d6298844da
This patch fixes the heap-use-after-free bug which was found by ASAN (Address-Sanitizer) in the vfio_get_default_container_fd function. Fixes: 6bcb7c95fe14 ("vfio: share default container in multi-process") Cc: stable@dpdk.org Signed-off-by: Chengwen Feng <fengchengwen@huawei.com> Signed-off-by: Wei Hu (Xavier) <xavier.huwei@huawei.com> Acked-by: Anatoly Burakov <anatoly.burakov@intel.com>
2187 lines
54 KiB
C
2187 lines
54 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2010-2018 Intel Corporation
|
|
*/
|
|
|
|
#include <inttypes.h>
|
|
#include <string.h>
|
|
#include <fcntl.h>
|
|
#include <unistd.h>
|
|
#include <sys/ioctl.h>
|
|
|
|
#include <rte_errno.h>
|
|
#include <rte_log.h>
|
|
#include <rte_memory.h>
|
|
#include <rte_eal_memconfig.h>
|
|
#include <rte_vfio.h>
|
|
|
|
#include "eal_filesystem.h"
|
|
#include "eal_memcfg.h"
|
|
#include "eal_vfio.h"
|
|
#include "eal_private.h"
|
|
|
|
#ifdef VFIO_PRESENT
|
|
|
|
#define VFIO_MEM_EVENT_CLB_NAME "vfio_mem_event_clb"
|
|
|
|
/* hot plug/unplug of VFIO groups may cause all DMA maps to be dropped. we can
|
|
* recreate the mappings for DPDK segments, but we cannot do so for memory that
|
|
* was registered by the user themselves, so we need to store the user mappings
|
|
* somewhere, to recreate them later.
|
|
*/
|
|
#define VFIO_MAX_USER_MEM_MAPS 256
|
|
struct user_mem_map {
|
|
uint64_t addr;
|
|
uint64_t iova;
|
|
uint64_t len;
|
|
};
|
|
|
|
struct user_mem_maps {
|
|
rte_spinlock_recursive_t lock;
|
|
int n_maps;
|
|
struct user_mem_map maps[VFIO_MAX_USER_MEM_MAPS];
|
|
};
|
|
|
|
struct vfio_config {
|
|
int vfio_enabled;
|
|
int vfio_container_fd;
|
|
int vfio_active_groups;
|
|
const struct vfio_iommu_type *vfio_iommu_type;
|
|
struct vfio_group vfio_groups[VFIO_MAX_GROUPS];
|
|
struct user_mem_maps mem_maps;
|
|
};
|
|
|
|
/* per-process VFIO config */
|
|
static struct vfio_config vfio_cfgs[VFIO_MAX_CONTAINERS];
|
|
static struct vfio_config *default_vfio_cfg = &vfio_cfgs[0];
|
|
|
|
static int vfio_type1_dma_map(int);
|
|
static int vfio_type1_dma_mem_map(int, uint64_t, uint64_t, uint64_t, int);
|
|
static int vfio_spapr_dma_map(int);
|
|
static int vfio_spapr_dma_mem_map(int, uint64_t, uint64_t, uint64_t, int);
|
|
static int vfio_noiommu_dma_map(int);
|
|
static int vfio_noiommu_dma_mem_map(int, uint64_t, uint64_t, uint64_t, int);
|
|
static int vfio_dma_mem_map(struct vfio_config *vfio_cfg, uint64_t vaddr,
|
|
uint64_t iova, uint64_t len, int do_map);
|
|
|
|
/* IOMMU types we support */
|
|
static const struct vfio_iommu_type iommu_types[] = {
|
|
/* x86 IOMMU, otherwise known as type 1 */
|
|
{
|
|
.type_id = RTE_VFIO_TYPE1,
|
|
.name = "Type 1",
|
|
.dma_map_func = &vfio_type1_dma_map,
|
|
.dma_user_map_func = &vfio_type1_dma_mem_map
|
|
},
|
|
/* ppc64 IOMMU, otherwise known as spapr */
|
|
{
|
|
.type_id = RTE_VFIO_SPAPR,
|
|
.name = "sPAPR",
|
|
.dma_map_func = &vfio_spapr_dma_map,
|
|
.dma_user_map_func = &vfio_spapr_dma_mem_map
|
|
},
|
|
/* IOMMU-less mode */
|
|
{
|
|
.type_id = RTE_VFIO_NOIOMMU,
|
|
.name = "No-IOMMU",
|
|
.dma_map_func = &vfio_noiommu_dma_map,
|
|
.dma_user_map_func = &vfio_noiommu_dma_mem_map
|
|
},
|
|
};
|
|
|
|
static int
|
|
is_null_map(const struct user_mem_map *map)
|
|
{
|
|
return map->addr == 0 && map->iova == 0 && map->len == 0;
|
|
}
|
|
|
|
/* we may need to merge user mem maps together in case of user mapping/unmapping
|
|
* chunks of memory, so we'll need a comparator function to sort segments.
|
|
*/
|
|
static int
|
|
user_mem_map_cmp(const void *a, const void *b)
|
|
{
|
|
const struct user_mem_map *umm_a = a;
|
|
const struct user_mem_map *umm_b = b;
|
|
|
|
/* move null entries to end */
|
|
if (is_null_map(umm_a))
|
|
return 1;
|
|
if (is_null_map(umm_b))
|
|
return -1;
|
|
|
|
/* sort by iova first */
|
|
if (umm_a->iova < umm_b->iova)
|
|
return -1;
|
|
if (umm_a->iova > umm_b->iova)
|
|
return 1;
|
|
|
|
if (umm_a->addr < umm_b->addr)
|
|
return -1;
|
|
if (umm_a->addr > umm_b->addr)
|
|
return 1;
|
|
|
|
if (umm_a->len < umm_b->len)
|
|
return -1;
|
|
if (umm_a->len > umm_b->len)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* adjust user map entry. this may result in shortening of existing map, or in
|
|
* splitting existing map in two pieces.
|
|
*/
|
|
static void
|
|
adjust_map(struct user_mem_map *src, struct user_mem_map *end,
|
|
uint64_t remove_va_start, uint64_t remove_len)
|
|
{
|
|
/* if va start is same as start address, we're simply moving start */
|
|
if (remove_va_start == src->addr) {
|
|
src->addr += remove_len;
|
|
src->iova += remove_len;
|
|
src->len -= remove_len;
|
|
} else if (remove_va_start + remove_len == src->addr + src->len) {
|
|
/* we're shrinking mapping from the end */
|
|
src->len -= remove_len;
|
|
} else {
|
|
/* we're blowing a hole in the middle */
|
|
struct user_mem_map tmp;
|
|
uint64_t total_len = src->len;
|
|
|
|
/* adjust source segment length */
|
|
src->len = remove_va_start - src->addr;
|
|
|
|
/* create temporary segment in the middle */
|
|
tmp.addr = src->addr + src->len;
|
|
tmp.iova = src->iova + src->len;
|
|
tmp.len = remove_len;
|
|
|
|
/* populate end segment - this one we will be keeping */
|
|
end->addr = tmp.addr + tmp.len;
|
|
end->iova = tmp.iova + tmp.len;
|
|
end->len = total_len - src->len - tmp.len;
|
|
}
|
|
}
|
|
|
|
/* try merging two maps into one, return 1 if succeeded */
|
|
static int
|
|
merge_map(struct user_mem_map *left, struct user_mem_map *right)
|
|
{
|
|
if (left->addr + left->len != right->addr)
|
|
return 0;
|
|
if (left->iova + left->len != right->iova)
|
|
return 0;
|
|
|
|
left->len += right->len;
|
|
|
|
memset(right, 0, sizeof(*right));
|
|
|
|
return 1;
|
|
}
|
|
|
|
static struct user_mem_map *
|
|
find_user_mem_map(struct user_mem_maps *user_mem_maps, uint64_t addr,
|
|
uint64_t iova, uint64_t len)
|
|
{
|
|
uint64_t va_end = addr + len;
|
|
uint64_t iova_end = iova + len;
|
|
int i;
|
|
|
|
for (i = 0; i < user_mem_maps->n_maps; i++) {
|
|
struct user_mem_map *map = &user_mem_maps->maps[i];
|
|
uint64_t map_va_end = map->addr + map->len;
|
|
uint64_t map_iova_end = map->iova + map->len;
|
|
|
|
/* check start VA */
|
|
if (addr < map->addr || addr >= map_va_end)
|
|
continue;
|
|
/* check if VA end is within boundaries */
|
|
if (va_end <= map->addr || va_end > map_va_end)
|
|
continue;
|
|
|
|
/* check start IOVA */
|
|
if (iova < map->iova || iova >= map_iova_end)
|
|
continue;
|
|
/* check if IOVA end is within boundaries */
|
|
if (iova_end <= map->iova || iova_end > map_iova_end)
|
|
continue;
|
|
|
|
/* we've found our map */
|
|
return map;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* this will sort all user maps, and merge/compact any adjacent maps */
|
|
static void
|
|
compact_user_maps(struct user_mem_maps *user_mem_maps)
|
|
{
|
|
int i, n_merged, cur_idx;
|
|
|
|
qsort(user_mem_maps->maps, user_mem_maps->n_maps,
|
|
sizeof(user_mem_maps->maps[0]), user_mem_map_cmp);
|
|
|
|
/* we'll go over the list backwards when merging */
|
|
n_merged = 0;
|
|
for (i = user_mem_maps->n_maps - 2; i >= 0; i--) {
|
|
struct user_mem_map *l, *r;
|
|
|
|
l = &user_mem_maps->maps[i];
|
|
r = &user_mem_maps->maps[i + 1];
|
|
|
|
if (is_null_map(l) || is_null_map(r))
|
|
continue;
|
|
|
|
if (merge_map(l, r))
|
|
n_merged++;
|
|
}
|
|
|
|
/* the entries are still sorted, but now they have holes in them, so
|
|
* walk through the list and remove the holes
|
|
*/
|
|
if (n_merged > 0) {
|
|
cur_idx = 0;
|
|
for (i = 0; i < user_mem_maps->n_maps; i++) {
|
|
if (!is_null_map(&user_mem_maps->maps[i])) {
|
|
struct user_mem_map *src, *dst;
|
|
|
|
src = &user_mem_maps->maps[i];
|
|
dst = &user_mem_maps->maps[cur_idx++];
|
|
|
|
if (src != dst) {
|
|
memcpy(dst, src, sizeof(*src));
|
|
memset(src, 0, sizeof(*src));
|
|
}
|
|
}
|
|
}
|
|
user_mem_maps->n_maps = cur_idx;
|
|
}
|
|
}
|
|
|
|
static int
|
|
vfio_open_group_fd(int iommu_group_num)
|
|
{
|
|
int vfio_group_fd;
|
|
char filename[PATH_MAX];
|
|
struct rte_mp_msg mp_req, *mp_rep;
|
|
struct rte_mp_reply mp_reply = {0};
|
|
struct timespec ts = {.tv_sec = 5, .tv_nsec = 0};
|
|
struct vfio_mp_param *p = (struct vfio_mp_param *)mp_req.param;
|
|
|
|
/* if primary, try to open the group */
|
|
if (internal_config.process_type == RTE_PROC_PRIMARY) {
|
|
/* try regular group format */
|
|
snprintf(filename, sizeof(filename),
|
|
VFIO_GROUP_FMT, iommu_group_num);
|
|
vfio_group_fd = open(filename, O_RDWR);
|
|
if (vfio_group_fd < 0) {
|
|
/* if file not found, it's not an error */
|
|
if (errno != ENOENT) {
|
|
RTE_LOG(ERR, EAL, "Cannot open %s: %s\n", filename,
|
|
strerror(errno));
|
|
return -1;
|
|
}
|
|
|
|
/* special case: try no-IOMMU path as well */
|
|
snprintf(filename, sizeof(filename),
|
|
VFIO_NOIOMMU_GROUP_FMT,
|
|
iommu_group_num);
|
|
vfio_group_fd = open(filename, O_RDWR);
|
|
if (vfio_group_fd < 0) {
|
|
if (errno != ENOENT) {
|
|
RTE_LOG(ERR, EAL, "Cannot open %s: %s\n", filename,
|
|
strerror(errno));
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
/* noiommu group found */
|
|
}
|
|
|
|
return vfio_group_fd;
|
|
}
|
|
/* if we're in a secondary process, request group fd from the primary
|
|
* process via mp channel.
