numam-dpdk/lib/librte_pmd_e1000/igb_rxtx.c
Intel d52147ec28 igb: add VMDq support
Signed-off-by: Intel
2013-10-09 16:16:14 +02:00

2216 lines
64 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2013 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/queue.h>
#include <endian.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <stdint.h>
#include <stdarg.h>
#include <inttypes.h>
#include <rte_interrupts.h>
#include <rte_byteorder.h>
#include <rte_common.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_pci.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_memzone.h>
#include <rte_launch.h>
#include <rte_tailq.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_ring.h>
#include <rte_mempool.h>
#include <rte_malloc.h>
#include <rte_mbuf.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_prefetch.h>
#include <rte_udp.h>
#include <rte_tcp.h>
#include <rte_sctp.h>
#include <rte_string_fns.h>
#include "e1000_logs.h"
#include "e1000/e1000_api.h"
#include "e1000_ethdev.h"
static inline struct rte_mbuf *
rte_rxmbuf_alloc(struct rte_mempool *mp)
{
struct rte_mbuf *m;
m = __rte_mbuf_raw_alloc(mp);
__rte_mbuf_sanity_check_raw(m, RTE_MBUF_PKT, 0);
return (m);
}
#define RTE_MBUF_DATA_DMA_ADDR(mb) \
(uint64_t) ((mb)->buf_physaddr + \
(uint64_t) ((char *)((mb)->pkt.data) - \
(char *)(mb)->buf_addr))
#define RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mb) \
(uint64_t) ((mb)->buf_physaddr + RTE_PKTMBUF_HEADROOM)
/**
* Structure associated with each descriptor of the RX ring of a RX queue.
*/
struct igb_rx_entry {
struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */
};
/**
* Structure associated with each descriptor of the TX ring of a TX queue.
*/
struct igb_tx_entry {
struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */
uint16_t next_id; /**< Index of next descriptor in ring. */
uint16_t last_id; /**< Index of last scattered descriptor. */
};
/**
* Structure associated with each RX queue.
*/
struct igb_rx_queue {
struct rte_mempool *mb_pool; /**< mbuf pool to populate RX ring. */
volatile union e1000_adv_rx_desc *rx_ring; /**< RX ring virtual address. */
uint64_t rx_ring_phys_addr; /**< RX ring DMA address. */
volatile uint32_t *rdt_reg_addr; /**< RDT register address. */
volatile uint32_t *rdh_reg_addr; /**< RDH register address. */
struct igb_rx_entry *sw_ring; /**< address of RX software ring. */
struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */
struct rte_mbuf *pkt_last_seg; /**< Last segment of current packet. */
uint16_t nb_rx_desc; /**< number of RX descriptors. */
uint16_t rx_tail; /**< current value of RDT register. */
uint16_t nb_rx_hold; /**< number of held free RX desc. */
uint16_t rx_free_thresh; /**< max free RX desc to hold. */
uint16_t queue_id; /**< RX queue index. */
uint16_t reg_idx; /**< RX queue register index. */
uint8_t port_id; /**< Device port identifier. */
uint8_t pthresh; /**< Prefetch threshold register. */
uint8_t hthresh; /**< Host threshold register. */
uint8_t wthresh; /**< Write-back threshold register. */
uint8_t crc_len; /**< 0 if CRC stripped, 4 otherwise. */
uint8_t drop_en; /**< If not 0, set SRRCTL.Drop_En. */
};
/**
* Hardware context number
*/
enum igb_advctx_num {
IGB_CTX_0 = 0, /**< CTX0 */
IGB_CTX_1 = 1, /**< CTX1 */
IGB_CTX_NUM = 2, /**< CTX_NUM */
};
/**
* Strucutre to check if new context need be built
*/
struct igb_advctx_info {
uint16_t flags; /**< ol_flags related to context build. */
uint32_t cmp_mask; /**< compare mask for vlan_macip_lens */
union rte_vlan_macip vlan_macip_lens; /**< vlan, mac & ip length. */
};
/**
* Structure associated with each TX queue.
*/
struct igb_tx_queue {
volatile union e1000_adv_tx_desc *tx_ring; /**< TX ring address */
uint64_t tx_ring_phys_addr; /**< TX ring DMA address. */
struct igb_tx_entry *sw_ring; /**< virtual address of SW ring. */
volatile uint32_t *tdt_reg_addr; /**< Address of TDT register. */
uint32_t txd_type; /**< Device-specific TXD type */
uint16_t nb_tx_desc; /**< number of TX descriptors. */
uint16_t tx_tail; /**< Current value of TDT register. */
uint16_t tx_head;
/**< Index of first used TX descriptor. */
uint16_t queue_id; /**< TX queue index. */
uint16_t reg_idx; /**< TX queue register index. */
uint8_t port_id; /**< Device port identifier. */
uint8_t pthresh; /**< Prefetch threshold register. */
uint8_t hthresh; /**< Host threshold register. */
uint8_t wthresh; /**< Write-back threshold register. */
uint32_t ctx_curr;
/**< Current used hardware descriptor. */
uint32_t ctx_start;
/**< Start context position for transmit queue. */
struct igb_advctx_info ctx_cache[IGB_CTX_NUM];
/**< Hardware context history.*/
};
#if 1
#define RTE_PMD_USE_PREFETCH
#endif
#ifdef RTE_PMD_USE_PREFETCH
#define rte_igb_prefetch(p) rte_prefetch0(p)
#else
#define rte_igb_prefetch(p) do {} while(0)
#endif
#ifdef RTE_PMD_PACKET_PREFETCH
#define rte_packet_prefetch(p) rte_prefetch1(p)
#else
#define rte_packet_prefetch(p) do {} while(0)
#endif
/*
* Macro for VMDq feature for 1 GbE NIC.
*/
#define E1000_VMOLR_SIZE (8)
/*********************************************************************
*
* TX function
*
**********************************************************************/
/*
* Advanced context descriptor are almost same between igb/ixgbe
* This is a separate function, looking for optimization opportunity here
* Rework required to go with the pre-defined values.
*/
static inline void
igbe_set_xmit_ctx(struct igb_tx_queue* txq,
volatile struct e1000_adv_tx_context_desc *ctx_txd,
uint16_t ol_flags, uint32_t vlan_macip_lens)
{
uint32_t type_tucmd_mlhl;
uint32_t mss_l4len_idx;
uint32_t ctx_idx, ctx_curr;
uint32_t cmp_mask;
ctx_curr = txq->ctx_curr;
ctx_idx = ctx_curr + txq->ctx_start;
cmp_mask = 0;
type_tucmd_mlhl = 0;
if (ol_flags & PKT_TX_VLAN_PKT) {
cmp_mask |= TX_VLAN_CMP_MASK;
}
if (ol_flags & PKT_TX_IP_CKSUM) {
type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV4;
cmp_mask |= TX_MAC_LEN_CMP_MASK;
}
/* Specify which HW CTX to upload. */
mss_l4len_idx = (ctx_idx << E1000_ADVTXD_IDX_SHIFT);
switch (ol_flags & PKT_TX_L4_MASK) {
case PKT_TX_UDP_CKSUM:
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP |
E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
mss_l4len_idx |= sizeof(struct udp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
cmp_mask |= TX_MACIP_LEN_CMP_MASK;
break;
case PKT_TX_TCP_CKSUM:
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP |
E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
mss_l4len_idx |= sizeof(struct tcp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
cmp_mask |= TX_MACIP_LEN_CMP_MASK;
break;
case PKT_TX_SCTP_CKSUM:
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_SCTP |
E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
mss_l4len_idx |= sizeof(struct sctp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
cmp_mask |= TX_MACIP_LEN_CMP_MASK;
break;
default:
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_RSV |
E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
break;
}
txq->ctx_cache[ctx_curr].flags = ol_flags;
txq->ctx_cache[ctx_curr].cmp_mask = cmp_mask;
txq->ctx_cache[ctx_curr].vlan_macip_lens.data =
vlan_macip_lens & cmp_mask;
ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl);
ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens);
ctx_txd->mss_l4len_idx = rte_cpu_to_le_32(mss_l4len_idx);
ctx_txd->seqnum_seed = 0;
}
/*
* Check which hardware context can be used. Use the existing match
* or create a new context descriptor.
