numam-dpdk/app/test-pmd/util.c
Dmitry Kozlyuk 04d43857ea net: rename Ethernet header fields
Definition of `rte_ether_addr` structure used a workaround allowing DPDK
and Windows SDK headers to be used in the same file, because Windows SDK
defines `s_addr` as a macro. Rename `s_addr` to `src_addr` and `d_addr`
to `dst_addr` to avoid the conflict and remove the workaround.
Deprecation notice:
https://mails.dpdk.org/archives/dev/2021-July/215270.html

Signed-off-by: Dmitry Kozlyuk <dmitry.kozliuk@gmail.com>
2021-10-08 14:58:11 +02:00

508 lines
14 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
* Copyright 2018 Mellanox Technologies, Ltd
*/
#include <stdio.h>
#include <rte_bitops.h>
#include <rte_net.h>
#include <rte_mbuf.h>
#include <rte_ether.h>
#include <rte_vxlan.h>
#include <rte_ethdev.h>
#include <rte_flow.h>
#include "testpmd.h"
#define MAX_STRING_LEN 8192
#define MKDUMPSTR(buf, buf_size, cur_len, ...) \
do { \
if (cur_len >= buf_size) \
break; \
cur_len += snprintf(buf + cur_len, buf_size - cur_len, __VA_ARGS__); \
} while (0)
static inline void
print_ether_addr(const char *what, const struct rte_ether_addr *eth_addr,
char print_buf[], size_t buf_size, size_t *cur_len)
{
char buf[RTE_ETHER_ADDR_FMT_SIZE];
rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
MKDUMPSTR(print_buf, buf_size, *cur_len, "%s%s", what, buf);
}
static inline bool
is_timestamp_enabled(const struct rte_mbuf *mbuf)
{
static uint64_t timestamp_rx_dynflag;
int timestamp_rx_dynflag_offset;
if (timestamp_rx_dynflag == 0) {
timestamp_rx_dynflag_offset = rte_mbuf_dynflag_lookup(
RTE_MBUF_DYNFLAG_RX_TIMESTAMP_NAME, NULL);
if (timestamp_rx_dynflag_offset < 0)
return false;
timestamp_rx_dynflag = RTE_BIT64(timestamp_rx_dynflag_offset);
}
return (mbuf->ol_flags & timestamp_rx_dynflag) != 0;
}
static inline rte_mbuf_timestamp_t
get_timestamp(const struct rte_mbuf *mbuf)
{
static int timestamp_dynfield_offset = -1;
if (timestamp_dynfield_offset < 0) {
timestamp_dynfield_offset = rte_mbuf_dynfield_lookup(
RTE_MBUF_DYNFIELD_TIMESTAMP_NAME, NULL);
if (timestamp_dynfield_offset < 0)
return 0;
}
return *RTE_MBUF_DYNFIELD(mbuf,
timestamp_dynfield_offset, rte_mbuf_timestamp_t *);
}
static inline void
dump_pkt_burst(uint16_t port_id, uint16_t queue, struct rte_mbuf *pkts[],
uint16_t nb_pkts, int is_rx)
{
struct rte_mbuf *mb;
const struct rte_ether_hdr *eth_hdr;
struct rte_ether_hdr _eth_hdr;
uint16_t eth_type;
uint64_t ol_flags;
