numam-dpdk/drivers/net/mlx5/mlx5_rxtx.c
Yaacov Hazan e192ef8034 mlx5: add VLAN insertion offload
VLAN insertion can be done in hardware when supported in Verbs. A software
fallback is provided otherwise. The software implementation is also used
when multi-packet send is enabled on a queue, as both features are mutually
exclusive.

Signed-off-by: Yaacov Hazan <yaacovh@mellanox.com>
Signed-off-by: Adrien Mazarguil <adrien.mazarguil@6wind.com>
2016-03-25 18:56:44 +01:00

1246 lines
32 KiB
C

/*-
* BSD LICENSE
*
* Copyright 2015 6WIND S.A.
* Copyright 2015 Mellanox.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of 6WIND S.A. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <assert.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
/* Verbs header. */
/* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
#ifdef PEDANTIC
#pragma GCC diagnostic ignored "-pedantic"
#endif
#include <infiniband/verbs.h>
#ifdef PEDANTIC
#pragma GCC diagnostic error "-pedantic"
#endif
/* DPDK headers don't like -pedantic. */
#ifdef PEDANTIC
#pragma GCC diagnostic ignored "-pedantic"
#endif
#include <rte_mbuf.h>
#include <rte_mempool.h>
#include <rte_prefetch.h>
#include <rte_common.h>
#include <rte_branch_prediction.h>
#include <rte_memory.h>
#ifdef PEDANTIC
#pragma GCC diagnostic error "-pedantic"
#endif
#include "mlx5.h"
#include "mlx5_utils.h"
#include "mlx5_rxtx.h"
#include "mlx5_autoconf.h"
#include "mlx5_defs.h"
/**
* Manage TX completions.
*
* When sending a burst, mlx5_tx_burst() posts several WRs.
* To improve performance, a completion event is only required once every
* MLX5_PMD_TX_PER_COMP_REQ sends. Doing so discards completion information
* for other WRs, but this information would not be used anyway.
*
* @param txq
* Pointer to TX queue structure.
*
* @return
* 0 on success, -1 on failure.
*/
static int
txq_complete(struct txq *txq)
{
unsigned int elts_comp = txq->elts_comp;
unsigned int elts_tail = txq->elts_tail;
unsigned int elts_free = txq->elts_tail;
const unsigned int elts_n = txq->elts_n;
int wcs_n;
if (unlikely(elts_comp == 0))
return 0;
#ifdef DEBUG_SEND
DEBUG("%p: processing %u work requests completions",
(void *)txq, elts_comp);
#endif
wcs_n = txq->poll_cnt(txq->cq, elts_comp);
if (unlikely(wcs_n == 0))
return 0;
if (unlikely(wcs_n < 0)) {
DEBUG("%p: ibv_poll_cq() failed (wcs_n=%d)",
(void *)txq, wcs_n);
return -1;
}
elts_comp -= wcs_n;
assert(elts_comp <= txq->elts_comp);
/*
* Assume WC status is successful as nothing can be done about it
* anyway.
*/
elts_tail += wcs_n * txq->elts_comp_cd_init;
if (elts_tail >= elts_n)
elts_tail -= elts_n;
while (elts_free != elts_tail) {
struct txq_elt *elt = &(*txq->elts)[elts_free];
unsigned int elts_free_next =
(((elts_free + 1) == elts_n) ? 0 : elts_free + 1);
struct rte_mbuf *tmp = elt->buf;
struct txq_elt *elt_next = &(*txq->elts)[elts_free_next];
RTE_MBUF_PREFETCH_TO_FREE(elt_next->buf);
/* Faster than rte_pktmbuf_free(). */
do {
struct rte_mbuf *next = NEXT(tmp);
rte_pktmbuf_free_seg(tmp);
tmp = next;
} while (tmp != NULL);
elts_free = elts_free_next;
}
txq->elts_tail = elts_tail;
txq->elts_comp = elts_comp;
return 0;
}
/* For best performance, this function should not be inlined. */
struct ibv_mr *mlx5_mp2mr(struct ibv_pd *, const struct rte_mempool *)
__attribute__((noinline));
/**
* Register mempool as a memory region.
*
* @param pd
* Pointer to protection domain.
* @param mp
* Pointer to memory pool.
*
* @return
* Memory region pointer, NULL in case of error.
*/
struct ibv_mr *
mlx5_mp2mr(struct ibv_pd *pd, const struct rte_mempool *mp)
{
const struct rte_memseg *ms = rte_eal_get_physmem_layout();
uintptr_t start = mp->elt_va_start;
uintptr_t end = mp->elt_va_end;
unsigned int i;
DEBUG("mempool %p area start=%p end=%p size=%zu",
(const void *)mp, (void *)start, (void *)end,
(size_t)(end - start));
/* Round start and end to page boundary if found in memory segments. */
for (i = 0; (i < RTE_MAX_MEMSEG) && (ms[i].addr != NULL); ++i) {
uintptr_t addr = (uintptr_t)ms[i].addr;
size_t len = ms[i].len;
unsigned int align = ms[i].hugepage_sz;
if ((start > addr) && (start < addr + len))
start = RTE_ALIGN_FLOOR(start, align);
if ((end > addr) && (end < addr + len))
end = RTE_ALIGN_CEIL(end, align);
}
DEBUG("mempool %p using start=%p end=%p size=%zu for MR",
(const void *)mp, (void *)start, (void *)end,
(size_t)(end - start));
return ibv_reg_mr(pd,
(void *)start,
end - start,
IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
}
/**
* Get Memory Pool (MP) from mbuf. If mbuf is indirect, the pool from which
* the cloned mbuf is allocated is returned instead.