|
|
*/
|
|
p->req = SOCKET_REQ_GROUP;
|
|
p->group_num = iommu_group_num;
|
|
strcpy(mp_req.name, EAL_VFIO_MP);
|
|
mp_req.len_param = sizeof(*p);
|
|
mp_req.num_fds = 0;
|
|
|
|
vfio_group_fd = -1;
|
|
if (rte_mp_request_sync(&mp_req, &mp_reply, &ts) == 0 &&
|
|
mp_reply.nb_received == 1) {
|
|
mp_rep = &mp_reply.msgs[0];
|
|
p = (struct vfio_mp_param *)mp_rep->param;
|
|
if (p->result == SOCKET_OK && mp_rep->num_fds == 1) {
|
|
vfio_group_fd = mp_rep->fds[0];
|
|
} else if (p->result == SOCKET_NO_FD) {
|
|
RTE_LOG(ERR, EAL, " bad VFIO group fd\n");
|
|
vfio_group_fd = 0;
|
|
}
|
|
}
|
|
|
|
free(mp_reply.msgs);
|
|
if (vfio_group_fd < 0)
|
|
RTE_LOG(ERR, EAL, " cannot request group fd\n");
|
|
return vfio_group_fd;
|
|
}
|
|
|
|
static struct vfio_config *
|
|
get_vfio_cfg_by_group_num(int iommu_group_num)
|
|
{
|
|
struct vfio_config *vfio_cfg;
|
|
int i, j;
|
|
|
|
for (i = 0; i < VFIO_MAX_CONTAINERS; i++) {
|
|
vfio_cfg = &vfio_cfgs[i];
|
|
for (j = 0; j < VFIO_MAX_GROUPS; j++) {
|
|
if (vfio_cfg->vfio_groups[j].group_num ==
|
|
iommu_group_num)
|
|
return vfio_cfg;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int
|
|
vfio_get_group_fd(struct vfio_config *vfio_cfg,
|
|
int iommu_group_num)
|
|
{
|
|
int i;
|
|
int vfio_group_fd;
|
|
struct vfio_group *cur_grp;
|
|
|
|
/* check if we already have the group descriptor open */
|
|
for (i = 0; i < VFIO_MAX_GROUPS; i++)
|
|
if (vfio_cfg->vfio_groups[i].group_num == iommu_group_num)
|
|
return vfio_cfg->vfio_groups[i].fd;
|
|
|
|
/* Lets see first if there is room for a new group */
|
|
if (vfio_cfg->vfio_active_groups == VFIO_MAX_GROUPS) {
|
|
RTE_LOG(ERR, EAL, "Maximum number of VFIO groups reached!\n");
|
|
return -1;
|
|
}
|
|
|
|
/* Now lets get an index for the new group */
|
|
for (i = 0; i < VFIO_MAX_GROUPS; i++)
|
|
if (vfio_cfg->vfio_groups[i].group_num == -1) {
|
|
cur_grp = &vfio_cfg->vfio_groups[i];
|
|
break;
|
|
}
|
|
|
|
/* This should not happen */
|
|
if (i == VFIO_MAX_GROUPS) {
|
|
RTE_LOG(ERR, EAL, "No VFIO group free slot found\n");
|
|
return -1;
|
|
}
|
|
|
|
vfio_group_fd = vfio_open_group_fd(iommu_group_num);
|
|
if (vfio_group_fd <= 0) {
|
|
RTE_LOG(ERR, EAL, "Failed to open group %d\n", iommu_group_num);
|
|
return -1;
|
|
}
|
|
|
|
cur_grp->group_num = iommu_group_num;
|
|
cur_grp->fd = vfio_group_fd;
|
|
vfio_cfg->vfio_active_groups++;
|
|
|
|
return vfio_group_fd;
|
|
}
|
|
|
|
static struct vfio_config *
|
|
get_vfio_cfg_by_group_fd(int vfio_group_fd)
|
|
{
|
|
struct vfio_config *vfio_cfg;
|
|
int i, j;
|
|
|
|
for (i = 0; i < VFIO_MAX_CONTAINERS; i++) {
|
|
vfio_cfg = &vfio_cfgs[i];
|
|
for (j = 0; j < VFIO_MAX_GROUPS; j++)
|
|
if (vfio_cfg->vfio_groups[j].fd == vfio_group_fd)
|
|
return vfio_cfg;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct vfio_config *
|
|
get_vfio_cfg_by_container_fd(int container_fd)
|
|
{
|
|
int i;
|
|
|
|
if (container_fd == RTE_VFIO_DEFAULT_CONTAINER_FD)
|
|
return default_vfio_cfg;
|
|
|
|
for (i = 0; i < VFIO_MAX_CONTAINERS; i++) {
|
|
if (vfio_cfgs[i].vfio_container_fd == container_fd)
|
|
return &vfio_cfgs[i];
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
int
|
|
rte_vfio_get_group_fd(int iommu_group_num)
|
|
{
|
|
struct vfio_config *vfio_cfg;
|
|
|
|
/* get the vfio_config it belongs to */
|
|
vfio_cfg = get_vfio_cfg_by_group_num(iommu_group_num);
|
|
vfio_cfg = vfio_cfg ? vfio_cfg : default_vfio_cfg;
|
|
|
|
return vfio_get_group_fd(vfio_cfg, iommu_group_num);
|
|
}
|
|
|
|
static int
|
|
get_vfio_group_idx(int vfio_group_fd)
|
|
{
|
|
struct vfio_config *vfio_cfg;
|
|
int i, j;
|
|
|
|
for (i = 0; i < VFIO_MAX_CONTAINERS; i++) {
|
|
vfio_cfg = &vfio_cfgs[i];
|
|
for (j = 0; j < VFIO_MAX_GROUPS; j++)
|
|
if (vfio_cfg->vfio_groups[j].fd == vfio_group_fd)
|
|
return j;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static void
|
|
vfio_group_device_get(int vfio_group_fd)
|
|
{
|
|
struct vfio_config *vfio_cfg;
|
|
int i;
|
|
|
|
vfio_cfg = get_vfio_cfg_by_group_fd(vfio_group_fd);
|
|
if (vfio_cfg == NULL) {
|
|
RTE_LOG(ERR, EAL, " invalid group fd!\n");
|
|
return;
|
|
}
|
|
|
|
i = get_vfio_group_idx(vfio_group_fd);
|
|
if (i < 0 || i > (VFIO_MAX_GROUPS - 1))
|
|
RTE_LOG(ERR, EAL, " wrong vfio_group index (%d)\n", i);
|
|
else
|
|
vfio_cfg->vfio_groups[i].devices++;
|
|
}
|
|
|
|
static void
|
|
vfio_group_device_put(int vfio_group_fd)
|
|
{
|
|
struct vfio_config *vfio_cfg;
|
|
int i;
|
|
|
|
vfio_cfg = get_vfio_cfg_by_group_fd(vfio_group_fd);
|
|
if (vfio_cfg == NULL) {
|
|
RTE_LOG(ERR, EAL, " invalid group fd!\n");
|
|
return;
|
|
}
|
|
|
|
i = get_vfio_group_idx(vfio_group_fd);
|
|
if (i < 0 || i > (VFIO_MAX_GROUPS - 1))
|
|
RTE_LOG(ERR, EAL, " wrong vfio_group index (%d)\n", i);
|
|
else
|
|
vfio_cfg->vfio_groups[i].devices--;
|
|
}
|
|
|
|
static int
|
|
vfio_group_device_count(int vfio_group_fd)
|
|
{
|
|
struct vfio_config *vfio_cfg;
|
|
int i;
|
|
|
|
vfio_cfg = get_vfio_cfg_by_group_fd(vfio_group_fd);
|
|
if (vfio_cfg == NULL) {
|
|
RTE_LOG(ERR, EAL, " invalid group fd!\n");
|
|
return -1;
|
|
}
|
|
|
|
i = get_vfio_group_idx(vfio_group_fd);
|
|
if (i < 0 || i > (VFIO_MAX_GROUPS - 1)) {
|
|
RTE_LOG(ERR, EAL, " wrong vfio_group index (%d)\n", i);
|
|
return -1;
|
|
}
|
|
|
|
return vfio_cfg->vfio_groups[i].devices;
|
|
}
|
|
|
|
static void
|
|
vfio_mem_event_callback(enum rte_mem_event type, const void *addr, size_t len,
|
|
void *arg __rte_unused)
|
|
{
|
|
rte_iova_t iova_start, iova_expected;
|
|
struct rte_memseg_list *msl;
|
|
struct rte_memseg *ms;
|
|
size_t cur_len = 0;
|
|
uint64_t va_start;
|
|
|
|
msl = rte_mem_virt2memseg_list(addr);
|
|
|
|
/* for IOVA as VA mode, no need to care for IOVA addresses */
|
|
if (rte_eal_iova_mode() == RTE_IOVA_VA && msl->external == 0) {
|
|
uint64_t vfio_va = (uint64_t)(uintptr_t)addr;
|
|
if (type == RTE_MEM_EVENT_ALLOC)
|
|
vfio_dma_mem_map(default_vfio_cfg, vfio_va, vfio_va,
|
|
len, 1);
|
|
else
|
|
vfio_dma_mem_map(default_vfio_cfg, vfio_va, vfio_va,
|
|
len, 0);
|
|
return;
|
|
}
|
|
|
|
#ifdef RTE_ARCH_PPC_64
|
|
ms = rte_mem_virt2memseg(addr, msl);
|
|
while (cur_len < len) {
|
|
int idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
|
|
|
|
rte_fbarray_set_free(&msl->memseg_arr, idx);
|
|
cur_len += ms->len;
|
|
++ms;
|
|
}
|
|
cur_len = 0;
|
|
#endif
|
|
/* memsegs are contiguous in memory */
|
|
ms = rte_mem_virt2memseg(addr, msl);
|
|
|
|
/*
|
|
* This memory is not guaranteed to be contiguous, but it still could
|
|
* be, or it could have some small contiguous chunks. Since the number
|
|
* of VFIO mappings is limited, and VFIO appears to not concatenate
|
|
* adjacent mappings, we have to do this ourselves.
