numam-dpdk/lib/librte_eal/common/eal_common_memory.c
Dariusz Stojaczyk 09037cf36c mem: avoid crash on memseg query with invalid address
When trying to use it with an address that's not
managed by DPDK it would segfault due to a missing
check. The doc says this function returns either
a pointer or NULL, so let it do so.

Fixes: 66cc45e293 ("mem: replace memseg with memseg lists")
Cc: stable@dpdk.org

Signed-off-by: Dariusz Stojaczyk <dariuszx.stojaczyk@intel.com>
Acked-by: Anatoly Burakov <anatoly.burakov@intel.com>
2018-07-13 00:25:08 +02:00

952 lines
24 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <errno.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <unistd.h>
#include <inttypes.h>
#include <sys/mman.h>
#include <sys/queue.h>
#include <rte_fbarray.h>
#include <rte_memory.h>
#include <rte_eal.h>
#include <rte_eal_memconfig.h>
#include <rte_errno.h>
#include <rte_log.h>
#include "eal_memalloc.h"
#include "eal_private.h"
#include "eal_internal_cfg.h"
/*
* Try to mmap *size bytes in /dev/zero. If it is successful, return the
* pointer to the mmap'd area and keep *size unmodified. Else, retry
* with a smaller zone: decrease *size by hugepage_sz until it reaches
* 0. In this case, return NULL. Note: this function returns an address
* which is a multiple of hugepage size.
*/
#define MEMSEG_LIST_FMT "memseg-%" PRIu64 "k-%i-%i"
static uint64_t baseaddr_offset;
static uint64_t system_page_sz;
void *
eal_get_virtual_area(void *requested_addr, size_t *size,
size_t page_sz, int flags, int mmap_flags)
{
bool addr_is_hint, allow_shrink, unmap, no_align;
uint64_t map_sz;
void *mapped_addr, *aligned_addr;
if (system_page_sz == 0)
system_page_sz = sysconf(_SC_PAGESIZE);
mmap_flags |= MAP_PRIVATE | MAP_ANONYMOUS;
RTE_LOG(DEBUG, EAL, "Ask a virtual area of 0x%zx bytes\n", *size);
addr_is_hint = (flags & EAL_VIRTUAL_AREA_ADDR_IS_HINT) > 0;
allow_shrink = (flags & EAL_VIRTUAL_AREA_ALLOW_SHRINK) > 0;
unmap = (flags & EAL_VIRTUAL_AREA_UNMAP) > 0;
if (requested_addr == NULL && internal_config.base_virtaddr != 0) {
requested_addr = (void *) (internal_config.base_virtaddr +
(size_t)baseaddr_offset);
requested_addr = RTE_PTR_ALIGN(requested_addr, page_sz);
addr_is_hint = true;
}
/* if requested address is not aligned by page size, or if requested
* address is NULL, add page size to requested length as we may get an
* address that's aligned by system page size, which can be smaller than
* our requested page size. additionally, we shouldn't try to align if
* system page size is the same as requested page size.
*/
no_align = (requested_addr != NULL &&
((uintptr_t)requested_addr & (page_sz - 1)) == 0) ||
page_sz == system_page_sz;
do {
map_sz = no_align ? *size : *size + page_sz;
if (map_sz > SIZE_MAX) {
RTE_LOG(ERR, EAL, "Map size too big\n");
rte_errno = E2BIG;
return NULL;
}
mapped_addr = mmap(requested_addr, (size_t)map_sz, PROT_READ,
mmap_flags, -1, 0);
if (mapped_addr == MAP_FAILED && allow_shrink)
*size -= page_sz;
} while (allow_shrink && mapped_addr == MAP_FAILED && *size > 0);
/* align resulting address - if map failed, we will ignore the value
* anyway, so no need to add additional checks.
