error;
|
|
/* Set descriptor */
|
|
desc = q->ring_addr + ((q->head_free_desc + desc_offset)
|
|
& q->sw_ring_wrap_mask);
|
|
|
|
/* Verify done bit is set */
|
|
if (desc->dec_req.done == 0)
|
|
return -1;
|
|
|
|
/* make sure the response is read atomically */
|
|
rte_smp_rmb();
|
|
|
|
#ifdef RTE_LIBRTE_BBDEV_DEBUG
|
|
print_dma_dec_desc_debug_info(desc);
|
|
#endif
|
|
|
|
*op = desc->dec_req.op_addr;
|
|
|
|
if (check_bit((*op)->ldpc_dec.op_flags,
|
|
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK)) {
|
|
(*op)->status = 0;
|
|
return 1;
|
|
}
|
|
|
|
/* FPGA reports iterations based on round-up minus 1 */
|
|
(*op)->ldpc_dec.iter_count = desc->dec_req.iter + 1;
|
|
/* CRC Check criteria */
|
|
if (desc->dec_req.crc24b_ind && !(desc->dec_req.crcb_pass))
|
|
(*op)->status = 1 << RTE_BBDEV_CRC_ERROR;
|
|
/* et_pass = 0 when decoder fails */
|
|
(*op)->status |= !(desc->dec_req.et_pass) << RTE_BBDEV_SYNDROME_ERROR;
|
|
/* Check the descriptor error field, return 1 on error */
|
|
desc_error = check_desc_error(desc->dec_req.error);
|
|
(*op)->status |= desc_error << RTE_BBDEV_DATA_ERROR;
|
|
return 1;
|
|
}
|
|
|
|
static uint16_t
|
|
fpga_dequeue_ldpc_enc(struct rte_bbdev_queue_data *q_data,
|
|
struct rte_bbdev_enc_op **ops, uint16_t num)
|
|
{
|
|
struct fpga_queue *q = q_data->queue_private;
|
|
uint32_t avail = (q->tail - q->head_free_desc) & q->sw_ring_wrap_mask;
|
|
uint16_t i;
|
|
uint16_t dequeued_cbs = 0;
|
|
int ret;
|
|
|
|
for (i = 0; (i < num) && (dequeued_cbs < avail); ++i) {
|
|
ret = dequeue_ldpc_enc_one_op_cb(q, &ops[i], dequeued_cbs);
|
|
|
|
if (ret < 0)
|
|
break;
|
|
|
|
dequeued_cbs += ret;
|
|
|
|
rte_bbdev_log_debug("dequeuing enc ops [%d/%d] | head %d | tail %d",
|
|
dequeued_cbs, num, q->head_free_desc, q->tail);
|
|
}
|
|
|
|
/* Update head */
|
|
q->head_free_desc = (q->head_free_desc + dequeued_cbs) &
|
|
q->sw_ring_wrap_mask;
|
|
|
|
/* Update stats */
|
|
q_data->queue_stats.dequeued_count += i;
|
|
|
|
return i;
|
|
}
|
|
|
|
static uint16_t
|
|
fpga_dequeue_ldpc_dec(struct rte_bbdev_queue_data *q_data,
|
|
struct rte_bbdev_dec_op **ops, uint16_t num)
|
|
{
|
|
struct fpga_queue *q = q_data->queue_private;
|
|
uint32_t avail = (q->tail - q->head_free_desc) & q->sw_ring_wrap_mask;
|
|
uint16_t i;
|
|
uint16_t dequeued_cbs = 0;
|
|
int ret;
|
|
|
|
for (i = 0; (i < num) && (dequeued_cbs < avail); ++i) {
|
|
ret = dequeue_ldpc_dec_one_op_cb(q, &ops[i], dequeued_cbs);
|
|
|
|
if (ret < 0)
|
|
break;
|
|
|
|
dequeued_cbs += ret;
|
|
|
|
rte_bbdev_log_debug("dequeuing dec ops [%d/%d] | head %d | tail %d",
|
|
dequeued_cbs, num, q->head_free_desc, q->tail);
|
|
}
|
|
|
|
/* Update head */
|
|
q->head_free_desc = (q->head_free_desc + dequeued_cbs) &
|
|
q->sw_ring_wrap_mask;
|
|
|
|
/* Update stats */
|
|
q_data->queue_stats.dequeued_count += i;
|
|
|
|
return i;
|
|
}
|
|
|
|
|
|
/* Initialization Function */
|
|
static void
|
|
