Wei Hu (Xavier) d6298844da vfio: fix use after free with multiprocess
This patch fixes the heap-use-after-free bug which was found by ASAN
(Address-Sanitizer) in the vfio_get_default_container_fd function.

Fixes: 6bcb7c95fe14 ("vfio: share default container in multi-process")
Cc: stable@dpdk.org

Signed-off-by: Chengwen Feng <fengchengwen@huawei.com>
Signed-off-by: Wei Hu (Xavier) <xavier.huwei@huawei.com>
Acked-by: Anatoly Burakov <anatoly.burakov@intel.com>
2020-04-21 18:13:44 +02:00

2187 lines
54 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2018 Intel Corporation
*/
#include <inttypes.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <rte_errno.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_eal_memconfig.h>
#include <rte_vfio.h>
#include "eal_filesystem.h"
#include "eal_memcfg.h"
#include "eal_vfio.h"
#include "eal_private.h"
#ifdef VFIO_PRESENT
#define VFIO_MEM_EVENT_CLB_NAME "vfio_mem_event_clb"
/* hot plug/unplug of VFIO groups may cause all DMA maps to be dropped. we can
* recreate the mappings for DPDK segments, but we cannot do so for memory that
* was registered by the user themselves, so we need to store the user mappings
* somewhere, to recreate them later.
*/
#define VFIO_MAX_USER_MEM_MAPS 256
struct user_mem_map {
uint64_t addr;
uint64_t iova;
uint64_t len;
};
struct user_mem_maps {
rte_spinlock_recursive_t lock;
int n_maps;
struct user_mem_map maps[VFIO_MAX_USER_MEM_MAPS];
};
struct vfio_config {
int vfio_enabled;
int vfio_container_fd;
int vfio_active_groups;
const struct vfio_iommu_type *vfio_iommu_type;
struct vfio_group vfio_groups[VFIO_MAX_GROUPS];
struct user_mem_maps mem_maps;
};
/* per-process VFIO config */
static struct vfio_config vfio_cfgs[VFIO_MAX_CONTAINERS];
static struct vfio_config *default_vfio_cfg = &vfio_cfgs[0];
static int vfio_type1_dma_map(int);
static int vfio_type1_dma_mem_map(int, uint64_t, uint64_t, uint64_t, int);
static int vfio_spapr_dma_map(int);
static int vfio_spapr_dma_mem_map(int, uint64_t, uint64_t, uint64_t, int);
static int vfio_noiommu_dma_map(int);
static int vfio_noiommu_dma_mem_map(int, uint64_t, uint64_t, uint64_t, int);
static int vfio_dma_mem_map(struct vfio_config *vfio_cfg, uint64_t vaddr,
uint64_t iova, uint64_t len, int do_map);
/* IOMMU types we support */
static const struct vfio_iommu_type iommu_types[] = {
/* x86 IOMMU, otherwise known as type 1 */
{
.type_id = RTE_VFIO_TYPE1,
.name = "Type 1",
.dma_map_func = &vfio_type1_dma_map,
.dma_user_map_func = &vfio_type1_dma_mem_map
},
/* ppc64 IOMMU, otherwise known as spapr */
{
.type_id = RTE_VFIO_SPAPR,
.name = "sPAPR",
.dma_map_func = &vfio_spapr_dma_map,
.dma_user_map_func = &vfio_spapr_dma_mem_map
},
/* IOMMU-less mode */
{
.type_id = RTE_VFIO_NOIOMMU,
.name = "No-IOMMU",
.dma_map_func = &vfio_noiommu_dma_map,
.dma_user_map_func = &vfio_noiommu_dma_mem_map
},
};
static int
is_null_map(const struct user_mem_map *map)
{
return map->addr == 0 && map->iova == 0 && map->len == 0;
}
/* we may need to merge user mem maps together in case of user mapping/unmapping
* chunks of memory, so we'll need a comparator function to sort segments.
*/
static int
user_mem_map_cmp(const void *a, const void *b)
{
const struct user_mem_map *umm_a = a;
const struct user_mem_map *umm_b = b;
/* move null entries to end */
if (is_null_map(umm_a))
return 1;
if (is_null_map(umm_b))
return -1;
/* sort by iova first */
if (umm_a->iova < umm_b->iova)
return -1;
if (umm_a->iova > umm_b->iova)
return 1;
if (umm_a->addr < umm_b->addr)
return -1;
if (umm_a->addr > umm_b->addr)
return 1;
if (umm_a->len < umm_b->len)
return -1;
if (umm_a->len > umm_b->len)
return 1;
return 0;
}
/* adjust user map entry. this may result in shortening of existing map, or in
* splitting existing map in two pieces.
*/
static void
adjust_map(struct user_mem_map *src, struct user_mem_map *end,
uint64_t remove_va_start, uint64_t remove_len)
{
/* if va start is same as start address, we're simply moving start */
if (remove_va_start == src->addr) {
src->addr += remove_len;
src->iova += remove_len;
src->len -= remove_len;
} else if (remove_va_start + remove_len == src->addr + src->len) {
/* we're shrinking mapping from the end */
src->len -= remove_len;
} else {
/* we're blowing a hole in the middle */
struct user_mem_map tmp;
uint64_t total_len = src->len;
/* adjust source segment length */
src->len = remove_va_start - src->addr;
/* create temporary segment in the middle */
tmp.addr = src->addr + src->len;
tmp.iova = src->iova + src->len;
tmp.len = remove_len;
/* populate end segment - this one we will be keeping */
end->addr = tmp.addr + tmp.len;
end->iova = tmp.iova + tmp.len;
end->len = total_len - src->len - tmp.len;
}
}
/* try merging two maps into one, return 1 if succeeded */
static int
merge_map(struct user_mem_map *left, struct user_mem_map *right)
{
if (left->addr + left->len != right->addr)
return 0;
if (left->iova + left->len != right->iova)
return 0;
left->len += right->len;
memset(right, 0, sizeof(*right));
return 1;
}
static struct user_mem_map *
find_user_mem_map(struct user_mem_maps *user_mem_maps, uint64_t addr,
uint64_t iova, uint64_t len)
{
uint64_t va_end = addr + len;
uint64_t iova_end = iova + len;
int i;
for (i = 0; i < user_mem_maps->n_maps; i++) {
struct user_mem_map *map = &user_mem_maps->maps[i];
uint64_t map_va_end = map->addr + map->len;
uint64_t map_iova_end = map->iova + map->len;
/* check start VA */
if (addr < map->addr || addr >= map_va_end)
continue;
/* check if VA end is within boundaries */
if (va_end <= map->addr || va_end > map_va_end)
continue;
/* check start IOVA */
if (iova < map->iova || iova >= map_iova_end)
continue;
/* check if IOVA end is within boundaries */
if (iova_end <= map->iova || iova_end > map_iova_end)
continue;
/* we've found our map */
return map;
}
return NULL;
}
/* this will sort all user maps, and merge/compact any adjacent maps */
static void
compact_user_maps(struct user_mem_maps *user_mem_maps)
{
int i, n_merged, cur_idx;
qsort(user_mem_maps->maps, user_mem_maps->n_maps,
sizeof(user_mem_maps->maps[0]), user_mem_map_cmp);
/* we'll go over the list backwards when merging */
n_merged = 0;
for (i = user_mem_maps->n_maps - 2; i >= 0; i--) {
struct user_mem_map *l, *r;
l = &user_mem_maps->maps[i];
r = &user_mem_maps->maps[i + 1];
if (is_null_map(l) || is_null_map(r))
continue;
if (merge_map(l, r))
n_merged++;
}
/* the entries are still sorted, but now they have holes in them, so
* walk through the list and remove the holes
*/
if (n_merged > 0) {
cur_idx = 0;
for (i = 0; i < user_mem_maps->n_maps; i++) {
if (!is_null_map(&user_mem_maps->maps[i])) {
struct user_mem_map *src, *dst;
src = &user_mem_maps->maps[i];
dst = &user_mem_maps->maps[cur_idx++];
if (src != dst) {
memcpy(dst, src, sizeof(*src));
memset(src, 0, sizeof(*src));
}
}
}
user_mem_maps->n_maps = cur_idx;
}
}
static int
vfio_open_group_fd(int iommu_group_num)
{
int vfio_group_fd;
char filename[PATH_MAX];
struct rte_mp_msg mp_req, *mp_rep;
struct rte_mp_reply mp_reply = {0};
struct timespec ts = {.tv_sec = 5, .tv_nsec = 0};
struct vfio_mp_param *p = (struct vfio_mp_param *)mp_req.param;
/* if primary, try to open the group */
if (internal_config.process_type == RTE_PROC_PRIMARY) {
/* try regular group format */
snprintf(filename, sizeof(filename),
VFIO_GROUP_FMT, iommu_group_num);
vfio_group_fd = open(filename, O_RDWR);
if (vfio_group_fd < 0) {
/* if file not found, it's not an error */
if (errno != ENOENT) {
RTE_LOG(ERR, EAL, "Cannot open %s: %s\n", filename,
strerror(errno));
return -1;
}
/* special case: try no-IOMMU path as well */
snprintf(filename, sizeof(filename),
VFIO_NOIOMMU_GROUP_FMT,
iommu_group_num);
vfio_group_fd = open(filename, O_RDWR);
if (vfio_group_fd < 0) {
if (errno != ENOENT) {
RTE_LOG(ERR, EAL, "Cannot open %s: %s\n", filename,
strerror(errno));
return -1;
}
return 0;
}
/* noiommu group found */
}
return vfio_group_fd;
}
/* if we're in a secondary process, request group fd from the primary
* process via mp channel.
