numam-dpdk/drivers/net/i40e/i40e_ethdev.c
Beilei Xing c0a27b40dc net/i40e: add flow create function
This patch adds i40e_flow_create function to create a
rule. It will check if a flow matches ethertype filter
or flow director filter or tunnel filter, if the flow
matches some kind of filter, then set the filter to HW.

Signed-off-by: Beilei Xing <beilei.xing@intel.com>
Acked-by: Jingjing Wu <jingjing.wu@intel.com>
2017-01-17 19:40:54 +01:00

10211 lines
294 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <errno.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include <stdarg.h>
#include <inttypes.h>
#include <assert.h>
#include <rte_string_fns.h>
#include <rte_pci.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_memzone.h>
#include <rte_malloc.h>
#include <rte_memcpy.h>
#include <rte_alarm.h>
#include <rte_dev.h>
#include <rte_eth_ctrl.h>
#include <rte_tailq.h>
#include <rte_hash_crc.h>
#include "i40e_logs.h"
#include "base/i40e_prototype.h"
#include "base/i40e_adminq_cmd.h"
#include "base/i40e_type.h"
#include "base/i40e_register.h"
#include "base/i40e_dcb.h"
#include "i40e_ethdev.h"
#include "i40e_rxtx.h"
#include "i40e_pf.h"
#include "i40e_regs.h"
#define ETH_I40E_FLOATING_VEB_ARG "enable_floating_veb"
#define ETH_I40E_FLOATING_VEB_LIST_ARG "floating_veb_list"
#define I40E_CLEAR_PXE_WAIT_MS 200
/* Maximun number of capability elements */
#define I40E_MAX_CAP_ELE_NUM 128
/* Wait count and inteval */
#define I40E_CHK_Q_ENA_COUNT 1000
#define I40E_CHK_Q_ENA_INTERVAL_US 1000
/* Maximun number of VSI */
#define I40E_MAX_NUM_VSIS (384UL)
#define I40E_PRE_TX_Q_CFG_WAIT_US 10 /* 10 us */
/* Flow control default timer */
#define I40E_DEFAULT_PAUSE_TIME 0xFFFFU
/* Flow control default high water */
#define I40E_DEFAULT_HIGH_WATER (0x1C40/1024)
/* Flow control default low water */
#define I40E_DEFAULT_LOW_WATER (0x1A40/1024)
/* Flow control enable fwd bit */
#define I40E_PRTMAC_FWD_CTRL 0x00000001
/* Receive Packet Buffer size */
#define I40E_RXPBSIZE (968 * 1024)
/* Kilobytes shift */
#define I40E_KILOSHIFT 10
/* Receive Average Packet Size in Byte*/
#define I40E_PACKET_AVERAGE_SIZE 128
/* Mask of PF interrupt causes */
#define I40E_PFINT_ICR0_ENA_MASK ( \
I40E_PFINT_ICR0_ENA_ECC_ERR_MASK | \
I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK | \
I40E_PFINT_ICR0_ENA_GRST_MASK | \
I40E_PFINT_ICR0_ENA_PCI_EXCEPTION_MASK | \
I40E_PFINT_ICR0_ENA_STORM_DETECT_MASK | \
I40E_PFINT_ICR0_ENA_HMC_ERR_MASK | \
I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK | \
I40E_PFINT_ICR0_ENA_VFLR_MASK | \
I40E_PFINT_ICR0_ENA_ADMINQ_MASK)
#define I40E_FLOW_TYPES ( \
(1UL << RTE_ETH_FLOW_FRAG_IPV4) | \
(1UL << RTE_ETH_FLOW_NONFRAG_IPV4_TCP) | \
(1UL << RTE_ETH_FLOW_NONFRAG_IPV4_UDP) | \
