numam-dpdk/lib/librte_vhost/vhost_rxtx.c
Changchun Ouyang 77d20126b4 vhost-user: handle message to enable vring
This message is used to enable/disable a specific vring queue pair.
The first queue pair is enabled by default.

Signed-off-by: Changchun Ouyang <changchun.ouyang@intel.com>
Signed-off-by: Yuanhan Liu <yuanhan.liu@linux.intel.com>
Acked-by: Flavio Leitner <fbl@sysclose.org>
Acked-by: Huawei Xie <huawei.xie@intel.com>
2015-10-26 21:23:53 +01:00

786 lines
21 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdint.h>
#include <stdbool.h>
#include <linux/virtio_net.h>
#include <rte_mbuf.h>
#include <rte_memcpy.h>
#include <rte_virtio_net.h>
#include "vhost-net.h"
#define MAX_PKT_BURST 32
static bool
is_valid_virt_queue_idx(uint32_t idx, int is_tx, uint32_t qp_nb)
{
return (is_tx ^ (idx & 1)) == 0 && idx < qp_nb * VIRTIO_QNUM;
}
/**
* This function adds buffers to the virtio devices RX virtqueue. Buffers can
* be received from the physical port or from another virtio device. A packet
* count is returned to indicate the number of packets that are succesfully
* added to the RX queue. This function works when the mbuf is scattered, but
* it doesn't support the mergeable feature.
*/
static inline uint32_t __attribute__((always_inline))
virtio_dev_rx(struct virtio_net *dev, uint16_t queue_id,
struct rte_mbuf **pkts, uint32_t count)
{
struct vhost_virtqueue *vq;
struct vring_desc *desc;
struct rte_mbuf *buff;
/* The virtio_hdr is initialised to 0. */
struct virtio_net_hdr_mrg_rxbuf virtio_hdr = {{0, 0, 0, 0, 0, 0}, 0};
uint64_t buff_addr = 0;
uint64_t buff_hdr_addr = 0;
uint32_t head[MAX_PKT_BURST];
uint32_t head_idx, packet_success = 0;
uint16_t avail_idx, res_cur_idx;
uint16_t res_base_idx, res_end_idx;
uint16_t free_entries;
uint8_t success = 0;
LOG_DEBUG(VHOST_DATA, "(%"PRIu64") virtio_dev_rx()\n", dev->device_fh);
if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->virt_qp_nb))) {
RTE_LOG(ERR, VHOST_DATA,
"%s (%"PRIu64"): virtqueue idx:%d invalid.\n",
__func__, dev->device_fh, queue_id);
return 0;
}
vq = dev->virtqueue[queue_id];
if (unlikely(vq->enabled == 0))
return 0;
count = (count > MAX_PKT_BURST) ? MAX_PKT_BURST : count;
/*
* As many data cores may want access to available buffers,
* they need to be reserved.
*/
do {
res_base_idx = vq->last_used_idx_res;
avail_idx = *((volatile uint16_t *)&vq->avail->idx);
free_entries = (avail_idx - res_base_idx);
/*check that we have enough buffers*/
if (unlikely(count > free_entries))
count = free_entries;
if (count == 0)
return 0;
res_end_idx = res_base_idx + count;
/* vq->last_used_idx_res is atomically updated. */
/* TODO: Allow to disable cmpset if no concurrency in application. */
success = rte_atomic16_cmpset(&vq->last_used_idx_res,
res_base_idx, res_end_idx);
} while (unlikely(success == 0));
res_cur_idx = res_base_idx;
LOG_DEBUG(VHOST_DATA, "(%"PRIu64") Current Index %d| End Index %d\n",
dev->device_fh, res_cur_idx, res_end_idx);
/* Prefetch available ring to retrieve indexes. */
rte_prefetch0(&vq->avail->ring[res_cur_idx & (vq->size - 1)]);
/* Retrieve all of the head indexes first to avoid caching issues. */
for (head_idx = 0; head_idx < count; head_idx++)
head[head_idx] = vq->avail->ring[(res_cur_idx + head_idx) &
(vq->size - 1)];
/*Prefetch descriptor index. */
rte_prefetch0(&vq->desc[head[packet_success]]);
while (res_cur_idx != res_end_idx) {
uint32_t offset = 0, vb_offset = 0;
uint32_t pkt_len, len_to_cpy, data_len, total_copied = 0;
uint8_t hdr = 0, uncompleted_pkt = 0;
/* Get descriptor from available ring */
desc = &vq->desc[head[packet_success]];
buff = pkts[packet_success];
/* Convert from gpa to vva (guest physical addr -> vhost virtual addr) */
buff_addr = gpa_to_vva(dev, desc->addr);
/* Prefetch buffer address. */
rte_prefetch0((void *)(uintptr_t)buff_addr);
/* Copy virtio_hdr to packet and increment buffer address */
buff_hdr_addr = buff_addr;
/*
* If the descriptors are chained the header and data are
* placed in separate buffers.