*/
p->req = SOCKET_REQ_GROUP;
p->group_num = iommu_group_num;
strcpy(mp_req.name, EAL_VFIO_MP);
mp_req.len_param = sizeof(*p);
mp_req.num_fds = 0;
vfio_group_fd = -1;
if (rte_mp_request_sync(&mp_req, &mp_reply, &ts) == 0 &&
mp_reply.nb_received == 1) {
mp_rep = &mp_reply.msgs[0];
p = (struct vfio_mp_param *)mp_rep->param;
if (p->result == SOCKET_OK && mp_rep->num_fds == 1) {
vfio_group_fd = mp_rep->fds[0];
} else if (p->result == SOCKET_NO_FD) {
RTE_LOG(ERR, EAL, " bad VFIO group fd\n");
vfio_group_fd = 0;
}
}
free(mp_reply.msgs);
if (vfio_group_fd < 0)
RTE_LOG(ERR, EAL, " cannot request group fd\n");
return vfio_group_fd;
}
static struct vfio_config *
get_vfio_cfg_by_group_num(int iommu_group_num)
{
struct vfio_config *vfio_cfg;
int i, j;
for (i = 0; i < VFIO_MAX_CONTAINERS; i++) {
vfio_cfg = &vfio_cfgs[i];
for (j = 0; j < VFIO_MAX_GROUPS; j++) {
if (vfio_cfg->vfio_groups[j].group_num ==
iommu_group_num)
return vfio_cfg;
}
}
return NULL;
}
static int
vfio_get_group_fd(struct vfio_config *vfio_cfg,
int iommu_group_num)
{
int i;
int vfio_group_fd;
struct vfio_group *cur_grp;
/* check if we already have the group descriptor open */
for (i = 0; i < VFIO_MAX_GROUPS; i++)
if (vfio_cfg->vfio_groups[i].group_num == iommu_group_num)
return vfio_cfg->vfio_groups[i].fd;
/* Lets see first if there is room for a new group */
if (vfio_cfg->vfio_active_groups == VFIO_MAX_GROUPS) {
RTE_LOG(ERR, EAL, "Maximum number of VFIO groups reached!\n");
return -1;
}
/* Now lets get an index for the new group */
for (i = 0; i < VFIO_MAX_GROUPS; i++)
if (vfio_cfg->vfio_groups[i].group_num == -1) {
cur_grp = &vfio_cfg->vfio_groups[i];
break;
}
/* This should not happen */
if (i == VFIO_MAX_GROUPS) {
RTE_LOG(ERR, EAL, "No VFIO group free slot found\n");
return -1;
}
vfio_group_fd = vfio_open_group_fd(iommu_group_num);
if (vfio_group_fd <= 0) {
RTE_LOG(ERR, EAL, "Failed to open group %d\n", iommu_group_num);
return -1;
}
cur_grp->group_num = iommu_group_num;
cur_grp->fd = vfio_group_fd;
vfio_cfg->vfio_active_groups++;
return vfio_group_fd;
}
static struct vfio_config *
get_vfio_cfg_by_group_fd(int vfio_group_fd)
{
struct vfio_config *vfio_cfg;
int i, j;
for (i = 0; i < VFIO_MAX_CONTAINERS; i++) {
vfio_cfg = &vfio_cfgs[i];
for (j = 0; j < VFIO_MAX_GROUPS; j++)
if (vfio_cfg->vfio_groups[j].fd == vfio_group_fd)
return vfio_cfg;
}
return NULL;
}
static struct vfio_config *
get_vfio_cfg_by_container_fd(int container_fd)
{
int i;
if (container_fd == RTE_VFIO_DEFAULT_CONTAINER_FD)
return default_vfio_cfg;
for (i = 0; i < VFIO_MAX_CONTAINERS; i++) {
if (vfio_cfgs[i].vfio_container_fd == container_fd)
return &vfio_cfgs[i];
}
return NULL;
}
int
rte_vfio_get_group_fd(int iommu_group_num)
{
struct vfio_config *vfio_cfg;
/* get the vfio_config it belongs to */
vfio_cfg = get_vfio_cfg_by_group_num(iommu_group_num);
vfio_cfg = vfio_cfg ? vfio_cfg : default_vfio_cfg;
return vfio_get_group_fd(vfio_cfg, iommu_group_num);
}
static int
get_vfio_group_idx(int vfio_group_fd)
{
struct vfio_config *vfio_cfg;
int i, j;
for (i = 0; i < VFIO_MAX_CONTAINERS; i++) {
vfio_cfg = &vfio_cfgs[i];
for (j = 0; j < VFIO_MAX_GROUPS; j++)
if (vfio_cfg->vfio_groups[j].fd == vfio_group_fd)
return j;
}
return -1;
}
static void
vfio_group_device_get(int vfio_group_fd)
{
struct vfio_config *vfio_cfg;
int i;
vfio_cfg = get_vfio_cfg_by_group_fd(vfio_group_fd);
if (vfio_cfg == NULL) {
RTE_LOG(ERR, EAL, " invalid group fd!\n");
return;
}
i = get_vfio_group_idx(vfio_group_fd);
if (i < 0 || i > (VFIO_MAX_GROUPS - 1))
RTE_LOG(ERR, EAL, " wrong vfio_group index (%d)\n", i);
else
vfio_cfg->vfio_groups[i].devices++;
}
static void
vfio_group_device_put(int vfio_group_fd)
{
struct vfio_config *vfio_cfg;
int i;
vfio_cfg = get_vfio_cfg_by_group_fd(vfio_group_fd);
if (vfio_cfg == NULL) {
RTE_LOG(ERR, EAL, " invalid group fd!\n");
return;
}
i = get_vfio_group_idx(vfio_group_fd);
if (i < 0 || i > (VFIO_MAX_GROUPS - 1))
RTE_LOG(ERR, EAL, " wrong vfio_group index (%d)\n", i);
else
vfio_cfg->vfio_groups[i].devices--;
}
static int
vfio_group_device_count(int vfio_group_fd)
{
struct vfio_config *vfio_cfg;
int i;
vfio_cfg = get_vfio_cfg_by_group_fd(vfio_group_fd);
if (vfio_cfg == NULL) {
RTE_LOG(ERR, EAL, " invalid group fd!\n");
return -1;
}
i = get_vfio_group_idx(vfio_group_fd);
if (i < 0 || i > (VFIO_MAX_GROUPS - 1)) {
RTE_LOG(ERR, EAL, " wrong vfio_group index (%d)\n", i);
return -1;
}
return vfio_cfg->vfio_groups[i].devices;
}
static void
vfio_mem_event_callback(enum rte_mem_event type, const void *addr, size_t len,
void *arg __rte_unused)
{
rte_iova_t iova_start, iova_expected;
struct rte_memseg_list *msl;
struct rte_memseg *ms;
size_t cur_len = 0;
uint64_t va_start;
msl = rte_mem_virt2memseg_list(addr);
/* for IOVA as VA mode, no need to care for IOVA addresses */
if (rte_eal_iova_mode() == RTE_IOVA_VA && msl->external == 0) {
uint64_t vfio_va = (uint64_t)(uintptr_t)addr;
if (type == RTE_MEM_EVENT_ALLOC)
vfio_dma_mem_map(default_vfio_cfg, vfio_va, vfio_va,
len, 1);
else
vfio_dma_mem_map(default_vfio_cfg, vfio_va, vfio_va,
len, 0);
return;
}
#ifdef RTE_ARCH_PPC_64
ms = rte_mem_virt2memseg(addr, msl);
while (cur_len < len) {
int idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
rte_fbarray_set_free(&msl->memseg_arr, idx);
cur_len += ms->len;
++ms;
}
cur_len = 0;
#endif
/* memsegs are contiguous in memory */
ms = rte_mem_virt2memseg(addr, msl);
/*
* This memory is not guaranteed to be contiguous, but it still could
* be, or it could have some small contiguous chunks. Since the number
* of VFIO mappings is limited, and VFIO appears to not concatenate
* adjacent mappings, we have to do this ourselves.