fpga_5gnr_fec_init(struct rte_bbdev *dev, struct rte_pci_driver *drv)
|
|
{
|
|
struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev->device);
|
|
|
|
dev->dev_ops = &fpga_ops;
|
|
dev->enqueue_ldpc_enc_ops = fpga_enqueue_ldpc_enc;
|
|
dev->enqueue_ldpc_dec_ops = fpga_enqueue_ldpc_dec;
|
|
dev->dequeue_ldpc_enc_ops = fpga_dequeue_ldpc_enc;
|
|
dev->dequeue_ldpc_dec_ops = fpga_dequeue_ldpc_dec;
|
|
|
|
((struct fpga_5gnr_fec_device *) dev->data->dev_private)->pf_device =
|
|
!strcmp(drv->driver.name,
|
|
RTE_STR(FPGA_5GNR_FEC_PF_DRIVER_NAME));
|
|
((struct fpga_5gnr_fec_device *) dev->data->dev_private)->mmio_base =
|
|
pci_dev->mem_resource[0].addr;
|
|
|
|
rte_bbdev_log_debug(
|
|
"Init device %s [%s] @ virtaddr %p phyaddr %#"PRIx64,
|
|
drv->driver.name, dev->data->name,
|
|
(void *)pci_dev->mem_resource[0].addr,
|
|
pci_dev->mem_resource[0].phys_addr);
|
|
}
|
|
|
|
static int
|
|
fpga_5gnr_fec_probe(struct rte_pci_driver *pci_drv,
|
|
struct rte_pci_device *pci_dev)
|
|
{
|
|
struct rte_bbdev *bbdev = NULL;
|
|
char dev_name[RTE_BBDEV_NAME_MAX_LEN];
|
|
|
|
if (pci_dev == NULL) {
|
|
rte_bbdev_log(ERR, "NULL PCI device");
|
|
return -EINVAL;
|
|
}
|
|
|
|
rte_pci_device_name(&pci_dev->addr, dev_name, sizeof(dev_name));
|
|
|
|
/* Allocate memory to be used privately by drivers */
|
|
bbdev = rte_bbdev_allocate(pci_dev->device.name);
|
|
if (bbdev == NULL)
|
|
return -ENODEV;
|
|
|
|
/* allocate device private memory */
|
|
bbdev->data->dev_private = rte_zmalloc_socket(dev_name,
|
|
sizeof(struct fpga_5gnr_fec_device),
|
|
RTE_CACHE_LINE_SIZE,
|
|
pci_dev->device.numa_node);
|
|
|
|
if (bbdev->data->dev_private == NULL) {
|
|
rte_bbdev_log(CRIT,
|
|
"Allocate of %zu bytes for device \"%s\" failed",
|
|
sizeof(struct fpga_5gnr_fec_device), dev_name);
|
|
rte_bbdev_release(bbdev);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Fill HW specific part of device structure */
|
|
bbdev->device = &pci_dev->device;
|
|
bbdev->intr_handle = pci_dev->intr_handle;
|
|
bbdev->data->socket_id = pci_dev->device.numa_node;
|
|
|
|
/* Invoke FEC FPGA device initialization function */
|
|
fpga_5gnr_fec_init(bbdev, pci_drv);
|
|
|
|
rte_bbdev_log_debug("bbdev id = %u [%s]",
|
|
bbdev->data->dev_id, dev_name);
|
|
|
|
struct fpga_5gnr_fec_device *d = bbdev->data->dev_private;
|
|
uint32_t version_id = fpga_reg_read_32(d->mmio_base,
|
|
FPGA_5GNR_FEC_VERSION_ID);
|
|
rte_bbdev_log(INFO, "FEC FPGA RTL v%u.%u",
|
|
((uint16_t)(version_id >> 16)), ((uint16_t)version_id));
|
|
|
|
#ifdef RTE_LIBRTE_BBDEV_DEBUG
|
|
if (!strcmp(pci_drv->driver.name,
|
|
RTE_STR(FPGA_5GNR_FEC_PF_DRIVER_NAME)))
|
|
print_static_reg_debug_info(d->mmio_base);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
fpga_5gnr_fec_remove(struct rte_pci_device *pci_dev)
|
|
{
|
|
struct rte_bbdev *bbdev;
|
|
int ret;
|
|
uint8_t dev_id;
|
|
|
|
if (pci_dev == NULL)
|
|
return -EINVAL;
|
|
|
|
/* Find device */
|
|
bbdev = rte_bbdev_get_named_dev(pci_dev->device.name);