*/
if ((desc->flags & VRING_DESC_F_NEXT) &&
(desc->len == vq->vhost_hlen)) {
desc = &vq->desc[desc->next];
/* Buffer address translation. */
buff_addr = gpa_to_vva(dev, desc->addr);
} else {
vb_offset += vq->vhost_hlen;
hdr = 1;
}
pkt_len = rte_pktmbuf_pkt_len(buff);
data_len = rte_pktmbuf_data_len(buff);
len_to_cpy = RTE_MIN(data_len,
hdr ? desc->len - vq->vhost_hlen : desc->len);
while (total_copied < pkt_len) {
/* Copy mbuf data to buffer */
rte_memcpy((void *)(uintptr_t)(buff_addr + vb_offset),
rte_pktmbuf_mtod_offset(buff, const void *, offset),
len_to_cpy);
PRINT_PACKET(dev, (uintptr_t)(buff_addr + vb_offset),
len_to_cpy, 0);
offset += len_to_cpy;
vb_offset += len_to_cpy;
total_copied += len_to_cpy;
/* The whole packet completes */
if (total_copied == pkt_len)
break;
/* The current segment completes */
if (offset == data_len) {
buff = buff->next;
offset = 0;
data_len = rte_pktmbuf_data_len(buff);
}
/* The current vring descriptor done */
if (vb_offset == desc->len) {
if (desc->flags & VRING_DESC_F_NEXT) {
desc = &vq->desc[desc->next];
buff_addr = gpa_to_vva(dev, desc->addr);
vb_offset = 0;
} else {
/* Room in vring buffer is not enough */
uncompleted_pkt = 1;
break;
}
}
len_to_cpy = RTE_MIN(data_len - offset, desc->len - vb_offset);
}
/* Update used ring with desc information */
vq->used->ring[res_cur_idx & (vq->size - 1)].id =
head[packet_success];
/* Drop the packet if it is uncompleted */
if (unlikely(uncompleted_pkt == 1))
vq->used->ring[res_cur_idx & (vq->size - 1)].len =
vq->vhost_hlen;
else
vq->used->ring[res_cur_idx & (vq->size - 1)].len =
pkt_len + vq->vhost_hlen;
res_cur_idx++;
packet_success++;
if (unlikely(uncompleted_pkt == 1))
continue;
rte_memcpy((void *)(uintptr_t)buff_hdr_addr,
(const void *)&virtio_hdr, vq->vhost_hlen);
PRINT_PACKET(dev, (uintptr_t)buff_hdr_addr, vq->vhost_hlen, 1);
if (res_cur_idx < res_end_idx) {
/* Prefetch descriptor index. */
rte_prefetch0(&vq->desc[head[packet_success]]);
}
}
rte_compiler_barrier();
/* Wait until it's our turn to add our buffer to the used ring. */
while (unlikely(vq->last_used_idx != res_base_idx))
rte_pause();
*(volatile uint16_t *)&vq->used->idx += count;
vq->last_used_idx = res_end_idx;
/* flush used->idx update before we read avail->flags. */
rte_mb();
/* Kick the guest if necessary. */
if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT))
eventfd_write(vq->callfd, (eventfd_t)1);
return count;
}
static inline uint32_t __attribute__((always_inline))
copy_from_mbuf_to_vring(struct virtio_net *dev, uint32_t queue_id,
uint16_t res_base_idx, uint16_t res_end_idx,
struct rte_mbuf *pkt)
{
uint32_t vec_idx = 0;
uint32_t entry_success = 0;
struct vhost_virtqueue *vq;
/* The virtio_hdr is initialised to 0. */
struct virtio_net_hdr_mrg_rxbuf virtio_hdr = {