*
* So, find contiguous chunks, then map them.
*/
va_start = ms->addr_64;
iova_start = iova_expected = ms->iova;
while (cur_len < len) {
bool new_contig_area = ms->iova != iova_expected;
bool last_seg = (len - cur_len) == ms->len;
bool skip_last = false;
/* only do mappings when current contiguous area ends */
if (new_contig_area) {
if (type == RTE_MEM_EVENT_ALLOC)
vfio_dma_mem_map(default_vfio_cfg, va_start,
iova_start,
iova_expected - iova_start, 1);
else
vfio_dma_mem_map(default_vfio_cfg, va_start,
iova_start,
iova_expected - iova_start, 0);
va_start = ms->addr_64;
iova_start = ms->iova;
}
/* some memory segments may have invalid IOVA */
if (ms->iova == RTE_BAD_IOVA) {
RTE_LOG(DEBUG, EAL, "Memory segment at %p has bad IOVA, skipping\n",
ms->addr);
skip_last = true;
}
iova_expected = ms->iova + ms->len;
cur_len += ms->len;
++ms;
/*
* don't count previous segment, and don't attempt to
* dereference a potentially invalid pointer.
*/
if (skip_last && !last_seg) {
iova_expected = iova_start = ms->iova;
va_start = ms->addr_64;
} else if (!skip_last && last_seg) {
/* this is the last segment and we're not skipping */
if (type == RTE_MEM_EVENT_ALLOC)
vfio_dma_mem_map(default_vfio_cfg, va_start,
iova_start,
iova_expected - iova_start, 1);
else
vfio_dma_mem_map(default_vfio_cfg, va_start,
iova_start,
iova_expected - iova_start, 0);
}
}
#ifdef RTE_ARCH_PPC_64
cur_len = 0;
ms = rte_mem_virt2memseg(addr, msl);
while (cur_len < len) {
int idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
rte_fbarray_set_used(&msl->memseg_arr, idx);
cur_len += ms->len;
++ms;
}
#endif
}
static int
vfio_sync_default_container(void)
{
struct rte_mp_msg mp_req, *mp_rep;
struct rte_mp_reply mp_reply = {0};
struct timespec ts = {.tv_sec = 5, .tv_nsec = 0};
struct vfio_mp_param *p = (struct vfio_mp_param *)mp_req.param;
int iommu_type_id;
unsigned int i;
/* cannot be called from primary */
if (rte_eal_process_type() != RTE_PROC_SECONDARY)
return -1;
/* default container fd should have been opened in rte_vfio_enable() */
if (!default_vfio_cfg->vfio_enabled ||
default_vfio_cfg->vfio_container_fd < 0) {
RTE_LOG(ERR, EAL, "VFIO support is not initialized\n");
return -1;
}
/* find default container's IOMMU type */
p->req = SOCKET_REQ_IOMMU_TYPE;
strcpy(mp_req.name, EAL_VFIO_MP);
mp_req.len_param = sizeof(*p);
mp_req.num_fds = 0;
iommu_type_id = -1;
if (rte_mp_request_sync(&mp_req, &mp_reply, &ts) == 0 &&
mp_reply.nb_received == 1) {
mp_rep = &mp_reply.msgs[0];
p = (struct vfio_mp_param *)mp_rep->param;
if (p->result == SOCKET_OK)
iommu_type_id = p->iommu_type_id;
}
free(mp_reply.msgs);
if (iommu_type_id < 0) {
RTE_LOG(ERR, EAL, "Could not get IOMMU type for default container\n");
return -1;
}
/* we now have an fd for default container, as well as its IOMMU type.
* now, set up default VFIO container config to match.
*/
for (i = 0; i < RTE_DIM(iommu_types); i++) {
const struct vfio_iommu_type *t = &iommu_types[i];
if (t->type_id != iommu_type_id)
continue;
/* we found our IOMMU type */
default_vfio_cfg->vfio_iommu_type = t;
return 0;
}
RTE_LOG(ERR, EAL, "Could not find IOMMU type id (%i)\n",
iommu_type_id);
return -1;
}
int
rte_vfio_clear_group(int vfio_group_fd)
{
int i;
struct vfio_config *vfio_cfg;
vfio_cfg = get_vfio_cfg_by_group_fd(vfio_group_fd);
if (vfio_cfg == NULL) {
RTE_LOG(ERR, EAL, " invalid group fd!\n");
return -1;
}
i = get_vfio_group_idx(vfio_group_fd);
if (i < 0)
return -1;
vfio_cfg->vfio_groups[i].group_num = -1;
vfio_cfg->vfio_groups[i].fd = -1;
vfio_cfg->vfio_groups[i].devices = 0;
vfio_cfg->vfio_active_groups--;
return 0;
}
int
rte_vfio_setup_device(const char *sysfs_base, const char *dev_addr,
int *vfio_dev_fd, struct vfio_device_info *device_info)
{
struct vfio_group_status group_status = {
.argsz = sizeof(group_status)
};
struct vfio_config *vfio_cfg;
struct user_mem_maps *user_mem_maps;
int vfio_container_fd;
int vfio_group_fd;
int iommu_group_num;
int i, ret;
/* get group number */
ret = rte_vfio_get_group_num(sysfs_base, dev_addr, &iommu_group_num);
if (ret == 0) {
RTE_LOG(WARNING, EAL, " %s not managed by VFIO driver, skipping\n",
dev_addr);
return 1;
}
/* if negative, something failed */
if (ret < 0)
return -1;
/* get the actual group fd */
vfio_group_fd = rte_vfio_get_group_fd(iommu_group_num);
if (vfio_group_fd < 0)
return -1;
/* if group_fd == 0, that means the device isn't managed by VFIO */
if (vfio_group_fd == 0) {
RTE_LOG(WARNING, EAL, " %s not managed by VFIO driver, skipping\n",
dev_addr);
return 1;
}
/*
* at this point, we know that this group is viable (meaning, all devices
* are either bound to VFIO or not bound to anything)
*/
/* check if the group is viable */
ret = ioctl(vfio_group_fd, VFIO_GROUP_GET_STATUS, &group_status);
if (ret) {
RTE_LOG(ERR, EAL, " %s cannot get group status, "
"error %i (%s)\n", dev_addr, errno, strerror(errno));
close(vfio_group_fd);
rte_vfio_clear_group(vfio_group_fd);
return -1;
} else if (!(group_status.flags & VFIO_GROUP_FLAGS_VIABLE)) {
RTE_LOG(ERR, EAL, " %s VFIO group is not viable! "
"Not all devices in IOMMU group bound to VFIO or unbound\n",
dev_addr);
close(vfio_group_fd);
rte_vfio_clear_group(vfio_group_fd);
return -1;
}
/* get the vfio_config it belongs to */
vfio_cfg = get_vfio_cfg_by_group_num(iommu_group_num);
vfio_cfg = vfio_cfg ? vfio_cfg : default_vfio_cfg;
vfio_container_fd = vfio_cfg->vfio_container_fd;
user_mem_maps = &vfio_cfg->mem_maps;
/* check if group does not have a container yet */
if (!(group_status.flags & VFIO_GROUP_FLAGS_CONTAINER_SET)) {
/* add group to a container */
ret = ioctl(vfio_group_fd, VFIO_GROUP_SET_CONTAINER,
&vfio_container_fd);
if (ret) {
RTE_LOG(ERR, EAL, " %s cannot add VFIO group to container, "
"error %i (%s)\n", dev_addr, errno, strerror(errno));
close(vfio_group_fd);
rte_vfio_clear_group(vfio_group_fd);
return -1;
}
/*
* pick an IOMMU type and set up DMA mappings for container
*
* needs to be done only once, only when first group is
* assigned to a container and only in primary process.
* Note this can happen several times with the hotplug
* functionality.