(1UL << RTE_ETH_FLOW_NONFRAG_IPV4_SCTP) | \
(1UL << RTE_ETH_FLOW_NONFRAG_IPV4_OTHER) | \
(1UL << RTE_ETH_FLOW_FRAG_IPV6) | \
(1UL << RTE_ETH_FLOW_NONFRAG_IPV6_TCP) | \
(1UL << RTE_ETH_FLOW_NONFRAG_IPV6_UDP) | \
(1UL << RTE_ETH_FLOW_NONFRAG_IPV6_SCTP) | \
(1UL << RTE_ETH_FLOW_NONFRAG_IPV6_OTHER) | \
(1UL << RTE_ETH_FLOW_L2_PAYLOAD))
/* Additional timesync values. */
#define I40E_PTP_40GB_INCVAL 0x0199999999ULL
#define I40E_PTP_10GB_INCVAL 0x0333333333ULL
#define I40E_PTP_1GB_INCVAL 0x2000000000ULL
#define I40E_PRTTSYN_TSYNENA 0x80000000
#define I40E_PRTTSYN_TSYNTYPE 0x0e000000
#define I40E_CYCLECOUNTER_MASK 0xffffffffffffffffULL
#define I40E_MAX_PERCENT 100
#define I40E_DEFAULT_DCB_APP_NUM 1
#define I40E_DEFAULT_DCB_APP_PRIO 3
/**
* Below are values for writing un-exposed registers suggested
* by silicon experts
*/
/* Destination MAC address */
#define I40E_REG_INSET_L2_DMAC 0xE000000000000000ULL
/* Source MAC address */
#define I40E_REG_INSET_L2_SMAC 0x1C00000000000000ULL
/* Outer (S-Tag) VLAN tag in the outer L2 header */
#define I40E_REG_INSET_L2_OUTER_VLAN 0x0000000004000000ULL
/* Inner (C-Tag) or single VLAN tag in the outer L2 header */
#define I40E_REG_INSET_L2_INNER_VLAN 0x0080000000000000ULL
/* Single VLAN tag in the inner L2 header */
#define I40E_REG_INSET_TUNNEL_VLAN 0x0100000000000000ULL
/* Source IPv4 address */
#define I40E_REG_INSET_L3_SRC_IP4 0x0001800000000000ULL
/* Destination IPv4 address */
#define I40E_REG_INSET_L3_DST_IP4 0x0000001800000000ULL
/* Source IPv4 address for X722 */
#define I40E_X722_REG_INSET_L3_SRC_IP4 0x0006000000000000ULL
/* Destination IPv4 address for X722 */
#define I40E_X722_REG_INSET_L3_DST_IP4 0x0000060000000000ULL
/* IPv4 Protocol for X722 */
#define I40E_X722_REG_INSET_L3_IP4_PROTO 0x0010000000000000ULL
/* IPv4 Time to Live for X722 */
#define I40E_X722_REG_INSET_L3_IP4_TTL 0x0010000000000000ULL
/* IPv4 Type of Service (TOS) */
#define I40E_REG_INSET_L3_IP4_TOS 0x0040000000000000ULL
/* IPv4 Protocol */
#define I40E_REG_INSET_L3_IP4_PROTO 0x0004000000000000ULL
/* IPv4 Time to Live */
#define I40E_REG_INSET_L3_IP4_TTL 0x0004000000000000ULL
/* Source IPv6 address */
#define I40E_REG_INSET_L3_SRC_IP6 0x0007F80000000000ULL
/* Destination IPv6 address */
#define I40E_REG_INSET_L3_DST_IP6 0x000007F800000000ULL
/* IPv6 Traffic Class (TC) */
#define I40E_REG_INSET_L3_IP6_TC 0x0040000000000000ULL
/* IPv6 Next Header */
#define I40E_REG_INSET_L3_IP6_NEXT_HDR 0x0008000000000000ULL
/* IPv6 Hop Limit */
#define I40E_REG_INSET_L3_IP6_HOP_LIMIT 0x0008000000000000ULL
/* Source L4 port */
#define I40E_REG_INSET_L4_SRC_PORT 0x0000000400000000ULL
/* Destination L4 port */
#define I40E_REG_INSET_L4_DST_PORT 0x0000000200000000ULL