|
|
if (bbdev == NULL) {
|
|
rte_bbdev_log(CRIT,
|
|
"Couldn't find HW dev \"%s\" to uninitialise it",
|
|
pci_dev->device.name);
|
|
return -ENODEV;
|
|
}
|
|
dev_id = bbdev->data->dev_id;
|
|
|
|
/* free device private memory before close */
|
|
rte_free(bbdev->data->dev_private);
|
|
|
|
/* Close device */
|
|
ret = rte_bbdev_close(dev_id);
|
|
if (ret < 0)
|
|
rte_bbdev_log(ERR,
|
|
"Device %i failed to close during uninit: %i",
|
|
dev_id, ret);
|
|
|
|
/* release bbdev from library */
|
|
ret = rte_bbdev_release(bbdev);
|
|
if (ret)
|
|
rte_bbdev_log(ERR, "Device %i failed to uninit: %i", dev_id,
|
|
ret);
|
|
|
|
rte_bbdev_log_debug("Destroyed bbdev = %u", dev_id);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void
|
|
set_default_fpga_conf(struct rte_fpga_5gnr_fec_conf *def_conf)
|
|
{
|
|
/* clear default configuration before initialization */
|
|
memset(def_conf, 0, sizeof(struct rte_fpga_5gnr_fec_conf));
|
|
/* Set pf mode to true */
|
|
def_conf->pf_mode_en = true;
|
|
|
|
/* Set ratio between UL and DL to 1:1 (unit of weight is 3 CBs) */
|
|
def_conf->ul_bandwidth = 3;
|
|
def_conf->dl_bandwidth = 3;
|
|
|
|
/* Set Load Balance Factor to 64 */
|
|
def_conf->dl_load_balance = 64;
|
|
def_conf->ul_load_balance = 64;
|
|
}
|
|
|
|
/* Initial configuration of FPGA 5GNR FEC device */
|
|
int
|
|
rte_fpga_5gnr_fec_configure(const char *dev_name,
|
|
const struct rte_fpga_5gnr_fec_conf *conf)
|
|
{
|
|
uint32_t payload_32, address;
|
|
uint16_t payload_16;
|
|
uint8_t payload_8;
|
|
uint16_t q_id, vf_id, total_q_id, total_ul_q_id, total_dl_q_id;
|
|
struct rte_bbdev *bbdev = rte_bbdev_get_named_dev(dev_name);
|
|
struct rte_fpga_5gnr_fec_conf def_conf;
|
|
|
|
if (bbdev == NULL) {
|
|
rte_bbdev_log(ERR,
|
|
"Invalid dev_name (%s), or device is not yet initialised",
|
|
dev_name);
|
|
return -ENODEV;
|
|
}
|
|
|
|
struct fpga_5gnr_fec_device *d = bbdev->data->dev_private;
|
|
|
|
if (conf == NULL) {
|
|
rte_bbdev_log(ERR,
|
|
"FPGA Configuration was not provided. Default configuration will be loaded.");
|
|
set_default_fpga_conf(&def_conf);
|
|
conf = &def_conf;
|
|
}
|
|
|
|
/*
|
|
* Configure UL:DL ratio.
|
|
* [7:0]: UL weight
|
|
* [15:8]: DL weight
|
|
*/
|
|
payload_16 = (conf->dl_bandwidth << 8) | conf->ul_bandwidth;
|
|
address = FPGA_5GNR_FEC_CONFIGURATION;
|
|
fpga_reg_write_16(d->mmio_base, address, payload_16);
|
|
|
|
/* Clear all queues registers */
|
|
payload_32 = FPGA_INVALID_HW_QUEUE_ID;
|
|
for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) {
|
|
address = (q_id << 2) + FPGA_5GNR_FEC_QUEUE_MAP;
|
|
fpga_reg_write_32(d->mmio_base, address, payload_32);
|
|
}
|
|
|
|
/*
|
|
* If PF mode is enabled allocate all queues for PF only.
|
|
*
|
|
* For VF mode each VF can have different number of UL and DL queues.
|
|
* Total number of queues to configure cannot exceed FPGA
|
|
* capabilities - 64 queues - 32 queues for UL and 32 queues for DL.