*/
if (internal_config.process_type == RTE_PROC_PRIMARY &&
vfio_cfg->vfio_active_groups == 1 &&
vfio_group_device_count(vfio_group_fd) == 0) {
const struct vfio_iommu_type *t;
/* select an IOMMU type which we will be using */
t = vfio_set_iommu_type(vfio_container_fd);
if (!t) {
RTE_LOG(ERR, EAL,
" %s failed to select IOMMU type\n",
dev_addr);
close(vfio_group_fd);
rte_vfio_clear_group(vfio_group_fd);
return -1;
}
/* lock memory hotplug before mapping and release it
* after registering callback, to prevent races
*/
rte_mcfg_mem_read_lock();
if (vfio_cfg == default_vfio_cfg)
ret = t->dma_map_func(vfio_container_fd);
else
ret = 0;
if (ret) {
RTE_LOG(ERR, EAL,
" %s DMA remapping failed, error %i (%s)\n",
dev_addr, errno, strerror(errno));
close(vfio_group_fd);
rte_vfio_clear_group(vfio_group_fd);
rte_mcfg_mem_read_unlock();
return -1;
}
vfio_cfg->vfio_iommu_type = t;
/* re-map all user-mapped segments */
rte_spinlock_recursive_lock(&user_mem_maps->lock);
/* this IOMMU type may not support DMA mapping, but
* if we have mappings in the list - that means we have
* previously mapped something successfully, so we can
* be sure that DMA mapping is supported.
*/
for (i = 0; i < user_mem_maps->n_maps; i++) {
struct user_mem_map *map;
map = &user_mem_maps->maps[i];
ret = t->dma_user_map_func(
vfio_container_fd,
map->addr, map->iova, map->len,
1);
if (ret) {
RTE_LOG(ERR, EAL, "Couldn't map user memory for DMA: "
"va: 0x%" PRIx64 " "
"iova: 0x%" PRIx64 " "
"len: 0x%" PRIu64 "\n",
map->addr, map->iova,
map->len);
rte_spinlock_recursive_unlock(
&user_mem_maps->lock);
rte_mcfg_mem_read_unlock();
return -1;
}
}
rte_spinlock_recursive_unlock(&user_mem_maps->lock);
/* register callback for mem events */
if (vfio_cfg == default_vfio_cfg)
ret = rte_mem_event_callback_register(
VFIO_MEM_EVENT_CLB_NAME,
vfio_mem_event_callback, NULL);
else
ret = 0;
/* unlock memory hotplug */
rte_mcfg_mem_read_unlock();
if (ret && rte_errno != ENOTSUP) {
RTE_LOG(ERR, EAL, "Could not install memory event callback for VFIO\n");
return -1;
}
if (ret)
RTE_LOG(DEBUG, EAL, "Memory event callbacks not supported\n");
else
RTE_LOG(DEBUG, EAL, "Installed memory event callback for VFIO\n");
}
} else if (rte_eal_process_type() != RTE_PROC_PRIMARY &&
vfio_cfg == default_vfio_cfg &&
vfio_cfg->vfio_iommu_type == NULL) {
/* if we're not a primary process, we do not set up the VFIO
* container because it's already been set up by the primary
* process. instead, we simply ask the primary about VFIO type
* we are using, and set the VFIO config up appropriately.
*/
ret = vfio_sync_default_container();
if (ret < 0) {
RTE_LOG(ERR, EAL, "Could not sync default VFIO container\n");
close(vfio_group_fd);
rte_vfio_clear_group(vfio_group_fd);
return -1;
}
/* we have successfully initialized VFIO, notify user */
const struct vfio_iommu_type *t =
default_vfio_cfg->vfio_iommu_type;
RTE_LOG(NOTICE, EAL, " using IOMMU type %d (%s)\n",
t->type_id, t->name);
}
/* get a file descriptor for the device */
*vfio_dev_fd = ioctl(vfio_group_fd, VFIO_GROUP_GET_DEVICE_FD, dev_addr);
if (*vfio_dev_fd < 0) {
/* if we cannot get a device fd, this implies a problem with
* the VFIO group or the container not having IOMMU configured.
*/
RTE_LOG(WARNING, EAL, "Getting a vfio_dev_fd for %s failed\n",
dev_addr);
close(vfio_group_fd);
rte_vfio_clear_group(vfio_group_fd);
return -1;
}
/* test and setup the device */
ret = ioctl(*vfio_dev_fd, VFIO_DEVICE_GET_INFO, device_info);
if (ret) {
RTE_LOG(ERR, EAL, " %s cannot get device info, "
"error %i (%s)\n", dev_addr, errno,
strerror(errno));
close(*vfio_dev_fd);
close(vfio_group_fd);
rte_vfio_clear_group(vfio_group_fd);
return -1;
}
vfio_group_device_get(vfio_group_fd);
return 0;
}
int
rte_vfio_release_device(const char *sysfs_base, const char *dev_addr,
int vfio_dev_fd)
{
struct vfio_group_status group_status = {
.argsz = sizeof(group_status)
};
struct vfio_config *vfio_cfg;
int vfio_group_fd;
int iommu_group_num;
int ret;
/* we don't want any DMA mapping messages to come while we're detaching
* VFIO device, because this might be the last device and we might need
* to unregister the callback.
*/
rte_mcfg_mem_read_lock();
/* get group number */
ret = rte_vfio_get_group_num(sysfs_base, dev_addr, &iommu_group_num);
if (ret <= 0) {
RTE_LOG(WARNING, EAL, " %s not managed by VFIO driver\n",
dev_addr);
/* This is an error at this point. */
ret = -1;
goto out;
}
/* get the actual group fd */
vfio_group_fd = rte_vfio_get_group_fd(iommu_group_num);
if (vfio_group_fd <= 0) {
RTE_LOG(INFO, EAL, "rte_vfio_get_group_fd failed for %s\n",
dev_addr);
ret = -1;
goto out;
}
/* get the vfio_config it belongs to */
vfio_cfg = get_vfio_cfg_by_group_num(iommu_group_num);
vfio_cfg = vfio_cfg ? vfio_cfg : default_vfio_cfg;
/* At this point we got an active group. Closing it will make the
* container detachment. If this is the last active group, VFIO kernel
* code will unset the container and the IOMMU mappings.
*/
/* Closing a device */
if (close(vfio_dev_fd) < 0) {
RTE_LOG(INFO, EAL, "Error when closing vfio_dev_fd for %s\n",
dev_addr);
ret = -1;
goto out;
}
/* An VFIO group can have several devices attached. Just when there is
* no devices remaining should the group be closed.
*/
vfio_group_device_put(vfio_group_fd);
if (!vfio_group_device_count(vfio_group_fd)) {
if (close(vfio_group_fd) < 0) {
RTE_LOG(INFO, EAL, "Error when closing vfio_group_fd for %s\n",
dev_addr);
ret = -1;
goto out;
}
if (rte_vfio_clear_group(vfio_group_fd) < 0) {
RTE_LOG(INFO, EAL, "Error when clearing group for %s\n",
dev_addr);
ret = -1;
goto out;
}
}
/* if there are no active device groups, unregister the callback to
* avoid spurious attempts to map/unmap memory from VFIO.