*
* @param buf
* Pointer to mbuf.
*
* @return
* Memory pool where data is located for given mbuf.
*/
static struct rte_mempool *
txq_mb2mp(struct rte_mbuf *buf)
{
if (unlikely(RTE_MBUF_INDIRECT(buf)))
return rte_mbuf_from_indirect(buf)->pool;
return buf->pool;
}
/**
* Get Memory Region (MR) <-> Memory Pool (MP) association from txq->mp2mr[].
* Add MP to txq->mp2mr[] if it's not registered yet. If mp2mr[] is full,
* remove an entry first.
*
* @param txq
* Pointer to TX queue structure.
* @param[in] mp
* Memory Pool for which a Memory Region lkey must be returned.
*
* @return
* mr->lkey on success, (uint32_t)-1 on failure.
*/
static uint32_t
txq_mp2mr(struct txq *txq, const struct rte_mempool *mp)
{
unsigned int i;
struct ibv_mr *mr;
for (i = 0; (i != RTE_DIM(txq->mp2mr)); ++i) {
if (unlikely(txq->mp2mr[i].mp == NULL)) {
/* Unknown MP, add a new MR for it. */
break;
}
if (txq->mp2mr[i].mp == mp) {
assert(txq->mp2mr[i].lkey != (uint32_t)-1);
assert(txq->mp2mr[i].mr->lkey == txq->mp2mr[i].lkey);
return txq->mp2mr[i].lkey;
}
}
/* Add a new entry, register MR first. */
DEBUG("%p: discovered new memory pool \"%s\" (%p)",
(void *)txq, mp->name, (const void *)mp);
mr = mlx5_mp2mr(txq->priv->pd, mp);
if (unlikely(mr == NULL)) {
DEBUG("%p: unable to configure MR, ibv_reg_mr() failed.",
(void *)txq);
return (uint32_t)-1;
}
if (unlikely(i == RTE_DIM(txq->mp2mr))) {
/* Table is full, remove oldest entry. */
DEBUG("%p: MR <-> MP table full, dropping oldest entry.",
(void *)txq);
--i;
claim_zero(ibv_dereg_mr(txq->mp2mr[0].mr));
memmove(&txq->mp2mr[0], &txq->mp2mr[1],
(sizeof(txq->mp2mr) - sizeof(txq->mp2mr[0])));
}
/* Store the new entry. */
txq->mp2mr[i].mp = mp;
txq->mp2mr[i].mr = mr;
txq->mp2mr[i].lkey = mr->lkey;
DEBUG("%p: new MR lkey for MP \"%s\" (%p): 0x%08" PRIu32,
(void *)txq, mp->name, (const void *)mp, txq->mp2mr[i].lkey);
return txq->mp2mr[i].lkey;
}
struct txq_mp2mr_mbuf_check_data {
const struct rte_mempool *mp;
int ret;
};
/**
* Callback function for rte_mempool_obj_iter() to check whether a given
* mempool object looks like a mbuf.
*
* @param[in, out] arg
* Context data (struct txq_mp2mr_mbuf_check_data). Contains mempool pointer
* and return value.
* @param[in] start
* Object start address.
* @param[in] end
* Object end address.
* @param index
* Unused.
*
* @return
* Nonzero value when object is not a mbuf.
*/
static void
txq_mp2mr_mbuf_check(void *arg, void *start, void *end,
uint32_t index __rte_unused)
{
struct txq_mp2mr_mbuf_check_data *data = arg;
struct rte_mbuf *buf =
(void *)((uintptr_t)start + data->mp->header_size);
(void)index;
/* Check whether mbuf structure fits element size and whether mempool
* pointer is valid. */
if (((uintptr_t)end >= (uintptr_t)(buf + 1)) &&
(buf->pool == data->mp))
data->ret = 0;
else
data->ret = -1;
}
/**
* Iterator function for rte_mempool_walk() to register existing mempools and
* fill the MP to MR cache of a TX queue.
*
* @param[in] mp
* Memory Pool to register.
* @param *arg
* Pointer to TX queue structure.