*/
aligned_addr = no_align ? mapped_addr :
RTE_PTR_ALIGN(mapped_addr, page_sz);
if (*size == 0) {
RTE_LOG(ERR, EAL, "Cannot get a virtual area of any size: %s\n",
strerror(errno));
rte_errno = errno;
return NULL;
} else if (mapped_addr == MAP_FAILED) {
RTE_LOG(ERR, EAL, "Cannot get a virtual area: %s\n",
strerror(errno));
/* pass errno up the call chain */
rte_errno = errno;
return NULL;
} else if (requested_addr != NULL && !addr_is_hint &&
aligned_addr != requested_addr) {
RTE_LOG(ERR, EAL, "Cannot get a virtual area at requested address: %p (got %p)\n",
requested_addr, aligned_addr);
munmap(mapped_addr, map_sz);
rte_errno = EADDRNOTAVAIL;
return NULL;
} else if (requested_addr != NULL && addr_is_hint &&
aligned_addr != requested_addr) {
RTE_LOG(WARNING, EAL, "WARNING! Base virtual address hint (%p != %p) not respected!\n",
requested_addr, aligned_addr);
RTE_LOG(WARNING, EAL, " This may cause issues with mapping memory into secondary processes\n");
}
RTE_LOG(DEBUG, EAL, "Virtual area found at %p (size = 0x%zx)\n",
aligned_addr, *size);
if (unmap) {
munmap(mapped_addr, map_sz);
} else if (!no_align) {
void *map_end, *aligned_end;
size_t before_len, after_len;
/* when we reserve space with alignment, we add alignment to
* mapping size. On 32-bit, if 1GB alignment was requested, this
* would waste 1GB of address space, which is a luxury we cannot
* afford. so, if alignment was performed, check if any unneeded
* address space can be unmapped back.
*/
map_end = RTE_PTR_ADD(mapped_addr, (size_t)map_sz);
aligned_end = RTE_PTR_ADD(aligned_addr, *size);
/* unmap space before aligned mmap address */
before_len = RTE_PTR_DIFF(aligned_addr, mapped_addr);
if (before_len > 0)
munmap(mapped_addr, before_len);
/* unmap space after aligned end mmap address */
after_len = RTE_PTR_DIFF(map_end, aligned_end);
if (after_len > 0)
munmap(aligned_end, after_len);
}
baseaddr_offset += *size;
return aligned_addr;
}
static uint64_t
get_mem_amount(uint64_t page_sz, uint64_t max_mem)
{
uint64_t area_sz, max_pages;
/* limit to RTE_MAX_MEMSEG_PER_LIST pages or RTE_MAX_MEM_MB_PER_LIST */
max_pages = RTE_MAX_MEMSEG_PER_LIST;
max_mem = RTE_MIN((uint64_t)RTE_MAX_MEM_MB_PER_LIST << 20, max_mem);
area_sz = RTE_MIN(page_sz * max_pages, max_mem);
/* make sure the list isn't smaller than the page size */
area_sz = RTE_MAX(area_sz, page_sz);
return RTE_ALIGN(area_sz, page_sz);
}
static int
free_memseg_list(struct rte_memseg_list *msl)
{
if (rte_fbarray_destroy(&msl->memseg_arr)) {
RTE_LOG(ERR, EAL, "Cannot destroy memseg list\n");
return -1;
}
memset(msl, 0, sizeof(*msl));
return 0;
}
static int
alloc_memseg_list(struct rte_memseg_list *msl, uint64_t page_sz,
uint64_t max_mem, int socket_id, int type_msl_idx)
{
char name[RTE_FBARRAY_NAME_LEN];
uint64_t mem_amount;
int max_segs;
mem_amount = get_mem_amount(page_sz, max_mem);
max_segs = mem_amount / page_sz;
snprintf(name, sizeof(name), MEMSEG_LIST_FMT, page_sz >> 10, socket_id,
type_msl_idx);
if (rte_fbarray_init(&msl->memseg_arr, name, max_segs,
sizeof(struct rte_memseg))) {
RTE_LOG(ERR, EAL, "Cannot allocate memseg list: %s\n",
rte_strerror(rte_errno));
return -1;
}
msl->page_sz = page_sz;
msl->socket_id = socket_id;
msl->base_va = NULL;
RTE_LOG(DEBUG, EAL, "Memseg list allocated: 0x%zxkB at socket %i\n",
(size_t)page_sz >> 10, socket_id);
return 0;
}
static int
alloc_va_space(struct rte_memseg_list *msl)
{
uint64_t page_sz;
size_t mem_sz;
void *addr;
int flags = 0;
#ifdef RTE_ARCH_PPC_64
flags |= MAP_HUGETLB;
#endif
page_sz = msl->page_sz;
mem_sz = page_sz * msl->memseg_arr.len;
addr = eal_get_virtual_area(msl->base_va, &mem_sz, page_sz, 0, flags);