*/
static inline uint32_t
what_advctx_update(struct igb_tx_queue *txq, uint16_t flags,
uint32_t vlan_macip_lens)
{
/* If match with the current context */
if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
(txq->ctx_cache[txq->ctx_curr].vlan_macip_lens.data ==
(txq->ctx_cache[txq->ctx_curr].cmp_mask & vlan_macip_lens)))) {
return txq->ctx_curr;
}
/* If match with the second context */
txq->ctx_curr ^= 1;
if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
(txq->ctx_cache[txq->ctx_curr].vlan_macip_lens.data ==
(txq->ctx_cache[txq->ctx_curr].cmp_mask & vlan_macip_lens)))) {
return txq->ctx_curr;
}
/* Mismatch, use the previous context */
return (IGB_CTX_NUM);
}
static inline uint32_t
tx_desc_cksum_flags_to_olinfo(uint16_t ol_flags)
{
static const uint32_t l4_olinfo[2] = {0, E1000_ADVTXD_POPTS_TXSM};
static const uint32_t l3_olinfo[2] = {0, E1000_ADVTXD_POPTS_IXSM};
uint32_t tmp;
tmp = l4_olinfo[(ol_flags & PKT_TX_L4_MASK) != PKT_TX_L4_NO_CKSUM];
tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0];
return tmp;
}
static inline uint32_t
tx_desc_vlan_flags_to_cmdtype(uint16_t ol_flags)
{
static uint32_t vlan_cmd[2] = {0, E1000_ADVTXD_DCMD_VLE};
return vlan_cmd[(ol_flags & PKT_TX_VLAN_PKT) != 0];
}
uint16_t
eth_igb_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct igb_tx_queue *txq;
struct igb_tx_entry *sw_ring;
struct igb_tx_entry *txe, *txn;
volatile union e1000_adv_tx_desc *txr;
volatile union e1000_adv_tx_desc *txd;
struct rte_mbuf *tx_pkt;
struct rte_mbuf *m_seg;
uint64_t buf_dma_addr;
uint32_t olinfo_status;
uint32_t cmd_type_len;
uint32_t pkt_len;
uint16_t slen;
uint16_t ol_flags;
uint16_t tx_end;
uint16_t tx_id;
uint16_t tx_last;
uint16_t nb_tx;
uint16_t tx_ol_req;
uint32_t new_ctx = 0;
uint32_t ctx = 0;
uint32_t vlan_macip_lens;
txq = tx_queue;
sw_ring = txq->sw_ring;
txr = txq->tx_ring;
tx_id = txq->tx_tail;
txe = &sw_ring[tx_id];
for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
tx_pkt = *tx_pkts++;
pkt_len = tx_pkt->pkt.pkt_len;
RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
/*
* The number of descriptors that must be allocated for a
* packet is the number of segments of that packet, plus 1
* Context Descriptor for the VLAN Tag Identifier, if any.
* Determine the last TX descriptor to allocate in the TX ring
* for the packet, starting from the current position (tx_id)
* in the ring.
*/
tx_last = (uint16_t) (tx_id + tx_pkt->pkt.nb_segs - 1);
ol_flags = tx_pkt->ol_flags;
vlan_macip_lens = tx_pkt->pkt.vlan_macip.data;
tx_ol_req = (uint16_t)(ol_flags & PKT_TX_OFFLOAD_MASK);
/* If a Context Descriptor need be built . */
if (tx_ol_req) {
ctx = what_advctx_update(txq, tx_ol_req,
vlan_macip_lens);
/* Only allocate context descriptor if required*/
new_ctx = (ctx == IGB_CTX_NUM);
ctx = txq->ctx_curr;
tx_last = (uint16_t) (tx_last + new_ctx);
}
if (tx_last >= txq->nb_tx_desc)
tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
" tx_first=%u tx_last=%u\n",
(unsigned) txq->port_id,
(unsigned) txq->queue_id,
(unsigned) pkt_len,
(unsigned) tx_id,
(unsigned) tx_last);
/*
* Check if there are enough free descriptors in the TX ring
* to transmit the next packet.
* This operation is based on the two following rules:
*
* 1- Only check that the last needed TX descriptor can be
* allocated (by construction, if that descriptor is free,
* all intermediate ones are also free).
*
* For this purpose, the index of the last TX descriptor
* used for a packet (the "last descriptor" of a packet)
* is recorded in the TX entries (the last one included)
* that are associated with all TX descriptors allocated
* for that packet.
*
* 2- Avoid to allocate the last free TX descriptor of the
* ring, in order to never set the TDT register with the
* same value stored in parallel by the NIC in the TDH
* register, which makes the TX engine of the NIC enter
* in a deadlock situation.
*
* By extension, avoid to allocate a free descriptor that
* belongs to the last set of free descriptors allocated
* to the same packet previously transmitted.
*/
/*
* The "last descriptor" of the previously sent packet, if any,
* which used the last descriptor to allocate.
*/
tx_end = sw_ring[tx_last].last_id;
/*
* The next descriptor following that "last descriptor" in the
* ring.
*/
tx_end = sw_ring[tx_end].next_id;
/*
* The "last descriptor" associated with that next descriptor.
*/
tx_end = sw_ring[tx_end].last_id;
/*
* Check that this descriptor is free.
*/
if (! (txr[tx_end].wb.status & E1000_TXD_STAT_DD)) {
if (nb_tx == 0)
return (0);
goto end_of_tx;
}
/*
* Set common flags of all TX Data Descriptors.
*
* The following bits must be set in all Data Descriptors:
* - E1000_ADVTXD_DTYP_DATA
* - E1000_ADVTXD_DCMD_DEXT
*
* The following bits must be set in the first Data Descriptor
* and are ignored in the other ones:
* - E1000_ADVTXD_DCMD_IFCS
* - E1000_ADVTXD_MAC_1588
* - E1000_ADVTXD_DCMD_VLE
*
* The following bits must only be set in the last Data
* Descriptor:
* - E1000_TXD_CMD_EOP
*
* The following bits can be set in any Data Descriptor, but
* are only set in the last Data Descriptor:
* - E1000_TXD_CMD_RS
*/
cmd_type_len = txq->txd_type |
E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
olinfo_status = (pkt_len << E1000_ADVTXD_PAYLEN_SHIFT);
#if defined(RTE_LIBRTE_IEEE1588)
if (ol_flags & PKT_TX_IEEE1588_TMST)
cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
#endif
if (tx_ol_req) {
/* Setup TX Advanced context descriptor if required */
if (new_ctx) {
volatile struct e1000_adv_tx_context_desc *
ctx_txd;
ctx_txd = (volatile struct
e1000_adv_tx_context_desc *)
&txr[tx_id];
txn = &sw_ring[txe->next_id];
RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
if (txe->mbuf != NULL) {
rte_pktmbuf_free_seg(txe->mbuf);
txe->mbuf = NULL;
}
igbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req,
vlan_macip_lens);
txe->last_id = tx_last;
tx_id = txe->next_id;
txe = txn;
}
/* Setup the TX Advanced Data Descriptor */
cmd_type_len |= tx_desc_vlan_flags_to_cmdtype(ol_flags);
olinfo_status |= tx_desc_cksum_flags_to_olinfo(ol_flags);
olinfo_status |= (ctx << E1000_ADVTXD_IDX_SHIFT);
}
m_seg = tx_pkt;
do {
txn = &sw_ring[txe->next_id];
txd = &txr[tx_id];
if (txe->mbuf != NULL)
rte_pktmbuf_free_seg(txe->mbuf);
txe->mbuf = m_seg;
/*
* Set up transmit descriptor.
*/
slen = (uint16_t) m_seg->pkt.data_len;
buf_dma_addr = RTE_MBUF_DATA_DMA_ADDR(m_seg);
txd->read.buffer_addr =
rte_cpu_to_le_64(buf_dma_addr);
txd->read.cmd_type_len =
rte_cpu_to_le_32(cmd_type_len | slen);
txd->read.olinfo_status =
rte_cpu_to_le_32(olinfo_status);
txe->last_id = tx_last;
tx_id = txe->next_id;
txe = txn;
m_seg = m_seg->pkt.next;
} while (m_seg != NULL);
/*
* The last packet data descriptor needs End Of Packet (EOP)
* and Report Status (RS).
*/
txd->read.cmd_type_len |=
rte_cpu_to_le_32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
}
end_of_tx:
rte_wmb();
/*
* Set the Transmit Descriptor Tail (TDT).
*/
E1000_PCI_REG_WRITE(txq->tdt_reg_addr, tx_id);
PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
(unsigned) txq->port_id, (unsigned) txq->queue_id,
(unsigned) tx_id, (unsigned) nb_tx);
txq->tx_tail = tx_id;
return (nb_tx);
}
/*********************************************************************
*
* RX functions
*
**********************************************************************/
static inline uint16_t
rx_desc_hlen_type_rss_to_pkt_flags(uint32_t hl_tp_rs)
{
uint16_t pkt_flags;
static uint16_t ip_pkt_types_map[16] = {
0, PKT_RX_IPV4_HDR, PKT_RX_IPV4_HDR_EXT, PKT_RX_IPV4_HDR_EXT,
PKT_RX_IPV6_HDR, 0, 0, 0,
PKT_RX_IPV6_HDR_EXT, 0, 0, 0,
PKT_RX_IPV6_HDR_EXT, 0, 0, 0,
};
#if defined(RTE_LIBRTE_IEEE1588)
static uint32_t ip_pkt_etqf_map[8] = {
0, 0, 0, PKT_RX_IEEE1588_PTP,
0, 0, 0, 0,
};
pkt_flags = (uint16_t)((hl_tp_rs & E1000_RXDADV_PKTTYPE_ETQF) ?
ip_pkt_etqf_map[(hl_tp_rs >> 4) & 0x07] :
ip_pkt_types_map[(hl_tp_rs >> 4) & 0x0F]);
#else
pkt_flags = (uint16_t)((hl_tp_rs & E1000_RXDADV_PKTTYPE_ETQF) ? 0 :
ip_pkt_types_map[(hl_tp_rs >> 4) & 0x0F]);
#endif
return (uint16_t)(pkt_flags | (((hl_tp_rs & 0x0F) == 0) ?