*/
void
txq_mp2mr_iter(const struct rte_mempool *mp, void *arg)
{
struct txq *txq = arg;
struct txq_mp2mr_mbuf_check_data data = {
.mp = mp,
.ret = -1,
};
/* Discard empty mempools. */
if (mp->size == 0)
return;
/* Register mempool only if the first element looks like a mbuf. */
rte_mempool_obj_iter((void *)mp->elt_va_start,
1,
mp->header_size + mp->elt_size + mp->trailer_size,
1,
mp->elt_pa,
mp->pg_num,
mp->pg_shift,
txq_mp2mr_mbuf_check,
&data);
if (data.ret)
return;
txq_mp2mr(txq, mp);
}
/**
* Insert VLAN using mbuf headroom space.
*
* @param buf
* Buffer for VLAN insertion.
*
* @return
* 0 on success, errno value on failure.
*/
static inline int
insert_vlan_sw(struct rte_mbuf *buf)
{
uintptr_t addr;
uint32_t vlan;
uint16_t head_room_len = rte_pktmbuf_headroom(buf);
if (head_room_len < 4)
return EINVAL;
addr = rte_pktmbuf_mtod(buf, uintptr_t);
vlan = htonl(0x81000000 | buf->vlan_tci);
memmove((void *)(addr - 4), (void *)addr, 12);
memcpy((void *)(addr + 8), &vlan, sizeof(vlan));
SET_DATA_OFF(buf, head_room_len - 4);
DATA_LEN(buf) += 4;
return 0;
}
#if MLX5_PMD_SGE_WR_N > 1
/**
* Copy scattered mbuf contents to a single linear buffer.
*
* @param[out] linear
* Linear output buffer.
* @param[in] buf
* Scattered input buffer.
*
* @return
* Number of bytes copied to the output buffer or 0 if not large enough.
*/
static unsigned int
linearize_mbuf(linear_t *linear, struct rte_mbuf *buf)
{
unsigned int size = 0;
unsigned int offset;
do {
unsigned int len = DATA_LEN(buf);
offset = size;
size += len;
if (unlikely(size > sizeof(*linear)))
return 0;
memcpy(&(*linear)[offset],
rte_pktmbuf_mtod(buf, uint8_t *),
len);
buf = NEXT(buf);
} while (buf != NULL);
return size;
}
/**
* Handle scattered buffers for mlx5_tx_burst().
*
* @param txq
* TX queue structure.
* @param segs
* Number of segments in buf.
* @param elt
* TX queue element to fill.
* @param[in] buf
* Buffer to process.
* @param elts_head
* Index of the linear buffer to use if necessary (normally txq->elts_head).
* @param[out] sges
* Array filled with SGEs on success.
*
* @return
* A structure containing the processed packet size in bytes and the
* number of SGEs. Both fields are set to (unsigned int)-1 in case of
* failure.
*/
static struct tx_burst_sg_ret {
unsigned int length;
unsigned int num;
}
tx_burst_sg(struct txq *txq, unsigned int segs, struct txq_elt *elt,
struct rte_mbuf *buf, unsigned int elts_head,
struct ibv_sge (*sges)[MLX5_PMD_SGE_WR_N])
{
unsigned int sent_size = 0;
unsigned int j;
int linearize = 0;
/* When there are too many segments, extra segments are
* linearized in the last SGE. */
if (unlikely(segs > RTE_DIM(*sges))) {
segs = (RTE_DIM(*sges) - 1);
linearize = 1;
}
/* Update element. */
elt->buf = buf;
/* Register segments as SGEs. */
for (j = 0; (j != segs); ++j) {
struct ibv_sge *sge = &(*sges)[j];
uint32_t lkey;
/* Retrieve Memory Region key for this memory pool. */
lkey = txq_mp2mr(txq, txq_mb2mp(buf));
if (unlikely(lkey == (uint32_t)-1)) {
/* MR does not exist. */
DEBUG("%p: unable to get MP <-> MR association",
(void *)txq);
/* Clean up TX element. */
elt->buf = NULL;
goto stop;
}
/* Update SGE. */
sge->addr = rte_pktmbuf_mtod(buf, uintptr_t);
if (txq->priv->vf)
rte_prefetch0((volatile void *)
(uintptr_t)sge->addr);
sge->length = DATA_LEN(buf);
sge->lkey = lkey;
sent_size += sge->length;
buf = NEXT(buf);
}
/* If buf is not NULL here and is not going to be linearized,
* nb_segs is not valid. */
assert(j == segs);
assert((buf == NULL) || (linearize));
/* Linearize extra segments. */
if (linearize) {
struct ibv_sge *sge = &(*sges)[segs];
linear_t *linear = &(*txq->elts_linear)[elts_head];
unsigned int size = linearize_mbuf(linear, buf);
assert(segs == (RTE_DIM(*sges) - 1));
if (size == 0) {
/* Invalid packet. */
DEBUG("%p: packet too large to be linearized.",
(void *)txq);
/* Clean up TX element. */
elt->buf = NULL;
goto stop;
}
/* If MLX5_PMD_SGE_WR_N is 1, free mbuf immediately. */
if (RTE_DIM(*sges) == 1) {
do {
struct rte_mbuf *next = NEXT(buf);
rte_pktmbuf_free_seg(buf);
buf = next;
} while (buf != NULL);
elt->buf = NULL;
}
/* Update SGE. */
sge->addr = (uintptr_t)&(*linear)[0];
sge->length = size;
sge->lkey = txq->mr_linear->lkey;
sent_size += size;
/* Include last segment. */
segs++;
}
return (struct tx_burst_sg_ret){
.length = sent_size,
.num = segs,
};
stop:
return (struct tx_burst_sg_ret){
.length = -1,
.num = -1,
};
}
#endif /* MLX5_PMD_SGE_WR_N > 1 */
/**
* DPDK callback for TX.