|
|
*
|
|
* So, find contiguous chunks, then map them.
|
|
*/
|
|
va_start = ms->addr_64;
|
|
iova_start = iova_expected = ms->iova;
|
|
while (cur_len < len) {
|
|
bool new_contig_area = ms->iova != iova_expected;
|
|
bool last_seg = (len - cur_len) == ms->len;
|
|
bool skip_last = false;
|
|
|
|
/* only do mappings when current contiguous area ends */
|
|
if (new_contig_area) {
|
|
if (type == RTE_MEM_EVENT_ALLOC)
|
|
vfio_dma_mem_map(default_vfio_cfg, va_start,
|
|
iova_start,
|
|
iova_expected - iova_start, 1);
|
|
else
|
|
vfio_dma_mem_map(default_vfio_cfg, va_start,
|
|
iova_start,
|
|
iova_expected - iova_start, 0);
|
|
va_start = ms->addr_64;
|
|
iova_start = ms->iova;
|
|
}
|
|
/* some memory segments may have invalid IOVA */
|
|
if (ms->iova == RTE_BAD_IOVA) {
|
|
RTE_LOG(DEBUG, EAL, "Memory segment at %p has bad IOVA, skipping\n",
|
|
ms->addr);
|
|
skip_last = true;
|
|
}
|
|
iova_expected = ms->iova + ms->len;
|
|
cur_len += ms->len;
|
|
++ms;
|
|
|
|
/*
|
|
* don't count previous segment, and don't attempt to
|
|
* dereference a potentially invalid pointer.
|
|
*/
|
|
if (skip_last && !last_seg) {
|
|
iova_expected = iova_start = ms->iova;
|
|
va_start = ms->addr_64;
|
|
} else if (!skip_last && last_seg) {
|
|
/* this is the last segment and we're not skipping */
|
|
if (type == RTE_MEM_EVENT_ALLOC)
|
|
vfio_dma_mem_map(default_vfio_cfg, va_start,
|
|
iova_start,
|
|
iova_expected - iova_start, 1);
|
|
else
|
|
vfio_dma_mem_map(default_vfio_cfg, va_start,
|
|
iova_start,
|
|
iova_expected - iova_start, 0);
|
|
}
|
|
}
|
|
#ifdef RTE_ARCH_PPC_64
|
|
cur_len = 0;
|
|
ms = rte_mem_virt2memseg(addr, msl);
|
|
while (cur_len < len) {
|
|
int idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
|
|
|
|
rte_fbarray_set_used(&msl->memseg_arr, idx);
|
|
cur_len += ms->len;
|
|
++ms;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
vfio_sync_default_container(void)
|
|
{
|
|
struct rte_mp_msg mp_req, *mp_rep;
|
|
struct rte_mp_reply mp_reply = {0};
|
|
struct timespec ts = {.tv_sec = 5, .tv_nsec = 0};
|
|
struct vfio_mp_param *p = (struct vfio_mp_param *)mp_req.param;
|
|
int iommu_type_id;
|
|
unsigned int i;
|
|
|
|
/* cannot be called from primary */
|
|
if (rte_eal_process_type() != RTE_PROC_SECONDARY)
|
|
return -1;
|
|
|
|
/* default container fd should have been opened in rte_vfio_enable() */
|
|
if (!default_vfio_cfg->vfio_enabled ||
|
|
default_vfio_cfg->vfio_container_fd < 0) {
|
|
RTE_LOG(ERR, EAL, "VFIO support is not initialized\n");
|
|
return -1;
|
|
}
|
|
|
|
/* find default container's IOMMU type */
|
|
p->req = SOCKET_REQ_IOMMU_TYPE;
|
|
strcpy(mp_req.name, EAL_VFIO_MP);
|
|
mp_req.len_param = sizeof(*p);
|
|
mp_req.num_fds = 0;
|
|
|
|
iommu_type_id = -1;
|
|
if (rte_mp_request_sync(&mp_req, &mp_reply, &ts) == 0 &&
|
|
mp_reply.nb_received == 1) {
|
|
mp_rep = &mp_reply.msgs[0];
|
|
p = (struct vfio_mp_param *)mp_rep->param;
|
|
if (p->result == SOCKET_OK)
|
|
iommu_type_id = p->iommu_type_id;
|
|
}
|
|
free(mp_reply.msgs);
|
|
if (iommu_type_id < 0) {
|
|
RTE_LOG(ERR, EAL, "Could not get IOMMU type for default container\n");
|
|
return -1;
|
|
}
|
|
|
|
/* we now have an fd for default container, as well as its IOMMU type.
|
|
* now, set up default VFIO container config to match.
|
|
*/
|
|
for (i = 0; i < RTE_DIM(iommu_types); i++) {
|
|
const struct vfio_iommu_type *t = &iommu_types[i];
|
|
if (t->type_id != iommu_type_id)
|
|
continue;
|
|
|
|
/* we found our IOMMU type */
|
|
default_vfio_cfg->vfio_iommu_type = t;
|
|
|
|
return 0;
|
|
}
|
|
RTE_LOG(ERR, EAL, "Could not find IOMMU type id (%i)\n",
|
|
iommu_type_id);
|
|
return -1;
|
|
}
|
|
|
|
int
|
|
rte_vfio_clear_group(int vfio_group_fd)
|
|
{
|
|
int i;
|
|
struct vfio_config *vfio_cfg;
|
|
|
|
vfio_cfg = get_vfio_cfg_by_group_fd(vfio_group_fd);
|
|
if (vfio_cfg == NULL) {
|
|
RTE_LOG(ERR, EAL, " invalid group fd!\n");
|
|
return -1;
|
|
}
|
|
|
|
i = get_vfio_group_idx(vfio_group_fd);
|
|
if (i < 0)
|
|
return -1;
|
|
vfio_cfg->vfio_groups[i].group_num = -1;
|
|
vfio_cfg->vfio_groups[i].fd = -1;
|
|
vfio_cfg->vfio_groups[i].devices = 0;
|
|
vfio_cfg->vfio_active_groups--;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
rte_vfio_setup_device(const char *sysfs_base, const char *dev_addr,
|
|
int *vfio_dev_fd, struct vfio_device_info *device_info)
|
|
{
|
|
struct vfio_group_status group_status = {
|
|
.argsz = sizeof(group_status)
|
|
};
|
|
struct vfio_config *vfio_cfg;
|
|
struct user_mem_maps *user_mem_maps;
|
|
int vfio_container_fd;
|
|
int vfio_group_fd;
|
|
int iommu_group_num;
|
|
int i, ret;
|
|
|
|
/* get group number */
|
|
ret = rte_vfio_get_group_num(sysfs_base, dev_addr, &iommu_group_num);
|
|
if (ret == 0) {
|
|
RTE_LOG(WARNING, EAL, " %s not managed by VFIO driver, skipping\n",
|
|
dev_addr);
|
|
return 1;
|
|
}
|
|
|
|
/* if negative, something failed */
|
|
if (ret < 0)
|
|
return -1;
|
|
|
|
/* get the actual group fd */
|
|
vfio_group_fd = rte_vfio_get_group_fd(iommu_group_num);
|
|
if (vfio_group_fd < 0)
|
|
return -1;
|
|
|
|
/* if group_fd == 0, that means the device isn't managed by VFIO */
|
|
if (vfio_group_fd == 0) {
|
|
RTE_LOG(WARNING, EAL, " %s not managed by VFIO driver, skipping\n",
|
|
dev_addr);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* at this point, we know that this group is viable (meaning, all devices
|
|
* are either bound to VFIO or not bound to anything)
|
|
*/
|
|
|
|
/* check if the group is viable */
|
|
ret = ioctl(vfio_group_fd, VFIO_GROUP_GET_STATUS, &group_status);
|
|
if (ret) {
|
|
RTE_LOG(ERR, EAL, " %s cannot get group status, "
|
|
"error %i (%s)\n", dev_addr, errno, strerror(errno));
|
|
close(vfio_group_fd);
|
|
rte_vfio_clear_group(vfio_group_fd);
|
|
return -1;
|
|
} else if (!(group_status.flags & VFIO_GROUP_FLAGS_VIABLE)) {
|
|
RTE_LOG(ERR, EAL, " %s VFIO group is not viable! "
|
|
"Not all devices in IOMMU group bound to VFIO or unbound\n",
|
|
dev_addr);
|
|
close(vfio_group_fd);
|
|
rte_vfio_clear_group(vfio_group_fd);
|
|
return -1;
|
|
}
|
|
|
|
/* get the vfio_config it belongs to */
|
|
vfio_cfg = get_vfio_cfg_by_group_num(iommu_group_num);
|
|
vfio_cfg = vfio_cfg ? vfio_cfg : default_vfio_cfg;
|
|
vfio_container_fd = vfio_cfg->vfio_container_fd;
|
|
user_mem_maps = &vfio_cfg->mem_maps;
|
|
|
|
/* check if group does not have a container yet */
|
|
if (!(group_status.flags & VFIO_GROUP_FLAGS_CONTAINER_SET)) {
|
|
|
|
/* add group to a container */
|
|
ret = ioctl(vfio_group_fd, VFIO_GROUP_SET_CONTAINER,
|
|
&vfio_container_fd);
|
|
if (ret) {
|
|
RTE_LOG(ERR, EAL, " %s cannot add VFIO group to container, "
|
|
"error %i (%s)\n", dev_addr, errno, strerror(errno));
|
|
close(vfio_group_fd);
|
|
rte_vfio_clear_group(vfio_group_fd);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* pick an IOMMU type and set up DMA mappings for container
|
|
*
|
|
* needs to be done only once, only when first group is
|
|
* assigned to a container and only in primary process.