0 : PKT_RX_RSS_HASH));
}
static inline uint16_t
rx_desc_status_to_pkt_flags(uint32_t rx_status)
{
uint16_t pkt_flags;
/* Check if VLAN present */
pkt_flags = (uint16_t)((rx_status & E1000_RXD_STAT_VP) ?
PKT_RX_VLAN_PKT : 0);
#if defined(RTE_LIBRTE_IEEE1588)
if (rx_status & E1000_RXD_STAT_TMST)
pkt_flags = (uint16_t)(pkt_flags | PKT_RX_IEEE1588_TMST);
#endif
return pkt_flags;
}
static inline uint16_t
rx_desc_error_to_pkt_flags(uint32_t rx_status)
{
/*
* Bit 30: IPE, IPv4 checksum error
* Bit 29: L4I, L4I integrity error
*/
static uint16_t error_to_pkt_flags_map[4] = {
0, PKT_RX_L4_CKSUM_BAD, PKT_RX_IP_CKSUM_BAD,
PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD
};
return error_to_pkt_flags_map[(rx_status >>
E1000_RXD_ERR_CKSUM_BIT) & E1000_RXD_ERR_CKSUM_MSK];
}
uint16_t
eth_igb_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct igb_rx_queue *rxq;
volatile union e1000_adv_rx_desc *rx_ring;
volatile union e1000_adv_rx_desc *rxdp;
struct igb_rx_entry *sw_ring;
struct igb_rx_entry *rxe;
struct rte_mbuf *rxm;
struct rte_mbuf *nmb;
union e1000_adv_rx_desc rxd;
uint64_t dma_addr;
uint32_t staterr;
uint32_t hlen_type_rss;
uint16_t pkt_len;
uint16_t rx_id;
uint16_t nb_rx;
uint16_t nb_hold;
uint16_t pkt_flags;
nb_rx = 0;
nb_hold = 0;
rxq = rx_queue;
rx_id = rxq->rx_tail;
rx_ring = rxq->rx_ring;
sw_ring = rxq->sw_ring;
while (nb_rx < nb_pkts) {
/*
* The order of operations here is important as the DD status
* bit must not be read after any other descriptor fields.
* rx_ring and rxdp are pointing to volatile data so the order
* of accesses cannot be reordered by the compiler. If they were
* not volatile, they could be reordered which could lead to
* using invalid descriptor fields when read from rxd.
*/
rxdp = &rx_ring[rx_id];
staterr = rxdp->wb.upper.status_error;
if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
break;
rxd = *rxdp;
/*
* End of packet.
*
* If the E1000_RXD_STAT_EOP flag is not set, the RX packet is
* likely to be invalid and to be dropped by the various
* validation checks performed by the network stack.
*
* Allocate a new mbuf to replenish the RX ring descriptor.
* If the allocation fails:
* - arrange for that RX descriptor to be the first one
* being parsed the next time the receive function is
* invoked [on the same queue].
*
* - Stop parsing the RX ring and return immediately.
*
* This policy do not drop the packet received in the RX
* descriptor for which the allocation of a new mbuf failed.
* Thus, it allows that packet to be later retrieved if
* mbuf have been freed in the mean time.
* As a side effect, holding RX descriptors instead of
* systematically giving them back to the NIC may lead to
* RX ring exhaustion situations.
* However, the NIC can gracefully prevent such situations
* to happen by sending specific "back-pressure" flow control
* frames to its peer(s).
*/
PMD_RX_LOG(DEBUG, "\nport_id=%u queue_id=%u rx_id=%u "
"staterr=0x%x pkt_len=%u\n",
(unsigned) rxq->port_id, (unsigned) rxq->queue_id,
(unsigned) rx_id, (unsigned) staterr,
(unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
nmb = rte_rxmbuf_alloc(rxq->mb_pool);
if (nmb == NULL) {
PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
"queue_id=%u\n", (unsigned) rxq->port_id,
(unsigned) rxq->queue_id);
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
break;
}
nb_hold++;
rxe = &sw_ring[rx_id];
rx_id++;
if (rx_id == rxq->nb_rx_desc)
rx_id = 0;
/* Prefetch next mbuf while processing current one. */
rte_igb_prefetch(sw_ring[rx_id].mbuf);
/*
* When next RX descriptor is on a cache-line boundary,
* prefetch the next 4 RX descriptors and the next 8 pointers
* to mbufs.
*/
if ((rx_id & 0x3) == 0) {
rte_igb_prefetch(&rx_ring[rx_id]);
rte_igb_prefetch(&sw_ring[rx_id]);
}
rxm = rxe->mbuf;
rxe->mbuf = nmb;
dma_addr =
rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
rxdp->read.hdr_addr = dma_addr;
rxdp->read.pkt_addr = dma_addr;
/*
* Initialize the returned mbuf.
* 1) setup generic mbuf fields:
* - number of segments,
* - next segment,
* - packet length,
* - RX port identifier.
* 2) integrate hardware offload data, if any:
* - RSS flag & hash,
* - IP checksum flag,
* - VLAN TCI, if any,
* - error flags.
*/
pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.wb.upper.length) -
rxq->crc_len);
rxm->pkt.data = (char*) rxm->buf_addr + RTE_PKTMBUF_HEADROOM;
rte_packet_prefetch(rxm->pkt.data);
rxm->pkt.nb_segs = 1;
rxm->pkt.next = NULL;
rxm->pkt.pkt_len = pkt_len;
rxm->pkt.data_len = pkt_len;
rxm->pkt.in_port = rxq->port_id;
rxm->pkt.hash.rss = rxd.wb.lower.hi_dword.rss;
hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
/* Only valid if PKT_RX_VLAN_PKT set in pkt_flags */
rxm->pkt.vlan_macip.f.vlan_tci =
rte_le_to_cpu_16(rxd.wb.upper.vlan);
pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(hlen_type_rss);
pkt_flags = (uint16_t)(pkt_flags |
rx_desc_status_to_pkt_flags(staterr));
pkt_flags = (uint16_t)(pkt_flags |
rx_desc_error_to_pkt_flags(staterr));
rxm->ol_flags = pkt_flags;
/*
* Store the mbuf address into the next entry of the array
* of returned packets.
*/
rx_pkts[nb_rx++] = rxm;
}
rxq->rx_tail = rx_id;
/*
* If the number of free RX descriptors is greater than the RX free
* threshold of the queue, advance the Receive Descriptor Tail (RDT)
* register.
* Update the RDT with the value of the last processed RX descriptor
* minus 1, to guarantee that the RDT register is never equal to the
* RDH register, which creates a "full" ring situtation from the
* hardware point of view...
*/
nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
if (nb_hold > rxq->rx_free_thresh) {
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
"nb_hold=%u nb_rx=%u\n",
(unsigned) rxq->port_id, (unsigned) rxq->queue_id,
(unsigned) rx_id, (unsigned) nb_hold,
(unsigned) nb_rx);
rx_id = (uint16_t) ((rx_id == 0) ?
(rxq->nb_rx_desc - 1) : (rx_id - 1));
E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
nb_hold = 0;
}
rxq->nb_rx_hold = nb_hold;
return (nb_rx);
}
uint16_t
eth_igb_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct igb_rx_queue *rxq;
volatile union e1000_adv_rx_desc *rx_ring;
volatile union e1000_adv_rx_desc *rxdp;
struct igb_rx_entry *sw_ring;
struct igb_rx_entry *rxe;
struct rte_mbuf *first_seg;
struct rte_mbuf *last_seg;
struct rte_mbuf *rxm;
struct rte_mbuf *nmb;
union e1000_adv_rx_desc rxd;
uint64_t dma; /* Physical address of mbuf data buffer */
uint32_t staterr;
uint32_t hlen_type_rss;
uint16_t rx_id;
uint16_t nb_rx;
uint16_t nb_hold;
uint16_t data_len;
uint16_t pkt_flags;
nb_rx = 0;
nb_hold = 0;
rxq = rx_queue;
rx_id = rxq->rx_tail;
rx_ring = rxq->rx_ring;
sw_ring = rxq->sw_ring;
/*
* Retrieve RX context of current packet, if any.