*
* @param dpdk_txq
* Generic pointer to TX queue structure.
* @param[in] pkts
* Packets to transmit.
* @param pkts_n
* Number of packets in array.
*
* @return
* Number of packets successfully transmitted (<= pkts_n).
*/
uint16_t
mlx5_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
struct txq *txq = (struct txq *)dpdk_txq;
unsigned int elts_head = txq->elts_head;
const unsigned int elts_n = txq->elts_n;
unsigned int elts_comp_cd = txq->elts_comp_cd;
unsigned int elts_comp = 0;
unsigned int i;
unsigned int max;
int err;
struct rte_mbuf *buf = pkts[0];
assert(elts_comp_cd != 0);
/* Prefetch first packet cacheline. */
rte_prefetch0(buf);
txq_complete(txq);
max = (elts_n - (elts_head - txq->elts_tail));
if (max > elts_n)
max -= elts_n;
assert(max >= 1);
assert(max <= elts_n);
/* Always leave one free entry in the ring. */
--max;
if (max == 0)
return 0;
if (max > pkts_n)
max = pkts_n;
for (i = 0; (i != max); ++i) {
struct rte_mbuf *buf_next = pkts[i + 1];
unsigned int elts_head_next =
(((elts_head + 1) == elts_n) ? 0 : elts_head + 1);
struct txq_elt *elt = &(*txq->elts)[elts_head];
unsigned int segs = NB_SEGS(buf);
#ifdef MLX5_PMD_SOFT_COUNTERS
unsigned int sent_size = 0;
#endif
uint32_t send_flags = 0;
#ifdef HAVE_VERBS_VLAN_INSERTION
int insert_vlan = 0;
#endif /* HAVE_VERBS_VLAN_INSERTION */
if (i + 1 < max)
rte_prefetch0(buf_next);
/* Request TX completion. */
if (unlikely(--elts_comp_cd == 0)) {
elts_comp_cd = txq->elts_comp_cd_init;
++elts_comp;
send_flags |= IBV_EXP_QP_BURST_SIGNALED;
}
/* Should we enable HW CKSUM offload */
if (buf->ol_flags &
(PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM)) {
send_flags |= IBV_EXP_QP_BURST_IP_CSUM;
/* HW does not support checksum offloads at arbitrary
* offsets but automatically recognizes the packet
* type. For inner L3/L4 checksums, only VXLAN (UDP)
* tunnels are currently supported. */
if (RTE_ETH_IS_TUNNEL_PKT(buf->packet_type))
send_flags |= IBV_EXP_QP_BURST_TUNNEL;
}
if (buf->ol_flags & PKT_TX_VLAN_PKT) {
#ifdef HAVE_VERBS_VLAN_INSERTION
if (!txq->priv->mps)
insert_vlan = 1;
else
#endif /* HAVE_VERBS_VLAN_INSERTION */
{
err = insert_vlan_sw(buf);
if (unlikely(err))
goto stop;
}
}
if (likely(segs == 1)) {
uintptr_t addr;
uint32_t length;
uint32_t lkey;
uintptr_t buf_next_addr;
/* Retrieve buffer information. */
addr = rte_pktmbuf_mtod(buf, uintptr_t);
length = DATA_LEN(buf);
/* Update element. */
elt->buf = buf;
if (txq->priv->vf)
rte_prefetch0((volatile void *)
(uintptr_t)addr);
/* Prefetch next buffer data. */
if (i + 1 < max) {
buf_next_addr =
rte_pktmbuf_mtod(buf_next, uintptr_t);
rte_prefetch0((volatile void *)
(uintptr_t)buf_next_addr);
}
/* Put packet into send queue. */
#if MLX5_PMD_MAX_INLINE > 0
if (length <= txq->max_inline) {
#ifdef HAVE_VERBS_VLAN_INSERTION
if (insert_vlan)
err = txq->send_pending_inline_vlan
(txq->qp,
(void *)addr,
length,
send_flags,
&buf->vlan_tci);
else
#endif /* HAVE_VERBS_VLAN_INSERTION */
err = txq->send_pending_inline
(txq->qp,
(void *)addr,
length,
send_flags);
} else
#endif
{
/* Retrieve Memory Region key for this
* memory pool. */
lkey = txq_mp2mr(txq, txq_mb2mp(buf));
if (unlikely(lkey == (uint32_t)-1)) {
/* MR does not exist. */
DEBUG("%p: unable to get MP <-> MR"
" association", (void *)txq);
/* Clean up TX element. */
elt->buf = NULL;
goto stop;
}
#ifdef HAVE_VERBS_VLAN_INSERTION
if (insert_vlan)
err = txq->send_pending_vlan
(txq->qp,
addr,
length,
lkey,
send_flags,
&buf->vlan_tci);
else