|
|
* Note this can happen several times with the hotplug
|
|
* functionality.
|
|
*/
|
|
if (internal_config.process_type == RTE_PROC_PRIMARY &&
|
|
vfio_cfg->vfio_active_groups == 1 &&
|
|
vfio_group_device_count(vfio_group_fd) == 0) {
|
|
const struct vfio_iommu_type *t;
|
|
|
|
/* select an IOMMU type which we will be using */
|
|
t = vfio_set_iommu_type(vfio_container_fd);
|
|
if (!t) {
|
|
RTE_LOG(ERR, EAL,
|
|
" %s failed to select IOMMU type\n",
|
|
dev_addr);
|
|
close(vfio_group_fd);
|
|
rte_vfio_clear_group(vfio_group_fd);
|
|
return -1;
|
|
}
|
|
/* lock memory hotplug before mapping and release it
|
|
* after registering callback, to prevent races
|
|
*/
|
|
rte_mcfg_mem_read_lock();
|
|
if (vfio_cfg == default_vfio_cfg)
|
|
ret = t->dma_map_func(vfio_container_fd);
|
|
else
|
|
ret = 0;
|
|
if (ret) {
|
|
RTE_LOG(ERR, EAL,
|
|
" %s DMA remapping failed, error %i (%s)\n",
|
|
dev_addr, errno, strerror(errno));
|
|
close(vfio_group_fd);
|
|
rte_vfio_clear_group(vfio_group_fd);
|
|
rte_mcfg_mem_read_unlock();
|
|
return -1;
|
|
}
|
|
|
|
vfio_cfg->vfio_iommu_type = t;
|
|
|
|
/* re-map all user-mapped segments */
|
|
rte_spinlock_recursive_lock(&user_mem_maps->lock);
|
|
|
|
/* this IOMMU type may not support DMA mapping, but
|
|
* if we have mappings in the list - that means we have
|
|
* previously mapped something successfully, so we can
|
|
* be sure that DMA mapping is supported.
|
|
*/
|
|
for (i = 0; i < user_mem_maps->n_maps; i++) {
|
|
struct user_mem_map *map;
|
|
map = &user_mem_maps->maps[i];
|
|
|
|
ret = t->dma_user_map_func(
|
|
vfio_container_fd,
|
|
map->addr, map->iova, map->len,
|
|
1);
|
|
if (ret) {
|
|
RTE_LOG(ERR, EAL, "Couldn't map user memory for DMA: "
|
|
"va: 0x%" PRIx64 " "
|
|
"iova: 0x%" PRIx64 " "
|
|
"len: 0x%" PRIu64 "\n",
|
|
map->addr, map->iova,
|
|
map->len);
|
|
rte_spinlock_recursive_unlock(
|
|
&user_mem_maps->lock);
|
|
rte_mcfg_mem_read_unlock();
|
|
return -1;
|
|
}
|
|
}
|
|
rte_spinlock_recursive_unlock(&user_mem_maps->lock);
|
|
|
|
/* register callback for mem events */
|
|
if (vfio_cfg == default_vfio_cfg)
|
|
ret = rte_mem_event_callback_register(
|
|
VFIO_MEM_EVENT_CLB_NAME,
|
|
vfio_mem_event_callback, NULL);
|
|
else
|
|
ret = 0;
|
|
/* unlock memory hotplug */
|
|
rte_mcfg_mem_read_unlock();
|
|
|
|
if (ret && rte_errno != ENOTSUP) {
|
|
RTE_LOG(ERR, EAL, "Could not install memory event callback for VFIO\n");
|
|
return -1;
|
|
}
|
|
if (ret)
|
|
RTE_LOG(DEBUG, EAL, "Memory event callbacks not supported\n");
|
|
else
|
|
RTE_LOG(DEBUG, EAL, "Installed memory event callback for VFIO\n");
|
|
}
|
|
} else if (rte_eal_process_type() != RTE_PROC_PRIMARY &&
|
|
vfio_cfg == default_vfio_cfg &&
|
|
vfio_cfg->vfio_iommu_type == NULL) {
|
|
/* if we're not a primary process, we do not set up the VFIO
|
|
* container because it's already been set up by the primary
|
|
* process. instead, we simply ask the primary about VFIO type
|
|
* we are using, and set the VFIO config up appropriately.
|
|
*/
|
|
ret = vfio_sync_default_container();
|
|
if (ret < 0) {
|
|
RTE_LOG(ERR, EAL, "Could not sync default VFIO container\n");
|
|
close(vfio_group_fd);
|
|
rte_vfio_clear_group(vfio_group_fd);
|
|
return -1;
|
|
}
|
|
/* we have successfully initialized VFIO, notify user */
|
|
const struct vfio_iommu_type *t =
|
|
default_vfio_cfg->vfio_iommu_type;
|
|
RTE_LOG(NOTICE, EAL, " using IOMMU type %d (%s)\n",
|
|
t->type_id, t->name);
|
|
}
|
|
|
|
/* get a file descriptor for the device */
|
|
*vfio_dev_fd = ioctl(vfio_group_fd, VFIO_GROUP_GET_DEVICE_FD, dev_addr);
|
|
if (*vfio_dev_fd < 0) {
|
|
/* if we cannot get a device fd, this implies a problem with
|
|
* the VFIO group or the container not having IOMMU configured.
|
|
*/
|
|
|
|
RTE_LOG(WARNING, EAL, "Getting a vfio_dev_fd for %s failed\n",
|
|
dev_addr);
|
|
close(vfio_group_fd);
|
|
rte_vfio_clear_group(vfio_group_fd);
|
|
return -1;
|
|
}
|
|
|
|
/* test and setup the device */
|
|
ret = ioctl(*vfio_dev_fd, VFIO_DEVICE_GET_INFO, device_info);
|
|
if (ret) {
|
|
RTE_LOG(ERR, EAL, " %s cannot get device info, "
|
|
"error %i (%s)\n", dev_addr, errno,
|
|
strerror(errno));
|
|
close(*vfio_dev_fd);
|
|
close(vfio_group_fd);
|
|
rte_vfio_clear_group(vfio_group_fd);
|
|
return -1;
|
|
}
|
|
vfio_group_device_get(vfio_group_fd);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
rte_vfio_release_device(const char *sysfs_base, const char *dev_addr,
|
|
int vfio_dev_fd)
|
|
{
|
|
struct vfio_group_status group_status = {
|
|
.argsz = sizeof(group_status)
|
|
};
|
|
struct vfio_config *vfio_cfg;
|
|
int vfio_group_fd;
|
|
int iommu_group_num;
|
|
int ret;
|
|
|
|
/* we don't want any DMA mapping messages to come while we're detaching
|
|
* VFIO device, because this might be the last device and we might need
|
|
* to unregister the callback.
|
|
*/
|
|
rte_mcfg_mem_read_lock();
|
|
|
|
/* get group number */
|
|
ret = rte_vfio_get_group_num(sysfs_base, dev_addr, &iommu_group_num);
|
|
if (ret <= 0) {
|
|
RTE_LOG(WARNING, EAL, " %s not managed by VFIO driver\n",
|
|
dev_addr);
|
|
/* This is an error at this point. */
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
|
|
/* get the actual group fd */
|
|
vfio_group_fd = rte_vfio_get_group_fd(iommu_group_num);
|
|
if (vfio_group_fd <= 0) {
|
|
RTE_LOG(INFO, EAL, "rte_vfio_get_group_fd failed for %s\n",
|
|
dev_addr);
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
|
|
/* get the vfio_config it belongs to */
|
|
vfio_cfg = get_vfio_cfg_by_group_num(iommu_group_num);
|
|
vfio_cfg = vfio_cfg ? vfio_cfg : default_vfio_cfg;
|
|
|
|
/* At this point we got an active group. Closing it will make the
|
|
* container detachment. If this is the last active group, VFIO kernel
|
|
* code will unset the container and the IOMMU mappings.
|
|
*/
|
|
|
|
/* Closing a device */
|
|
if (close(vfio_dev_fd) < 0) {
|
|
RTE_LOG(INFO, EAL, "Error when closing vfio_dev_fd for %s\n",
|
|
dev_addr);
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
|
|
/* An VFIO group can have several devices attached. Just when there is
|
|
* no devices remaining should the group be closed.
|
|
*/
|
|
vfio_group_device_put(vfio_group_fd);
|
|
if (!vfio_group_device_count(vfio_group_fd)) {
|
|
|
|
if (close(vfio_group_fd) < 0) {
|
|
RTE_LOG(INFO, EAL, "Error when closing vfio_group_fd for %s\n",
|
|
dev_addr);
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
|
|
if (rte_vfio_clear_group(vfio_group_fd) < 0) {
|
|
RTE_LOG(INFO, EAL, "Error when clearing group for %s\n",
|
|
dev_addr);
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* if there are no active device groups, unregister the callback to
|
|
* avoid spurious attempts to map/unmap memory from VFIO.