*/
if (vfio_cfg == default_vfio_cfg && vfio_cfg->vfio_active_groups == 0 &&
rte_eal_process_type() != RTE_PROC_SECONDARY)
rte_mem_event_callback_unregister(VFIO_MEM_EVENT_CLB_NAME,
NULL);
/* success */
ret = 0;
out:
rte_mcfg_mem_read_unlock();
return ret;
}
int
rte_vfio_enable(const char *modname)
{
/* initialize group list */
int i, j;
int vfio_available;
rte_spinlock_recursive_t lock = RTE_SPINLOCK_RECURSIVE_INITIALIZER;
for (i = 0; i < VFIO_MAX_CONTAINERS; i++) {
vfio_cfgs[i].vfio_container_fd = -1;
vfio_cfgs[i].vfio_active_groups = 0;
vfio_cfgs[i].vfio_iommu_type = NULL;
vfio_cfgs[i].mem_maps.lock = lock;
for (j = 0; j < VFIO_MAX_GROUPS; j++) {
vfio_cfgs[i].vfio_groups[j].fd = -1;
vfio_cfgs[i].vfio_groups[j].group_num = -1;
vfio_cfgs[i].vfio_groups[j].devices = 0;
}
}
/* inform the user that we are probing for VFIO */
RTE_LOG(INFO, EAL, "Probing VFIO support...\n");
/* check if vfio module is loaded */
vfio_available = rte_eal_check_module(modname);
/* return error directly */
if (vfio_available == -1) {
RTE_LOG(INFO, EAL, "Could not get loaded module details!\n");
return -1;
}
/* return 0 if VFIO modules not loaded */
if (vfio_available == 0) {
RTE_LOG(DEBUG, EAL, "VFIO modules not loaded, "
"skipping VFIO support...\n");
return 0;
}
if (internal_config.process_type == RTE_PROC_PRIMARY) {
/* open a new container */
default_vfio_cfg->vfio_container_fd =
rte_vfio_get_container_fd();
} else {
/* get the default container from the primary process */
default_vfio_cfg->vfio_container_fd =
vfio_get_default_container_fd();
}
/* check if we have VFIO driver enabled */
if (default_vfio_cfg->vfio_container_fd != -1) {
RTE_LOG(NOTICE, EAL, "VFIO support initialized\n");
default_vfio_cfg->vfio_enabled = 1;
} else {
RTE_LOG(NOTICE, EAL, "VFIO support could not be initialized\n");
}
return 0;
}
int
rte_vfio_is_enabled(const char *modname)
{
const int mod_available = rte_eal_check_module(modname) > 0;
return default_vfio_cfg->vfio_enabled && mod_available;
}
int
vfio_get_default_container_fd(void)
{
struct rte_mp_msg mp_req, *mp_rep;
struct rte_mp_reply mp_reply = {0};
struct timespec ts = {.tv_sec = 5, .tv_nsec = 0};
struct vfio_mp_param *p = (struct vfio_mp_param *)mp_req.param;
int container_fd;
if (default_vfio_cfg->vfio_enabled)
return default_vfio_cfg->vfio_container_fd;
if (internal_config.process_type == RTE_PROC_PRIMARY) {
/* if we were secondary process we would try requesting
* container fd from the primary, but we're the primary
* process so just exit here
*/
return -1;
}
p->req = SOCKET_REQ_DEFAULT_CONTAINER;
strcpy(mp_req.name, EAL_VFIO_MP);
mp_req.len_param = sizeof(*p);
mp_req.num_fds = 0;
if (rte_mp_request_sync(&mp_req, &mp_reply, &ts) == 0 &&
mp_reply.nb_received == 1) {
mp_rep = &mp_reply.msgs[0];
p = (struct vfio_mp_param *)mp_rep->param;
if (p->result == SOCKET_OK && mp_rep->num_fds == 1) {
container_fd = mp_rep->fds[0];
free(mp_reply.msgs);
return container_fd;
}
}
free(mp_reply.msgs);
RTE_LOG(ERR, EAL, " cannot request default container fd\n");
return -1;
}
int
vfio_get_iommu_type(void)
{
if (default_vfio_cfg->vfio_iommu_type == NULL)
return -1;
return default_vfio_cfg->vfio_iommu_type->type_id;
}
const struct vfio_iommu_type *
vfio_set_iommu_type(int vfio_container_fd)
{
unsigned idx;
for (idx = 0; idx < RTE_DIM(iommu_types); idx++) {
const struct vfio_iommu_type *t = &iommu_types[idx];
int ret = ioctl(vfio_container_fd, VFIO_SET_IOMMU,
t->type_id);
if (!ret) {
RTE_LOG(NOTICE, EAL, " using IOMMU type %d (%s)\n",
t->type_id, t->name);
return t;
}
/* not an error, there may be more supported IOMMU types */
RTE_LOG(DEBUG, EAL, " set IOMMU type %d (%s) failed, "
"error %i (%s)\n", t->type_id, t->name, errno,
strerror(errno));
}
/* if we didn't find a suitable IOMMU type, fail */
return NULL;
}
int
vfio_has_supported_extensions(int vfio_container_fd)
{
int ret;
unsigned idx, n_extensions = 0;
for (idx = 0; idx < RTE_DIM(iommu_types); idx++) {
const struct vfio_iommu_type *t = &iommu_types[idx];
ret = ioctl(vfio_container_fd, VFIO_CHECK_EXTENSION,
t->type_id);
if (ret < 0) {
RTE_LOG(ERR, EAL, " could not get IOMMU type, "
"error %i (%s)\n", errno,
strerror(errno));
close(vfio_container_fd);
return -1;
} else if (ret == 1) {
/* we found a supported extension */
n_extensions++;
}
RTE_LOG(DEBUG, EAL, " IOMMU type %d (%s) is %s\n",
t->type_id, t->name,
ret ? "supported" : "not supported");
}
/* if we didn't find any supported IOMMU types, fail */
if (!n_extensions) {
close(vfio_container_fd);
return -1;
}
return 0;
}
int
rte_vfio_get_container_fd(void)
{
int ret, vfio_container_fd;
struct rte_mp_msg mp_req, *mp_rep;
struct rte_mp_reply mp_reply = {0};
struct timespec ts = {.tv_sec = 5, .tv_nsec = 0};
struct vfio_mp_param *p = (struct vfio_mp_param *)mp_req.param;
/* if we're in a primary process, try to open the container */
if (internal_config.process_type == RTE_PROC_PRIMARY) {
vfio_container_fd = open(VFIO_CONTAINER_PATH, O_RDWR);
if (vfio_container_fd < 0) {
RTE_LOG(ERR, EAL, " cannot open VFIO container, "
"error %i (%s)\n", errno, strerror(errno));
return -1;
}
/* check VFIO API version */
ret = ioctl(vfio_container_fd, VFIO_GET_API_VERSION);
if (ret != VFIO_API_VERSION) {
if (ret < 0)
RTE_LOG(ERR, EAL, " could not get VFIO API version, "
"error %i (%s)\n", errno, strerror(errno));
else
RTE_LOG(ERR, EAL, " unsupported VFIO API version!\n");
close(vfio_container_fd);
return -1;
}
ret = vfio_has_supported_extensions(vfio_container_fd);
if (ret) {
RTE_LOG(ERR, EAL, " no supported IOMMU "
"extensions found!\n");
return -1;
}
return vfio_container_fd;
}
/*
* if we're in a secondary process, request container fd from the
* primary process via mp channel
*/
p->req = SOCKET_REQ_CONTAINER;
strcpy(mp_req.name, EAL_VFIO_MP);
mp_req.len_param = sizeof(*p);
mp_req.num_fds = 0;
vfio_container_fd = -1;
if (rte_mp_request_sync(&mp_req, &mp_reply, &ts) == 0 &&
mp_reply.nb_received == 1) {
mp_rep = &mp_reply.msgs[0];
p = (struct vfio_mp_param *)mp_rep->param;
if (p->result == SOCKET_OK && mp_rep->num_fds == 1) {
vfio_container_fd = mp_rep->fds[0];
free(mp_reply.msgs);
return vfio_container_fd;
}
}
free(mp_reply.msgs);
RTE_LOG(ERR, EAL, " cannot request container fd\n");
return -1;
}
int
rte_vfio_get_group_num(const char *sysfs_base,
const char *dev_addr, int *iommu_group_num)
{
char linkname[PATH_MAX];
char filename[PATH_MAX];
char *tok[16], *group_tok, *end;
int ret;
memset(linkname, 0, sizeof(linkname));
memset(filename, 0, sizeof(filename));
/* try to find out IOMMU group for this device */
snprintf(linkname, sizeof(linkname),
"%s/%s/iommu_group", sysfs_base, dev_addr);
ret = readlink(linkname, filename, sizeof(filename));
/* if the link doesn't exist, no VFIO for us */
if (ret < 0)
return 0;
ret = rte_strsplit(filename, sizeof(filename),
tok, RTE_DIM(tok), '/');
if (ret <= 0) {
RTE_LOG(ERR, EAL, " %s cannot get IOMMU group\n", dev_addr);
return -1;
}
/* IOMMU group is always the last token */
errno = 0;
group_tok = tok[ret - 1];
end = group_tok;
*iommu_group_num = strtol(group_tok, &end, 10);
if ((end != group_tok && *end != '\0') || errno != 0) {
RTE_LOG(ERR, EAL, " %s error parsing IOMMU number!\n", dev_addr);
return -1;
}
return 1;
}
static int
type1_map_contig(const struct rte_memseg_list *msl, const struct rte_memseg *ms,
size_t len, void *arg)
{
int *vfio_container_fd = arg;
if (msl->external)
return 0;
return vfio_type1_dma_mem_map(*vfio_container_fd, ms->addr_64, ms->iova,
len, 1);
}
static int
type1_map(const struct rte_memseg_list *msl, const struct rte_memseg *ms,
void *arg)
{
int *vfio_container_fd = arg;
/* skip external memory that isn't a heap */
if (msl->external && !msl->heap)
return 0;
/* skip any segments with invalid IOVA addresses */
if (ms->iova == RTE_BAD_IOVA)
return 0;
/* if IOVA mode is VA, we've already mapped the internal segments */
if (!msl->external && rte_eal_iova_mode() == RTE_IOVA_VA)
return 0;
return vfio_type1_dma_mem_map(*vfio_container_fd, ms->addr_64, ms->iova,
ms->len, 1);
}
static int
vfio_type1_dma_mem_map(int vfio_container_fd, uint64_t vaddr, uint64_t iova,
uint64_t len, int do_map)
{
struct vfio_iommu_type1_dma_map dma_map;
struct vfio_iommu_type1_dma_unmap dma_unmap;
int ret;
if (do_map != 0) {
memset(&dma_map, 0, sizeof(dma_map));
dma_map.argsz = sizeof(struct vfio_iommu_type1_dma_map);
dma_map.vaddr = vaddr;
dma_map.size = len;
dma_map.iova = iova;
dma_map.flags = VFIO_DMA_MAP_FLAG_READ |
VFIO_DMA_MAP_FLAG_WRITE;
ret = ioctl(vfio_container_fd, VFIO_IOMMU_MAP_DMA, &dma_map);
if (ret) {
/**
* In case the mapping was already done EEXIST will be
* returned from kernel.