if (addr == NULL) {
if (rte_errno == EADDRNOTAVAIL)
RTE_LOG(ERR, EAL, "Could not mmap %llu bytes at [%p] - please use '--base-virtaddr' option\n",
(unsigned long long)mem_sz, msl->base_va);
else
RTE_LOG(ERR, EAL, "Cannot reserve memory\n");
return -1;
}
msl->base_va = addr;
return 0;
}
static int __rte_unused
memseg_primary_init_32(void)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
int active_sockets, hpi_idx, msl_idx = 0;
unsigned int socket_id, i;
struct rte_memseg_list *msl;
uint64_t extra_mem_per_socket, total_extra_mem, total_requested_mem;
uint64_t max_mem;
/* no-huge does not need this at all */
if (internal_config.no_hugetlbfs)
return 0;
/* this is a giant hack, but desperate times call for desperate
* measures. in legacy 32-bit mode, we cannot preallocate VA space,
* because having upwards of 2 gigabytes of VA space already mapped will
* interfere with our ability to map and sort hugepages.
*
* therefore, in legacy 32-bit mode, we will be initializing memseg
* lists much later - in eal_memory.c, right after we unmap all the
* unneeded pages. this will not affect secondary processes, as those
* should be able to mmap the space without (too many) problems.
*/
if (internal_config.legacy_mem)
return 0;
/* 32-bit mode is a very special case. we cannot know in advance where
* the user will want to allocate their memory, so we have to do some
* heuristics.
*/
active_sockets = 0;
total_requested_mem = 0;
if (internal_config.force_sockets)
for (i = 0; i < rte_socket_count(); i++) {
uint64_t mem;
socket_id = rte_socket_id_by_idx(i);
mem = internal_config.socket_mem[socket_id];
if (mem == 0)
continue;
active_sockets++;
total_requested_mem += mem;
}
else
total_requested_mem = internal_config.memory;
max_mem = (uint64_t)RTE_MAX_MEM_MB << 20;
if (total_requested_mem > max_mem) {
RTE_LOG(ERR, EAL, "Invalid parameters: 32-bit process can at most use %uM of memory\n",
(unsigned int)(max_mem >> 20));
return -1;
}
total_extra_mem = max_mem - total_requested_mem;
extra_mem_per_socket = active_sockets == 0 ? total_extra_mem :
total_extra_mem / active_sockets;
/* the allocation logic is a little bit convoluted, but here's how it
* works, in a nutshell:
* - if user hasn't specified on which sockets to allocate memory via
* --socket-mem, we allocate all of our memory on master core socket.
* - if user has specified sockets to allocate memory on, there may be
* some "unused" memory left (e.g. if user has specified --socket-mem
* such that not all memory adds up to 2 gigabytes), so add it to all
* sockets that are in use equally.
*
* page sizes are sorted by size in descending order, so we can safely
* assume that we dispense with bigger page sizes first.
*/
/* create memseg lists */
for (i = 0; i < rte_socket_count(); i++) {
int hp_sizes = (int) internal_config.num_hugepage_sizes;
uint64_t max_socket_mem, cur_socket_mem;
unsigned int master_lcore_socket;
struct rte_config *cfg = rte_eal_get_configuration();
bool skip;
socket_id = rte_socket_id_by_idx(i);
#ifndef RTE_EAL_NUMA_AWARE_HUGEPAGES
if (socket_id > 0)
break;
#endif
/* if we didn't specifically request memory on this socket */
skip = active_sockets != 0 &&
internal_config.socket_mem[socket_id] == 0;
/* ...or if we didn't specifically request memory on *any*
* socket, and this is not master lcore
*/
master_lcore_socket = rte_lcore_to_socket_id(cfg->master_lcore);
skip |= active_sockets == 0 && socket_id != master_lcore_socket;
if (skip) {
RTE_LOG(DEBUG, EAL, "Will not preallocate memory on socket %u\n",
socket_id);
continue;
}
/* max amount of memory on this socket */
max_socket_mem = (active_sockets != 0 ?