|
|
*/
|
|
if (vfio_cfg == default_vfio_cfg && vfio_cfg->vfio_active_groups == 0 &&
|
|
rte_eal_process_type() != RTE_PROC_SECONDARY)
|
|
rte_mem_event_callback_unregister(VFIO_MEM_EVENT_CLB_NAME,
|
|
NULL);
|
|
|
|
/* success */
|
|
ret = 0;
|
|
|
|
out:
|
|
rte_mcfg_mem_read_unlock();
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
rte_vfio_enable(const char *modname)
|
|
{
|
|
/* initialize group list */
|
|
int i, j;
|
|
int vfio_available;
|
|
|
|
rte_spinlock_recursive_t lock = RTE_SPINLOCK_RECURSIVE_INITIALIZER;
|
|
|
|
for (i = 0; i < VFIO_MAX_CONTAINERS; i++) {
|
|
vfio_cfgs[i].vfio_container_fd = -1;
|
|
vfio_cfgs[i].vfio_active_groups = 0;
|
|
vfio_cfgs[i].vfio_iommu_type = NULL;
|
|
vfio_cfgs[i].mem_maps.lock = lock;
|
|
|
|
for (j = 0; j < VFIO_MAX_GROUPS; j++) {
|
|
vfio_cfgs[i].vfio_groups[j].fd = -1;
|
|
vfio_cfgs[i].vfio_groups[j].group_num = -1;
|
|
vfio_cfgs[i].vfio_groups[j].devices = 0;
|
|
}
|
|
}
|
|
|
|
/* inform the user that we are probing for VFIO */
|
|
RTE_LOG(INFO, EAL, "Probing VFIO support...\n");
|
|
|
|
/* check if vfio module is loaded */
|
|
vfio_available = rte_eal_check_module(modname);
|
|
|
|
/* return error directly */
|
|
if (vfio_available == -1) {
|
|
RTE_LOG(INFO, EAL, "Could not get loaded module details!\n");
|
|
return -1;
|
|
}
|
|
|
|
/* return 0 if VFIO modules not loaded */
|
|
if (vfio_available == 0) {
|
|
RTE_LOG(DEBUG, EAL, "VFIO modules not loaded, "
|
|
"skipping VFIO support...\n");
|
|
return 0;
|
|
}
|
|
|
|
if (internal_config.process_type == RTE_PROC_PRIMARY) {
|
|
/* open a new container */
|
|
default_vfio_cfg->vfio_container_fd =
|
|
rte_vfio_get_container_fd();
|
|
} else {
|
|
/* get the default container from the primary process */
|
|
default_vfio_cfg->vfio_container_fd =
|
|
vfio_get_default_container_fd();
|
|
}
|
|
|
|
/* check if we have VFIO driver enabled */
|
|
if (default_vfio_cfg->vfio_container_fd != -1) {
|
|
RTE_LOG(NOTICE, EAL, "VFIO support initialized\n");
|
|
default_vfio_cfg->vfio_enabled = 1;
|
|
} else {
|
|
RTE_LOG(NOTICE, EAL, "VFIO support could not be initialized\n");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
rte_vfio_is_enabled(const char *modname)
|
|
{
|
|
const int mod_available = rte_eal_check_module(modname) > 0;
|
|
return default_vfio_cfg->vfio_enabled && mod_available;
|
|
}
|
|
|
|
int
|
|
vfio_get_default_container_fd(void)
|
|
{
|
|
struct rte_mp_msg mp_req, *mp_rep;
|
|
struct rte_mp_reply mp_reply = {0};
|
|
struct timespec ts = {.tv_sec = 5, .tv_nsec = 0};
|
|
struct vfio_mp_param *p = (struct vfio_mp_param *)mp_req.param;
|
|
int container_fd;
|
|
|
|
if (default_vfio_cfg->vfio_enabled)
|
|
return default_vfio_cfg->vfio_container_fd;
|
|
|
|
if (internal_config.process_type == RTE_PROC_PRIMARY) {
|
|
/* if we were secondary process we would try requesting
|
|
* container fd from the primary, but we're the primary
|
|
* process so just exit here
|
|
*/
|
|
return -1;
|
|
}
|
|
|
|
p->req = SOCKET_REQ_DEFAULT_CONTAINER;
|
|
strcpy(mp_req.name, EAL_VFIO_MP);
|
|
mp_req.len_param = sizeof(*p);
|
|
mp_req.num_fds = 0;
|
|
|
|
if (rte_mp_request_sync(&mp_req, &mp_reply, &ts) == 0 &&
|
|
mp_reply.nb_received == 1) {
|
|
mp_rep = &mp_reply.msgs[0];
|
|
p = (struct vfio_mp_param *)mp_rep->param;
|
|
if (p->result == SOCKET_OK && mp_rep->num_fds == 1) {
|
|
container_fd = mp_rep->fds[0];
|
|
free(mp_reply.msgs);
|
|
return container_fd;
|
|
}
|
|
}
|
|
|
|
free(mp_reply.msgs);
|
|
RTE_LOG(ERR, EAL, " cannot request default container fd\n");
|
|
return -1;
|
|
}
|
|
|
|
int
|
|
vfio_get_iommu_type(void)
|
|
{
|
|
if (default_vfio_cfg->vfio_iommu_type == NULL)
|
|
return -1;
|
|
|
|
return default_vfio_cfg->vfio_iommu_type->type_id;
|
|
}
|
|
|
|
const struct vfio_iommu_type *
|
|
vfio_set_iommu_type(int vfio_container_fd)
|
|
{
|
|
unsigned idx;
|
|
for (idx = 0; idx < RTE_DIM(iommu_types); idx++) {
|
|
const struct vfio_iommu_type *t = &iommu_types[idx];
|
|
|
|
int ret = ioctl(vfio_container_fd, VFIO_SET_IOMMU,
|
|
t->type_id);
|
|
if (!ret) {
|
|
RTE_LOG(NOTICE, EAL, " using IOMMU type %d (%s)\n",
|
|
t->type_id, t->name);
|
|
return t;
|
|
}
|
|
/* not an error, there may be more supported IOMMU types */
|
|
RTE_LOG(DEBUG, EAL, " set IOMMU type %d (%s) failed, "
|
|
"error %i (%s)\n", t->type_id, t->name, errno,
|
|
strerror(errno));
|
|
}
|
|
/* if we didn't find a suitable IOMMU type, fail */
|
|
return NULL;
|
|
}
|
|
|
|
int
|
|
vfio_has_supported_extensions(int vfio_container_fd)
|
|
{
|
|
int ret;
|
|
unsigned idx, n_extensions = 0;
|
|
for (idx = 0; idx < RTE_DIM(iommu_types); idx++) {
|
|
const struct vfio_iommu_type *t = &iommu_types[idx];
|
|
|
|
ret = ioctl(vfio_container_fd, VFIO_CHECK_EXTENSION,
|
|
t->type_id);
|
|
if (ret < 0) {
|
|
RTE_LOG(ERR, EAL, " could not get IOMMU type, "
|
|
"error %i (%s)\n", errno,
|
|
strerror(errno));
|
|
close(vfio_container_fd);
|
|
return -1;
|
|
} else if (ret == 1) {
|
|
/* we found a supported extension */
|
|
n_extensions++;
|
|
}
|
|
RTE_LOG(DEBUG, EAL, " IOMMU type %d (%s) is %s\n",
|
|
t->type_id, t->name,
|
|
ret ? "supported" : "not supported");
|
|
}
|
|
|
|
/* if we didn't find any supported IOMMU types, fail */
|
|
if (!n_extensions) {
|
|
close(vfio_container_fd);
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
rte_vfio_get_container_fd(void)
|
|
{
|
|
int ret, vfio_container_fd;
|
|
struct rte_mp_msg mp_req, *mp_rep;
|
|
struct rte_mp_reply mp_reply = {0};
|
|
struct timespec ts = {.tv_sec = 5, .tv_nsec = 0};
|
|
struct vfio_mp_param *p = (struct vfio_mp_param *)mp_req.param;
|
|
|
|
|
|
/* if we're in a primary process, try to open the container */
|
|
if (internal_config.process_type == RTE_PROC_PRIMARY) {
|
|
vfio_container_fd = open(VFIO_CONTAINER_PATH, O_RDWR);
|
|
if (vfio_container_fd < 0) {
|
|
RTE_LOG(ERR, EAL, " cannot open VFIO container, "
|
|
"error %i (%s)\n", errno, strerror(errno));
|
|
return -1;
|
|
}
|
|
|
|
/* check VFIO API version */
|
|
ret = ioctl(vfio_container_fd, VFIO_GET_API_VERSION);
|
|
if (ret != VFIO_API_VERSION) {
|
|
if (ret < 0)
|
|
RTE_LOG(ERR, EAL, " could not get VFIO API version, "
|
|
"error %i (%s)\n", errno, strerror(errno));
|
|
else
|
|
RTE_LOG(ERR, EAL, " unsupported VFIO API version!\n");
|
|
close(vfio_container_fd);
|
|
return -1;
|
|
}
|
|
|
|
ret = vfio_has_supported_extensions(vfio_container_fd);
|
|
if (ret) {
|
|
RTE_LOG(ERR, EAL, " no supported IOMMU "
|
|
"extensions found!\n");
|
|
return -1;
|
|
}
|
|
|
|
return vfio_container_fd;
|
|
}
|
|
/*
|
|
* if we're in a secondary process, request container fd from the
|
|
* primary process via mp channel
|
|
*/
|
|
p->req = SOCKET_REQ_CONTAINER;
|
|
strcpy(mp_req.name, EAL_VFIO_MP);
|
|
mp_req.len_param = sizeof(*p);
|
|
mp_req.num_fds = 0;
|
|
|
|
vfio_container_fd = -1;
|
|
if (rte_mp_request_sync(&mp_req, &mp_reply, &ts) == 0 &&
|
|
mp_reply.nb_received == 1) {
|
|
mp_rep = &mp_reply.msgs[0];
|
|
p = (struct vfio_mp_param *)mp_rep->param;
|
|
if (p->result == SOCKET_OK && mp_rep->num_fds == 1) {
|
|
vfio_container_fd = mp_rep->fds[0];
|
|
free(mp_reply.msgs);
|
|
return vfio_container_fd;
|
|
}
|
|
}
|
|
|
|
free(mp_reply.msgs);
|
|
RTE_LOG(ERR, EAL, " cannot request container fd\n");
|
|
return -1;
|
|
}
|
|
|
|
int
|
|
rte_vfio_get_group_num(const char *sysfs_base,
|
|
const char *dev_addr, int *iommu_group_num)
|
|
{
|
|
char linkname[PATH_MAX];
|
|
char filename[PATH_MAX];
|
|
char *tok[16], *group_tok, *end;
|
|
int ret;
|
|
|
|
memset(linkname, 0, sizeof(linkname));
|
|
memset(filename, 0, sizeof(filename));
|
|
|
|
/* try to find out IOMMU group for this device */
|
|
snprintf(linkname, sizeof(linkname),
|
|
"%s/%s/iommu_group", sysfs_base, dev_addr);
|
|
|
|
ret = readlink(linkname, filename, sizeof(filename));
|
|
|
|
/* if the link doesn't exist, no VFIO for us */
|
|
if (ret < 0)
|
|
return 0;
|
|
|
|
ret = rte_strsplit(filename, sizeof(filename),
|
|
tok, RTE_DIM(tok), '/');
|
|
|
|
if (ret <= 0) {
|
|
RTE_LOG(ERR, EAL, " %s cannot get IOMMU group\n", dev_addr);
|
|
return -1;
|
|
}
|
|
|
|
/* IOMMU group is always the last token */
|
|
errno = 0;
|
|
group_tok = tok[ret - 1];
|
|
end = group_tok;
|
|
*iommu_group_num = strtol(group_tok, &end, 10);
|
|
if ((end != group_tok && *end != '\0') || errno != 0) {
|
|
RTE_LOG(ERR, EAL, " %s error parsing IOMMU number!\n", dev_addr);
|
|
return -1;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
type1_map_contig(const struct rte_memseg_list *msl, const struct rte_memseg *ms,
|
|
size_t len, void *arg)
|
|
{
|
|
int *vfio_container_fd = arg;
|
|
|
|
if (msl->external)
|
|
return 0;
|
|
|
|
return vfio_type1_dma_mem_map(*vfio_container_fd, ms->addr_64, ms->iova,
|
|
len, 1);
|
|
}
|
|
|
|
static int
|
|
type1_map(const struct rte_memseg_list *msl, const struct rte_memseg *ms,
|
|
void *arg)
|
|
{
|
|
int *vfio_container_fd = arg;
|
|
|
|
/* skip external memory that isn't a heap */
|
|
if (msl->external && !msl->heap)
|
|
return 0;
|
|
|
|
/* skip any segments with invalid IOVA addresses */
|
|
if (ms->iova == RTE_BAD_IOVA)
|
|
return 0;
|
|
|
|
/* if IOVA mode is VA, we've already mapped the internal segments */
|
|
if (!msl->external && rte_eal_iova_mode() == RTE_IOVA_VA)
|
|
return 0;
|
|
|
|
return vfio_type1_dma_mem_map(*vfio_container_fd, ms->addr_64, ms->iova,
|
|
ms->len, 1);
|
|
}
|
|
|
|
static int
|
|
vfio_type1_dma_mem_map(int vfio_container_fd, uint64_t vaddr, uint64_t iova,
|
|
uint64_t len, int do_map)
|
|
{
|
|
struct vfio_iommu_type1_dma_map dma_map;
|
|
struct vfio_iommu_type1_dma_unmap dma_unmap;
|
|
int ret;
|
|
|
|
if (do_map != 0) {
|
|
memset(&dma_map, 0, sizeof(dma_map));
|
|
dma_map.argsz = sizeof(struct vfio_iommu_type1_dma_map);
|
|
dma_map.vaddr = vaddr;
|
|
dma_map.size = len;
|
|
dma_map.iova = iova;
|
|
dma_map.flags = VFIO_DMA_MAP_FLAG_READ |
|
|
VFIO_DMA_MAP_FLAG_WRITE;
|
|
|
|
ret = ioctl(vfio_container_fd, VFIO_IOMMU_MAP_DMA, &dma_map);
|
|
if (ret) {
|
|
/**
|
|
* In case the mapping was already done EEXIST will be
|
|
* returned from kernel.