*/
first_seg = rxq->pkt_first_seg;
last_seg = rxq->pkt_last_seg;
while (nb_rx < nb_pkts) {
next_desc:
/*
* The order of operations here is important as the DD status
* bit must not be read after any other descriptor fields.
* rx_ring and rxdp are pointing to volatile data so the order
* of accesses cannot be reordered by the compiler. If they were
* not volatile, they could be reordered which could lead to
* using invalid descriptor fields when read from rxd.
*/
rxdp = &rx_ring[rx_id];
staterr = rxdp->wb.upper.status_error;
if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
break;
rxd = *rxdp;
/*
* Descriptor done.
*
* Allocate a new mbuf to replenish the RX ring descriptor.
* If the allocation fails:
* - arrange for that RX descriptor to be the first one
* being parsed the next time the receive function is
* invoked [on the same queue].
*
* - Stop parsing the RX ring and return immediately.
*
* This policy does not drop the packet received in the RX
* descriptor for which the allocation of a new mbuf failed.
* Thus, it allows that packet to be later retrieved if
* mbuf have been freed in the mean time.
* As a side effect, holding RX descriptors instead of
* systematically giving them back to the NIC may lead to
* RX ring exhaustion situations.
* However, the NIC can gracefully prevent such situations
* to happen by sending specific "back-pressure" flow control
* frames to its peer(s).
*/
PMD_RX_LOG(DEBUG, "\nport_id=%u queue_id=%u rx_id=%u "
"staterr=0x%x data_len=%u\n",
(unsigned) rxq->port_id, (unsigned) rxq->queue_id,
(unsigned) rx_id, (unsigned) staterr,
(unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
nmb = rte_rxmbuf_alloc(rxq->mb_pool);
if (nmb == NULL) {
PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
"queue_id=%u\n", (unsigned) rxq->port_id,
(unsigned) rxq->queue_id);
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
break;
}
nb_hold++;
rxe = &sw_ring[rx_id];
rx_id++;
if (rx_id == rxq->nb_rx_desc)
rx_id = 0;
/* Prefetch next mbuf while processing current one. */
rte_igb_prefetch(sw_ring[rx_id].mbuf);
/*
* When next RX descriptor is on a cache-line boundary,
* prefetch the next 4 RX descriptors and the next 8 pointers
* to mbufs.
*/
if ((rx_id & 0x3) == 0) {
rte_igb_prefetch(&rx_ring[rx_id]);
rte_igb_prefetch(&sw_ring[rx_id]);
}
/*
* Update RX descriptor with the physical address of the new
* data buffer of the new allocated mbuf.
*/
rxm = rxe->mbuf;
rxe->mbuf = nmb;
dma = rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
rxdp->read.pkt_addr = dma;
rxdp->read.hdr_addr = dma;
/*
* Set data length & data buffer address of mbuf.
*/
data_len = rte_le_to_cpu_16(rxd.wb.upper.length);
rxm->pkt.data_len = data_len;
rxm->pkt.data = (char*) rxm->buf_addr + RTE_PKTMBUF_HEADROOM;
/*
* If this is the first buffer of the received packet,
* set the pointer to the first mbuf of the packet and
* initialize its context.
* Otherwise, update the total length and the number of segments
* of the current scattered packet, and update the pointer to
* the last mbuf of the current packet.
*/
if (first_seg == NULL) {
first_seg = rxm;
first_seg->pkt.pkt_len = data_len;
first_seg->pkt.nb_segs = 1;
} else {
first_seg->pkt.pkt_len += data_len;
first_seg->pkt.nb_segs++;
last_seg->pkt.next = rxm;
}
/*
* If this is not the last buffer of the received packet,
* update the pointer to the last mbuf of the current scattered
* packet and continue to parse the RX ring.
*/
if (! (staterr & E1000_RXD_STAT_EOP)) {
last_seg = rxm;
goto next_desc;
}
/*
* This is the last buffer of the received packet.
* If the CRC is not stripped by the hardware:
* - Subtract the CRC length from the total packet length.
* - If the last buffer only contains the whole CRC or a part
* of it, free the mbuf associated to the last buffer.
* If part of the CRC is also contained in the previous
* mbuf, subtract the length of that CRC part from the
* data length of the previous mbuf.
*/
rxm->pkt.next = NULL;
if (unlikely(rxq->crc_len > 0)) {
first_seg->pkt.pkt_len -= ETHER_CRC_LEN;
if (data_len <= ETHER_CRC_LEN) {
rte_pktmbuf_free_seg(rxm);
first_seg->pkt.nb_segs--;
last_seg->pkt.data_len = (uint16_t)
(last_seg->pkt.data_len -
(ETHER_CRC_LEN - data_len));
last_seg->pkt.next = NULL;
} else
rxm->pkt.data_len =
(uint16_t) (data_len - ETHER_CRC_LEN);
}
/*
* Initialize the first mbuf of the returned packet:
* - RX port identifier,
* - hardware offload data, if any:
* - RSS flag & hash,
* - IP checksum flag,
* - VLAN TCI, if any,
* - error flags.
*/
first_seg->pkt.in_port = rxq->port_id;
first_seg->pkt.hash.rss = rxd.wb.lower.hi_dword.rss;
/*
* The vlan_tci field is only valid when PKT_RX_VLAN_PKT is
* set in the pkt_flags field.
*/
first_seg->pkt.vlan_macip.f.vlan_tci =
rte_le_to_cpu_16(rxd.wb.upper.vlan);
hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(hlen_type_rss);
pkt_flags = (uint16_t)(pkt_flags |
rx_desc_status_to_pkt_flags(staterr));
pkt_flags = (uint16_t)(pkt_flags |
rx_desc_error_to_pkt_flags(staterr));
first_seg->ol_flags = pkt_flags;
/* Prefetch data of first segment, if configured to do so. */
rte_packet_prefetch(first_seg->pkt.data);
/*
* Store the mbuf address into the next entry of the array
* of returned packets.
*/
rx_pkts[nb_rx++] = first_seg;
/*
* Setup receipt context for a new packet.
*/
first_seg = NULL;
}
/*
* Record index of the next RX descriptor to probe.
*/
rxq->rx_tail = rx_id;
/*
* Save receive context.
*/
rxq->pkt_first_seg = first_seg;
rxq->pkt_last_seg = last_seg;
/*
* If the number of free RX descriptors is greater than the RX free
* threshold of the queue, advance the Receive Descriptor Tail (RDT)
* register.
* Update the RDT with the value of the last processed RX descriptor
* minus 1, to guarantee that the RDT register is never equal to the
* RDH register, which creates a "full" ring situtation from the
* hardware point of view...
*/
nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
if (nb_hold > rxq->rx_free_thresh) {
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
"nb_hold=%u nb_rx=%u\n",
(unsigned) rxq->port_id, (unsigned) rxq->queue_id,
(unsigned) rx_id, (unsigned) nb_hold,
(unsigned) nb_rx);
rx_id = (uint16_t) ((rx_id == 0) ?
(rxq->nb_rx_desc - 1) : (rx_id - 1));
E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
nb_hold = 0;
}
rxq->nb_rx_hold = nb_hold;
return (nb_rx);
}
/*
* Rings setup and release.
*
* TDBA/RDBA should be aligned on 16 byte boundary. But TDLEN/RDLEN should be
* multiple of 128 bytes. So we align TDBA/RDBA on 128 byte boundary.
* This will also optimize cache line size effect.
* H/W supports up to cache line size 128.
*/
#define IGB_ALIGN 128
/*
* Maximum number of Ring Descriptors.