uint16_t i, packet_type;
uint16_t is_encapsulation;
char buf[256];
struct rte_net_hdr_lens hdr_lens;
uint32_t sw_packet_type;
uint16_t udp_port;
uint32_t vx_vni;
const char *reason;
int dynf_index;
char print_buf[MAX_STRING_LEN];
size_t buf_size = MAX_STRING_LEN;
size_t cur_len = 0;
if (!nb_pkts)
return;
MKDUMPSTR(print_buf, buf_size, cur_len,
"port %u/queue %u: %s %u packets\n", port_id, queue,
is_rx ? "received" : "sent", (unsigned int) nb_pkts);
for (i = 0; i < nb_pkts; i++) {
int ret;
struct rte_flow_error error;
struct rte_flow_restore_info info = { 0, };
mb = pkts[i];
eth_hdr = rte_pktmbuf_read(mb, 0, sizeof(_eth_hdr), &_eth_hdr);
eth_type = RTE_BE_TO_CPU_16(eth_hdr->ether_type);
packet_type = mb->packet_type;
is_encapsulation = RTE_ETH_IS_TUNNEL_PKT(packet_type);
ret = rte_flow_get_restore_info(port_id, mb, &info, &error);
if (!ret) {
MKDUMPSTR(print_buf, buf_size, cur_len,
"restore info:");
if (info.flags & RTE_FLOW_RESTORE_INFO_TUNNEL) {
struct port_flow_tunnel *port_tunnel;
port_tunnel = port_flow_locate_tunnel
(port_id, &info.tunnel);
MKDUMPSTR(print_buf, buf_size, cur_len,
" - tunnel");
if (port_tunnel)
MKDUMPSTR(print_buf, buf_size, cur_len,
" #%u", port_tunnel->id);
else
MKDUMPSTR(print_buf, buf_size, cur_len,
" %s", "-none-");
MKDUMPSTR(print_buf, buf_size, cur_len,
" type %s", port_flow_tunnel_type
(&info.tunnel));
} else {
MKDUMPSTR(print_buf, buf_size, cur_len,
" - no tunnel info");
}
if (info.flags & RTE_FLOW_RESTORE_INFO_ENCAPSULATED)
MKDUMPSTR(print_buf, buf_size, cur_len,
" - outer header present");
else
MKDUMPSTR(print_buf, buf_size, cur_len,
" - no outer header");
if (info.flags & RTE_FLOW_RESTORE_INFO_GROUP_ID)
MKDUMPSTR(print_buf, buf_size, cur_len,
" - miss group %u", info.group_id);
else
MKDUMPSTR(print_buf, buf_size, cur_len,
" - no miss group");
MKDUMPSTR(print_buf, buf_size, cur_len, "\n");
}
print_ether_addr(" src=", &eth_hdr->src_addr,
print_buf, buf_size, &cur_len);
print_ether_addr(" - dst=", &eth_hdr->dst_addr,
print_buf, buf_size, &cur_len);
MKDUMPSTR(print_buf, buf_size, cur_len,
" - type=0x%04x - length=%u - nb_segs=%d",
eth_type, (unsigned int) mb->pkt_len,
(int)mb->nb_segs);
ol_flags = mb->ol_flags;
if (ol_flags & PKT_RX_RSS_HASH) {
MKDUMPSTR(print_buf, buf_size, cur_len,
" - RSS hash=0x%x",
(unsigned int) mb->hash.rss);
MKDUMPSTR(print_buf, buf_size, cur_len,
" - RSS queue=0x%x", (unsigned int) queue);
}
if (ol_flags & PKT_RX_FDIR) {