|
|
*/
|
|
if (errno == EEXIST) {
|
|
RTE_LOG(DEBUG, EAL,
|
|
" Memory segment is already mapped,"
|
|
" skipping");
|
|
} else {
|
|
RTE_LOG(ERR, EAL,
|
|
" cannot set up DMA remapping,"
|
|
" error %i (%s)\n",
|
|
errno, strerror(errno));
|
|
return -1;
|
|
}
|
|
}
|
|
} else {
|
|
memset(&dma_unmap, 0, sizeof(dma_unmap));
|
|
dma_unmap.argsz = sizeof(struct vfio_iommu_type1_dma_unmap);
|
|
dma_unmap.size = len;
|
|
dma_unmap.iova = iova;
|
|
|
|
ret = ioctl(vfio_container_fd, VFIO_IOMMU_UNMAP_DMA,
|
|
&dma_unmap);
|
|
if (ret) {
|
|
RTE_LOG(ERR, EAL, " cannot clear DMA remapping, error %i (%s)\n",
|
|
errno, strerror(errno));
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
vfio_type1_dma_map(int vfio_container_fd)
|
|
{
|
|
if (rte_eal_iova_mode() == RTE_IOVA_VA) {
|
|
/* with IOVA as VA mode, we can get away with mapping contiguous
|
|
* chunks rather than going page-by-page.
|
|
*/
|
|
int ret = rte_memseg_contig_walk(type1_map_contig,
|
|
&vfio_container_fd);
|
|
if (ret)
|
|
return ret;
|
|
/* we have to continue the walk because we've skipped the
|
|
* external segments during the config walk.
|
|
*/
|
|
}
|
|
return rte_memseg_walk(type1_map, &vfio_container_fd);
|
|
}
|
|
|
|
static int
|
|
vfio_spapr_dma_do_map(int vfio_container_fd, uint64_t vaddr, uint64_t iova,
|
|
uint64_t len, int do_map)
|
|
{
|
|
struct vfio_iommu_type1_dma_map dma_map;
|
|
struct vfio_iommu_type1_dma_unmap dma_unmap;
|
|
int ret;
|
|
struct vfio_iommu_spapr_register_memory reg = {
|
|
.argsz = sizeof(reg),
|
|
.flags = 0
|
|
};
|
|
reg.vaddr = (uintptr_t) vaddr;
|
|
reg.size = len;
|
|
|
|
if (do_map != 0) {
|
|
ret = ioctl(vfio_container_fd,
|
|
VFIO_IOMMU_SPAPR_REGISTER_MEMORY, ®);
|
|
if (ret) {
|
|
RTE_LOG(ERR, EAL, " cannot register vaddr for IOMMU, "
|
|
"error %i (%s)\n", errno, strerror(errno));
|
|
return -1;
|
|
}
|
|
|
|
memset(&dma_map, 0, sizeof(dma_map));
|
|
dma_map.argsz = sizeof(struct vfio_iommu_type1_dma_map);
|
|
dma_map.vaddr = vaddr;
|
|
dma_map.size = len;
|
|
dma_map.iova = iova;
|
|
dma_map.flags = VFIO_DMA_MAP_FLAG_READ |
|
|
VFIO_DMA_MAP_FLAG_WRITE;
|
|
|
|
ret = ioctl(vfio_container_fd, VFIO_IOMMU_MAP_DMA, &dma_map);
|
|
if (ret) {
|
|
/**
|
|
* In case the mapping was already done EBUSY will be
|
|
* returned from kernel.
|
|
*/
|
|
if (errno == EBUSY) {
|
|
RTE_LOG(DEBUG, EAL,
|
|
" Memory segment is already mapped,"
|
|
" skipping");
|
|
} else {
|
|
RTE_LOG(ERR, EAL,
|
|
" cannot set up DMA remapping,"
|
|
" error %i (%s)\n", errno,
|
|
strerror(errno));
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
} else {
|
|
memset(&dma_unmap, 0, sizeof(dma_unmap));
|
|
dma_unmap.argsz = sizeof(struct vfio_iommu_type1_dma_unmap);
|
|
dma_unmap.size = len;
|
|
dma_unmap.iova = iova;
|
|
|
|
ret = ioctl(vfio_container_fd, VFIO_IOMMU_UNMAP_DMA,
|
|
&dma_unmap);
|
|
if (ret) {
|
|
RTE_LOG(ERR, EAL, " cannot clear DMA remapping, error %i (%s)\n",
|
|
errno, strerror(errno));
|
|
return -1;
|
|
}
|
|
|
|
ret = ioctl(vfio_container_fd,
|
|
VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY, ®);
|
|
if (ret) {
|
|
RTE_LOG(ERR, EAL, " cannot unregister vaddr for IOMMU, error %i (%s)\n",
|
|
errno, strerror(errno));
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
vfio_spapr_map_walk(const struct rte_memseg_list *msl,
|
|
const struct rte_memseg *ms, void *arg)
|
|
{
|
|
int *vfio_container_fd = arg;
|
|
|
|
/* skip external memory that isn't a heap */
|
|
if (msl->external && !msl->heap)
|
|
return 0;
|
|
|
|
/* skip any segments with invalid IOVA addresses */
|
|
if (ms->iova == RTE_BAD_IOVA)
|
|
return 0;
|
|
|
|
return vfio_spapr_dma_do_map(*vfio_container_fd, ms->addr_64, ms->iova,
|
|
ms->len, 1);
|
|
}
|
|
|
|
static int
|
|
vfio_spapr_unmap_walk(const struct rte_memseg_list *msl,
|
|
const struct rte_memseg *ms, void *arg)
|
|
{
|
|
int *vfio_container_fd = arg;
|
|
|
|
/* skip external memory that isn't a heap */
|
|
if (msl->external && !msl->heap)
|
|
return 0;
|
|
|
|
/* skip any segments with invalid IOVA addresses */
|
|
if (ms->iova == RTE_BAD_IOVA)
|
|
return 0;
|
|
|
|
return vfio_spapr_dma_do_map(*vfio_container_fd, ms->addr_64, ms->iova,
|
|
ms->len, 0);
|
|
}
|
|
|
|
struct spapr_walk_param {
|
|
uint64_t window_size;
|
|
uint64_t hugepage_sz;
|
|
};
|
|
|
|
static int
|
|
vfio_spapr_window_size_walk(const struct rte_memseg_list *msl,
|
|
const struct rte_memseg *ms, void *arg)
|
|
{
|
|
struct spapr_walk_param *param = arg;
|
|
uint64_t max = ms->iova + ms->len;
|
|
|
|
/* skip external memory that isn't a heap */
|
|
if (msl->external && !msl->heap)
|
|
return 0;
|
|
|
|
/* skip any segments with invalid IOVA addresses */
|
|
if (ms->iova == RTE_BAD_IOVA)
|
|
return 0;
|
|
|
|
if (max > param->window_size) {
|
|
param->hugepage_sz = ms->hugepage_sz;
|
|
param->window_size = max;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
vfio_spapr_create_new_dma_window(int vfio_container_fd,
|
|
struct vfio_iommu_spapr_tce_create *create) {
|
|
struct vfio_iommu_spapr_tce_remove remove = {
|
|
.argsz = sizeof(remove),
|
|
};
|
|
struct vfio_iommu_spapr_tce_info info = {
|
|
.argsz = sizeof(info),
|
|
};
|
|
int ret;
|
|
|
|
/* query spapr iommu info */
|
|
ret = ioctl(vfio_container_fd, VFIO_IOMMU_SPAPR_TCE_GET_INFO, &info);
|
|
if (ret) {
|
|
RTE_LOG(ERR, EAL, " cannot get iommu info, "
|
|
"error %i (%s)\n", errno, strerror(errno));
|
|
return -1;
|
|
}
|
|
|
|
/* remove default DMA of 32 bit window */
|
|
remove.start_addr = info.dma32_window_start;
|
|
ret = ioctl(vfio_container_fd, VFIO_IOMMU_SPAPR_TCE_REMOVE, &remove);
|
|
if (ret) {
|
|
RTE_LOG(ERR, EAL, " cannot remove default DMA window, "
|
|
"error %i (%s)\n", errno, strerror(errno));
|
|
return -1;
|
|
}
|
|
|
|
/* create new DMA window */
|
|
ret = ioctl(vfio_container_fd, VFIO_IOMMU_SPAPR_TCE_CREATE, create);
|
|
if (ret) {
|
|
#ifdef VFIO_IOMMU_SPAPR_INFO_DDW
|
|
/* try possible page_shift and levels for workaround */
|
|
uint32_t levels;
|
|
|
|
for (levels = create->levels + 1;
|
|
ret && levels <= info.ddw.levels; levels++) {
|
|
create->levels = levels;
|
|
ret = ioctl(vfio_container_fd,
|
|
VFIO_IOMMU_SPAPR_TCE_CREATE, create);
|
|
}
|
|
#endif
|
|
if (ret) {
|
|
RTE_LOG(ERR, EAL, " cannot create new DMA window, "
|
|
"error %i (%s)\n", errno, strerror(errno));
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if (create->start_addr != 0) {
|
|
RTE_LOG(ERR, EAL, " DMA window start address != 0\n");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
vfio_spapr_dma_mem_map(int vfio_container_fd, uint64_t vaddr, uint64_t iova,
|
|
uint64_t len, int do_map)
|
|
{
|
|
struct spapr_walk_param param;
|
|
struct vfio_iommu_spapr_tce_create create = {
|
|
.argsz = sizeof(create),
|
|
};
|
|
struct vfio_config *vfio_cfg;
|
|
struct user_mem_maps *user_mem_maps;
|
|
int i, ret = 0;
|
|
|
|
vfio_cfg = get_vfio_cfg_by_container_fd(vfio_container_fd);
|
|
if (vfio_cfg == NULL) {
|
|
RTE_LOG(ERR, EAL, " invalid container fd!\n");
|
|
return -1;
|
|
}
|
|
|
|
user_mem_maps = &vfio_cfg->mem_maps;
|
|
rte_spinlock_recursive_lock(&user_mem_maps->lock);