*
* Since RDLEN/TDLEN should be multiple of 128bytes, the number of ring
* desscriptors should meet the following condition:
* (num_ring_desc * sizeof(struct e1000_rx/tx_desc)) % 128 == 0
*/
#define IGB_MIN_RING_DESC 32
#define IGB_MAX_RING_DESC 4096
static const struct rte_memzone *
ring_dma_zone_reserve(struct rte_eth_dev *dev, const char *ring_name,
uint16_t queue_id, uint32_t ring_size, int socket_id)
{
char z_name[RTE_MEMZONE_NAMESIZE];
const struct rte_memzone *mz;
rte_snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d",
dev->driver->pci_drv.name, ring_name,
dev->data->port_id, queue_id);
mz = rte_memzone_lookup(z_name);
if (mz)
return mz;
return rte_memzone_reserve_aligned(z_name, ring_size,
socket_id, 0, IGB_ALIGN);
}
static void
igb_tx_queue_release_mbufs(struct igb_tx_queue *txq)
{
unsigned i;
if (txq->sw_ring != NULL) {
for (i = 0; i < txq->nb_tx_desc; i++) {
if (txq->sw_ring[i].mbuf != NULL) {
rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
txq->sw_ring[i].mbuf = NULL;
}
}
}
}
static void
igb_tx_queue_release(struct igb_tx_queue *txq)
{
if (txq != NULL) {
igb_tx_queue_release_mbufs(txq);
rte_free(txq->sw_ring);
rte_free(txq);
}
}
void
eth_igb_tx_queue_release(void *txq)
{
igb_tx_queue_release(txq);
}
static void
igb_reset_tx_queue_stat(struct igb_tx_queue *txq)
{
txq->tx_head = 0;
txq->tx_tail = 0;
txq->ctx_curr = 0;
memset((void*)&txq->ctx_cache, 0,
IGB_CTX_NUM * sizeof(struct igb_advctx_info));
}
static void
igb_reset_tx_queue(struct igb_tx_queue *txq, struct rte_eth_dev *dev)
{
struct igb_tx_entry *txe = txq->sw_ring;
uint32_t size;
uint16_t i, prev;
struct e1000_hw *hw;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
size = sizeof(union e1000_adv_tx_desc) * txq->nb_tx_desc;
/* Zero out HW ring memory */
for (i = 0; i < size; i++) {
((volatile char *)txq->tx_ring)[i] = 0;
}
/* Initialize ring entries */
prev = (uint16_t)(txq->nb_tx_desc - 1);
for (i = 0; i < txq->nb_tx_desc; i++) {
volatile union e1000_adv_tx_desc *txd = &(txq->tx_ring[i]);
txd->wb.status = E1000_TXD_STAT_DD;
txe[i].mbuf = NULL;
txe[i].last_id = i;
txe[prev].next_id = i;
prev = i;
}
txq->txd_type = E1000_ADVTXD_DTYP_DATA;
/* 82575 specific, each tx queue will use 2 hw contexts */
if (hw->mac.type == e1000_82575)
txq->ctx_start = txq->queue_id * IGB_CTX_NUM;
igb_reset_tx_queue_stat(txq);
}
int
eth_igb_tx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_txconf *tx_conf)
{
const struct rte_memzone *tz;
struct igb_tx_queue *txq;
struct e1000_hw *hw;
uint32_t size;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/*
* Validate number of transmit descriptors.
* It must not exceed hardware maximum, and must be multiple
* of IGB_ALIGN.
*/
if (((nb_desc * sizeof(union e1000_adv_tx_desc)) % IGB_ALIGN) != 0 ||
(nb_desc > IGB_MAX_RING_DESC) || (nb_desc < IGB_MIN_RING_DESC)) {
return -EINVAL;
}
/*
* The tx_free_thresh and tx_rs_thresh values are not used in the 1G
* driver.
*/
if (tx_conf->tx_free_thresh != 0)
RTE_LOG(WARNING, PMD,
"The tx_free_thresh parameter is not "
"used for the 1G driver.\n");
if (tx_conf->tx_rs_thresh != 0)
RTE_LOG(WARNING, PMD,
"The tx_rs_thresh parameter is not "
"used for the 1G driver.\n");
if (tx_conf->tx_thresh.wthresh == 0)
RTE_LOG(WARNING, PMD,
"To improve 1G driver performance, consider setting "
"the TX WTHRESH value to 4, 8, or 16.\n");
/* Free memory prior to re-allocation if needed */
if (dev->data->tx_queues[queue_idx] != NULL)
igb_tx_queue_release(dev->data->tx_queues[queue_idx]);
/* First allocate the tx queue data structure */
txq = rte_zmalloc("ethdev TX queue", sizeof(struct igb_tx_queue),
CACHE_LINE_SIZE);
if (txq == NULL)
return (-ENOMEM);
/*
* Allocate TX ring hardware descriptors. A memzone large enough to
* handle the maximum ring size is allocated in order to allow for
* resizing in later calls to the queue setup function.
*/
size = sizeof(union e1000_adv_tx_desc) * IGB_MAX_RING_DESC;
tz = ring_dma_zone_reserve(dev, "tx_ring", queue_idx,
size, socket_id);
if (tz == NULL) {
igb_tx_queue_release(txq);
return (-ENOMEM);
}
txq->nb_tx_desc = nb_desc;
txq->pthresh = tx_conf->tx_thresh.pthresh;
txq->hthresh = tx_conf->tx_thresh.hthresh;
txq->wthresh = tx_conf->tx_thresh.wthresh;
txq->queue_id = queue_idx;
txq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
txq->port_id = dev->data->port_id;
txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(txq->reg_idx));
txq->tx_ring_phys_addr = (uint64_t) tz->phys_addr;
txq->tx_ring = (union e1000_adv_tx_desc *) tz->addr;
/* Allocate software ring */
txq->sw_ring = rte_zmalloc("txq->sw_ring",
sizeof(struct igb_tx_entry) * nb_desc,
CACHE_LINE_SIZE);
if (txq->sw_ring == NULL) {
igb_tx_queue_release(txq);
return (-ENOMEM);
}
PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64"\n",
txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
igb_reset_tx_queue(txq, dev);
dev->tx_pkt_burst = eth_igb_xmit_pkts;
dev->data->tx_queues[queue_idx] = txq;
return (0);
}
static void
igb_rx_queue_release_mbufs(struct igb_rx_queue *rxq)
{
unsigned i;
if (rxq->sw_ring != NULL) {
for (i = 0; i < rxq->nb_rx_desc; i++) {
if (rxq->sw_ring[i].mbuf != NULL) {
rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
rxq->sw_ring[i].mbuf = NULL;
}
}
}
}
static void
igb_rx_queue_release(struct igb_rx_queue *rxq)
{
if (rxq != NULL) {
igb_rx_queue_release_mbufs(rxq);
rte_free(rxq->sw_ring);
rte_free(rxq);
}
}
void
eth_igb_rx_queue_release(void *rxq)
{
igb_rx_queue_release(rxq);
}
static void
igb_reset_rx_queue(struct igb_rx_queue *rxq)
{
unsigned size;
unsigned i;
/* Zero out HW ring memory */
size = sizeof(union e1000_adv_rx_desc) * rxq->nb_rx_desc;
for (i = 0; i < size; i++) {
((volatile char *)rxq->rx_ring)[i] = 0;
}
rxq->rx_tail = 0;
rxq->pkt_first_seg = NULL;
rxq->pkt_last_seg = NULL;
}
int
eth_igb_rx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mp)
{
const struct rte_memzone *rz;
struct igb_rx_queue *rxq;
struct e1000_hw *hw;
unsigned int size;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/*
* Validate number of receive descriptors.
* It must not exceed hardware maximum, and must be multiple
* of IGB_ALIGN.
*/
if (((nb_desc * sizeof(union e1000_adv_rx_desc)) % IGB_ALIGN) != 0 ||
(nb_desc > IGB_MAX_RING_DESC) || (nb_desc < IGB_MIN_RING_DESC)) {
return (-EINVAL);
}
/* Free memory prior to re-allocation if needed */
if (dev->data->rx_queues[queue_idx] != NULL) {
igb_rx_queue_release(dev->data->rx_queues[queue_idx]);
dev->data->rx_queues[queue_idx] = NULL;
}
/* First allocate the RX queue data structure. */
rxq = rte_zmalloc("ethdev RX queue", sizeof(struct igb_rx_queue),
CACHE_LINE_SIZE);
if (rxq == NULL)
return (-ENOMEM);
rxq->mb_pool = mp;
rxq->nb_rx_desc = nb_desc;
rxq->pthresh = rx_conf->rx_thresh.pthresh;
rxq->hthresh = rx_conf->rx_thresh.hthresh;
rxq->wthresh = rx_conf->rx_thresh.wthresh;
rxq->drop_en = rx_conf->rx_drop_en;
rxq->rx_free_thresh = rx_conf->rx_free_thresh;
rxq->queue_id = queue_idx;
rxq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
rxq->port_id = dev->data->port_id;
rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ? 0 :
ETHER_CRC_LEN);
/*
* Allocate RX ring hardware descriptors. A memzone large enough to
* handle the maximum ring size is allocated in order to allow for
* resizing in later calls to the queue setup function.