*/
if (errno == EEXIST) {
RTE_LOG(DEBUG, EAL,
" Memory segment is already mapped,"
" skipping");
} else {
RTE_LOG(ERR, EAL,
" cannot set up DMA remapping,"
" error %i (%s)\n",
errno, strerror(errno));
return -1;
}
}
} else {
memset(&dma_unmap, 0, sizeof(dma_unmap));
dma_unmap.argsz = sizeof(struct vfio_iommu_type1_dma_unmap);
dma_unmap.size = len;
dma_unmap.iova = iova;
ret = ioctl(vfio_container_fd, VFIO_IOMMU_UNMAP_DMA,
&dma_unmap);
if (ret) {
RTE_LOG(ERR, EAL, " cannot clear DMA remapping, error %i (%s)\n",
errno, strerror(errno));
return -1;
}
}
return 0;
}
static int
vfio_type1_dma_map(int vfio_container_fd)
{
if (rte_eal_iova_mode() == RTE_IOVA_VA) {
/* with IOVA as VA mode, we can get away with mapping contiguous
* chunks rather than going page-by-page.
*/
int ret = rte_memseg_contig_walk(type1_map_contig,
&vfio_container_fd);
if (ret)
return ret;
/* we have to continue the walk because we've skipped the
* external segments during the config walk.
*/
}
return rte_memseg_walk(type1_map, &vfio_container_fd);
}
static int
vfio_spapr_dma_do_map(int vfio_container_fd, uint64_t vaddr, uint64_t iova,
uint64_t len, int do_map)
{
struct vfio_iommu_type1_dma_map dma_map;
struct vfio_iommu_type1_dma_unmap dma_unmap;
int ret;
struct vfio_iommu_spapr_register_memory reg = {
.argsz = sizeof(reg),
.flags = 0
};
reg.vaddr = (uintptr_t) vaddr;
reg.size = len;
if (do_map != 0) {
ret = ioctl(vfio_container_fd,
VFIO_IOMMU_SPAPR_REGISTER_MEMORY, &reg);
if (ret) {
RTE_LOG(ERR, EAL, " cannot register vaddr for IOMMU, "
"error %i (%s)\n", errno, strerror(errno));
return -1;
}
memset(&dma_map, 0, sizeof(dma_map));
dma_map.argsz = sizeof(struct vfio_iommu_type1_dma_map);
dma_map.vaddr = vaddr;
dma_map.size = len;
dma_map.iova = iova;
dma_map.flags = VFIO_DMA_MAP_FLAG_READ |
VFIO_DMA_MAP_FLAG_WRITE;
ret = ioctl(vfio_container_fd, VFIO_IOMMU_MAP_DMA, &dma_map);
if (ret) {
/**
* In case the mapping was already done EBUSY will be
* returned from kernel.
*/
if (errno == EBUSY) {
RTE_LOG(DEBUG, EAL,
" Memory segment is already mapped,"
" skipping");
} else {
RTE_LOG(ERR, EAL,
" cannot set up DMA remapping,"
" error %i (%s)\n", errno,
strerror(errno));
return -1;
}
}
} else {
memset(&dma_unmap, 0, sizeof(dma_unmap));
dma_unmap.argsz = sizeof(struct vfio_iommu_type1_dma_unmap);
dma_unmap.size = len;
dma_unmap.iova = iova;
ret = ioctl(vfio_container_fd, VFIO_IOMMU_UNMAP_DMA,
&dma_unmap);
if (ret) {
RTE_LOG(ERR, EAL, " cannot clear DMA remapping, error %i (%s)\n",
errno, strerror(errno));
return -1;
}
ret = ioctl(vfio_container_fd,
VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY, &reg);
if (ret) {
RTE_LOG(ERR, EAL, " cannot unregister vaddr for IOMMU, error %i (%s)\n",
errno, strerror(errno));
return -1;
}
}
return 0;
}
static int
vfio_spapr_map_walk(const struct rte_memseg_list *msl,
const struct rte_memseg *ms, void *arg)
{
int *vfio_container_fd = arg;
/* skip external memory that isn't a heap */
if (msl->external && !msl->heap)
return 0;
/* skip any segments with invalid IOVA addresses */
if (ms->iova == RTE_BAD_IOVA)
return 0;
return vfio_spapr_dma_do_map(*vfio_container_fd, ms->addr_64, ms->iova,
ms->len, 1);
}
static int
vfio_spapr_unmap_walk(const struct rte_memseg_list *msl,
const struct rte_memseg *ms, void *arg)
{
int *vfio_container_fd = arg;
/* skip external memory that isn't a heap */
if (msl->external && !msl->heap)
return 0;
/* skip any segments with invalid IOVA addresses */
if (ms->iova == RTE_BAD_IOVA)
return 0;
return vfio_spapr_dma_do_map(*vfio_container_fd, ms->addr_64, ms->iova,
ms->len, 0);
}
struct spapr_walk_param {
uint64_t window_size;
uint64_t hugepage_sz;
};
static int
vfio_spapr_window_size_walk(const struct rte_memseg_list *msl,
const struct rte_memseg *ms, void *arg)
{
struct spapr_walk_param *param = arg;
uint64_t max = ms->iova + ms->len;
/* skip external memory that isn't a heap */
if (msl->external && !msl->heap)
return 0;
/* skip any segments with invalid IOVA addresses */
if (ms->iova == RTE_BAD_IOVA)
return 0;
if (max > param->window_size) {
param->hugepage_sz = ms->hugepage_sz;
param->window_size = max;
}
return 0;
}
static int
vfio_spapr_create_new_dma_window(int vfio_container_fd,
struct vfio_iommu_spapr_tce_create *create) {
struct vfio_iommu_spapr_tce_remove remove = {
.argsz = sizeof(remove),
};
struct vfio_iommu_spapr_tce_info info = {
.argsz = sizeof(info),
};
int ret;
/* query spapr iommu info */
ret = ioctl(vfio_container_fd, VFIO_IOMMU_SPAPR_TCE_GET_INFO, &info);
if (ret) {
RTE_LOG(ERR, EAL, " cannot get iommu info, "
"error %i (%s)\n", errno, strerror(errno));
return -1;
}
/* remove default DMA of 32 bit window */
remove.start_addr = info.dma32_window_start;
ret = ioctl(vfio_container_fd, VFIO_IOMMU_SPAPR_TCE_REMOVE, &remove);
if (ret) {
RTE_LOG(ERR, EAL, " cannot remove default DMA window, "
"error %i (%s)\n", errno, strerror(errno));
return -1;
}
/* create new DMA window */
ret = ioctl(vfio_container_fd, VFIO_IOMMU_SPAPR_TCE_CREATE, create);
if (ret) {
#ifdef VFIO_IOMMU_SPAPR_INFO_DDW
/* try possible page_shift and levels for workaround */
uint32_t levels;
for (levels = create->levels + 1;
ret && levels <= info.ddw.levels; levels++) {
create->levels = levels;
ret = ioctl(vfio_container_fd,
VFIO_IOMMU_SPAPR_TCE_CREATE, create);
}
#endif
if (ret) {
RTE_LOG(ERR, EAL, " cannot create new DMA window, "
"error %i (%s)\n", errno, strerror(errno));
return -1;
}
}
if (create->start_addr != 0) {
RTE_LOG(ERR, EAL, " DMA window start address != 0\n");
return -1;
}
return 0;
}
static int
vfio_spapr_dma_mem_map(int vfio_container_fd, uint64_t vaddr, uint64_t iova,
uint64_t len, int do_map)
{
struct spapr_walk_param param;
struct vfio_iommu_spapr_tce_create create = {
.argsz = sizeof(create),
};
struct vfio_config *vfio_cfg;
struct user_mem_maps *user_mem_maps;
int i, ret = 0;
vfio_cfg = get_vfio_cfg_by_container_fd(vfio_container_fd);
if (vfio_cfg == NULL) {
RTE_LOG(ERR, EAL, " invalid container fd!\n");
return -1;
}
user_mem_maps = &vfio_cfg->mem_maps;