internal_config.socket_mem[socket_id] :
internal_config.memory) +
extra_mem_per_socket;
cur_socket_mem = 0;
for (hpi_idx = 0; hpi_idx < hp_sizes; hpi_idx++) {
uint64_t max_pagesz_mem, cur_pagesz_mem = 0;
uint64_t hugepage_sz;
struct hugepage_info *hpi;
int type_msl_idx, max_segs, total_segs = 0;
hpi = &internal_config.hugepage_info[hpi_idx];
hugepage_sz = hpi->hugepage_sz;
/* check if pages are actually available */
if (hpi->num_pages[socket_id] == 0)
continue;
max_segs = RTE_MAX_MEMSEG_PER_TYPE;
max_pagesz_mem = max_socket_mem - cur_socket_mem;
/* make it multiple of page size */
max_pagesz_mem = RTE_ALIGN_FLOOR(max_pagesz_mem,
hugepage_sz);
RTE_LOG(DEBUG, EAL, "Attempting to preallocate "
"%" PRIu64 "M on socket %i\n",
max_pagesz_mem >> 20, socket_id);
type_msl_idx = 0;
while (cur_pagesz_mem < max_pagesz_mem &&
total_segs < max_segs) {
if (msl_idx >= RTE_MAX_MEMSEG_LISTS) {
RTE_LOG(ERR, EAL,
"No more space in memseg lists, please increase %s\n",
RTE_STR(CONFIG_RTE_MAX_MEMSEG_LISTS));
return -1;
}
msl = &mcfg->memsegs[msl_idx];
if (alloc_memseg_list(msl, hugepage_sz,
max_pagesz_mem, socket_id,
type_msl_idx)) {
/* failing to allocate a memseg list is
* a serious error.
*/
RTE_LOG(ERR, EAL, "Cannot allocate memseg list\n");
return -1;
}
if (alloc_va_space(msl)) {
/* if we couldn't allocate VA space, we
* can try with smaller page sizes.
*/
RTE_LOG(ERR, EAL, "Cannot allocate VA space for memseg list, retrying with different page size\n");
/* deallocate memseg list */
if (free_memseg_list(msl))
return -1;
break;
}
total_segs += msl->memseg_arr.len;
cur_pagesz_mem = total_segs * hugepage_sz;
type_msl_idx++;
msl_idx++;
}
cur_socket_mem += cur_pagesz_mem;
}
if (cur_socket_mem == 0) {
RTE_LOG(ERR, EAL, "Cannot allocate VA space on socket %u\n",
socket_id);
return -1;
}
}
return 0;
}
static int __rte_unused
memseg_primary_init(void)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
int i, socket_id, hpi_idx, msl_idx = 0;
struct rte_memseg_list *msl;
uint64_t max_mem, total_mem;
/* no-huge does not need this at all */
if (internal_config.no_hugetlbfs)
return 0;
max_mem = (uint64_t)RTE_MAX_MEM_MB << 20;
total_mem = 0;
/* create memseg lists */
for (hpi_idx = 0; hpi_idx < (int) internal_config.num_hugepage_sizes;
hpi_idx++) {
struct hugepage_info *hpi;
uint64_t hugepage_sz;
hpi = &internal_config.hugepage_info[hpi_idx];
hugepage_sz = hpi->hugepage_sz;
for (i = 0; i < (int) rte_socket_count(); i++) {
uint64_t max_type_mem, total_type_mem = 0;
int type_msl_idx, max_segs, total_segs = 0;
socket_id = rte_socket_id_by_idx(i);
#ifndef RTE_EAL_NUMA_AWARE_HUGEPAGES
if (socket_id > 0)
break;
#endif
if (total_mem >= max_mem)
break;
max_type_mem = RTE_MIN(max_mem - total_mem,
(uint64_t)RTE_MAX_MEM_MB_PER_TYPE << 20);
max_segs = RTE_MAX_MEMSEG_PER_TYPE;
type_msl_idx = 0;
while (total_type_mem < max_type_mem &&
total_segs < max_segs) {
uint64_t cur_max_mem;
if (msl_idx >= RTE_MAX_MEMSEG_LISTS) {
RTE_LOG(ERR, EAL,
"No more space in memseg lists, please increase %s\n",
RTE_STR(CONFIG_RTE_MAX_MEMSEG_LISTS));
return -1;
}
msl = &mcfg->memsegs[msl_idx++];
cur_max_mem = max_type_mem - total_type_mem;
if (alloc_memseg_list(msl, hugepage_sz,
cur_max_mem, socket_id,
type_msl_idx))
return -1;
total_segs += msl->memseg_arr.len;
total_type_mem = total_segs * hugepage_sz;
type_msl_idx++;
if (alloc_va_space(msl)) {
RTE_LOG(ERR, EAL, "Cannot allocate VA space for memseg list\n");
return -1;
}
}
total_mem += total_type_mem;
}
}
return 0;
}
static int
memseg_secondary_init(void)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
int msl_idx = 0;
struct rte_memseg_list *msl;