*/
size = sizeof(union e1000_adv_rx_desc) * IGB_MAX_RING_DESC;
rz = ring_dma_zone_reserve(dev, "rx_ring", queue_idx, size, socket_id);
if (rz == NULL) {
igb_rx_queue_release(rxq);
return (-ENOMEM);
}
rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(rxq->reg_idx));
rxq->rdh_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDH(rxq->reg_idx));
rxq->rx_ring_phys_addr = (uint64_t) rz->phys_addr;
rxq->rx_ring = (union e1000_adv_rx_desc *) rz->addr;
/* Allocate software ring. */
rxq->sw_ring = rte_zmalloc("rxq->sw_ring",
sizeof(struct igb_rx_entry) * nb_desc,
CACHE_LINE_SIZE);
if (rxq->sw_ring == NULL) {
igb_rx_queue_release(rxq);
return (-ENOMEM);
}
PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64"\n",
rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr);
dev->data->rx_queues[queue_idx] = rxq;
igb_reset_rx_queue(rxq);
return 0;
}
uint32_t
eth_igb_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
#define IGB_RXQ_SCAN_INTERVAL 4
volatile union e1000_adv_rx_desc *rxdp;
struct igb_rx_queue *rxq;
uint32_t desc = 0;
if (rx_queue_id >= dev->data->nb_rx_queues) {
PMD_RX_LOG(ERR, "Invalid RX queue id=%d\n", rx_queue_id);
return 0;
}
rxq = dev->data->rx_queues[rx_queue_id];
rxdp = &(rxq->rx_ring[rxq->rx_tail]);
while ((desc < rxq->nb_rx_desc) &&
(rxdp->wb.upper.status_error & E1000_RXD_STAT_DD)) {
desc += IGB_RXQ_SCAN_INTERVAL;
rxdp += IGB_RXQ_SCAN_INTERVAL;
if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
rxdp = &(rxq->rx_ring[rxq->rx_tail +
desc - rxq->nb_rx_desc]);
}
return 0;
}
int
eth_igb_rx_descriptor_done(void *rx_queue, uint16_t offset)
{
volatile union e1000_adv_rx_desc *rxdp;
struct igb_rx_queue *rxq = rx_queue;
uint32_t desc;
if (unlikely(offset >= rxq->nb_rx_desc))
return 0;
desc = rxq->rx_tail + offset;
if (desc >= rxq->nb_rx_desc)
desc -= rxq->nb_rx_desc;
rxdp = &rxq->rx_ring[desc];
return !!(rxdp->wb.upper.status_error & E1000_RXD_STAT_DD);
}
void
igb_dev_clear_queues(struct rte_eth_dev *dev)
{
uint16_t i;
struct igb_tx_queue *txq;
struct igb_rx_queue *rxq;
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txq = dev->data->tx_queues[i];
if (txq != NULL) {
igb_tx_queue_release_mbufs(txq);
igb_reset_tx_queue(txq, dev);
}
}
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
if (rxq != NULL) {
igb_rx_queue_release_mbufs(rxq);
igb_reset_rx_queue(rxq);
}
}
}
/**
* Receive Side Scaling (RSS).
* See section 7.1.1.7 in the following document:
* "Intel 82576 GbE Controller Datasheet" - Revision 2.45 October 2009
*
* Principles:
* The source and destination IP addresses of the IP header and the source and
* destination ports of TCP/UDP headers, if any, of received packets are hashed
* against a configurable random key to compute a 32-bit RSS hash result.
* The seven (7) LSBs of the 32-bit hash result are used as an index into a
* 128-entry redirection table (RETA). Each entry of the RETA provides a 3-bit
* RSS output index which is used as the RX queue index where to store the
* received packets.
* The following output is supplied in the RX write-back descriptor:
* - 32-bit result of the Microsoft RSS hash function,
* - 4-bit RSS type field.
*/
/*
* RSS random key supplied in section 7.1.1.7.3 of the Intel 82576 datasheet.
* Used as the default key.
*/
static uint8_t rss_intel_key[40] = {
0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
};
static void
igb_rss_disable(struct rte_eth_dev *dev)
{
struct e1000_hw *hw;
uint32_t mrqc;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
mrqc = E1000_READ_REG(hw, E1000_MRQC);
mrqc &= ~E1000_MRQC_ENABLE_MASK;
E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
}
static void
igb_rss_configure(struct rte_eth_dev *dev)
{
struct e1000_hw *hw;
uint8_t *hash_key;
uint32_t rss_key;
uint32_t mrqc;
uint32_t shift;
uint16_t rss_hf;
uint16_t i;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
rss_hf = dev->data->dev_conf.rx_adv_conf.rss_conf.rss_hf;
if (rss_hf == 0) /* Disable RSS. */ {
igb_rss_disable(dev);
return;
}
hash_key = dev->data->dev_conf.rx_adv_conf.rss_conf.rss_key;
if (hash_key == NULL)
hash_key = rss_intel_key; /* Default hash key. */
/* Fill in RSS hash key. */
for (i = 0; i < 10; i++) {
rss_key = hash_key[(i * 4)];
rss_key |= hash_key[(i * 4) + 1] << 8;
rss_key |= hash_key[(i * 4) + 2] << 16;
rss_key |= hash_key[(i * 4) + 3] << 24;
E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key);
}
/* Fill in redirection table. */
shift = (hw->mac.type == e1000_82575) ? 6 : 0;
for (i = 0; i < 128; i++) {
union e1000_reta {
uint32_t dword;
uint8_t bytes[4];
} reta;
uint8_t q_idx;
q_idx = (uint8_t) ((dev->data->nb_rx_queues > 1) ?
i % dev->data->nb_rx_queues : 0);
reta.bytes[i & 3] = (uint8_t) (q_idx << shift);
if ((i & 3) == 3)
E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta.dword);
}
/* Set configured hashing functions in MRQC register. */
mrqc = E1000_MRQC_ENABLE_RSS_4Q; /* RSS enabled. */
if (rss_hf & ETH_RSS_IPV4)
mrqc |= E1000_MRQC_RSS_FIELD_IPV4;
if (rss_hf & ETH_RSS_IPV4_TCP)
mrqc |= E1000_MRQC_RSS_FIELD_IPV4_TCP;
if (rss_hf & ETH_RSS_IPV6)
mrqc |= E1000_MRQC_RSS_FIELD_IPV6;
if (rss_hf & ETH_RSS_IPV6_EX)
mrqc |= E1000_MRQC_RSS_FIELD_IPV6_EX;
if (rss_hf & ETH_RSS_IPV6_TCP)
mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP;
if (rss_hf & ETH_RSS_IPV6_TCP_EX)
mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
if (rss_hf & ETH_RSS_IPV4_UDP)
mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
if (rss_hf & ETH_RSS_IPV6_UDP)
mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
if (rss_hf & ETH_RSS_IPV6_UDP_EX)
mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP_EX;
E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
}
/*
* Check if the mac type support VMDq or not.
* Return 1 if it supports, otherwise, return 0.
*/
static int
igb_is_vmdq_supported(const struct rte_eth_dev *dev)
{
const struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
switch (hw->mac.type) {
case e1000_82576:
case e1000_82580:
case e1000_i350:
return 1;
case e1000_82540:
case e1000_82541:
case e1000_82542:
case e1000_82543:
case e1000_82544:
case e1000_82545:
case e1000_82546:
case e1000_82547:
case e1000_82571:
case e1000_82572:
case e1000_82573:
case e1000_82574:
case e1000_82583:
case e1000_i210:
case e1000_i211:
default:
PMD_INIT_LOG(ERR, "Cannot support VMDq feature\n");
return 0;
}
}
static int
igb_vmdq_rx_hw_configure(struct rte_eth_dev *dev)
{
struct rte_eth_vmdq_rx_conf *cfg;
struct e1000_hw *hw;
uint32_t mrqc, vt_ctl, vmolr, rctl;
int i;
PMD_INIT_LOG(DEBUG, ">>");
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf;
/* Check if mac type can support VMDq, return value of 0 means NOT support */
if (igb_is_vmdq_supported(dev) == 0)
return -1;
igb_rss_disable(dev);
/* RCTL: eanble VLAN filter */
rctl = E1000_READ_REG(hw, E1000_RCTL);
rctl |= E1000_RCTL_VFE;
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
/* MRQC: enable vmdq */
mrqc = E1000_READ_REG(hw, E1000_MRQC);
mrqc |= E1000_MRQC_ENABLE_VMDQ;
E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
/* VTCTL: pool selection according to VLAN tag */
vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL);
if (cfg->enable_default_pool)
vt_ctl |= (cfg->default_pool << E1000_VT_CTL_DEFAULT_POOL_SHIFT);
vt_ctl |= E1000_VT_CTL_IGNORE_MAC;
E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl);
/*
* VMOLR: set STRVLAN as 1 if IGMAC in VTCTL is set as 1
* Both 82576 and 82580 support it
*/
if (hw->mac.type != e1000_i350) {
for (i = 0; i < E1000_VMOLR_SIZE; i++) {
vmolr = E1000_READ_REG(hw, E1000_VMOLR(i));
vmolr |= E1000_VMOLR_STRVLAN;
E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr);
}
}
/* VFTA - enable all vlan filters */
for (i = 0; i < IGB_VFTA_SIZE; i++)
E1000_WRITE_REG(hw, (E1000_VFTA+(i*4)), UINT32_MAX);
/* VFRE: 8 pools enabling for rx, both 82576 and i350 support it */
if (hw->mac.type != e1000_82580)
E1000_WRITE_REG(hw, E1000_VFRE, E1000_MBVFICR_VFREQ_MASK);
/*
* RAH/RAL - allow pools to read specific mac addresses
* In this case, all pools should be able to read from mac addr 0
*/
E1000_WRITE_REG(hw, E1000_RAH(0), (E1000_RAH_AV | UINT16_MAX));
E1000_WRITE_REG(hw, E1000_RAL(0), UINT32_MAX);
/* VLVF: set up filters for vlan tags as configured */
for (i = 0; i < cfg->nb_pool_maps; i++) {
/* set vlan id in VF register and set the valid bit */
E1000_WRITE_REG(hw, E1000_VLVF(i), (E1000_VLVF_VLANID_ENABLE | \
(cfg->pool_map[i].vlan_id & ETH_VLAN_ID_MAX) | \
((cfg->pool_map[i].pools << E1000_VLVF_POOLSEL_SHIFT ) & \
E1000_VLVF_POOLSEL_MASK)));
}
E1000_WRITE_FLUSH(hw);
return 0;
}
/*********************************************************************
*
* Enable receive unit.