{0, 0, 0, 0, 0, 0}, 0};
uint16_t cur_idx = res_base_idx;
uint64_t vb_addr = 0;
uint64_t vb_hdr_addr = 0;
uint32_t seg_offset = 0;
uint32_t vb_offset = 0;
uint32_t seg_avail;
uint32_t vb_avail;
uint32_t cpy_len, entry_len;
if (pkt == NULL)
return 0;
LOG_DEBUG(VHOST_DATA, "(%"PRIu64") Current Index %d| "
"End Index %d\n",
dev->device_fh, cur_idx, res_end_idx);
/*
* Convert from gpa to vva
* (guest physical addr -> vhost virtual addr)
*/
vq = dev->virtqueue[queue_id];
vb_addr = gpa_to_vva(dev, vq->buf_vec[vec_idx].buf_addr);
vb_hdr_addr = vb_addr;
/* Prefetch buffer address. */
rte_prefetch0((void *)(uintptr_t)vb_addr);
virtio_hdr.num_buffers = res_end_idx - res_base_idx;
LOG_DEBUG(VHOST_DATA, "(%"PRIu64") RX: Num merge buffers %d\n",
dev->device_fh, virtio_hdr.num_buffers);
rte_memcpy((void *)(uintptr_t)vb_hdr_addr,
(const void *)&virtio_hdr, vq->vhost_hlen);
PRINT_PACKET(dev, (uintptr_t)vb_hdr_addr, vq->vhost_hlen, 1);
seg_avail = rte_pktmbuf_data_len(pkt);
vb_offset = vq->vhost_hlen;
vb_avail = vq->buf_vec[vec_idx].buf_len - vq->vhost_hlen;
entry_len = vq->vhost_hlen;
if (vb_avail == 0) {
uint32_t desc_idx =
vq->buf_vec[vec_idx].desc_idx;
if ((vq->desc[desc_idx].flags
& VRING_DESC_F_NEXT) == 0) {
/* Update used ring with desc information */
vq->used->ring[cur_idx & (vq->size - 1)].id
= vq->buf_vec[vec_idx].desc_idx;
vq->used->ring[cur_idx & (vq->size - 1)].len
= entry_len;
entry_len = 0;
cur_idx++;
entry_success++;
}
vec_idx++;
vb_addr = gpa_to_vva(dev, vq->buf_vec[vec_idx].buf_addr);
/* Prefetch buffer address. */
rte_prefetch0((void *)(uintptr_t)vb_addr);
vb_offset = 0;
vb_avail = vq->buf_vec[vec_idx].buf_len;
}
cpy_len = RTE_MIN(vb_avail, seg_avail);
while (cpy_len > 0) {
/* Copy mbuf data to vring buffer */
rte_memcpy((void *)(uintptr_t)(vb_addr + vb_offset),
rte_pktmbuf_mtod_offset(pkt, const void *, seg_offset),
cpy_len);
PRINT_PACKET(dev,
(uintptr_t)(vb_addr + vb_offset),
cpy_len, 0);
seg_offset += cpy_len;
vb_offset += cpy_len;
seg_avail -= cpy_len;
vb_avail -= cpy_len;
entry_len += cpy_len;
if (seg_avail != 0) {
/*
* The virtio buffer in this vring
* entry reach to its end.
* But the segment doesn't complete.
*/
if ((vq->desc[vq->buf_vec[vec_idx].desc_idx].flags &
VRING_DESC_F_NEXT) == 0) {
/* Update used ring with desc information */
vq->used->ring[cur_idx & (vq->size - 1)].id
= vq->buf_vec[vec_idx].desc_idx;
vq->used->ring[cur_idx & (vq->size - 1)].len
= entry_len;
entry_len = 0;
cur_idx++;
entry_success++;
}
vec_idx++;
vb_addr = gpa_to_vva(dev,
vq->buf_vec[vec_idx].buf_addr);
vb_offset = 0;
vb_avail = vq->buf_vec[vec_idx].buf_len;
cpy_len = RTE_MIN(vb_avail, seg_avail);
} else {
/*
* This current segment complete, need continue to
* check if the whole packet complete or not.