#endif /* HAVE_VERBS_VLAN_INSERTION */
err = txq->send_pending
(txq->qp,
addr,
length,
lkey,
send_flags);
}
if (unlikely(err))
goto stop;
#ifdef MLX5_PMD_SOFT_COUNTERS
sent_size += length;
#endif
} else {
#if MLX5_PMD_SGE_WR_N > 1
struct ibv_sge sges[MLX5_PMD_SGE_WR_N];
struct tx_burst_sg_ret ret;
ret = tx_burst_sg(txq, segs, elt, buf, elts_head,
&sges);
if (ret.length == (unsigned int)-1)
goto stop;
/* Put SG list into send queue. */
#ifdef HAVE_VERBS_VLAN_INSERTION
if (insert_vlan)
err = txq->send_pending_sg_list_vlan
(txq->qp,
sges,
ret.num,
send_flags,
&buf->vlan_tci);
else
#endif /* HAVE_VERBS_VLAN_INSERTION */
err = txq->send_pending_sg_list
(txq->qp,
sges,
ret.num,
send_flags);
if (unlikely(err))
goto stop;
#ifdef MLX5_PMD_SOFT_COUNTERS
sent_size += ret.length;
#endif
#else /* MLX5_PMD_SGE_WR_N > 1 */
DEBUG("%p: TX scattered buffers support not"
" compiled in", (void *)txq);
goto stop;
#endif /* MLX5_PMD_SGE_WR_N > 1 */
}
elts_head = elts_head_next;
buf = buf_next;
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment sent bytes counter. */
txq->stats.obytes += sent_size;
#endif
}
stop:
/* Take a shortcut if nothing must be sent. */
if (unlikely(i == 0))
return 0;
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment sent packets counter. */
txq->stats.opackets += i;
#endif
/* Ring QP doorbell. */
err = txq->send_flush(txq->qp);
if (unlikely(err)) {
/* A nonzero value is not supposed to be returned.
* Nothing can be done about it. */
DEBUG("%p: send_flush() failed with error %d",
(void *)txq, err);
}
txq->elts_head = elts_head;
txq->elts_comp += elts_comp;
txq->elts_comp_cd = elts_comp_cd;
return i;
}
/**
* Translate RX completion flags to packet type.
*
* @param flags
* RX completion flags returned by poll_length_flags().
*
* @note: fix mlx5_dev_supported_ptypes_get() if any change here.
*
* @return
* Packet type for struct rte_mbuf.
*/
static inline uint32_t
rxq_cq_to_pkt_type(uint32_t flags)
{
uint32_t pkt_type;
if (flags & IBV_EXP_CQ_RX_TUNNEL_PACKET)
pkt_type =
TRANSPOSE(flags,
IBV_EXP_CQ_RX_OUTER_IPV4_PACKET,
RTE_PTYPE_L3_IPV4) |
TRANSPOSE(flags,
IBV_EXP_CQ_RX_OUTER_IPV6_PACKET,
RTE_PTYPE_L3_IPV6) |
TRANSPOSE(flags,
IBV_EXP_CQ_RX_IPV4_PACKET,
RTE_PTYPE_INNER_L3_IPV4) |
TRANSPOSE(flags,
IBV_EXP_CQ_RX_IPV6_PACKET,
RTE_PTYPE_INNER_L3_IPV6);
else
pkt_type =
TRANSPOSE(flags,
IBV_EXP_CQ_RX_IPV4_PACKET,
RTE_PTYPE_L3_IPV4) |
TRANSPOSE(flags,
IBV_EXP_CQ_RX_IPV6_PACKET,
RTE_PTYPE_L3_IPV6);
return pkt_type;
}
/**
* Translate RX completion flags to offload flags.
*
* @param[in] rxq
* Pointer to RX queue structure.
* @param flags
* RX completion flags returned by poll_length_flags().
*
* @return
* Offload flags (ol_flags) for struct rte_mbuf.
*/
static inline uint32_t
rxq_cq_to_ol_flags(const struct rxq *rxq, uint32_t flags)
{
uint32_t ol_flags = 0;
if (rxq->csum) {
/* Set IP checksum flag only for IPv4/IPv6 packets. */
if (flags &
(IBV_EXP_CQ_RX_IPV4_PACKET | IBV_EXP_CQ_RX_IPV6_PACKET))
ol_flags |=
TRANSPOSE(~flags,
IBV_EXP_CQ_RX_IP_CSUM_OK,
PKT_RX_IP_CKSUM_BAD);
#ifdef HAVE_EXP_CQ_RX_TCP_PACKET
/* Set L4 checksum flag only for TCP/UDP packets. */
if (flags &
(IBV_EXP_CQ_RX_TCP_PACKET | IBV_EXP_CQ_RX_UDP_PACKET))
#endif /* HAVE_EXP_CQ_RX_TCP_PACKET */
ol_flags |=
TRANSPOSE(~flags,
IBV_EXP_CQ_RX_TCP_UDP_CSUM_OK,
PKT_RX_L4_CKSUM_BAD);
}
/*
* PKT_RX_IP_CKSUM_BAD and PKT_RX_L4_CKSUM_BAD are used in place
* of PKT_RX_EIP_CKSUM_BAD because the latter is not functional
* (its value is 0).
