08a97874ce
Signed-off-by: Sergio Gonzalez Monroy <sergio.gonzalez.monroy@intel.com> Acked-by: Fiona Trahe <fiona.trahe@intel.com>
519 lines
14 KiB
C
519 lines
14 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2016-2017 Intel Corporation. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <rte_malloc.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_crypto.h>
|
|
#include <rte_cryptodev.h>
|
|
|
|
#include "cperf_test_throughput.h"
|
|
#include "cperf_ops.h"
|
|
|
|
struct cperf_throughput_ctx {
|
|
uint8_t dev_id;
|
|
uint16_t qp_id;
|
|
uint8_t lcore_id;
|
|
|
|
struct rte_mempool *pkt_mbuf_pool_in;
|
|
struct rte_mempool *pkt_mbuf_pool_out;
|
|
struct rte_mbuf **mbufs_in;
|
|
struct rte_mbuf **mbufs_out;
|
|
|
|
struct rte_mempool *crypto_op_pool;
|
|
|
|
struct rte_cryptodev_sym_session *sess;
|
|
|
|
cperf_populate_ops_t populate_ops;
|
|
|
|
const struct cperf_options *options;
|
|
const struct cperf_test_vector *test_vector;
|
|
};
|
|
|
|
static void
|
|
cperf_throughput_test_free(struct cperf_throughput_ctx *ctx, uint32_t mbuf_nb)
|
|
{
|
|
uint32_t i;
|
|
|
|
if (ctx) {
|
|
if (ctx->sess)
|
|
rte_cryptodev_sym_session_free(ctx->dev_id, ctx->sess);
|
|
|
|
if (ctx->mbufs_in) {
|
|
for (i = 0; i < mbuf_nb; i++)
|
|
rte_pktmbuf_free(ctx->mbufs_in[i]);
|
|
|
|
rte_free(ctx->mbufs_in);
|
|
}
|
|
|
|
if (ctx->mbufs_out) {
|
|
for (i = 0; i < mbuf_nb; i++) {
|
|
if (ctx->mbufs_out[i] != NULL)
|
|
rte_pktmbuf_free(ctx->mbufs_out[i]);
|
|
}
|
|
|
|
rte_free(ctx->mbufs_out);
|
|
}
|
|
|
|
if (ctx->pkt_mbuf_pool_in)
|
|
rte_mempool_free(ctx->pkt_mbuf_pool_in);
|
|
|
|
if (ctx->pkt_mbuf_pool_out)
|
|
rte_mempool_free(ctx->pkt_mbuf_pool_out);
|
|
|
|
if (ctx->crypto_op_pool)
|
|
rte_mempool_free(ctx->crypto_op_pool);
|
|
|
|
rte_free(ctx);
|
|
}
|
|
}
|
|
|
|
static struct rte_mbuf *
|
|
cperf_mbuf_create(struct rte_mempool *mempool,
|
|
uint32_t segments_nb,
|
|
const struct cperf_options *options,
|
|
const struct cperf_test_vector *test_vector)
|
|
{
|
|
struct rte_mbuf *mbuf;
|
|
uint32_t segment_sz = options->max_buffer_size / segments_nb;
|
|
uint32_t last_sz = options->max_buffer_size % segments_nb;
|
|
uint8_t *mbuf_data;
|
|
uint8_t *test_data =
|
|
(options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) ?