*/
pkt = pkt->next;
if (pkt != NULL) {
/*
* There are more segments.
*/
if (vb_avail == 0) {
/*
* This current buffer from vring is
* used up, need fetch next buffer
* from buf_vec.
*/
uint32_t desc_idx =
vq->buf_vec[vec_idx].desc_idx;
if ((vq->desc[desc_idx].flags &
VRING_DESC_F_NEXT) == 0) {
uint16_t wrapped_idx =
cur_idx & (vq->size - 1);
/*
* Update used ring with the
* descriptor information
*/
vq->used->ring[wrapped_idx].id
= desc_idx;
vq->used->ring[wrapped_idx].len
= entry_len;
entry_success++;
entry_len = 0;
cur_idx++;
}
/* Get next buffer from buf_vec. */
vec_idx++;
vb_addr = gpa_to_vva(dev,
vq->buf_vec[vec_idx].buf_addr);
vb_avail =
vq->buf_vec[vec_idx].buf_len;
vb_offset = 0;
}
seg_offset = 0;
seg_avail = rte_pktmbuf_data_len(pkt);
cpy_len = RTE_MIN(vb_avail, seg_avail);
} else {
/*
* This whole packet completes.
*/
/* Update used ring with desc information */
vq->used->ring[cur_idx & (vq->size - 1)].id
= vq->buf_vec[vec_idx].desc_idx;
vq->used->ring[cur_idx & (vq->size - 1)].len
= entry_len;
entry_success++;
break;
}
}
}
return entry_success;
}
static inline void __attribute__((always_inline))
update_secure_len(struct vhost_virtqueue *vq, uint32_t id,
uint32_t *secure_len, uint32_t *vec_idx)
{
uint16_t wrapped_idx = id & (vq->size - 1);
uint32_t idx = vq->avail->ring[wrapped_idx];
uint8_t next_desc;
uint32_t len = *secure_len;
uint32_t vec_id = *vec_idx;
do {
next_desc = 0;
len += vq->desc[idx].len;
vq->buf_vec[vec_id].buf_addr = vq->desc[idx].addr;
vq->buf_vec[vec_id].buf_len = vq->desc[idx].len;
vq->buf_vec[vec_id].desc_idx = idx;
vec_id++;
if (vq->desc[idx].flags & VRING_DESC_F_NEXT) {
idx = vq->desc[idx].next;
next_desc = 1;
}
} while (next_desc);
*secure_len = len;
*vec_idx = vec_id;
}
/*
* This function works for mergeable RX.
*/
static inline uint32_t __attribute__((always_inline))
virtio_dev_merge_rx(struct virtio_net *dev, uint16_t queue_id,
struct rte_mbuf **pkts, uint32_t count)
{
struct vhost_virtqueue *vq;
uint32_t pkt_idx = 0, entry_success = 0;
uint16_t avail_idx;
uint16_t res_base_idx, res_cur_idx;
uint8_t success = 0;
LOG_DEBUG(VHOST_DATA, "(%"PRIu64") virtio_dev_merge_rx()\n",
dev->device_fh);
if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->virt_qp_nb))) {
RTE_LOG(ERR, VHOST_DATA,
"%s (%"PRIu64"): virtqueue idx:%d invalid.\n",
__func__, dev->device_fh, queue_id);
return 0;
}
vq = dev->virtqueue[queue_id];
if (unlikely(vq->enabled == 0))
return 0;
count = RTE_MIN((uint32_t)MAX_PKT_BURST, count);
if (count == 0)
return 0;
for (pkt_idx = 0; pkt_idx < count; pkt_idx++) {
uint32_t pkt_len = pkts[pkt_idx]->pkt_len + vq->vhost_hlen;
do {
/*
* As many data cores may want access to available
* buffers, they need to be reserved.