for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) {
msl = &mcfg->memsegs[msl_idx];
/* skip empty memseg lists */
if (msl->memseg_arr.len == 0)
continue;
if (rte_fbarray_attach(&msl->memseg_arr)) {
RTE_LOG(ERR, EAL, "Cannot attach to primary process memseg lists\n");
return -1;
}
/* preallocate VA space */
if (alloc_va_space(msl)) {
RTE_LOG(ERR, EAL, "Cannot preallocate VA space for hugepage memory\n");
return -1;
}
}
return 0;
}
static struct rte_memseg *
virt2memseg(const void *addr, const struct rte_memseg_list *msl)
{
const struct rte_fbarray *arr;
void *start, *end;
int ms_idx;
if (msl == NULL)
return NULL;
/* a memseg list was specified, check if it's the right one */
start = msl->base_va;
end = RTE_PTR_ADD(start, (size_t)msl->page_sz * msl->memseg_arr.len);
if (addr < start || addr >= end)
return NULL;
/* now, calculate index */
arr = &msl->memseg_arr;
ms_idx = RTE_PTR_DIFF(addr, msl->base_va) / msl->page_sz;
return rte_fbarray_get(arr, ms_idx);
}
static struct rte_memseg_list *
virt2memseg_list(const void *addr)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
struct rte_memseg_list *msl;
int msl_idx;
for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) {
void *start, *end;
msl = &mcfg->memsegs[msl_idx];
start = msl->base_va;
end = RTE_PTR_ADD(start,
(size_t)msl->page_sz * msl->memseg_arr.len);
if (addr >= start && addr < end)
break;
}
/* if we didn't find our memseg list */
if (msl_idx == RTE_MAX_MEMSEG_LISTS)
return NULL;
return msl;
}
__rte_experimental struct rte_memseg_list *
rte_mem_virt2memseg_list(const void *addr)
{
return virt2memseg_list(addr);
}
struct virtiova {
rte_iova_t iova;
void *virt;
};
static int
find_virt(const struct rte_memseg_list *msl __rte_unused,
const struct rte_memseg *ms, void *arg)
{
struct virtiova *vi = arg;
if (vi->iova >= ms->iova && vi->iova < (ms->iova + ms->len)) {
size_t offset = vi->iova - ms->iova;
vi->virt = RTE_PTR_ADD(ms->addr, offset);
/* stop the walk */
return 1;
}
return 0;
}
static int
find_virt_legacy(const struct rte_memseg_list *msl __rte_unused,
const struct rte_memseg *ms, size_t len, void *arg)
{
struct virtiova *vi = arg;
if (vi->iova >= ms->iova && vi->iova < (ms->iova + len)) {
size_t offset = vi->iova - ms->iova;
vi->virt = RTE_PTR_ADD(ms->addr, offset);
/* stop the walk */
return 1;
}
return 0;
}
__rte_experimental void *
rte_mem_iova2virt(rte_iova_t iova)
{
struct virtiova vi;
memset(&vi, 0, sizeof(vi));
vi.iova = iova;
/* for legacy mem, we can get away with scanning VA-contiguous segments,
* as we know they are PA-contiguous as well
*/
if (internal_config.legacy_mem)
rte_memseg_contig_walk(find_virt_legacy, &vi);
else
rte_memseg_walk(find_virt, &vi);
return vi.virt;
}
__rte_experimental struct rte_memseg *
rte_mem_virt2memseg(const void *addr, const struct rte_memseg_list *msl)
{
return virt2memseg(addr, msl != NULL ? msl :
rte_mem_virt2memseg_list(addr));
}
static int
physmem_size(const struct rte_memseg_list *msl, void *arg)
{
uint64_t *total_len = arg;
*total_len += msl->memseg_arr.count * msl->page_sz;
return 0;
}
/* get the total size of memory */
uint64_t
rte_eal_get_physmem_size(void)
{
uint64_t total_len = 0;
rte_memseg_list_walk(physmem_size, &total_len);
return total_len;
}
static int
dump_memseg(const struct rte_memseg_list *msl, const struct rte_memseg *ms,
void *arg)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
int msl_idx, ms_idx;
FILE *f = arg;
msl_idx = msl - mcfg->memsegs;
if (msl_idx < 0 || msl_idx >= RTE_MAX_MEMSEG_LISTS)
return -1;
ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
if (ms_idx < 0)
return -1;