/* SCTP verification tag */
#define I40E_REG_INSET_L4_SCTP_VERIFICATION_TAG 0x0000000180000000ULL
/* Inner destination MAC address (MAC-in-UDP/MAC-in-GRE)*/
#define I40E_REG_INSET_TUNNEL_L2_INNER_DST_MAC 0x0000000001C00000ULL
/* Source port of tunneling UDP */
#define I40E_REG_INSET_TUNNEL_L4_UDP_SRC_PORT 0x0000000000200000ULL
/* Destination port of tunneling UDP */
#define I40E_REG_INSET_TUNNEL_L4_UDP_DST_PORT 0x0000000000100000ULL
/* UDP Tunneling ID, NVGRE/GRE key */
#define I40E_REG_INSET_TUNNEL_ID 0x00000000000C0000ULL
/* Last ether type */
#define I40E_REG_INSET_LAST_ETHER_TYPE 0x0000000000004000ULL
/* Tunneling outer destination IPv4 address */
#define I40E_REG_INSET_TUNNEL_L3_DST_IP4 0x00000000000000C0ULL
/* Tunneling outer destination IPv6 address */
#define I40E_REG_INSET_TUNNEL_L3_DST_IP6 0x0000000000003FC0ULL
/* 1st word of flex payload */
#define I40E_REG_INSET_FLEX_PAYLOAD_WORD1 0x0000000000002000ULL
/* 2nd word of flex payload */
#define I40E_REG_INSET_FLEX_PAYLOAD_WORD2 0x0000000000001000ULL
/* 3rd word of flex payload */
#define I40E_REG_INSET_FLEX_PAYLOAD_WORD3 0x0000000000000800ULL
/* 4th word of flex payload */
#define I40E_REG_INSET_FLEX_PAYLOAD_WORD4 0x0000000000000400ULL
/* 5th word of flex payload */
#define I40E_REG_INSET_FLEX_PAYLOAD_WORD5 0x0000000000000200ULL
/* 6th word of flex payload */
#define I40E_REG_INSET_FLEX_PAYLOAD_WORD6 0x0000000000000100ULL
/* 7th word of flex payload */
#define I40E_REG_INSET_FLEX_PAYLOAD_WORD7 0x0000000000000080ULL
/* 8th word of flex payload */
#define I40E_REG_INSET_FLEX_PAYLOAD_WORD8 0x0000000000000040ULL
/* all 8 words flex payload */
#define I40E_REG_INSET_FLEX_PAYLOAD_WORDS 0x0000000000003FC0ULL
#define I40E_REG_INSET_MASK_DEFAULT 0x0000000000000000ULL
#define I40E_TRANSLATE_INSET 0
#define I40E_TRANSLATE_REG 1
#define I40E_INSET_IPV4_TOS_MASK 0x0009FF00UL
#define I40E_INSET_IPv4_TTL_MASK 0x000D00FFUL
#define I40E_INSET_IPV4_PROTO_MASK 0x000DFF00UL
#define I40E_INSET_IPV6_TC_MASK 0x0009F00FUL
#define I40E_INSET_IPV6_HOP_LIMIT_MASK 0x000CFF00UL
#define I40E_INSET_IPV6_NEXT_HDR_MASK 0x000C00FFUL
/* PCI offset for querying capability */
#define PCI_DEV_CAP_REG 0xA4
/* PCI offset for enabling/disabling Extended Tag */
#define PCI_DEV_CTRL_REG 0xA8
/* Bit mask of Extended Tag capability */
#define PCI_DEV_CAP_EXT_TAG_MASK 0x20
/* Bit shift of Extended Tag enable/disable */
#define PCI_DEV_CTRL_EXT_TAG_SHIFT 8
/* Bit mask of Extended Tag enable/disable */
#define PCI_DEV_CTRL_EXT_TAG_MASK (1 << PCI_DEV_CTRL_EXT_TAG_SHIFT)
static int eth_i40e_dev_init(struct rte_eth_dev *eth_dev);
static int eth_i40e_dev_uninit(struct rte_eth_dev *eth_dev);
static int i40e_dev_configure(struct rte_eth_dev *dev);