*/
uint32_t secure_len = 0;
uint32_t vec_idx = 0;
res_base_idx = vq->last_used_idx_res;
res_cur_idx = res_base_idx;
do {
avail_idx = *((volatile uint16_t *)&vq->avail->idx);
if (unlikely(res_cur_idx == avail_idx)) {
LOG_DEBUG(VHOST_DATA,
"(%"PRIu64") Failed "
"to get enough desc from "
"vring\n",
dev->device_fh);
goto merge_rx_exit;
} else {
update_secure_len(vq, res_cur_idx, &secure_len, &vec_idx);
res_cur_idx++;
}
} while (pkt_len > secure_len);
/* vq->last_used_idx_res is atomically updated. */
success = rte_atomic16_cmpset(&vq->last_used_idx_res,
res_base_idx,
res_cur_idx);
} while (success == 0);
entry_success = copy_from_mbuf_to_vring(dev, queue_id,
res_base_idx, res_cur_idx, pkts[pkt_idx]);
rte_compiler_barrier();
/*
* Wait until it's our turn to add our buffer
* to the used ring.
*/
while (unlikely(vq->last_used_idx != res_base_idx))
rte_pause();
*(volatile uint16_t *)&vq->used->idx += entry_success;
vq->last_used_idx = res_cur_idx;
}
merge_rx_exit:
if (likely(pkt_idx)) {
/* flush used->idx update before we read avail->flags. */
rte_mb();
/* Kick the guest if necessary. */
if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT))
eventfd_write(vq->callfd, (eventfd_t)1);
}
return pkt_idx;
}
uint16_t
rte_vhost_enqueue_burst(struct virtio_net *dev, uint16_t queue_id,
struct rte_mbuf **pkts, uint16_t count)
{
if (unlikely(dev->features & (1 << VIRTIO_NET_F_MRG_RXBUF)))
return virtio_dev_merge_rx(dev, queue_id, pkts, count);
else
return virtio_dev_rx(dev, queue_id, pkts, count);
}
uint16_t
rte_vhost_dequeue_burst(struct virtio_net *dev, uint16_t queue_id,
struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
{
struct rte_mbuf *m, *prev;
struct vhost_virtqueue *vq;
struct vring_desc *desc;
uint64_t vb_addr = 0;
uint32_t head[MAX_PKT_BURST];
uint32_t used_idx;
uint32_t i;
uint16_t free_entries, entry_success = 0;
uint16_t avail_idx;
if (unlikely(!is_valid_virt_queue_idx(queue_id, 1, dev->virt_qp_nb))) {
RTE_LOG(ERR, VHOST_DATA,
"%s (%"PRIu64"): virtqueue idx:%d invalid.\n",
__func__, dev->device_fh, queue_id);
return 0;
}
vq = dev->virtqueue[queue_id];
if (unlikely(vq->enabled == 0))
return 0;
avail_idx = *((volatile uint16_t *)&vq->avail->idx);
/* If there are no available buffers then return. */
if (vq->last_used_idx == avail_idx)
return 0;
LOG_DEBUG(VHOST_DATA, "%s (%"PRIu64")\n", __func__,
dev->device_fh);
/* Prefetch available ring to retrieve head indexes. */
rte_prefetch0(&vq->avail->ring[vq->last_used_idx & (vq->size - 1)]);
/*get the number of free entries in the ring*/
free_entries = (avail_idx - vq->last_used_idx);
free_entries = RTE_MIN(free_entries, count);
/* Limit to MAX_PKT_BURST. */
free_entries = RTE_MIN(free_entries, MAX_PKT_BURST);
LOG_DEBUG(VHOST_DATA, "(%"PRIu64") Buffers available %d\n",
dev->device_fh, free_entries);
/* Retrieve all of the head indexes first to avoid caching issues. */
for (i = 0; i < free_entries; i++)
head[i] = vq->avail->ring[(vq->last_used_idx + i) & (vq->size - 1)];
/* Prefetch descriptor index. */
rte_prefetch0(&vq->desc[head[entry_success]]);
rte_prefetch0(&vq->used->ring[vq->last_used_idx & (vq->size - 1)]);
while (entry_success < free_entries) {
uint32_t vb_avail, vb_offset;
uint32_t seg_avail, seg_offset;
uint32_t cpy_len;
uint32_t seg_num = 0;
struct rte_mbuf *cur;