fprintf(f, "Segment %i-%i: IOVA:0x%"PRIx64", len:%zu, "
"virt:%p, socket_id:%"PRId32", "
"hugepage_sz:%"PRIu64", nchannel:%"PRIx32", "
"nrank:%"PRIx32"\n",
msl_idx, ms_idx,
ms->iova,
ms->len,
ms->addr,
ms->socket_id,
ms->hugepage_sz,
ms->nchannel,
ms->nrank);
return 0;
}
/*
* Defining here because declared in rte_memory.h, but the actual implementation
* is in eal_common_memalloc.c, like all other memalloc internals.
*/
int __rte_experimental
rte_mem_event_callback_register(const char *name, rte_mem_event_callback_t clb,
void *arg)
{
/* FreeBSD boots with legacy mem enabled by default */
if (internal_config.legacy_mem) {
RTE_LOG(DEBUG, EAL, "Registering mem event callbacks not supported\n");
rte_errno = ENOTSUP;
return -1;
}
return eal_memalloc_mem_event_callback_register(name, clb, arg);
}
int __rte_experimental
rte_mem_event_callback_unregister(const char *name, void *arg)
{
/* FreeBSD boots with legacy mem enabled by default */
if (internal_config.legacy_mem) {
RTE_LOG(DEBUG, EAL, "Registering mem event callbacks not supported\n");
rte_errno = ENOTSUP;
return -1;
}
return eal_memalloc_mem_event_callback_unregister(name, arg);
}
int __rte_experimental
rte_mem_alloc_validator_register(const char *name,
rte_mem_alloc_validator_t clb, int socket_id, size_t limit)
{
/* FreeBSD boots with legacy mem enabled by default */
if (internal_config.legacy_mem) {
RTE_LOG(DEBUG, EAL, "Registering mem alloc validators not supported\n");
rte_errno = ENOTSUP;
return -1;
}
return eal_memalloc_mem_alloc_validator_register(name, clb, socket_id,
limit);
}
int __rte_experimental
rte_mem_alloc_validator_unregister(const char *name, int socket_id)
{
/* FreeBSD boots with legacy mem enabled by default */
if (internal_config.legacy_mem) {
RTE_LOG(DEBUG, EAL, "Registering mem alloc validators not supported\n");
rte_errno = ENOTSUP;
return -1;
}
return eal_memalloc_mem_alloc_validator_unregister(name, socket_id);
}
/* Dump the physical memory layout on console */
void
rte_dump_physmem_layout(FILE *f)
{
rte_memseg_walk(dump_memseg, f);
}
/* return the number of memory channels */
unsigned rte_memory_get_nchannel(void)
{
return rte_eal_get_configuration()->mem_config->nchannel;
}
/* return the number of memory rank */
unsigned rte_memory_get_nrank(void)
{
return rte_eal_get_configuration()->mem_config->nrank;
}
static int
rte_eal_memdevice_init(void)
{
struct rte_config *config;
if (rte_eal_process_type() == RTE_PROC_SECONDARY)
return 0;
config = rte_eal_get_configuration();
config->mem_config->nchannel = internal_config.force_nchannel;
config->mem_config->nrank = internal_config.force_nrank;
return 0;
}
/* Lock page in physical memory and prevent from swapping. */
int
rte_mem_lock_page(const void *virt)
{
unsigned long virtual = (unsigned long)virt;
int page_size = getpagesize();
unsigned long aligned = (virtual & ~(page_size - 1));
return mlock((void *)aligned, page_size);
}
int __rte_experimental
rte_memseg_contig_walk(rte_memseg_contig_walk_t func, void *arg)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
int i, ms_idx, ret = 0;
/* do not allow allocations/frees/init while we iterate */
rte_rwlock_read_lock(&mcfg->memory_hotplug_lock);
for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
struct rte_memseg_list *msl = &mcfg->memsegs[i];
const struct rte_memseg *ms;
struct rte_fbarray *arr;
if (msl->memseg_arr.count == 0)
continue;
arr = &msl->memseg_arr;
ms_idx = rte_fbarray_find_next_used(arr, 0);
while (ms_idx >= 0) {
int n_segs;
size_t len;
ms = rte_fbarray_get(arr, ms_idx);
/* find how many more segments there are, starting with
* this one.