*/
if ((flags & IBV_EXP_CQ_RX_TUNNEL_PACKET) && (rxq->csum_l2tun))
ol_flags |=
TRANSPOSE(~flags,
IBV_EXP_CQ_RX_OUTER_IP_CSUM_OK,
PKT_RX_IP_CKSUM_BAD) |
TRANSPOSE(~flags,
IBV_EXP_CQ_RX_OUTER_TCP_UDP_CSUM_OK,
PKT_RX_L4_CKSUM_BAD);
return ol_flags;
}
/**
* DPDK callback for RX with scattered packets support.
*
* @param dpdk_rxq
* Generic pointer to RX queue structure.
* @param[out] pkts
* Array to store received packets.
* @param pkts_n
* Maximum number of packets in array.
*
* @return
* Number of packets successfully received (<= pkts_n).
*/
uint16_t
mlx5_rx_burst_sp(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
struct rxq *rxq = (struct rxq *)dpdk_rxq;
struct rxq_elt_sp (*elts)[rxq->elts_n] = rxq->elts.sp;
const unsigned int elts_n = rxq->elts_n;
unsigned int elts_head = rxq->elts_head;
unsigned int i;
unsigned int pkts_ret = 0;
int ret;
if (unlikely(!rxq->sp))
return mlx5_rx_burst(dpdk_rxq, pkts, pkts_n);
if (unlikely(elts == NULL)) /* See RTE_DEV_CMD_SET_MTU. */
return 0;
for (i = 0; (i != pkts_n); ++i) {
struct rxq_elt_sp *elt = &(*elts)[elts_head];
unsigned int len;
unsigned int pkt_buf_len;
struct rte_mbuf *pkt_buf = NULL; /* Buffer returned in pkts. */
struct rte_mbuf **pkt_buf_next = &pkt_buf;
unsigned int seg_headroom = RTE_PKTMBUF_HEADROOM;
unsigned int j = 0;
uint32_t flags;
uint16_t vlan_tci;
/* Sanity checks. */
assert(elts_head < rxq->elts_n);
assert(rxq->elts_head < rxq->elts_n);
ret = rxq->poll(rxq->cq, NULL, NULL, &flags, &vlan_tci);
if (unlikely(ret < 0)) {
struct ibv_wc wc;
int wcs_n;
DEBUG("rxq=%p, poll_length() failed (ret=%d)",
(void *)rxq, ret);
/* ibv_poll_cq() must be used in case of failure. */
wcs_n = ibv_poll_cq(rxq->cq, 1, &wc);
if (unlikely(wcs_n == 0))
break;
if (unlikely(wcs_n < 0)) {
DEBUG("rxq=%p, ibv_poll_cq() failed (wcs_n=%d)",
(void *)rxq, wcs_n);
break;
}
assert(wcs_n == 1);
if (unlikely(wc.status != IBV_WC_SUCCESS)) {
/* Whatever, just repost the offending WR. */
DEBUG("rxq=%p, wr_id=%" PRIu64 ": bad work"
" completion status (%d): %s",
(void *)rxq, wc.wr_id, wc.status,
ibv_wc_status_str(wc.status));
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment dropped packets counter. */
++rxq->stats.idropped;
#endif
goto repost;
}
ret = wc.byte_len;
}
if (ret == 0)
break;
assert(ret >= (rxq->crc_present << 2));
len = ret - (rxq->crc_present << 2);
pkt_buf_len = len;
/*
* Replace spent segments with new ones, concatenate and
* return them as pkt_buf.
*/
while (1) {
struct ibv_sge *sge = &elt->sges[j];
struct rte_mbuf *seg = elt->bufs[j];
struct rte_mbuf *rep;
unsigned int seg_tailroom;
assert(seg != NULL);
/*
* Fetch initial bytes of packet descriptor into a
* cacheline while allocating rep.
*/
rte_prefetch0(seg);
rep = __rte_mbuf_raw_alloc(rxq->mp);
if (unlikely(rep == NULL)) {
/*
* Unable to allocate a replacement mbuf,
* repost WR.