|
|
|
|
/* check if window size needs to be adjusted */
|
|
memset(¶m, 0, sizeof(param));
|
|
|
|
/* we're inside a callback so use thread-unsafe version */
|
|
if (rte_memseg_walk_thread_unsafe(vfio_spapr_window_size_walk,
|
|
¶m) < 0) {
|
|
RTE_LOG(ERR, EAL, "Could not get window size\n");
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
|
|
/* also check user maps */
|
|
for (i = 0; i < user_mem_maps->n_maps; i++) {
|
|
uint64_t max = user_mem_maps->maps[i].iova +
|
|
user_mem_maps->maps[i].len;
|
|
param.window_size = RTE_MAX(param.window_size, max);
|
|
}
|
|
|
|
/* sPAPR requires window size to be a power of 2 */
|
|
create.window_size = rte_align64pow2(param.window_size);
|
|
create.page_shift = __builtin_ctzll(param.hugepage_sz);
|
|
create.levels = 1;
|
|
|
|
if (do_map) {
|
|
/* re-create window and remap the entire memory */
|
|
if (iova + len > create.window_size) {
|
|
/* release all maps before recreating the window */
|
|
if (rte_memseg_walk_thread_unsafe(vfio_spapr_unmap_walk,
|
|
&vfio_container_fd) < 0) {
|
|
RTE_LOG(ERR, EAL, "Could not release DMA maps\n");
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
/* release all user maps */
|
|
for (i = 0; i < user_mem_maps->n_maps; i++) {
|
|
struct user_mem_map *map =
|
|
&user_mem_maps->maps[i];
|
|
if (vfio_spapr_dma_do_map(vfio_container_fd,
|
|
map->addr, map->iova, map->len,
|
|
0)) {
|
|
RTE_LOG(ERR, EAL, "Could not release user DMA maps\n");
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
}
|
|
create.window_size = rte_align64pow2(iova + len);
|
|
if (vfio_spapr_create_new_dma_window(vfio_container_fd,
|
|
&create) < 0) {
|
|
RTE_LOG(ERR, EAL, "Could not create new DMA window\n");
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
/* we're inside a callback, so use thread-unsafe version
|
|
*/
|
|
if (rte_memseg_walk_thread_unsafe(vfio_spapr_map_walk,
|
|
&vfio_container_fd) < 0) {
|
|
RTE_LOG(ERR, EAL, "Could not recreate DMA maps\n");
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
/* remap all user maps */
|
|
for (i = 0; i < user_mem_maps->n_maps; i++) {
|
|
struct user_mem_map *map =
|
|
&user_mem_maps->maps[i];
|
|
if (vfio_spapr_dma_do_map(vfio_container_fd,
|
|
map->addr, map->iova, map->len,
|
|
1)) {
|
|
RTE_LOG(ERR, EAL, "Could not recreate user DMA maps\n");
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
if (vfio_spapr_dma_do_map(vfio_container_fd, vaddr, iova, len, 1)) {
|
|
RTE_LOG(ERR, EAL, "Failed to map DMA\n");
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
} else {
|
|
/* for unmap, check if iova within DMA window */
|
|
if (iova > create.window_size) {
|
|
RTE_LOG(ERR, EAL, "iova beyond DMA window for unmap");
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
|
|
vfio_spapr_dma_do_map(vfio_container_fd, vaddr, iova, len, 0);
|
|
}
|
|
out:
|
|
rte_spinlock_recursive_unlock(&user_mem_maps->lock);
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
vfio_spapr_dma_map(int vfio_container_fd)
|
|
{
|
|
struct vfio_iommu_spapr_tce_create create = {
|
|
.argsz = sizeof(create),
|
|
};
|
|
struct spapr_walk_param param;
|
|
|
|
memset(¶m, 0, sizeof(param));
|
|
|
|
/* create DMA window from 0 to max(phys_addr + len) */
|
|
rte_memseg_walk(vfio_spapr_window_size_walk, ¶m);
|
|
|
|
/* sPAPR requires window size to be a power of 2 */
|
|
create.window_size = rte_align64pow2(param.window_size);
|
|
create.page_shift = __builtin_ctzll(param.hugepage_sz);
|
|
create.levels = 1;
|
|
|
|
if (vfio_spapr_create_new_dma_window(vfio_container_fd, &create) < 0) {
|
|
RTE_LOG(ERR, EAL, "Could not create new DMA window\n");
|
|
return -1;
|
|
}
|
|
|
|
/* map all DPDK segments for DMA. use 1:1 PA to IOVA mapping */
|
|
if (rte_memseg_walk(vfio_spapr_map_walk, &vfio_container_fd) < 0)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
vfio_noiommu_dma_map(int __rte_unused vfio_container_fd)
|
|
{
|
|
/* No-IOMMU mode does not need DMA mapping */
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
vfio_noiommu_dma_mem_map(int __rte_unused vfio_container_fd,
|
|
uint64_t __rte_unused vaddr,
|
|
uint64_t __rte_unused iova, uint64_t __rte_unused len,
|
|
int __rte_unused do_map)
|
|
{
|
|
/* No-IOMMU mode does not need DMA mapping */
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
vfio_dma_mem_map(struct vfio_config *vfio_cfg, uint64_t vaddr, uint64_t iova,
|
|
uint64_t len, int do_map)
|
|
{
|
|
const struct vfio_iommu_type *t = vfio_cfg->vfio_iommu_type;
|
|
|
|
if (!t) {
|
|
RTE_LOG(ERR, EAL, " VFIO support not initialized\n");
|
|
rte_errno = ENODEV;
|
|
return -1;
|
|
}
|
|
|
|
if (!t->dma_user_map_func) {
|
|
RTE_LOG(ERR, EAL,
|
|
" VFIO custom DMA region maping not supported by IOMMU %s\n",
|
|
t->name);
|
|
rte_errno = ENOTSUP;
|
|
return -1;
|
|
}
|
|
|
|
return t->dma_user_map_func(vfio_cfg->vfio_container_fd, vaddr, iova,
|
|
len, do_map);
|
|
}
|
|
|
|
static int
|
|
container_dma_map(struct vfio_config *vfio_cfg, uint64_t vaddr, uint64_t iova,
|
|
uint64_t len)
|
|
{
|
|
struct user_mem_map *new_map;
|
|
struct user_mem_maps *user_mem_maps;
|
|
int ret = 0;
|
|
|
|
user_mem_maps = &vfio_cfg->mem_maps;
|
|
rte_spinlock_recursive_lock(&user_mem_maps->lock);
|
|
if (user_mem_maps->n_maps == VFIO_MAX_USER_MEM_MAPS) {
|
|
RTE_LOG(ERR, EAL, "No more space for user mem maps\n");
|
|
rte_errno = ENOMEM;
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
/* map the entry */
|
|
if (vfio_dma_mem_map(vfio_cfg, vaddr, iova, len, 1)) {
|
|
/* technically, this will fail if there are currently no devices
|
|
* plugged in, even if a device were added later, this mapping
|
|
* might have succeeded. however, since we cannot verify if this
|
|
* is a valid mapping without having a device attached, consider
|
|
* this to be unsupported, because we can't just store any old
|
|
* mapping and pollute list of active mappings willy-nilly.
|
|
*/
|
|
RTE_LOG(ERR, EAL, "Couldn't map new region for DMA\n");
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
/* create new user mem map entry */
|
|
new_map = &user_mem_maps->maps[user_mem_maps->n_maps++];
|
|
new_map->addr = vaddr;
|
|
new_map->iova = iova;
|
|
new_map->len = len;
|
|
|
|
compact_user_maps(user_mem_maps);
|
|
out:
|
|
rte_spinlock_recursive_unlock(&user_mem_maps->lock);
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
container_dma_unmap(struct vfio_config *vfio_cfg, uint64_t vaddr, uint64_t iova,
|
|
uint64_t len)
|
|
{
|
|
struct user_mem_map *map, *new_map = NULL;
|
|
struct user_mem_maps *user_mem_maps;
|
|
int ret = 0;
|
|
|
|
user_mem_maps = &vfio_cfg->mem_maps;
|
|
rte_spinlock_recursive_lock(&user_mem_maps->lock);
|
|
|
|
/* find our mapping */
|
|
map = find_user_mem_map(user_mem_maps, vaddr, iova, len);
|
|
if (!map) {
|
|
RTE_LOG(ERR, EAL, "Couldn't find previously mapped region\n");
|
|
rte_errno = EINVAL;
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
if (map->addr != vaddr || map->iova != iova || map->len != len) {
|
|
/* we're partially unmapping a previously mapped region, so we
|
|
* need to split entry into two.