rte_spinlock_recursive_lock(&user_mem_maps->lock);
/* check if window size needs to be adjusted */
memset(&param, 0, sizeof(param));
/* we're inside a callback so use thread-unsafe version */
if (rte_memseg_walk_thread_unsafe(vfio_spapr_window_size_walk,
&param) < 0) {
RTE_LOG(ERR, EAL, "Could not get window size\n");
ret = -1;
goto out;
}
/* also check user maps */
for (i = 0; i < user_mem_maps->n_maps; i++) {
uint64_t max = user_mem_maps->maps[i].iova +
user_mem_maps->maps[i].len;
param.window_size = RTE_MAX(param.window_size, max);
}
/* sPAPR requires window size to be a power of 2 */
create.window_size = rte_align64pow2(param.window_size);
create.page_shift = __builtin_ctzll(param.hugepage_sz);
create.levels = 1;
if (do_map) {
/* re-create window and remap the entire memory */
if (iova + len > create.window_size) {
/* release all maps before recreating the window */
if (rte_memseg_walk_thread_unsafe(vfio_spapr_unmap_walk,
&vfio_container_fd) < 0) {
RTE_LOG(ERR, EAL, "Could not release DMA maps\n");
ret = -1;
goto out;
}
/* release all user maps */
for (i = 0; i < user_mem_maps->n_maps; i++) {
struct user_mem_map *map =
&user_mem_maps->maps[i];
if (vfio_spapr_dma_do_map(vfio_container_fd,
map->addr, map->iova, map->len,
0)) {
RTE_LOG(ERR, EAL, "Could not release user DMA maps\n");
ret = -1;
goto out;
}
}
create.window_size = rte_align64pow2(iova + len);
if (vfio_spapr_create_new_dma_window(vfio_container_fd,
&create) < 0) {
RTE_LOG(ERR, EAL, "Could not create new DMA window\n");
ret = -1;
goto out;
}
/* we're inside a callback, so use thread-unsafe version
*/
if (rte_memseg_walk_thread_unsafe(vfio_spapr_map_walk,
&vfio_container_fd) < 0) {
RTE_LOG(ERR, EAL, "Could not recreate DMA maps\n");
ret = -1;
goto out;
}
/* remap all user maps */
for (i = 0; i < user_mem_maps->n_maps; i++) {
struct user_mem_map *map =
&user_mem_maps->maps[i];
if (vfio_spapr_dma_do_map(vfio_container_fd,
map->addr, map->iova, map->len,
1)) {
RTE_LOG(ERR, EAL, "Could not recreate user DMA maps\n");
ret = -1;
goto out;
}
}
}
if (vfio_spapr_dma_do_map(vfio_container_fd, vaddr, iova, len, 1)) {
RTE_LOG(ERR, EAL, "Failed to map DMA\n");
ret = -1;
goto out;
}
} else {
/* for unmap, check if iova within DMA window */
if (iova > create.window_size) {
RTE_LOG(ERR, EAL, "iova beyond DMA window for unmap");
ret = -1;
goto out;
}
vfio_spapr_dma_do_map(vfio_container_fd, vaddr, iova, len, 0);
}
out:
rte_spinlock_recursive_unlock(&user_mem_maps->lock);
return ret;
}
static int
vfio_spapr_dma_map(int vfio_container_fd)
{
struct vfio_iommu_spapr_tce_create create = {
.argsz = sizeof(create),
};
struct spapr_walk_param param;
memset(&param, 0, sizeof(param));
/* create DMA window from 0 to max(phys_addr + len) */
rte_memseg_walk(vfio_spapr_window_size_walk, &param);
/* sPAPR requires window size to be a power of 2 */
create.window_size = rte_align64pow2(param.window_size);
create.page_shift = __builtin_ctzll(param.hugepage_sz);
create.levels = 1;
if (vfio_spapr_create_new_dma_window(vfio_container_fd, &create) < 0) {
RTE_LOG(ERR, EAL, "Could not create new DMA window\n");
return -1;
}
/* map all DPDK segments for DMA. use 1:1 PA to IOVA mapping */
if (rte_memseg_walk(vfio_spapr_map_walk, &vfio_container_fd) < 0)
return -1;
return 0;
}
static int
vfio_noiommu_dma_map(int __rte_unused vfio_container_fd)
{
/* No-IOMMU mode does not need DMA mapping */
return 0;
}
static int
vfio_noiommu_dma_mem_map(int __rte_unused vfio_container_fd,
uint64_t __rte_unused vaddr,
uint64_t __rte_unused iova, uint64_t __rte_unused len,
int __rte_unused do_map)
{
/* No-IOMMU mode does not need DMA mapping */
return 0;
}
static int
vfio_dma_mem_map(struct vfio_config *vfio_cfg, uint64_t vaddr, uint64_t iova,
uint64_t len, int do_map)
{
const struct vfio_iommu_type *t = vfio_cfg->vfio_iommu_type;
if (!t) {
RTE_LOG(ERR, EAL, " VFIO support not initialized\n");
rte_errno = ENODEV;
return -1;
}
if (!t->dma_user_map_func) {
RTE_LOG(ERR, EAL,
" VFIO custom DMA region maping not supported by IOMMU %s\n",
t->name);
rte_errno = ENOTSUP;
return -1;
}
return t->dma_user_map_func(vfio_cfg->vfio_container_fd, vaddr, iova,
len, do_map);
}
static int
container_dma_map(struct vfio_config *vfio_cfg, uint64_t vaddr, uint64_t iova,
uint64_t len)
{
struct user_mem_map *new_map;
struct user_mem_maps *user_mem_maps;
int ret = 0;
user_mem_maps = &vfio_cfg->mem_maps;
rte_spinlock_recursive_lock(&user_mem_maps->lock);
if (user_mem_maps->n_maps == VFIO_MAX_USER_MEM_MAPS) {
RTE_LOG(ERR, EAL, "No more space for user mem maps\n");
rte_errno = ENOMEM;
ret = -1;
goto out;
}
/* map the entry */
if (vfio_dma_mem_map(vfio_cfg, vaddr, iova, len, 1)) {
/* technically, this will fail if there are currently no devices
* plugged in, even if a device were added later, this mapping
* might have succeeded. however, since we cannot verify if this
* is a valid mapping without having a device attached, consider
* this to be unsupported, because we can't just store any old
* mapping and pollute list of active mappings willy-nilly.
*/
RTE_LOG(ERR, EAL, "Couldn't map new region for DMA\n");
ret = -1;
goto out;
}
/* create new user mem map entry */
new_map = &user_mem_maps->maps[user_mem_maps->n_maps++];
new_map->addr = vaddr;
new_map->iova = iova;
new_map->len = len;
compact_user_maps(user_mem_maps);
out:
rte_spinlock_recursive_unlock(&user_mem_maps->lock);
return ret;
}
static int
container_dma_unmap(struct vfio_config *vfio_cfg, uint64_t vaddr, uint64_t iova,
uint64_t len)
{
struct user_mem_map *map, *new_map = NULL;
struct user_mem_maps *user_mem_maps;
int ret = 0;
user_mem_maps = &vfio_cfg->mem_maps;
rte_spinlock_recursive_lock(&user_mem_maps->lock);
/* find our mapping */
map = find_user_mem_map(user_mem_maps, vaddr, iova, len);
if (!map) {
RTE_LOG(ERR, EAL, "Couldn't find previously mapped region\n");
rte_errno = EINVAL;
ret = -1;
goto out;
}
if (map->addr != vaddr || map->iova != iova || map->len != len) {
/* we're partially unmapping a previously mapped region, so we
* need to split entry into two.