*/
DEBUG("rxq=%p: can't allocate a new mbuf",
(void *)rxq);
if (pkt_buf != NULL) {
*pkt_buf_next = NULL;
rte_pktmbuf_free(pkt_buf);
}
/* Increment out of memory counters. */
++rxq->stats.rx_nombuf;
++rxq->priv->dev->data->rx_mbuf_alloc_failed;
goto repost;
}
#ifndef NDEBUG
/* Poison user-modifiable fields in rep. */
NEXT(rep) = (void *)((uintptr_t)-1);
SET_DATA_OFF(rep, 0xdead);
DATA_LEN(rep) = 0xd00d;
PKT_LEN(rep) = 0xdeadd00d;
NB_SEGS(rep) = 0x2a;
PORT(rep) = 0x2a;
rep->ol_flags = -1;
#endif
assert(rep->buf_len == seg->buf_len);
assert(rep->buf_len == rxq->mb_len);
/* Reconfigure sge to use rep instead of seg. */
assert(sge->lkey == rxq->mr->lkey);
sge->addr = ((uintptr_t)rep->buf_addr + seg_headroom);
elt->bufs[j] = rep;
++j;
/* Update pkt_buf if it's the first segment, or link
* seg to the previous one and update pkt_buf_next. */
*pkt_buf_next = seg;
pkt_buf_next = &NEXT(seg);
/* Update seg information. */
seg_tailroom = (seg->buf_len - seg_headroom);
assert(sge->length == seg_tailroom);
SET_DATA_OFF(seg, seg_headroom);
if (likely(len <= seg_tailroom)) {
/* Last segment. */
DATA_LEN(seg) = len;
PKT_LEN(seg) = len;
/* Sanity check. */
assert(rte_pktmbuf_headroom(seg) ==
seg_headroom);
assert(rte_pktmbuf_tailroom(seg) ==
(seg_tailroom - len));
break;
}
DATA_LEN(seg) = seg_tailroom;
PKT_LEN(seg) = seg_tailroom;
/* Sanity check. */
assert(rte_pktmbuf_headroom(seg) == seg_headroom);
assert(rte_pktmbuf_tailroom(seg) == 0);
/* Fix len and clear headroom for next segments. */
len -= seg_tailroom;
seg_headroom = 0;
}
/* Update head and tail segments. */
*pkt_buf_next = NULL;
assert(pkt_buf != NULL);
assert(j != 0);
NB_SEGS(pkt_buf) = j;
PORT(pkt_buf) = rxq->port_id;
PKT_LEN(pkt_buf) = pkt_buf_len;
if (rxq->csum | rxq->csum_l2tun | rxq->vlan_strip) {
pkt_buf->packet_type = rxq_cq_to_pkt_type(flags);
pkt_buf->ol_flags = rxq_cq_to_ol_flags(rxq, flags);
#ifdef HAVE_EXP_DEVICE_ATTR_VLAN_OFFLOADS
if (flags & IBV_EXP_CQ_RX_CVLAN_STRIPPED_V1) {
pkt_buf->ol_flags |= PKT_RX_VLAN_PKT;
pkt_buf->vlan_tci = vlan_tci;
}
#endif /* HAVE_EXP_DEVICE_ATTR_VLAN_OFFLOADS */
}
/* Return packet. */
*(pkts++) = pkt_buf;
++pkts_ret;
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment bytes counter. */
rxq->stats.ibytes += pkt_buf_len;
#endif
repost:
ret = rxq->recv(rxq->wq, elt->sges, RTE_DIM(elt->sges));
if (unlikely(ret)) {
/* Inability to repost WRs is fatal. */
DEBUG("%p: recv_sg_list(): failed (ret=%d)",
(void *)rxq->priv,
ret);
abort();
}
if (++elts_head >= elts_n)
elts_head = 0;
continue;
}
if (unlikely(i == 0))
return 0;
rxq->elts_head = elts_head;
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment packets counter. */
rxq->stats.ipackets += pkts_ret;
#endif
return pkts_ret;
}
/**
* DPDK callback for RX.
*
* The following function is the same as mlx5_rx_burst_sp(), except it doesn't
* manage scattered packets. Improves performance when MRU is lower than the
* size of the first segment.
*
* @param dpdk_rxq
* Generic pointer to RX queue structure.
* @param[out] pkts
* Array to store received packets.
* @param pkts_n
* Maximum number of packets in array.
*
* @return
* Number of packets successfully received (<= pkts_n).
*/
uint16_t
mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
struct rxq *rxq = (struct rxq *)dpdk_rxq;
struct rxq_elt (*elts)[rxq->elts_n] = rxq->elts.no_sp;
const unsigned int elts_n = rxq->elts_n;
unsigned int elts_head = rxq->elts_head;
struct ibv_sge sges[pkts_n];
unsigned int i;
unsigned int pkts_ret = 0;
int ret;
if (unlikely(rxq->sp))
return mlx5_rx_burst_sp(dpdk_rxq, pkts, pkts_n);
for (i = 0; (i != pkts_n); ++i) {
struct rxq_elt *elt = &(*elts)[elts_head];
unsigned int len;
struct rte_mbuf *seg = elt->buf;
struct rte_mbuf *rep;
uint32_t flags;
uint16_t vlan_tci;
/* Sanity checks. */
assert(seg != NULL);
assert(elts_head < rxq->elts_n);
assert(rxq->elts_head < rxq->elts_n);
/*
* Fetch initial bytes of packet descriptor into a
* cacheline while allocating rep.