*/
n_segs = rte_fbarray_find_contig_used(arr, ms_idx);
len = n_segs * msl->page_sz;
ret = func(msl, ms, len, arg);
if (ret < 0) {
ret = -1;
goto out;
} else if (ret > 0) {
ret = 1;
goto out;
}
ms_idx = rte_fbarray_find_next_used(arr,
ms_idx + n_segs);
}
}
out:
rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock);
return ret;
}
int __rte_experimental
rte_memseg_walk(rte_memseg_walk_t func, void *arg)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
int i, ms_idx, ret = 0;
/* do not allow allocations/frees/init while we iterate */
rte_rwlock_read_lock(&mcfg->memory_hotplug_lock);
for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
struct rte_memseg_list *msl = &mcfg->memsegs[i];
const struct rte_memseg *ms;
struct rte_fbarray *arr;
if (msl->memseg_arr.count == 0)
continue;
arr = &msl->memseg_arr;
ms_idx = rte_fbarray_find_next_used(arr, 0);
while (ms_idx >= 0) {
ms = rte_fbarray_get(arr, ms_idx);
ret = func(msl, ms, arg);
if (ret < 0) {
ret = -1;
goto out;
} else if (ret > 0) {
ret = 1;
goto out;
}
ms_idx = rte_fbarray_find_next_used(arr, ms_idx + 1);
}
}
out:
rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock);
return ret;
}
int __rte_experimental
rte_memseg_list_walk(rte_memseg_list_walk_t func, void *arg)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
int i, ret = 0;
/* do not allow allocations/frees/init while we iterate */
rte_rwlock_read_lock(&mcfg->memory_hotplug_lock);
for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
struct rte_memseg_list *msl = &mcfg->memsegs[i];
if (msl->base_va == NULL)
continue;
ret = func(msl, arg);
if (ret < 0) {
ret = -1;
goto out;
}
if (ret > 0) {
ret = 1;
goto out;
}
}
out:
rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock);
return ret;
}
/* init memory subsystem */
int
rte_eal_memory_init(void)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
int retval;
RTE_LOG(DEBUG, EAL, "Setting up physically contiguous memory...\n");
if (!mcfg)
return -1;
/* lock mem hotplug here, to prevent races while we init */
rte_rwlock_read_lock(&mcfg->memory_hotplug_lock);
retval = rte_eal_process_type() == RTE_PROC_PRIMARY ?
#ifndef RTE_ARCH_64
memseg_primary_init_32() :
#else
memseg_primary_init() :
#endif
memseg_secondary_init();
if (retval < 0)
goto fail;
if (eal_memalloc_init() < 0)
goto fail;
retval = rte_eal_process_type() == RTE_PROC_PRIMARY ?
rte_eal_hugepage_init() :
rte_eal_hugepage_attach();
if (retval < 0)
goto fail;
if (internal_config.no_shconf == 0 && rte_eal_memdevice_init() < 0)
goto fail;
return 0;
fail:
rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock);
return -1;
}