numam-dpdk/lib/acl/acl_run_sse.h
Bruce Richardson 99a2dd955f lib: remove librte_ prefix from directory names
There is no reason for the DPDK libraries to all have 'librte_' prefix on
the directory names. This prefix makes the directory names longer and also
makes it awkward to add features referring to individual libraries in the
build - should the lib names be specified with or without the prefix.
Therefore, we can just remove the library prefix and use the library's
unique name as the directory name, i.e. 'eal' rather than 'librte_eal'

Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2021-04-21 14:04:09 +02:00

329 lines
9.4 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include "acl_run.h"
#include "acl_vect.h"
enum {
SHUFFLE32_SLOT1 = 0xe5,
SHUFFLE32_SLOT2 = 0xe6,
SHUFFLE32_SLOT3 = 0xe7,
SHUFFLE32_SWAP64 = 0x4e,
};
static const rte_xmm_t xmm_shuffle_input = {
.u32 = {0x00000000, 0x04040404, 0x08080808, 0x0c0c0c0c},
};
static const rte_xmm_t xmm_ones_16 = {
.u16 = {1, 1, 1, 1, 1, 1, 1, 1},
};
static const rte_xmm_t xmm_match_mask = {
.u32 = {
RTE_ACL_NODE_MATCH,
RTE_ACL_NODE_MATCH,
RTE_ACL_NODE_MATCH,
RTE_ACL_NODE_MATCH,
},
};
static const rte_xmm_t xmm_index_mask = {
.u32 = {
RTE_ACL_NODE_INDEX,
RTE_ACL_NODE_INDEX,
RTE_ACL_NODE_INDEX,
RTE_ACL_NODE_INDEX,
},
};
static const rte_xmm_t xmm_range_base = {
.u32 = {
0xffffff00, 0xffffff04, 0xffffff08, 0xffffff0c,
},
};
/*
* Resolve priority for multiple results (sse version).
* This consists comparing the priority of the current traversal with the
* running set of results for the packet.
* For each result, keep a running array of the result (rule number) and
* its priority for each category.
*/
static inline void
resolve_priority_sse(uint64_t transition, int n, const struct rte_acl_ctx *ctx,
struct parms *parms, const struct rte_acl_match_results *p,
uint32_t categories)
{
uint32_t x;
xmm_t results, priority, results1, priority1, selector;
xmm_t *saved_results, *saved_priority;
for (x = 0; x < categories; x += RTE_ACL_RESULTS_MULTIPLIER) {
saved_results = (xmm_t *)(&parms[n].cmplt->results[x]);
saved_priority =
(xmm_t *)(&parms[n].cmplt->priority[x]);
/* get results and priorities for completed trie */
results = _mm_loadu_si128(
(const xmm_t *)&p[transition].results[x]);
priority = _mm_loadu_si128(
(const xmm_t *)&p[transition].priority[x]);
/* if this is not the first completed trie */
if (parms[n].cmplt->count != ctx->num_tries) {
/* get running best results and their priorities */
results1 = _mm_loadu_si128(saved_results);
priority1 = _mm_loadu_si128(saved_priority);
/* select results that are highest priority */
selector = _mm_cmpgt_epi32(priority1, priority);
results = _mm_blendv_epi8(results, results1, selector);
priority = _mm_blendv_epi8(priority, priority1,
selector);
}
/* save running best results and their priorities */
_mm_storeu_si128(saved_results, results);
_mm_storeu_si128(saved_priority, priority);
}
}
/*
* Extract transitions from an XMM register and check for any matches
*/
static void
acl_process_matches(xmm_t *indices, int slot, const struct rte_acl_ctx *ctx,
struct parms *parms, struct acl_flow_data *flows)
{
uint64_t transition1, transition2;
/* extract transition from low 64 bits. */
transition1 = _mm_cvtsi128_si64(*indices);