*/
if (user_mem_maps->n_maps == VFIO_MAX_USER_MEM_MAPS) {
RTE_LOG(ERR, EAL, "Not enough space to store partial mapping\n");
rte_errno = ENOMEM;
ret = -1;
goto out;
}
new_map = &user_mem_maps->maps[user_mem_maps->n_maps++];
}
/* unmap the entry */
if (vfio_dma_mem_map(vfio_cfg, vaddr, iova, len, 0)) {
/* there may not be any devices plugged in, so unmapping will
* fail with ENODEV/ENOTSUP rte_errno values, but that doesn't
* stop us from removing the mapping, as the assumption is we
* won't be needing this memory any more and thus will want to
* prevent it from being remapped again on hotplug. so, only
* fail if we indeed failed to unmap (e.g. if the mapping was
* within our mapped range but had invalid alignment).
*/
if (rte_errno != ENODEV && rte_errno != ENOTSUP) {
RTE_LOG(ERR, EAL, "Couldn't unmap region for DMA\n");
ret = -1;
goto out;
} else {
RTE_LOG(DEBUG, EAL, "DMA unmapping failed, but removing mappings anyway\n");
}
}
/* remove map from the list of active mappings */
if (new_map != NULL) {
adjust_map(map, new_map, vaddr, len);
/* if we've created a new map by splitting, sort everything */
if (!is_null_map(new_map)) {
compact_user_maps(user_mem_maps);
} else {
/* we've created a new mapping, but it was unused */
user_mem_maps->n_maps--;
}
} else {
memset(map, 0, sizeof(*map));
compact_user_maps(user_mem_maps);
user_mem_maps->n_maps--;
}
out:
rte_spinlock_recursive_unlock(&user_mem_maps->lock);
return ret;
}
int
rte_vfio_noiommu_is_enabled(void)
{
int fd;
ssize_t cnt;
char c;
fd = open(VFIO_NOIOMMU_MODE, O_RDONLY);
if (fd < 0) {
if (errno != ENOENT) {
RTE_LOG(ERR, EAL, " cannot open vfio noiommu file %i (%s)\n",
errno, strerror(errno));
return -1;
}
/*
* else the file does not exists
* i.e. noiommu is not enabled
*/
return 0;
}
cnt = read(fd, &c, 1);
close(fd);
if (cnt != 1) {
RTE_LOG(ERR, EAL, " unable to read from vfio noiommu "
"file %i (%s)\n", errno, strerror(errno));
return -1;
}
return c == 'Y';
}
int
rte_vfio_container_create(void)
{
int i;
/* Find an empty slot to store new vfio config */
for (i = 1; i < VFIO_MAX_CONTAINERS; i++) {
if (vfio_cfgs[i].vfio_container_fd == -1)
break;
}
if (i == VFIO_MAX_CONTAINERS) {
RTE_LOG(ERR, EAL, "exceed max vfio container limit\n");
return -1;
}
vfio_cfgs[i].vfio_container_fd = rte_vfio_get_container_fd();
if (vfio_cfgs[i].vfio_container_fd < 0) {
RTE_LOG(NOTICE, EAL, "fail to create a new container\n");
return -1;
}
return vfio_cfgs[i].vfio_container_fd;
}
int
rte_vfio_container_destroy(int container_fd)
{
struct vfio_config *vfio_cfg;
int i;
vfio_cfg = get_vfio_cfg_by_container_fd(container_fd);
if (vfio_cfg == NULL) {
RTE_LOG(ERR, EAL, "Invalid container fd\n");
return -1;
}
for (i = 0; i < VFIO_MAX_GROUPS; i++)
if (vfio_cfg->vfio_groups[i].group_num != -1)
rte_vfio_container_group_unbind(container_fd,
vfio_cfg->vfio_groups[i].group_num);
close(container_fd);
vfio_cfg->vfio_container_fd = -1;
vfio_cfg->vfio_active_groups = 0;
vfio_cfg->vfio_iommu_type = NULL;
return 0;
}
int
rte_vfio_container_group_bind(int container_fd, int iommu_group_num)
{
struct vfio_config *vfio_cfg;
vfio_cfg = get_vfio_cfg_by_container_fd(container_fd);
if (vfio_cfg == NULL) {
RTE_LOG(ERR, EAL, "Invalid container fd\n");
return -1;
}
return vfio_get_group_fd(vfio_cfg, iommu_group_num);
}
int
rte_vfio_container_group_unbind(int container_fd, int iommu_group_num)
{
struct vfio_config *vfio_cfg;
struct vfio_group *cur_grp = NULL;
int i;
vfio_cfg = get_vfio_cfg_by_container_fd(container_fd);
if (vfio_cfg == NULL) {
RTE_LOG(ERR, EAL, "Invalid container fd\n");
return -1;
}
for (i = 0; i < VFIO_MAX_GROUPS; i++) {
if (vfio_cfg->vfio_groups[i].group_num == iommu_group_num) {
cur_grp = &vfio_cfg->vfio_groups[i];
break;
}
}
/* This should not happen */
if (i == VFIO_MAX_GROUPS || cur_grp == NULL) {
RTE_LOG(ERR, EAL, "Specified group number not found\n");
return -1;
}
if (cur_grp->fd >= 0 && close(cur_grp->fd) < 0) {
RTE_LOG(ERR, EAL, "Error when closing vfio_group_fd for"
" iommu_group_num %d\n", iommu_group_num);
return -1;
}
cur_grp->group_num = -1;
cur_grp->fd = -1;
cur_grp->devices = 0;
vfio_cfg->vfio_active_groups--;
return 0;
}
int
rte_vfio_container_dma_map(int container_fd, uint64_t vaddr, uint64_t iova,
uint64_t len)
{
struct vfio_config *vfio_cfg;
if (len == 0) {
rte_errno = EINVAL;
return -1;
}
vfio_cfg = get_vfio_cfg_by_container_fd(container_fd);
if (vfio_cfg == NULL) {
RTE_LOG(ERR, EAL, "Invalid container fd\n");
return -1;
}
return container_dma_map(vfio_cfg, vaddr, iova, len);
}
int
rte_vfio_container_dma_unmap(int container_fd, uint64_t vaddr, uint64_t iova,
uint64_t len)
{
struct vfio_config *vfio_cfg;
if (len == 0) {
rte_errno = EINVAL;
return -1;
}
vfio_cfg = get_vfio_cfg_by_container_fd(container_fd);
if (vfio_cfg == NULL) {
RTE_LOG(ERR, EAL, "Invalid container fd\n");
return -1;
}
return container_dma_unmap(vfio_cfg, vaddr, iova, len);
}
#else
int
rte_vfio_setup_device(__rte_unused const char *sysfs_base,
__rte_unused const char *dev_addr,
__rte_unused int *vfio_dev_fd,
__rte_unused struct vfio_device_info *device_info)
{
return -1;
}
int
rte_vfio_release_device(__rte_unused const char *sysfs_base,
__rte_unused const char *dev_addr, __rte_unused int fd)
{
return -1;
}
int
rte_vfio_enable(__rte_unused const char *modname)
{
return -1;
}
int
rte_vfio_is_enabled(__rte_unused const char *modname)
{
return -1;
}
int
rte_vfio_noiommu_is_enabled(void)
{
return -1;
}
int
rte_vfio_clear_group(__rte_unused int vfio_group_fd)
{
return -1;
}
int
rte_vfio_get_group_num(__rte_unused const char *sysfs_base,
__rte_unused const char *dev_addr,
__rte_unused int *iommu_group_num)
{
return -1;
}
int
rte_vfio_get_container_fd(void)
{
return -1;
}
int
rte_vfio_get_group_fd(__rte_unused int iommu_group_num)
{
return -1;
}
int
rte_vfio_container_create(void)
{
return -1;
}
int
rte_vfio_container_destroy(__rte_unused int container_fd)
{
return -1;
}
int
rte_vfio_container_group_bind(__rte_unused int container_fd,
__rte_unused int iommu_group_num)
{
return -1;
}
int
rte_vfio_container_group_unbind(__rte_unused int container_fd,
__rte_unused int iommu_group_num)
{
return -1;
}
int
rte_vfio_container_dma_map(__rte_unused int container_fd,
__rte_unused uint64_t vaddr,
__rte_unused uint64_t iova,
__rte_unused uint64_t len)
{
return -1;
}
int
rte_vfio_container_dma_unmap(__rte_unused int container_fd,
__rte_unused uint64_t vaddr,
__rte_unused uint64_t iova,
__rte_unused uint64_t len)
{
return -1;
}
#endif /* VFIO_PRESENT */