MKDUMPSTR(print_buf, buf_size, cur_len,
" - FDIR matched ");
if (ol_flags & PKT_RX_FDIR_ID)
MKDUMPSTR(print_buf, buf_size, cur_len,
"ID=0x%x", mb->hash.fdir.hi);
else if (ol_flags & PKT_RX_FDIR_FLX)
MKDUMPSTR(print_buf, buf_size, cur_len,
"flex bytes=0x%08x %08x",
mb->hash.fdir.hi, mb->hash.fdir.lo);
else
MKDUMPSTR(print_buf, buf_size, cur_len,
"hash=0x%x ID=0x%x ",
mb->hash.fdir.hash, mb->hash.fdir.id);
}
if (is_timestamp_enabled(mb))
MKDUMPSTR(print_buf, buf_size, cur_len,
" - timestamp %"PRIu64" ", get_timestamp(mb));
if (ol_flags & PKT_RX_QINQ)
MKDUMPSTR(print_buf, buf_size, cur_len,
" - QinQ VLAN tci=0x%x, VLAN tci outer=0x%x",
mb->vlan_tci, mb->vlan_tci_outer);
else if (ol_flags & PKT_RX_VLAN)
MKDUMPSTR(print_buf, buf_size, cur_len,
" - VLAN tci=0x%x", mb->vlan_tci);
if (!is_rx && (ol_flags & PKT_TX_DYNF_METADATA))
MKDUMPSTR(print_buf, buf_size, cur_len,
" - Tx metadata: 0x%x",
*RTE_FLOW_DYNF_METADATA(mb));
if (is_rx && (ol_flags & PKT_RX_DYNF_METADATA))
MKDUMPSTR(print_buf, buf_size, cur_len,
" - Rx metadata: 0x%x",
*RTE_FLOW_DYNF_METADATA(mb));
for (dynf_index = 0; dynf_index < 64; dynf_index++) {
if (dynf_names[dynf_index][0] != '\0')
MKDUMPSTR(print_buf, buf_size, cur_len,
" - dynf %s: %d",
dynf_names[dynf_index],
!!(ol_flags & (1UL << dynf_index)));
}
if (mb->packet_type) {
rte_get_ptype_name(mb->packet_type, buf, sizeof(buf));
MKDUMPSTR(print_buf, buf_size, cur_len,
" - hw ptype: %s", buf);
}
sw_packet_type = rte_net_get_ptype(mb, &hdr_lens,
RTE_PTYPE_ALL_MASK);
rte_get_ptype_name(sw_packet_type, buf, sizeof(buf));
MKDUMPSTR(print_buf, buf_size, cur_len, " - sw ptype: %s", buf);
if (sw_packet_type & RTE_PTYPE_L2_MASK)
MKDUMPSTR(print_buf, buf_size, cur_len, " - l2_len=%d",
hdr_lens.l2_len);
if (sw_packet_type & RTE_PTYPE_L3_MASK)
MKDUMPSTR(print_buf, buf_size, cur_len, " - l3_len=%d",
hdr_lens.l3_len);
if (sw_packet_type & RTE_PTYPE_L4_MASK)
MKDUMPSTR(print_buf, buf_size, cur_len, " - l4_len=%d",
hdr_lens.l4_len);
if (sw_packet_type & RTE_PTYPE_TUNNEL_MASK)
MKDUMPSTR(print_buf, buf_size, cur_len,
" - tunnel_len=%d", hdr_lens.tunnel_len);
if (sw_packet_type & RTE_PTYPE_INNER_L2_MASK)
MKDUMPSTR(print_buf, buf_size, cur_len,
" - inner_l2_len=%d", hdr_lens.inner_l2_len);
if (sw_packet_type & RTE_PTYPE_INNER_L3_MASK)
MKDUMPSTR(print_buf, buf_size, cur_len,
" - inner_l3_len=%d", hdr_lens.inner_l3_len);
if (sw_packet_type & RTE_PTYPE_INNER_L4_MASK)
MKDUMPSTR(print_buf, buf_size, cur_len,