/* extract transition from high 64 bits. */
*indices = _mm_shuffle_epi32(*indices, SHUFFLE32_SWAP64);
transition2 = _mm_cvtsi128_si64(*indices);
transition1 = acl_match_check(transition1, slot, ctx,
parms, flows, resolve_priority_sse);
transition2 = acl_match_check(transition2, slot + 1, ctx,
parms, flows, resolve_priority_sse);
/* update indices with new transitions. */
*indices = _mm_set_epi64x(transition2, transition1);
}
/*
* Check for any match in 4 transitions (contained in 2 SSE registers)
*/
static __rte_always_inline void
acl_match_check_x4(int slot, const struct rte_acl_ctx *ctx, struct parms *parms,
struct acl_flow_data *flows, xmm_t *indices1, xmm_t *indices2,
xmm_t match_mask)
{
xmm_t temp;
/* put low 32 bits of each transition into one register */
temp = (xmm_t)_mm_shuffle_ps((__m128)*indices1, (__m128)*indices2,
0x88);
/* test for match node */
temp = _mm_and_si128(match_mask, temp);
while (!_mm_testz_si128(temp, temp)) {
acl_process_matches(indices1, slot, ctx, parms, flows);
acl_process_matches(indices2, slot + 2, ctx, parms, flows);
temp = (xmm_t)_mm_shuffle_ps((__m128)*indices1,
(__m128)*indices2,
0x88);
temp = _mm_and_si128(match_mask, temp);
}
}
/*
* Process 4 transitions (in 2 XMM registers) in parallel
*/
static __rte_always_inline xmm_t
transition4(xmm_t next_input, const uint64_t *trans,
xmm_t *indices1, xmm_t *indices2)
{
xmm_t addr, tr_lo, tr_hi;
uint64_t trans0, trans2;
/* Shuffle low 32 into tr_lo and high 32 into tr_hi */
ACL_TR_HILO(mm, __m128, *indices1, *indices2, tr_lo, tr_hi);
/* Calculate the address (array index) for all 4 transitions. */
ACL_TR_CALC_ADDR(mm, 128, addr, xmm_index_mask.x, next_input,
xmm_shuffle_input.x, xmm_ones_16.x, xmm_range_base.x,
tr_lo, tr_hi);
/* Gather 64 bit transitions and pack back into 2 registers. */
trans0 = trans[_mm_cvtsi128_si32(addr)];
/* get slot 2 */
/* {x0, x1, x2, x3} -> {x2, x1, x2, x3} */
addr = _mm_shuffle_epi32(addr, SHUFFLE32_SLOT2);
trans2 = trans[_mm_cvtsi128_si32(addr)];
/* get slot 1 */
/* {x2, x1, x2, x3} -> {x1, x1, x2, x3} */
addr = _mm_shuffle_epi32(addr, SHUFFLE32_SLOT1);
*indices1 = _mm_set_epi64x(trans[_mm_cvtsi128_si32(addr)], trans0);
/* get slot 3 */
/* {x1, x1, x2, x3} -> {x3, x1, x2, x3} */
addr = _mm_shuffle_epi32(addr, SHUFFLE32_SLOT3);
*indices2 = _mm_set_epi64x(trans[_mm_cvtsi128_si32(addr)], trans2);
return _mm_srli_epi32(next_input, CHAR_BIT);
}
/*
* Execute trie traversal with 8 traversals in parallel
*/
static inline int
search_sse_8(const struct rte_acl_ctx *ctx, const uint8_t **data,
uint32_t *results, uint32_t total_packets, uint32_t categories)
{
int n;
struct acl_flow_data flows;
uint64_t index_array[MAX_SEARCHES_SSE8];
struct completion cmplt[MAX_SEARCHES_SSE8];
struct parms parms[MAX_SEARCHES_SSE8];
xmm_t input0, input1;
xmm_t indices1, indices2, indices3, indices4;
acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
total_packets, categories, ctx->trans_table);
for (n = 0; n < MAX_SEARCHES_SSE8; n++) {
cmplt[n].count = 0;
index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
}
/*
* indices1 contains index_array[0,1]
* indices2 contains index_array[2,3]
* indices3 contains index_array[4,5]
* indices4 contains index_array[6,7]
*/
indices1 = _mm_loadu_si128((xmm_t *) &index_array[0]);
indices2 = _mm_loadu_si128((xmm_t *) &index_array[2]);