|
|
test_vector->plaintext.data :
|
|
test_vector->ciphertext.data;
|
|
|
|
mbuf = rte_pktmbuf_alloc(mempool);
|
|
if (mbuf == NULL)
|
|
goto error;
|
|
|
|
mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, segment_sz);
|
|
if (mbuf_data == NULL)
|
|
goto error;
|
|
|
|
memcpy(mbuf_data, test_data, segment_sz);
|
|
test_data += segment_sz;
|
|
segments_nb--;
|
|
|
|
while (segments_nb) {
|
|
struct rte_mbuf *m;
|
|
|
|
m = rte_pktmbuf_alloc(mempool);
|
|
if (m == NULL)
|
|
goto error;
|
|
|
|
rte_pktmbuf_chain(mbuf, m);
|
|
|
|
mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, segment_sz);
|
|
if (mbuf_data == NULL)
|
|
goto error;
|
|
|
|
memcpy(mbuf_data, test_data, segment_sz);
|
|
test_data += segment_sz;
|
|
segments_nb--;
|
|
}
|
|
|
|
if (last_sz) {
|
|
mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, last_sz);
|
|
if (mbuf_data == NULL)
|
|
goto error;
|
|
|
|
memcpy(mbuf_data, test_data, last_sz);
|
|
}
|
|
|
|
if (options->op_type != CPERF_CIPHER_ONLY) {
|
|
mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf,
|
|
options->auth_digest_sz);
|
|
if (mbuf_data == NULL)
|
|
goto error;
|
|
}
|
|
|
|
if (options->op_type == CPERF_AEAD) {
|
|
uint8_t *aead = (uint8_t *)rte_pktmbuf_prepend(mbuf,
|
|
RTE_ALIGN_CEIL(options->auth_aad_sz, 16));
|
|
|
|
if (aead == NULL)
|
|
goto error;
|
|
|
|
memcpy(aead, test_vector->aad.data, test_vector->aad.length);
|
|
}
|
|
|
|
return mbuf;
|
|
error:
|
|
if (mbuf != NULL)
|
|
rte_pktmbuf_free(mbuf);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void *
|
|
cperf_throughput_test_constructor(uint8_t dev_id, uint16_t qp_id,
|
|
const struct cperf_options *options,
|
|
const struct cperf_test_vector *test_vector,
|
|
const struct cperf_op_fns *op_fns)
|
|
{
|
|
struct cperf_throughput_ctx *ctx = NULL;
|
|
unsigned int mbuf_idx = 0;
|
|
char pool_name[32] = "";
|
|
|
|
ctx = rte_malloc(NULL, sizeof(struct cperf_throughput_ctx), 0);
|
|
if (ctx == NULL)
|
|
goto err;
|
|
|
|
ctx->dev_id = dev_id;
|
|
ctx->qp_id = qp_id;
|
|
|
|
ctx->populate_ops = op_fns->populate_ops;
|
|
ctx->options = options;
|
|
ctx->test_vector = test_vector;
|
|
|
|
ctx->sess = op_fns->sess_create(dev_id, options, test_vector);
|
|
if (ctx->sess == NULL)
|
|
goto err;
|
|
|
|
snprintf(pool_name, sizeof(pool_name), "cperf_pool_in_cdev_%d",
|
|
dev_id);
|
|
|
|
ctx->pkt_mbuf_pool_in = rte_pktmbuf_pool_create(pool_name,
|
|
options->pool_sz * options->segments_nb, 0, 0,
|
|
RTE_PKTMBUF_HEADROOM +
|
|
RTE_CACHE_LINE_ROUNDUP(
|
|
(options->max_buffer_size / options->segments_nb) +
|
|
(options->max_buffer_size % options->segments_nb) +
|
|
options->auth_digest_sz),
|
|
rte_socket_id());
|
|
|
|
if (ctx->pkt_mbuf_pool_in == NULL)
|
|
goto err;
|
|
|
|
/* Generate mbufs_in with plaintext populated for test */
|
|
ctx->mbufs_in = rte_malloc(NULL,
|
|
(sizeof(struct rte_mbuf *) * ctx->options->pool_sz), 0);
|
|
|
|
for (mbuf_idx = 0; mbuf_idx < options->pool_sz; mbuf_idx++) {
|
|
ctx->mbufs_in[mbuf_idx] = cperf_mbuf_create(
|
|
ctx->pkt_mbuf_pool_in, options->segments_nb,
|
|