" - inner_l4_len=%d", hdr_lens.inner_l4_len);
if (is_encapsulation) {
struct rte_ipv4_hdr *ipv4_hdr;
struct rte_ipv6_hdr *ipv6_hdr;
struct rte_udp_hdr *udp_hdr;
uint8_t l2_len;
uint8_t l3_len;
uint8_t l4_len;
uint8_t l4_proto;
struct rte_vxlan_hdr *vxlan_hdr;
l2_len = sizeof(struct rte_ether_hdr);
/* Do not support ipv4 option field */
if (RTE_ETH_IS_IPV4_HDR(packet_type)) {
l3_len = sizeof(struct rte_ipv4_hdr);
ipv4_hdr = rte_pktmbuf_mtod_offset(mb,
struct rte_ipv4_hdr *,
l2_len);
l4_proto = ipv4_hdr->next_proto_id;
} else {
l3_len = sizeof(struct rte_ipv6_hdr);
ipv6_hdr = rte_pktmbuf_mtod_offset(mb,
struct rte_ipv6_hdr *,
l2_len);
l4_proto = ipv6_hdr->proto;
}
if (l4_proto == IPPROTO_UDP) {
udp_hdr = rte_pktmbuf_mtod_offset(mb,
struct rte_udp_hdr *,
l2_len + l3_len);
l4_len = sizeof(struct rte_udp_hdr);
vxlan_hdr = rte_pktmbuf_mtod_offset(mb,
struct rte_vxlan_hdr *,
l2_len + l3_len + l4_len);
udp_port = RTE_BE_TO_CPU_16(udp_hdr->dst_port);
vx_vni = rte_be_to_cpu_32(vxlan_hdr->vx_vni);
MKDUMPSTR(print_buf, buf_size, cur_len,
" - VXLAN packet: packet type =%d, "
"Destination UDP port =%d, VNI = %d, "
"last_rsvd = %d", packet_type,
udp_port, vx_vni >> 8, vx_vni & 0xff);
}
}
MKDUMPSTR(print_buf, buf_size, cur_len,
" - %s queue=0x%x", is_rx ? "Receive" : "Send",
(unsigned int) queue);
MKDUMPSTR(print_buf, buf_size, cur_len, "\n");
if (is_rx)
rte_get_rx_ol_flag_list(mb->ol_flags, buf, sizeof(buf));
else
rte_get_tx_ol_flag_list(mb->ol_flags, buf, sizeof(buf));
MKDUMPSTR(print_buf, buf_size, cur_len,
" ol_flags: %s\n", buf);
if (rte_mbuf_check(mb, 1, &reason) < 0)
MKDUMPSTR(print_buf, buf_size, cur_len,
"INVALID mbuf: %s\n", reason);
if (cur_len >= buf_size)
printf("%s ...\n", print_buf);
else
printf("%s", print_buf);
cur_len = 0;
}
}
uint16_t
dump_rx_pkts(uint16_t port_id, uint16_t queue, struct rte_mbuf *pkts[],
uint16_t nb_pkts, __rte_unused uint16_t max_pkts,
__rte_unused void *user_param)
{
dump_pkt_burst(port_id, queue, pkts, nb_pkts, 1);
return nb_pkts;
}
uint16_t
dump_tx_pkts(uint16_t port_id, uint16_t queue, struct rte_mbuf *pkts[],
uint16_t nb_pkts, __rte_unused void *user_param)
{
dump_pkt_burst(port_id, queue, pkts, nb_pkts, 0);
return nb_pkts;
}
uint16_t
tx_pkt_set_md(uint16_t port_id, __rte_unused uint16_t queue,
struct rte_mbuf *pkts[], uint16_t nb_pkts,
__rte_unused void *user_param)
{
uint16_t i = 0;
/*
* Add metadata value to every Tx packet,
* and set ol_flags accordingly.