uint8_t alloc_err = 0;
desc = &vq->desc[head[entry_success]];
/* Discard first buffer as it is the virtio header */
if (desc->flags & VRING_DESC_F_NEXT) {
desc = &vq->desc[desc->next];
vb_offset = 0;
vb_avail = desc->len;
} else {
vb_offset = vq->vhost_hlen;
vb_avail = desc->len - vb_offset;
}
/* Buffer address translation. */
vb_addr = gpa_to_vva(dev, desc->addr);
/* Prefetch buffer address. */
rte_prefetch0((void *)(uintptr_t)vb_addr);
used_idx = vq->last_used_idx & (vq->size - 1);
if (entry_success < (free_entries - 1)) {
/* Prefetch descriptor index. */
rte_prefetch0(&vq->desc[head[entry_success+1]]);
rte_prefetch0(&vq->used->ring[(used_idx + 1) & (vq->size - 1)]);
}
/* Update used index buffer information. */
vq->used->ring[used_idx].id = head[entry_success];
vq->used->ring[used_idx].len = 0;
/* Allocate an mbuf and populate the structure. */
m = rte_pktmbuf_alloc(mbuf_pool);
if (unlikely(m == NULL)) {
RTE_LOG(ERR, VHOST_DATA,
"Failed to allocate memory for mbuf.\n");
break;
}
seg_offset = 0;
seg_avail = m->buf_len - RTE_PKTMBUF_HEADROOM;
cpy_len = RTE_MIN(vb_avail, seg_avail);
PRINT_PACKET(dev, (uintptr_t)vb_addr, desc->len, 0);
seg_num++;
cur = m;
prev = m;
while (cpy_len != 0) {
rte_memcpy(rte_pktmbuf_mtod_offset(cur, void *, seg_offset),
(void *)((uintptr_t)(vb_addr + vb_offset)),
cpy_len);
seg_offset += cpy_len;
vb_offset += cpy_len;
vb_avail -= cpy_len;
seg_avail -= cpy_len;
if (vb_avail != 0) {
/*
* The segment reachs to its end,
* while the virtio buffer in TX vring has
* more data to be copied.
*/
cur->data_len = seg_offset;
m->pkt_len += seg_offset;
/* Allocate mbuf and populate the structure. */
cur = rte_pktmbuf_alloc(mbuf_pool);
if (unlikely(cur == NULL)) {
RTE_LOG(ERR, VHOST_DATA, "Failed to "
"allocate memory for mbuf.\n");
rte_pktmbuf_free(m);
alloc_err = 1;
break;
}
seg_num++;
prev->next = cur;
prev = cur;
seg_offset = 0;
seg_avail = cur->buf_len - RTE_PKTMBUF_HEADROOM;
} else {
if (desc->flags & VRING_DESC_F_NEXT) {
/*
* There are more virtio buffers in
* same vring entry need to be copied.
*/
if (seg_avail == 0) {
/*
* The current segment hasn't
* room to accomodate more
* data.
*/
cur->data_len = seg_offset;
m->pkt_len += seg_offset;
/*
* Allocate an mbuf and
* populate the structure.
*/
cur = rte_pktmbuf_alloc(mbuf_pool);
if (unlikely(cur == NULL)) {
RTE_LOG(ERR,
VHOST_DATA,
"Failed to "
"allocate memory "
"for mbuf\n");
rte_pktmbuf_free(m);
alloc_err = 1;
break;
}
seg_num++;
prev->next = cur;
prev = cur;
seg_offset = 0;
seg_avail = cur->buf_len - RTE_PKTMBUF_HEADROOM;
}
desc = &vq->desc[desc->next];
/* Buffer address translation. */
vb_addr = gpa_to_vva(dev, desc->addr);
/* Prefetch buffer address. */
rte_prefetch0((void *)(uintptr_t)vb_addr);
vb_offset = 0;
vb_avail = desc->len;
PRINT_PACKET(dev, (uintptr_t)vb_addr,
desc->len, 0);
} else {
/* The whole packet completes. */
cur->data_len = seg_offset;
m->pkt_len += seg_offset;
vb_avail = 0;
}
}
cpy_len = RTE_MIN(vb_avail, seg_avail);
}
if (unlikely(alloc_err == 1))
break;
m->nb_segs = seg_num;
pkts[entry_success] = m;
vq->last_used_idx++;
entry_success++;
}
rte_compiler_barrier();
vq->used->idx += entry_success;
/* Kick guest if required. */
if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT))
eventfd_write(vq->callfd, (eventfd_t)1);
return entry_success;
}