|
|
* Queues mapping is done according to configuration:
|
|
*
|
|
* UL queues:
|
|
* | Q_ID | VF_ID |
|
|
* | 0 | 0 |
|
|
* | ... | 0 |
|
|
* | conf->vf_dl_queues_number[0] - 1 | 0 |
|
|
* | conf->vf_dl_queues_number[0] | 1 |
|
|
* | ... | 1 |
|
|
* | conf->vf_dl_queues_number[1] - 1 | 1 |
|
|
* | ... | ... |
|
|
* | conf->vf_dl_queues_number[7] - 1 | 7 |
|
|
*
|
|
* DL queues:
|
|
* | Q_ID | VF_ID |
|
|
* | 32 | 0 |
|
|
* | ... | 0 |
|
|
* | conf->vf_ul_queues_number[0] - 1 | 0 |
|
|
* | conf->vf_ul_queues_number[0] | 1 |
|
|
* | ... | 1 |
|
|
* | conf->vf_ul_queues_number[1] - 1 | 1 |
|
|
* | ... | ... |
|
|
* | conf->vf_ul_queues_number[7] - 1 | 7 |
|
|
*
|
|
* Example of configuration:
|
|
* conf->vf_ul_queues_number[0] = 4; -> 4 UL queues for VF0
|
|
* conf->vf_dl_queues_number[0] = 4; -> 4 DL queues for VF0
|
|
* conf->vf_ul_queues_number[1] = 2; -> 2 UL queues for VF1
|
|
* conf->vf_dl_queues_number[1] = 2; -> 2 DL queues for VF1
|
|
*
|
|
* UL:
|
|
* | Q_ID | VF_ID |
|
|
* | 0 | 0 |
|
|
* | 1 | 0 |
|
|
* | 2 | 0 |
|
|
* | 3 | 0 |
|
|
* | 4 | 1 |
|
|
* | 5 | 1 |
|
|
*
|
|
* DL:
|
|
* | Q_ID | VF_ID |
|
|
* | 32 | 0 |
|
|
* | 33 | 0 |
|
|
* | 34 | 0 |
|
|
* | 35 | 0 |
|
|
* | 36 | 1 |
|
|
* | 37 | 1 |
|
|
*/
|
|
if (conf->pf_mode_en) {
|
|
payload_32 = 0x1;
|
|
for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) {
|
|
address = (q_id << 2) + FPGA_5GNR_FEC_QUEUE_MAP;
|
|
fpga_reg_write_32(d->mmio_base, address, payload_32);
|
|
}
|
|
} else {
|
|
/* Calculate total number of UL and DL queues to configure */
|
|
total_ul_q_id = total_dl_q_id = 0;
|
|
for (vf_id = 0; vf_id < FPGA_5GNR_FEC_NUM_VFS; ++vf_id) {
|
|
total_ul_q_id += conf->vf_ul_queues_number[vf_id];
|
|
total_dl_q_id += conf->vf_dl_queues_number[vf_id];
|
|
}
|
|
total_q_id = total_dl_q_id + total_ul_q_id;
|
|
/*
|
|
* Check if total number of queues to configure does not exceed
|
|
* FPGA capabilities (64 queues - 32 UL and 32 DL queues)
|
|
*/
|
|
if ((total_ul_q_id > FPGA_NUM_UL_QUEUES) ||
|
|
(total_dl_q_id > FPGA_NUM_DL_QUEUES) ||
|
|
(total_q_id > FPGA_TOTAL_NUM_QUEUES)) {
|
|
rte_bbdev_log(ERR,
|
|
"FPGA Configuration failed. Too many queues to configure: UL_Q %u, DL_Q %u, FPGA_Q %u",
|
|
total_ul_q_id, total_dl_q_id,
|
|
FPGA_TOTAL_NUM_QUEUES);
|
|
return -EINVAL;
|
|
}
|
|
total_ul_q_id = 0;
|
|
for (vf_id = 0; vf_id < FPGA_5GNR_FEC_NUM_VFS; ++vf_id) {
|
|
for (q_id = 0; q_id < conf->vf_ul_queues_number[vf_id];
|
|
++q_id, ++total_ul_q_id) {
|
|
address = (total_ul_q_id << 2) +
|
|
FPGA_5GNR_FEC_QUEUE_MAP;
|
|
payload_32 = ((0x80 + vf_id) << 16) | 0x1;
|
|