options, test_vector);
|
|
if (ctx->mbufs_in[mbuf_idx] == NULL)
|
|
goto err;
|
|
}
|
|
|
|
if (options->out_of_place == 1) {
|
|
|
|
snprintf(pool_name, sizeof(pool_name), "cperf_pool_out_cdev_%d",
|
|
dev_id);
|
|
|
|
ctx->pkt_mbuf_pool_out = rte_pktmbuf_pool_create(
|
|
pool_name, options->pool_sz, 0, 0,
|
|
RTE_PKTMBUF_HEADROOM +
|
|
RTE_CACHE_LINE_ROUNDUP(
|
|
options->max_buffer_size +
|
|
options->auth_digest_sz),
|
|
rte_socket_id());
|
|
|
|
if (ctx->pkt_mbuf_pool_out == NULL)
|
|
goto err;
|
|
}
|
|
|
|
ctx->mbufs_out = rte_malloc(NULL,
|
|
(sizeof(struct rte_mbuf *) *
|
|
ctx->options->pool_sz), 0);
|
|
|
|
for (mbuf_idx = 0; mbuf_idx < options->pool_sz; mbuf_idx++) {
|
|
if (options->out_of_place == 1) {
|
|
ctx->mbufs_out[mbuf_idx] = cperf_mbuf_create(
|
|
ctx->pkt_mbuf_pool_out, 1,
|
|
options, test_vector);
|
|
if (ctx->mbufs_out[mbuf_idx] == NULL)
|
|
goto err;
|
|
} else {
|
|
ctx->mbufs_out[mbuf_idx] = NULL;
|
|
}
|
|
}
|
|
|
|
snprintf(pool_name, sizeof(pool_name), "cperf_op_pool_cdev_%d",
|
|
dev_id);
|
|
|
|
ctx->crypto_op_pool = rte_crypto_op_pool_create(pool_name,
|
|
RTE_CRYPTO_OP_TYPE_SYMMETRIC, options->pool_sz, 512, 0,
|
|
rte_socket_id());
|
|
if (ctx->crypto_op_pool == NULL)
|
|
goto err;
|
|
|
|
return ctx;
|
|
err:
|
|
cperf_throughput_test_free(ctx, mbuf_idx);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
int
|
|
cperf_throughput_test_runner(void *test_ctx)
|
|
{
|
|
struct cperf_throughput_ctx *ctx = test_ctx;
|
|
uint16_t test_burst_size;
|
|
uint8_t burst_size_idx = 0;
|
|
|
|
static int only_once;
|
|
|
|
struct rte_crypto_op *ops[ctx->options->max_burst_size];
|
|
struct rte_crypto_op *ops_processed[ctx->options->max_burst_size];
|
|
uint64_t i;
|
|
|
|
uint32_t lcore = rte_lcore_id();
|
|
|
|
#ifdef CPERF_LINEARIZATION_ENABLE
|
|
struct rte_cryptodev_info dev_info;
|
|
int linearize = 0;
|
|
|
|
/* Check if source mbufs require coalescing */
|
|
if (ctx->options->segments_nb > 1) {
|
|
rte_cryptodev_info_get(ctx->dev_id, &dev_info);
|
|
if ((dev_info.feature_flags &
|
|
RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
|
|
linearize = 1;
|
|
}
|
|
#endif /* CPERF_LINEARIZATION_ENABLE */
|
|
|
|
ctx->lcore_id = lcore;
|
|
|
|
/* Warm up the host CPU before starting the test */
|
|
for (i = 0; i < ctx->options->total_ops; i++)
|
|
rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
|
|
|
|
/* Get first size from range or list */
|
|
if (ctx->options->inc_burst_size != 0)
|
|
test_burst_size = ctx->options->min_burst_size;
|
|
else
|
|
test_burst_size = ctx->options->burst_size_list[0];
|
|
|
|
while (test_burst_size <= ctx->options->max_burst_size) {
|
|
uint64_t ops_enqd = 0, ops_enqd_total = 0, ops_enqd_failed = 0;
|
|
uint64_t ops_deqd = 0, ops_deqd_total = 0, ops_deqd_failed = 0;
|
|
|
|
uint64_t m_idx = 0, tsc_start, tsc_end, tsc_duration;
|
|
|
|
uint16_t ops_unused = 0;
|
|
|
|
tsc_start = rte_rdtsc_precise();
|
|
|
|
while (ops_enqd_total < ctx->options->total_ops) {
|
|
|
|
uint16_t burst_size = ((ops_enqd_total + test_burst_size)
|
|
<= ctx->options->total_ops) ?