|
|
*/
|
|
if (user_mem_maps->n_maps == VFIO_MAX_USER_MEM_MAPS) {
|
|
RTE_LOG(ERR, EAL, "Not enough space to store partial mapping\n");
|
|
rte_errno = ENOMEM;
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
new_map = &user_mem_maps->maps[user_mem_maps->n_maps++];
|
|
}
|
|
|
|
/* unmap the entry */
|
|
if (vfio_dma_mem_map(vfio_cfg, vaddr, iova, len, 0)) {
|
|
/* there may not be any devices plugged in, so unmapping will
|
|
* fail with ENODEV/ENOTSUP rte_errno values, but that doesn't
|
|
* stop us from removing the mapping, as the assumption is we
|
|
* won't be needing this memory any more and thus will want to
|
|
* prevent it from being remapped again on hotplug. so, only
|
|
* fail if we indeed failed to unmap (e.g. if the mapping was
|
|
* within our mapped range but had invalid alignment).
|
|
*/
|
|
if (rte_errno != ENODEV && rte_errno != ENOTSUP) {
|
|
RTE_LOG(ERR, EAL, "Couldn't unmap region for DMA\n");
|
|
ret = -1;
|
|
goto out;
|
|
} else {
|
|
RTE_LOG(DEBUG, EAL, "DMA unmapping failed, but removing mappings anyway\n");
|
|
}
|
|
}
|
|
/* remove map from the list of active mappings */
|
|
if (new_map != NULL) {
|
|
adjust_map(map, new_map, vaddr, len);
|
|
|
|
/* if we've created a new map by splitting, sort everything */
|
|
if (!is_null_map(new_map)) {
|
|
compact_user_maps(user_mem_maps);
|
|
} else {
|
|
/* we've created a new mapping, but it was unused */
|
|
user_mem_maps->n_maps--;
|
|
}
|
|
} else {
|
|
memset(map, 0, sizeof(*map));
|
|
compact_user_maps(user_mem_maps);
|
|
user_mem_maps->n_maps--;
|
|
}
|
|
|
|
out:
|
|
rte_spinlock_recursive_unlock(&user_mem_maps->lock);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
rte_vfio_noiommu_is_enabled(void)
|
|
{
|
|
int fd;
|
|
ssize_t cnt;
|
|
char c;
|
|
|
|
fd = open(VFIO_NOIOMMU_MODE, O_RDONLY);
|
|
if (fd < 0) {
|
|
if (errno != ENOENT) {
|
|
RTE_LOG(ERR, EAL, " cannot open vfio noiommu file %i (%s)\n",
|
|
errno, strerror(errno));
|
|
return -1;
|
|
}
|
|
/*
|
|
* else the file does not exists
|
|
* i.e. noiommu is not enabled
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
cnt = read(fd, &c, 1);
|
|
close(fd);
|
|
if (cnt != 1) {
|
|
RTE_LOG(ERR, EAL, " unable to read from vfio noiommu "
|
|
"file %i (%s)\n", errno, strerror(errno));
|
|
return -1;
|
|
}
|
|
|
|
return c == 'Y';
|
|
}
|
|
|
|
int
|
|
rte_vfio_container_create(void)
|
|
{
|
|
int i;
|
|
|
|
/* Find an empty slot to store new vfio config */
|
|
for (i = 1; i < VFIO_MAX_CONTAINERS; i++) {
|
|
if (vfio_cfgs[i].vfio_container_fd == -1)
|
|
break;
|
|
}
|
|
|
|
if (i == VFIO_MAX_CONTAINERS) {
|
|
RTE_LOG(ERR, EAL, "exceed max vfio container limit\n");
|
|
return -1;
|
|
}
|
|
|
|
vfio_cfgs[i].vfio_container_fd = rte_vfio_get_container_fd();
|
|
if (vfio_cfgs[i].vfio_container_fd < 0) {
|
|
RTE_LOG(NOTICE, EAL, "fail to create a new container\n");
|
|
return -1;
|
|
}
|
|
|
|
return vfio_cfgs[i].vfio_container_fd;
|
|
}
|
|
|
|
int
|
|
rte_vfio_container_destroy(int container_fd)
|
|
{
|
|
struct vfio_config *vfio_cfg;
|
|
int i;
|
|
|
|
vfio_cfg = get_vfio_cfg_by_container_fd(container_fd);
|
|
if (vfio_cfg == NULL) {
|
|
RTE_LOG(ERR, EAL, "Invalid container fd\n");
|
|
return -1;
|
|
}
|
|
|
|
for (i = 0; i < VFIO_MAX_GROUPS; i++)
|
|
if (vfio_cfg->vfio_groups[i].group_num != -1)
|
|
rte_vfio_container_group_unbind(container_fd,
|
|
vfio_cfg->vfio_groups[i].group_num);
|
|
|
|
close(container_fd);
|
|
vfio_cfg->vfio_container_fd = -1;
|
|
vfio_cfg->vfio_active_groups = 0;
|
|
vfio_cfg->vfio_iommu_type = NULL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
rte_vfio_container_group_bind(int container_fd, int iommu_group_num)
|
|
{
|
|
struct vfio_config *vfio_cfg;
|
|
|
|
vfio_cfg = get_vfio_cfg_by_container_fd(container_fd);
|
|
if (vfio_cfg == NULL) {
|
|
RTE_LOG(ERR, EAL, "Invalid container fd\n");
|
|
return -1;
|
|
}
|
|
|
|
return vfio_get_group_fd(vfio_cfg, iommu_group_num);
|
|
}
|
|
|
|
int
|
|
rte_vfio_container_group_unbind(int container_fd, int iommu_group_num)
|
|
{
|
|
struct vfio_config *vfio_cfg;
|
|
struct vfio_group *cur_grp = NULL;
|
|
int i;
|
|
|
|
vfio_cfg = get_vfio_cfg_by_container_fd(container_fd);
|
|
if (vfio_cfg == NULL) {
|
|
RTE_LOG(ERR, EAL, "Invalid container fd\n");
|
|
return -1;
|
|
}
|
|
|
|
for (i = 0; i < VFIO_MAX_GROUPS; i++) {
|
|
if (vfio_cfg->vfio_groups[i].group_num == iommu_group_num) {
|
|
cur_grp = &vfio_cfg->vfio_groups[i];
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* This should not happen */
|
|
if (i == VFIO_MAX_GROUPS || cur_grp == NULL) {
|
|
RTE_LOG(ERR, EAL, "Specified group number not found\n");
|
|
return -1;
|
|
}
|
|
|
|
if (cur_grp->fd >= 0 && close(cur_grp->fd) < 0) {
|
|
RTE_LOG(ERR, EAL, "Error when closing vfio_group_fd for"
|
|
" iommu_group_num %d\n", iommu_group_num);
|
|
return -1;
|
|
}
|
|
cur_grp->group_num = -1;
|
|
cur_grp->fd = -1;
|
|
cur_grp->devices = 0;
|
|
vfio_cfg->vfio_active_groups--;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
rte_vfio_container_dma_map(int container_fd, uint64_t vaddr, uint64_t iova,
|
|
uint64_t len)
|
|
{
|
|
struct vfio_config *vfio_cfg;
|
|
|
|
if (len == 0) {
|
|
rte_errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
vfio_cfg = get_vfio_cfg_by_container_fd(container_fd);
|
|
if (vfio_cfg == NULL) {
|
|
RTE_LOG(ERR, EAL, "Invalid container fd\n");
|
|
return -1;
|
|
}
|
|
|
|
return container_dma_map(vfio_cfg, vaddr, iova, len);
|
|
}
|
|
|
|
int
|
|
rte_vfio_container_dma_unmap(int container_fd, uint64_t vaddr, uint64_t iova,
|
|
uint64_t len)
|
|
{
|
|
struct vfio_config *vfio_cfg;
|
|
|
|
if (len == 0) {
|
|
rte_errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
vfio_cfg = get_vfio_cfg_by_container_fd(container_fd);
|
|
if (vfio_cfg == NULL) {
|
|
RTE_LOG(ERR, EAL, "Invalid container fd\n");
|
|
return -1;
|
|
}
|
|
|
|
return container_dma_unmap(vfio_cfg, vaddr, iova, len);
|
|
}
|
|
|
|
#else
|
|
|
|
int
|
|
rte_vfio_setup_device(__rte_unused const char *sysfs_base,
|
|
__rte_unused const char *dev_addr,
|
|
__rte_unused int *vfio_dev_fd,
|
|
__rte_unused struct vfio_device_info *device_info)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
int
|
|
rte_vfio_release_device(__rte_unused const char *sysfs_base,
|
|
__rte_unused const char *dev_addr, __rte_unused int fd)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
int
|
|
rte_vfio_enable(__rte_unused const char *modname)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
int
|
|
rte_vfio_is_enabled(__rte_unused const char *modname)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
int
|
|
rte_vfio_noiommu_is_enabled(void)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
int
|
|
rte_vfio_clear_group(__rte_unused int vfio_group_fd)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
int
|
|
rte_vfio_get_group_num(__rte_unused const char *sysfs_base,
|
|
__rte_unused const char *dev_addr,
|
|
__rte_unused int *iommu_group_num)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
int
|
|
rte_vfio_get_container_fd(void)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
int
|
|
rte_vfio_get_group_fd(__rte_unused int iommu_group_num)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
int
|
|
rte_vfio_container_create(void)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
int
|
|
rte_vfio_container_destroy(__rte_unused int container_fd)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
int
|
|
rte_vfio_container_group_bind(__rte_unused int container_fd,
|
|
__rte_unused int iommu_group_num)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
int
|
|
rte_vfio_container_group_unbind(__rte_unused int container_fd,
|
|
__rte_unused int iommu_group_num)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
int
|
|
rte_vfio_container_dma_map(__rte_unused int container_fd,
|
|
__rte_unused uint64_t vaddr,
|
|
__rte_unused uint64_t iova,
|
|
__rte_unused uint64_t len)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
int
|
|
rte_vfio_container_dma_unmap(__rte_unused int container_fd,
|
|
__rte_unused uint64_t vaddr,
|
|
__rte_unused uint64_t iova,
|
|
__rte_unused uint64_t len)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
#endif /* VFIO_PRESENT */
|