*/
rte_prefetch0(seg);
rte_prefetch0(&seg->cacheline1);
ret = rxq->poll(rxq->cq, NULL, NULL, &flags, &vlan_tci);
if (unlikely(ret < 0)) {
struct ibv_wc wc;
int wcs_n;
DEBUG("rxq=%p, poll_length() failed (ret=%d)",
(void *)rxq, ret);
/* ibv_poll_cq() must be used in case of failure. */
wcs_n = ibv_poll_cq(rxq->cq, 1, &wc);
if (unlikely(wcs_n == 0))
break;
if (unlikely(wcs_n < 0)) {
DEBUG("rxq=%p, ibv_poll_cq() failed (wcs_n=%d)",
(void *)rxq, wcs_n);
break;
}
assert(wcs_n == 1);
if (unlikely(wc.status != IBV_WC_SUCCESS)) {
/* Whatever, just repost the offending WR. */
DEBUG("rxq=%p, wr_id=%" PRIu64 ": bad work"
" completion status (%d): %s",
(void *)rxq, wc.wr_id, wc.status,
ibv_wc_status_str(wc.status));
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment dropped packets counter. */
++rxq->stats.idropped;
#endif
/* Add SGE to array for repost. */
sges[i] = elt->sge;
goto repost;
}
ret = wc.byte_len;
}
if (ret == 0)
break;
assert(ret >= (rxq->crc_present << 2));
len = ret - (rxq->crc_present << 2);
rep = __rte_mbuf_raw_alloc(rxq->mp);
if (unlikely(rep == NULL)) {
/*
* Unable to allocate a replacement mbuf,
* repost WR.
*/
DEBUG("rxq=%p: can't allocate a new mbuf",
(void *)rxq);
/* Increment out of memory counters. */
++rxq->stats.rx_nombuf;
++rxq->priv->dev->data->rx_mbuf_alloc_failed;
goto repost;
}
/* Reconfigure sge to use rep instead of seg. */
elt->sge.addr = (uintptr_t)rep->buf_addr + RTE_PKTMBUF_HEADROOM;
assert(elt->sge.lkey == rxq->mr->lkey);
elt->buf = rep;
/* Add SGE to array for repost. */
sges[i] = elt->sge;
/* Update seg information. */
SET_DATA_OFF(seg, RTE_PKTMBUF_HEADROOM);
NB_SEGS(seg) = 1;
PORT(seg) = rxq->port_id;
NEXT(seg) = NULL;
PKT_LEN(seg) = len;
DATA_LEN(seg) = len;
if (rxq->csum | rxq->csum_l2tun | rxq->vlan_strip) {
seg->packet_type = rxq_cq_to_pkt_type(flags);
seg->ol_flags = rxq_cq_to_ol_flags(rxq, flags);
#ifdef HAVE_EXP_DEVICE_ATTR_VLAN_OFFLOADS
if (flags & IBV_EXP_CQ_RX_CVLAN_STRIPPED_V1) {
seg->ol_flags |= PKT_RX_VLAN_PKT;
seg->vlan_tci = vlan_tci;
}
#endif /* HAVE_EXP_DEVICE_ATTR_VLAN_OFFLOADS */
}
/* Return packet. */
*(pkts++) = seg;
++pkts_ret;
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment bytes counter. */
rxq->stats.ibytes += len;
#endif
repost:
if (++elts_head >= elts_n)
elts_head = 0;
continue;
}
if (unlikely(i == 0))
return 0;
/* Repost WRs. */
#ifdef DEBUG_RECV
DEBUG("%p: reposting %u WRs", (void *)rxq, i);
#endif
ret = rxq->recv(rxq->wq, sges, i);
if (unlikely(ret)) {
/* Inability to repost WRs is fatal. */
DEBUG("%p: recv_burst(): failed (ret=%d)",
(void *)rxq->priv,
ret);
abort();
}
rxq->elts_head = elts_head;
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment packets counter. */
rxq->stats.ipackets += pkts_ret;
#endif
return pkts_ret;
}
/**
* Dummy DPDK callback for TX.
*
* This function is used to temporarily replace the real callback during
* unsafe control operations on the queue, or in case of error.
*
* @param dpdk_txq
* Generic pointer to TX queue structure.
* @param[in] pkts
* Packets to transmit.
* @param pkts_n
* Number of packets in array.
*
* @return
* Number of packets successfully transmitted (<= pkts_n).
*/
uint16_t
removed_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
(void)dpdk_txq;
(void)pkts;
(void)pkts_n;
return 0;
}
/**
* Dummy DPDK callback for RX.
*
* This function is used to temporarily replace the real callback during
* unsafe control operations on the queue, or in case of error.
*
* @param dpdk_rxq
* Generic pointer to RX queue structure.
* @param[out] pkts
* Array to store received packets.
* @param pkts_n
* Maximum number of packets in array.
*
* @return
* Number of packets successfully received (<= pkts_n).
*/
uint16_t
removed_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
(void)dpdk_rxq;
(void)pkts;
(void)pkts_n;
return 0;
}