|
|
test_burst_size :
|
|
ctx->options->total_ops -
|
|
ops_enqd_total;
|
|
|
|
uint16_t ops_needed = burst_size - ops_unused;
|
|
|
|
/* Allocate crypto ops from pool */
|
|
if (ops_needed != rte_crypto_op_bulk_alloc(
|
|
ctx->crypto_op_pool,
|
|
RTE_CRYPTO_OP_TYPE_SYMMETRIC,
|
|
ops, ops_needed))
|
|
return -1;
|
|
|
|
/* Setup crypto op, attach mbuf etc */
|
|
(ctx->populate_ops)(ops, &ctx->mbufs_in[m_idx],
|
|
&ctx->mbufs_out[m_idx],
|
|
ops_needed, ctx->sess, ctx->options,
|
|
ctx->test_vector);
|
|
|
|
/**
|
|
* When ops_needed is smaller than ops_enqd, the
|
|
* unused ops need to be moved to the front for
|
|
* next round use.
|
|
*/
|
|
if (unlikely(ops_enqd > ops_needed)) {
|
|
size_t nb_b_to_mov = ops_unused * sizeof(
|
|
struct rte_crypto_op *);
|
|
|
|
memmove(&ops[ops_needed], &ops[ops_enqd],
|
|
nb_b_to_mov);
|
|
}
|
|
|
|
#ifdef CPERF_LINEARIZATION_ENABLE
|
|
if (linearize) {
|
|
/* PMD doesn't support scatter-gather and source buffer
|
|
* is segmented.
|
|
* We need to linearize it before enqueuing.
|
|
*/
|
|
for (i = 0; i < burst_size; i++)
|
|
rte_pktmbuf_linearize(ops[i]->sym->m_src);
|
|
}
|
|
#endif /* CPERF_LINEARIZATION_ENABLE */
|
|
|
|
/* Enqueue burst of ops on crypto device */
|
|
ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
|
|
ops, burst_size);
|
|
if (ops_enqd < burst_size)
|
|
ops_enqd_failed++;
|
|
|
|
/**
|
|
* Calculate number of ops not enqueued (mainly for hw
|
|
* accelerators whose ingress queue can fill up).
|
|
*/
|
|
ops_unused = burst_size - ops_enqd;
|
|
ops_enqd_total += ops_enqd;
|
|
|
|
|
|
/* Dequeue processed burst of ops from crypto device */
|
|
ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
|
|
ops_processed, test_burst_size);
|
|
|
|
if (likely(ops_deqd)) {
|
|
/* free crypto ops so they can be reused. We don't free
|
|
* the mbufs here as we don't want to reuse them as
|
|
* the crypto operation will change the data and cause
|
|
* failures.
|
|
*/
|
|
rte_mempool_put_bulk(ctx->crypto_op_pool,
|
|
(void **)ops_processed, ops_deqd);
|
|
|
|
ops_deqd_total += ops_deqd;
|
|
} else {
|
|
/**
|
|
* Count dequeue polls which didn't return any
|
|
* processed operations. This statistic is mainly
|
|
* relevant to hw accelerators.
|
|
*/
|
|
ops_deqd_failed++;
|
|
}
|
|
|
|
m_idx += ops_needed;
|
|
m_idx = m_idx + test_burst_size > ctx->options->pool_sz ?