*
**********************************************************************/
static int
igb_alloc_rx_queue_mbufs(struct igb_rx_queue *rxq)
{
struct igb_rx_entry *rxe = rxq->sw_ring;
uint64_t dma_addr;
unsigned i;
/* Initialize software ring entries. */
for (i = 0; i < rxq->nb_rx_desc; i++) {
volatile union e1000_adv_rx_desc *rxd;
struct rte_mbuf *mbuf = rte_rxmbuf_alloc(rxq->mb_pool);
if (mbuf == NULL) {
PMD_INIT_LOG(ERR, "RX mbuf alloc failed "
"queue_id=%hu\n", rxq->queue_id);
igb_rx_queue_release(rxq);
return (-ENOMEM);
}
dma_addr =
rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mbuf));
rxd = &rxq->rx_ring[i];
rxd->read.hdr_addr = dma_addr;
rxd->read.pkt_addr = dma_addr;
rxe[i].mbuf = mbuf;
}
return 0;
}
#define E1000_MRQC_DEF_Q_SHIFT (3)
static int
igb_dev_mq_rx_configure(struct rte_eth_dev *dev)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t mrqc;
if (RTE_ETH_DEV_SRIOV(dev).active == ETH_8_POOLS) {
/*
* SRIOV active scheme
* FIXME if support RSS together with VMDq & SRIOV
*/
mrqc = E1000_MRQC_ENABLE_VMDQ;
/* 011b Def_Q ignore, according to VT_CTL.DEF_PL */
mrqc |= 0x3 << E1000_MRQC_DEF_Q_SHIFT;
E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
} else if(RTE_ETH_DEV_SRIOV(dev).active == 0) {
/*
* SRIOV inactive scheme
*/
if (dev->data->nb_rx_queues > 1)
switch (dev->data->dev_conf.rxmode.mq_mode) {
case ETH_MQ_RX_NONE:
/* if mq_mode not assign, we use rss mode.*/
case ETH_MQ_RX_RSS:
igb_rss_configure(dev);
break;
case ETH_MQ_RX_VMDQ_ONLY:
/*Configure general VMDQ only RX parameters*/
igb_vmdq_rx_hw_configure(dev);
break;
default:
igb_rss_disable(dev);
break;
}
else
igb_rss_disable(dev);
}
return 0;
}
int
eth_igb_rx_init(struct rte_eth_dev *dev)
{
struct e1000_hw *hw;
struct igb_rx_queue *rxq;
struct rte_pktmbuf_pool_private *mbp_priv;
uint32_t rctl;
uint32_t rxcsum;
uint32_t srrctl;
uint16_t buf_size;
uint16_t rctl_bsize;
uint16_t i;
int ret;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
srrctl = 0;
/*
* Make sure receives are disabled while setting
* up the descriptor ring.
*/
rctl = E1000_READ_REG(hw, E1000_RCTL);
E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
/*
* Configure support of jumbo frames, if any.
*/
if (dev->data->dev_conf.rxmode.jumbo_frame == 1) {
rctl |= E1000_RCTL_LPE;
/*
* Set maximum packet length by default, and might be updated
* together with enabling/disabling dual VLAN.
*/
E1000_WRITE_REG(hw, E1000_RLPML,
dev->data->dev_conf.rxmode.max_rx_pkt_len +
VLAN_TAG_SIZE);
} else
rctl &= ~E1000_RCTL_LPE;
/* Configure and enable each RX queue. */
rctl_bsize = 0;
dev->rx_pkt_burst = eth_igb_recv_pkts;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
uint64_t bus_addr;
uint32_t rxdctl;
rxq = dev->data->rx_queues[i];
/* Allocate buffers for descriptor rings and set up queue */
ret = igb_alloc_rx_queue_mbufs(rxq);
if (ret)
return ret;
/*
* Reset crc_len in case it was changed after queue setup by a
* call to configure
*/
rxq->crc_len =
(uint8_t)(dev->data->dev_conf.rxmode.hw_strip_crc ?
0 : ETHER_CRC_LEN);
bus_addr = rxq->rx_ring_phys_addr;
E1000_WRITE_REG(hw, E1000_RDLEN(rxq->reg_idx),
rxq->nb_rx_desc *
sizeof(union e1000_adv_rx_desc));
E1000_WRITE_REG(hw, E1000_RDBAH(rxq->reg_idx),
(uint32_t)(bus_addr >> 32));
E1000_WRITE_REG(hw, E1000_RDBAL(rxq->reg_idx), (uint32_t)bus_addr);
srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
/*
* Configure RX buffer size.
*/
mbp_priv = (struct rte_pktmbuf_pool_private *)
((char *)rxq->mb_pool + sizeof(struct rte_mempool));
buf_size = (uint16_t) (mbp_priv->mbuf_data_room_size -
RTE_PKTMBUF_HEADROOM);
if (buf_size >= 1024) {
/*
* Configure the BSIZEPACKET field of the SRRCTL
* register of the queue.
* Value is in 1 KB resolution, from 1 KB to 127 KB.
* If this field is equal to 0b, then RCTL.BSIZE
* determines the RX packet buffer size.
*/
srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
E1000_SRRCTL_BSIZEPKT_MASK);
buf_size = (uint16_t) ((srrctl &
E1000_SRRCTL_BSIZEPKT_MASK) <<
E1000_SRRCTL_BSIZEPKT_SHIFT);
/* It adds dual VLAN length for supporting dual VLAN */
if ((dev->data->dev_conf.rxmode.max_rx_pkt_len +
2 * VLAN_TAG_SIZE) > buf_size){
dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
dev->data->scattered_rx = 1;
}
} else {
/*
* Use BSIZE field of the device RCTL register.
*/
if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
rctl_bsize = buf_size;
dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
dev->data->scattered_rx = 1;
}
/* Set if packets are dropped when no descriptors available */
if (rxq->drop_en)
srrctl |= E1000_SRRCTL_DROP_EN;
E1000_WRITE_REG(hw, E1000_SRRCTL(rxq->reg_idx), srrctl);
/* Enable this RX queue. */
rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(rxq->reg_idx));
rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
rxdctl &= 0xFFF00000;
rxdctl |= (rxq->pthresh & 0x1F);
rxdctl |= ((rxq->hthresh & 0x1F) << 8);
rxdctl |= ((rxq->wthresh & 0x1F) << 16);
E1000_WRITE_REG(hw, E1000_RXDCTL(rxq->reg_idx), rxdctl);
}
/*
* Setup BSIZE field of RCTL register, if needed.
* Buffer sizes >= 1024 are not [supposed to be] setup in the RCTL
* register, since the code above configures the SRRCTL register of
* the RX queue in such a case.
* All configurable sizes are:
* 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX);
* 8192: rctl |= (E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX);
* 4096: rctl |= (E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX);
* 2048: rctl |= E1000_RCTL_SZ_2048;
* 1024: rctl |= E1000_RCTL_SZ_1024;
* 512: rctl |= E1000_RCTL_SZ_512;
* 256: rctl |= E1000_RCTL_SZ_256;
*/
if (rctl_bsize > 0) {
if (rctl_bsize >= 512) /* 512 <= buf_size < 1024 - use 512 */
rctl |= E1000_RCTL_SZ_512;
else /* 256 <= buf_size < 512 - use 256 */
rctl |= E1000_RCTL_SZ_256;
}
/*
* Configure RSS if device configured with multiple RX queues.
*/
igb_dev_mq_rx_configure(dev);
/* Update the rctl since igb_dev_mq_rx_configure may change its value */
rctl |= E1000_READ_REG(hw, E1000_RCTL);
/*
* Setup the Checksum Register.
* Receive Full-Packet Checksum Offload is mutually exclusive with RSS.