*/
if (rte_flow_dynf_metadata_avail())
for (i = 0; i < nb_pkts; i++) {
*RTE_FLOW_DYNF_METADATA(pkts[i]) =
ports[port_id].tx_metadata;
pkts[i]->ol_flags |= PKT_TX_DYNF_METADATA;
}
return nb_pkts;
}
void
add_tx_md_callback(portid_t portid)
{
struct rte_eth_dev_info dev_info;
uint16_t queue;
int ret;
if (port_id_is_invalid(portid, ENABLED_WARN))
return;
ret = eth_dev_info_get_print_err(portid, &dev_info);
if (ret != 0)
return;
for (queue = 0; queue < dev_info.nb_tx_queues; queue++)
if (!ports[portid].tx_set_md_cb[queue])
ports[portid].tx_set_md_cb[queue] =
rte_eth_add_tx_callback(portid, queue,
tx_pkt_set_md, NULL);
}
void
remove_tx_md_callback(portid_t portid)
{
struct rte_eth_dev_info dev_info;
uint16_t queue;
int ret;
if (port_id_is_invalid(portid, ENABLED_WARN))
return;
ret = eth_dev_info_get_print_err(portid, &dev_info);
if (ret != 0)
return;
for (queue = 0; queue < dev_info.nb_tx_queues; queue++)
if (ports[portid].tx_set_md_cb[queue]) {
rte_eth_remove_tx_callback(portid, queue,
ports[portid].tx_set_md_cb[queue]);
ports[portid].tx_set_md_cb[queue] = NULL;
}
}
uint16_t
tx_pkt_set_dynf(uint16_t port_id, __rte_unused uint16_t queue,
struct rte_mbuf *pkts[], uint16_t nb_pkts,
__rte_unused void *user_param)
{
uint16_t i = 0;
if (ports[port_id].mbuf_dynf)
for (i = 0; i < nb_pkts; i++)
pkts[i]->ol_flags |= ports[port_id].mbuf_dynf;
return nb_pkts;
}
void
add_tx_dynf_callback(portid_t portid)
{
struct rte_eth_dev_info dev_info;
uint16_t queue;
int ret;
if (port_id_is_invalid(portid, ENABLED_WARN))
return;
ret = eth_dev_info_get_print_err(portid, &dev_info);
if (ret != 0)
return;
for (queue = 0; queue < dev_info.nb_tx_queues; queue++)
if (!ports[portid].tx_set_dynf_cb[queue])
ports[portid].tx_set_dynf_cb[queue] =
rte_eth_add_tx_callback(portid, queue,
tx_pkt_set_dynf, NULL);
}
void
remove_tx_dynf_callback(portid_t portid)
{
struct rte_eth_dev_info dev_info;
uint16_t queue;
int ret;
if (port_id_is_invalid(portid, ENABLED_WARN))
return;
ret = eth_dev_info_get_print_err(portid, &dev_info);
if (ret != 0)
return;
for (queue = 0; queue < dev_info.nb_tx_queues; queue++)
if (ports[portid].tx_set_dynf_cb[queue]) {
rte_eth_remove_tx_callback(portid, queue,
ports[portid].tx_set_dynf_cb[queue]);
ports[portid].tx_set_dynf_cb[queue] = NULL;
}
}
int
eth_dev_info_get_print_err(uint16_t port_id,
struct rte_eth_dev_info *dev_info)
{
int ret;
ret = rte_eth_dev_info_get(port_id, dev_info);
if (ret != 0)
fprintf(stderr,
"Error during getting device (port %u) info: %s\n",
port_id, strerror(-ret));
return ret;
}
void
eth_set_promisc_mode(uint16_t port, int enable)
{
int ret;
if (enable)
ret = rte_eth_promiscuous_enable(port);
else
ret = rte_eth_promiscuous_disable(port);
if (ret != 0)
fprintf(stderr,
"Error during %s promiscuous mode for port %u: %s\n",
enable ? "enabling" : "disabling",
port, rte_strerror(-ret));
}
void
eth_set_allmulticast_mode(uint16_t port, int enable)
{
int ret;
if (enable)
ret = rte_eth_allmulticast_enable(port);
else
ret = rte_eth_allmulticast_disable(port);
if (ret != 0)
fprintf(stderr,
"Error during %s all-multicast mode for port %u: %s\n",
enable ? "enabling" : "disabling",
port, rte_strerror(-ret));
}
int
eth_link_get_nowait_print_err(uint16_t port_id, struct rte_eth_link *link)
{
int ret;
ret = rte_eth_link_get_nowait(port_id, link);
if (ret < 0)
fprintf(stderr,
"Device (port %u) link get (without wait) failed: %s\n",
port_id, rte_strerror(-ret));
return ret;
}
int
eth_macaddr_get_print_err(uint16_t port_id, struct rte_ether_addr *mac_addr)
{
int ret;
ret = rte_eth_macaddr_get(port_id, mac_addr);
if (ret != 0)
fprintf(stderr,
"Error getting device (port %u) mac address: %s\n",
port_id, rte_strerror(-ret));
return ret;
}