|
|
0 : m_idx;
|
|
}
|
|
|
|
/* Dequeue any operations still in the crypto device */
|
|
|
|
while (ops_deqd_total < ctx->options->total_ops) {
|
|
/* Sending 0 length burst to flush sw crypto device */
|
|
rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
|
|
|
|
/* dequeue burst */
|
|
ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
|
|
ops_processed, test_burst_size);
|
|
if (ops_deqd == 0)
|
|
ops_deqd_failed++;
|
|
else {
|
|
rte_mempool_put_bulk(ctx->crypto_op_pool,
|
|
(void **)ops_processed, ops_deqd);
|
|
|
|
ops_deqd_total += ops_deqd;
|
|
}
|
|
}
|
|
|
|
tsc_end = rte_rdtsc_precise();
|
|
tsc_duration = (tsc_end - tsc_start);
|
|
|
|
/* Calculate average operations processed per second */
|
|
double ops_per_second = ((double)ctx->options->total_ops /
|
|
tsc_duration) * rte_get_tsc_hz();
|
|
|
|
/* Calculate average throughput (Gbps) in bits per second */
|
|
double throughput_gbps = ((ops_per_second *
|
|
ctx->options->test_buffer_size * 8) / 1000000000);
|
|
|
|
/* Calculate average cycles per packet */
|
|
double cycles_per_packet = ((double)tsc_duration /
|
|
ctx->options->total_ops);
|
|
|
|
if (!ctx->options->csv) {
|
|
if (!only_once)
|
|
printf("%12s%12s%12s%12s%12s%12s%12s%12s%12s%12s\n\n",
|
|
"lcore id", "Buf Size", "Burst Size",
|
|
"Enqueued", "Dequeued", "Failed Enq",
|
|
"Failed Deq", "MOps", "Gbps",
|
|
"Cycles/Buf");
|
|
only_once = 1;
|
|
|
|
printf("%12u%12u%12u%12"PRIu64"%12"PRIu64"%12"PRIu64
|
|
"%12"PRIu64"%12.4f%12.4f%12.2f\n",
|
|
ctx->lcore_id,
|
|
ctx->options->test_buffer_size,
|
|
test_burst_size,
|
|
ops_enqd_total,
|
|
ops_deqd_total,
|
|
ops_enqd_failed,
|
|
ops_deqd_failed,
|
|
ops_per_second/1000000,
|
|
throughput_gbps,
|
|
cycles_per_packet);
|
|
} else {
|
|
if (!only_once)
|
|
printf("# lcore id, Buffer Size(B),"
|
|
"Burst Size,Enqueued,Dequeued,Failed Enq,"
|
|
"Failed Deq,Ops(Millions),Throughput(Gbps),"
|
|
"Cycles/Buf\n\n");
|
|
only_once = 1;
|
|
|
|
printf("%10u;%10u;%u;%"PRIu64";%"PRIu64";%"PRIu64";%"PRIu64";"
|
|
"%.f3;%.f3;%.f3\n",
|
|
ctx->lcore_id,
|
|
ctx->options->test_buffer_size,
|
|
test_burst_size,
|
|
ops_enqd_total,
|
|
ops_deqd_total,
|
|
ops_enqd_failed,
|
|
ops_deqd_failed,
|
|
ops_per_second/1000000,
|
|
throughput_gbps,
|
|
cycles_per_packet);
|
|
}
|
|
|
|
/* Get next size from range or list */
|
|
if (ctx->options->inc_burst_size != 0)
|
|
test_burst_size += ctx->options->inc_burst_size;
|
|
else {
|
|
if (++burst_size_idx == ctx->options->burst_size_count)
|
|
break;
|
|
test_burst_size = ctx->options->burst_size_list[burst_size_idx];
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
void
|
|
cperf_throughput_test_destructor(void *arg)
|
|
{
|
|
struct cperf_throughput_ctx *ctx = arg;
|
|
|
|
if (ctx == NULL)
|
|
return;
|
|
|
|
cperf_throughput_test_free(ctx, ctx->options->pool_sz);
|
|
}
|