*/
rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
rxcsum |= E1000_RXCSUM_PCSD;
/* Enable both L3/L4 rx checksum offload */
if (dev->data->dev_conf.rxmode.hw_ip_checksum)
rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
else
rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
/* Setup the Receive Control Register. */
if (dev->data->dev_conf.rxmode.hw_strip_crc) {
rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */
/* set STRCRC bit in all queues for Powerville/Springville */
if (hw->mac.type == e1000_i350 || hw->mac.type == e1000_i210) {
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
uint32_t dvmolr = E1000_READ_REG(hw,
E1000_DVMOLR(rxq->reg_idx));
dvmolr |= E1000_DVMOLR_STRCRC;
E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr);
}
}
} else {
rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */
/* clear STRCRC bit in all queues for Powerville/Springville */
if (hw->mac.type == e1000_i350 || hw->mac.type == e1000_i210) {
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
uint32_t dvmolr = E1000_READ_REG(hw,
E1000_DVMOLR(rxq->reg_idx));
dvmolr &= ~E1000_DVMOLR_STRCRC;
E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr);
}
}
}
rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
E1000_RCTL_RDMTS_HALF |
(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
/* Make sure VLAN Filters are off. */
if (dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_VMDQ_ONLY)
rctl &= ~E1000_RCTL_VFE;
/* Don't store bad packets. */
rctl &= ~E1000_RCTL_SBP;
/* Enable Receives. */
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
/*
* Setup the HW Rx Head and Tail Descriptor Pointers.
* This needs to be done after enable.
*/
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
E1000_WRITE_REG(hw, E1000_RDH(rxq->reg_idx), 0);
E1000_WRITE_REG(hw, E1000_RDT(rxq->reg_idx), rxq->nb_rx_desc - 1);
}
return 0;
}
/*********************************************************************
*
* Enable transmit unit.
*
**********************************************************************/
void
eth_igb_tx_init(struct rte_eth_dev *dev)
{
struct e1000_hw *hw;
struct igb_tx_queue *txq;
uint32_t tctl;
uint32_t txdctl;
uint16_t i;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* Setup the Base and Length of the Tx Descriptor Rings. */
for (i = 0; i < dev->data->nb_tx_queues; i++) {
uint64_t bus_addr;
txq = dev->data->tx_queues[i];
bus_addr = txq->tx_ring_phys_addr;
E1000_WRITE_REG(hw, E1000_TDLEN(txq->reg_idx),
txq->nb_tx_desc *
sizeof(union e1000_adv_tx_desc));
E1000_WRITE_REG(hw, E1000_TDBAH(txq->reg_idx),
(uint32_t)(bus_addr >> 32));
E1000_WRITE_REG(hw, E1000_TDBAL(txq->reg_idx), (uint32_t)bus_addr);
/* Setup the HW Tx Head and Tail descriptor pointers. */
E1000_WRITE_REG(hw, E1000_TDT(txq->reg_idx), 0);
E1000_WRITE_REG(hw, E1000_TDH(txq->reg_idx), 0);
/* Setup Transmit threshold registers. */
txdctl = E1000_READ_REG(hw, E1000_TXDCTL(txq->reg_idx));
txdctl |= txq->pthresh & 0x1F;
txdctl |= ((txq->hthresh & 0x1F) << 8);
txdctl |= ((txq->wthresh & 0x1F) << 16);
txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
E1000_WRITE_REG(hw, E1000_TXDCTL(txq->reg_idx), txdctl);
}
/* Program the Transmit Control Register. */
tctl = E1000_READ_REG(hw, E1000_TCTL);
tctl &= ~E1000_TCTL_CT;
tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
e1000_config_collision_dist(hw);
/* This write will effectively turn on the transmit unit. */
E1000_WRITE_REG(hw, E1000_TCTL, tctl);
}
/*********************************************************************
*
* Enable VF receive unit.
*
**********************************************************************/
int
eth_igbvf_rx_init(struct rte_eth_dev *dev)
{
struct e1000_hw *hw;
struct igb_rx_queue *rxq;
struct rte_pktmbuf_pool_private *mbp_priv;
uint32_t srrctl;
uint16_t buf_size;
uint16_t rctl_bsize;
uint16_t i;
int ret;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* Configure and enable each RX queue. */
rctl_bsize = 0;
dev->rx_pkt_burst = eth_igb_recv_pkts;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
uint64_t bus_addr;
uint32_t rxdctl;
rxq = dev->data->rx_queues[i];
/* Allocate buffers for descriptor rings and set up queue */
ret = igb_alloc_rx_queue_mbufs(rxq);
if (ret)
return ret;
bus_addr = rxq->rx_ring_phys_addr;
E1000_WRITE_REG(hw, E1000_RDLEN(i),
rxq->nb_rx_desc *
sizeof(union e1000_adv_rx_desc));
E1000_WRITE_REG(hw, E1000_RDBAH(i),
(uint32_t)(bus_addr >> 32));
E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr);
srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
/*
* Configure RX buffer size.
*/
mbp_priv = (struct rte_pktmbuf_pool_private *)
((char *)rxq->mb_pool + sizeof(struct rte_mempool));
buf_size = (uint16_t) (mbp_priv->mbuf_data_room_size -
RTE_PKTMBUF_HEADROOM);
if (buf_size >= 1024) {
/*
* Configure the BSIZEPACKET field of the SRRCTL
* register of the queue.
* Value is in 1 KB resolution, from 1 KB to 127 KB.
* If this field is equal to 0b, then RCTL.BSIZE
* determines the RX packet buffer size.
*/
srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
E1000_SRRCTL_BSIZEPKT_MASK);
buf_size = (uint16_t) ((srrctl &
E1000_SRRCTL_BSIZEPKT_MASK) <<
E1000_SRRCTL_BSIZEPKT_SHIFT);
/* It adds dual VLAN length for supporting dual VLAN */
if ((dev->data->dev_conf.rxmode.max_rx_pkt_len +
2 * VLAN_TAG_SIZE) > buf_size){
dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
dev->data->scattered_rx = 1;
}
} else {
/*
* Use BSIZE field of the device RCTL register.
*/
if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
rctl_bsize = buf_size;
dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
dev->data->scattered_rx = 1;
}
/* Set if packets are dropped when no descriptors available */
if (rxq->drop_en)
srrctl |= E1000_SRRCTL_DROP_EN;
E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
/* Enable this RX queue. */
rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
rxdctl &= 0xFFF00000;
rxdctl |= (rxq->pthresh & 0x1F);
rxdctl |= ((rxq->hthresh & 0x1F) << 8);
if (hw->mac.type == e1000_82576) {
/*
* Workaround of 82576 VF Erratum
* force set WTHRESH to 1
* to avoid Write-Back not triggered sometimes
*/
rxdctl |= 0x10000;
PMD_INIT_LOG(DEBUG, "Force set RX WTHRESH to 1 !\n");
}
else
rxdctl |= ((rxq->wthresh & 0x1F) << 16);
E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
}
/*
* Setup the HW Rx Head and Tail Descriptor Pointers.
* This needs to be done after enable.
*/
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
E1000_WRITE_REG(hw, E1000_RDH(i), 0);
E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1);
}
return 0;
}
/*********************************************************************
*
* Enable VF transmit unit.
*
**********************************************************************/
void
eth_igbvf_tx_init(struct rte_eth_dev *dev)
{
struct e1000_hw *hw;
struct igb_tx_queue *txq;
uint32_t txdctl;
uint16_t i;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* Setup the Base and Length of the Tx Descriptor Rings. */
for (i = 0; i < dev->data->nb_tx_queues; i++) {
uint64_t bus_addr;
txq = dev->data->tx_queues[i];
bus_addr = txq->tx_ring_phys_addr;
E1000_WRITE_REG(hw, E1000_TDLEN(i),
txq->nb_tx_desc *
sizeof(union e1000_adv_tx_desc));
E1000_WRITE_REG(hw, E1000_TDBAH(i),
(uint32_t)(bus_addr >> 32));
E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr);
/* Setup the HW Tx Head and Tail descriptor pointers. */
E1000_WRITE_REG(hw, E1000_TDT(i), 0);
E1000_WRITE_REG(hw, E1000_TDH(i), 0);
/* Setup Transmit threshold registers. */
txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i));
txdctl |= txq->pthresh & 0x1F;
txdctl |= ((txq->hthresh & 0x1F) << 8);
if (hw->mac.type == e1000_82576) {
/*
* Workaround of 82576 VF Erratum
* force set WTHRESH to 1
* to avoid Write-Back not triggered sometimes
*/
txdctl |= 0x10000;
PMD_INIT_LOG(DEBUG, "Force set TX WTHRESH to 1 !\n");
}
else
txdctl |= ((txq->wthresh & 0x1F) << 16);
txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
}
}