fpga_reg_write_32(d->mmio_base, address,
|
|
payload_32);
|
|
}
|
|
}
|
|
total_dl_q_id = 0;
|
|
for (vf_id = 0; vf_id < FPGA_5GNR_FEC_NUM_VFS; ++vf_id) {
|
|
for (q_id = 0; q_id < conf->vf_dl_queues_number[vf_id];
|
|
++q_id, ++total_dl_q_id) {
|
|
address = ((total_dl_q_id + FPGA_NUM_UL_QUEUES)
|
|
<< 2) + FPGA_5GNR_FEC_QUEUE_MAP;
|
|
payload_32 = ((0x80 + vf_id) << 16) | 0x1;
|
|
fpga_reg_write_32(d->mmio_base, address,
|
|
payload_32);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Setting Load Balance Factor */
|
|
payload_16 = (conf->dl_load_balance << 8) | (conf->ul_load_balance);
|
|
address = FPGA_5GNR_FEC_LOAD_BALANCE_FACTOR;
|
|
fpga_reg_write_16(d->mmio_base, address, payload_16);
|
|
|
|
/* Setting length of ring descriptor entry */
|
|
payload_16 = FPGA_RING_DESC_ENTRY_LENGTH;
|
|
address = FPGA_5GNR_FEC_RING_DESC_LEN;
|
|
fpga_reg_write_16(d->mmio_base, address, payload_16);
|
|
|
|
/* Queue PF/VF mapping table is ready */
|
|
payload_8 = 0x1;
|
|
address = FPGA_5GNR_FEC_QUEUE_PF_VF_MAP_DONE;
|
|
fpga_reg_write_8(d->mmio_base, address, payload_8);
|
|
|
|
rte_bbdev_log_debug("PF FPGA 5GNR FEC configuration complete for %s",
|
|
dev_name);
|
|
|
|
#ifdef RTE_LIBRTE_BBDEV_DEBUG
|
|
print_static_reg_debug_info(d->mmio_base);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/* FPGA 5GNR FEC PCI PF address map */
|
|
static struct rte_pci_id pci_id_fpga_5gnr_fec_pf_map[] = {
|
|
{
|
|
RTE_PCI_DEVICE(FPGA_5GNR_FEC_VENDOR_ID,
|
|
FPGA_5GNR_FEC_PF_DEVICE_ID)
|
|
},
|
|
{.device_id = 0},
|
|
};
|
|
|
|
static struct rte_pci_driver fpga_5gnr_fec_pci_pf_driver = {
|
|
.probe = fpga_5gnr_fec_probe,
|
|
.remove = fpga_5gnr_fec_remove,
|
|
.id_table = pci_id_fpga_5gnr_fec_pf_map,
|
|
.drv_flags = RTE_PCI_DRV_NEED_MAPPING
|
|
};
|
|
|
|
/* FPGA 5GNR FEC PCI VF address map */
|
|
static struct rte_pci_id pci_id_fpga_5gnr_fec_vf_map[] = {
|
|
{
|
|
RTE_PCI_DEVICE(FPGA_5GNR_FEC_VENDOR_ID,
|
|
FPGA_5GNR_FEC_VF_DEVICE_ID)
|
|
},
|
|
{.device_id = 0},
|
|
};
|
|
|
|
static struct rte_pci_driver fpga_5gnr_fec_pci_vf_driver = {
|
|
.probe = fpga_5gnr_fec_probe,
|
|
.remove = fpga_5gnr_fec_remove,
|
|
.id_table = pci_id_fpga_5gnr_fec_vf_map,
|
|
.drv_flags = RTE_PCI_DRV_NEED_MAPPING
|
|
};
|
|
|
|
|
|
RTE_PMD_REGISTER_PCI(FPGA_5GNR_FEC_PF_DRIVER_NAME, fpga_5gnr_fec_pci_pf_driver);
|
|
RTE_PMD_REGISTER_PCI_TABLE(FPGA_5GNR_FEC_PF_DRIVER_NAME,
|
|
pci_id_fpga_5gnr_fec_pf_map);
|
|
RTE_PMD_REGISTER_PCI(FPGA_5GNR_FEC_VF_DRIVER_NAME, fpga_5gnr_fec_pci_vf_driver);
|
|
RTE_PMD_REGISTER_PCI_TABLE(FPGA_5GNR_FEC_VF_DRIVER_NAME,
|
|
pci_id_fpga_5gnr_fec_vf_map);
|