indices3 = _mm_loadu_si128((xmm_t *) &index_array[4]);
indices4 = _mm_loadu_si128((xmm_t *) &index_array[6]);
/* Check for any matches. */
acl_match_check_x4(0, ctx, parms, &flows,
&indices1, &indices2, xmm_match_mask.x);
acl_match_check_x4(4, ctx, parms, &flows,
&indices3, &indices4, xmm_match_mask.x);
while (flows.started > 0) {
/* Gather 4 bytes of input data for each stream. */
input0 = _mm_cvtsi32_si128(GET_NEXT_4BYTES(parms, 0));
input1 = _mm_cvtsi32_si128(GET_NEXT_4BYTES(parms, 4));
input0 = _mm_insert_epi32(input0, GET_NEXT_4BYTES(parms, 1), 1);
input1 = _mm_insert_epi32(input1, GET_NEXT_4BYTES(parms, 5), 1);
input0 = _mm_insert_epi32(input0, GET_NEXT_4BYTES(parms, 2), 2);
input1 = _mm_insert_epi32(input1, GET_NEXT_4BYTES(parms, 6), 2);
input0 = _mm_insert_epi32(input0, GET_NEXT_4BYTES(parms, 3), 3);
input1 = _mm_insert_epi32(input1, GET_NEXT_4BYTES(parms, 7), 3);
/* Process the 4 bytes of input on each stream. */
input0 = transition4(input0, flows.trans,
&indices1, &indices2);
input1 = transition4(input1, flows.trans,
&indices3, &indices4);
input0 = transition4(input0, flows.trans,
&indices1, &indices2);
input1 = transition4(input1, flows.trans,
&indices3, &indices4);
input0 = transition4(input0, flows.trans,
&indices1, &indices2);
input1 = transition4(input1, flows.trans,
&indices3, &indices4);
input0 = transition4(input0, flows.trans,
&indices1, &indices2);
input1 = transition4(input1, flows.trans,
&indices3, &indices4);
/* Check for any matches. */
acl_match_check_x4(0, ctx, parms, &flows,
&indices1, &indices2, xmm_match_mask.x);
acl_match_check_x4(4, ctx, parms, &flows,
&indices3, &indices4, xmm_match_mask.x);
}
return 0;
}
/*
* Execute trie traversal with 4 traversals in parallel
*/
static inline int
search_sse_4(const struct rte_acl_ctx *ctx, const uint8_t **data,
uint32_t *results, int total_packets, uint32_t categories)
{
int n;
struct acl_flow_data flows;
uint64_t index_array[MAX_SEARCHES_SSE4];
struct completion cmplt[MAX_SEARCHES_SSE4];
struct parms parms[MAX_SEARCHES_SSE4];
xmm_t input, indices1, indices2;
acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
total_packets, categories, ctx->trans_table);
for (n = 0; n < MAX_SEARCHES_SSE4; n++) {
cmplt[n].count = 0;
index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
}
indices1 = _mm_loadu_si128((xmm_t *) &index_array[0]);
indices2 = _mm_loadu_si128((xmm_t *) &index_array[2]);
/* Check for any matches. */
acl_match_check_x4(0, ctx, parms, &flows,
&indices1, &indices2, xmm_match_mask.x);
while (flows.started > 0) {
/* Gather 4 bytes of input data for each stream. */
input = _mm_cvtsi32_si128(GET_NEXT_4BYTES(parms, 0));
input = _mm_insert_epi32(input, GET_NEXT_4BYTES(parms, 1), 1);
input = _mm_insert_epi32(input, GET_NEXT_4BYTES(parms, 2), 2);
input = _mm_insert_epi32(input, GET_NEXT_4BYTES(parms, 3), 3);
/* Process the 4 bytes of input on each stream. */
input = transition4(input, flows.trans, &indices1, &indices2);
input = transition4(input, flows.trans, &indices1, &indices2);
input = transition4(input, flows.trans, &indices1, &indices2);
input = transition4(input, flows.trans, &indices1, &indices2);
/* Check for any matches. */
acl_match_check_x4(0, ctx, parms, &flows,
&indices1, &indices2, xmm_match_mask.x);
}
return 0;
}