static int i40e_dev_start(struct rte_eth_dev *dev);
static void i40e_dev_stop(struct rte_eth_dev *dev);
static void i40e_dev_close(struct rte_eth_dev *dev);
static void i40e_dev_promiscuous_enable(struct rte_eth_dev *dev);
static void i40e_dev_promiscuous_disable(struct rte_eth_dev *dev);
static void i40e_dev_allmulticast_enable(struct rte_eth_dev *dev);
static void i40e_dev_allmulticast_disable(struct rte_eth_dev *dev);
static int i40e_dev_set_link_up(struct rte_eth_dev *dev);
static int i40e_dev_set_link_down(struct rte_eth_dev *dev);
static void i40e_dev_stats_get(struct rte_eth_dev *dev,
struct rte_eth_stats *stats);
static int i40e_dev_xstats_get(struct rte_eth_dev *dev,
struct rte_eth_xstat *xstats, unsigned n);
static int i40e_dev_xstats_get_names(struct rte_eth_dev *dev,
struct rte_eth_xstat_name *xstats_names,
unsigned limit);
static void i40e_dev_stats_reset(struct rte_eth_dev *dev);
static int i40e_dev_queue_stats_mapping_set(struct rte_eth_dev *dev,
uint16_t queue_id,
uint8_t stat_idx,
uint8_t is_rx);
static int i40e_fw_version_get(struct rte_eth_dev *dev,
char *fw_version, size_t fw_size);
static void i40e_dev_info_get(struct rte_eth_dev *dev,
struct rte_eth_dev_info *dev_info);
static int i40e_vlan_filter_set(struct rte_eth_dev *dev,
uint16_t vlan_id,
int on);
static int i40e_vlan_tpid_set(struct rte_eth_dev *dev,
enum rte_vlan_type vlan_type,
uint16_t tpid);
static void i40e_vlan_offload_set(struct rte_eth_dev *dev, int mask);
static void i40e_vlan_strip_queue_set(struct rte_eth_dev *dev,
uint16_t queue,
int on);
static int i40e_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on);
static int i40e_dev_led_on(struct rte_eth_dev *dev);
static int i40e_dev_led_off(struct rte_eth_dev *dev);
static int i40e_flow_ctrl_get(struct rte_eth_dev *dev,
struct rte_eth_fc_conf *fc_conf);
static int i40e_flow_ctrl_set(struct rte_eth_dev *dev,
struct rte_eth_fc_conf *fc_conf);
static int i40e_priority_flow_ctrl_set(struct rte_eth_dev *dev,
struct rte_eth_pfc_conf *pfc_conf);
static void i40e_macaddr_add(struct rte_eth_dev *dev,
struct ether_addr *mac_addr,
uint32_t index,
uint32_t pool);
static void i40e_macaddr_remove(struct rte_eth_dev *dev, uint32_t index);
static int i40e_dev_rss_reta_update(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size);
static int i40e_dev_rss_reta_query(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size);
static int i40e_get_cap(struct i40e_hw *hw);
static int i40e_pf_parameter_init(struct rte_eth_dev *dev);
static int i40e_pf_setup(struct i40e_pf *pf);
static int i40e_dev_rxtx_init(struct i40e_pf *pf);
static int i40e_vmdq_setup(struct rte_eth_dev *dev);
static int i40e_dcb_init_configure(struct rte_eth_dev *dev, bool sw_dcb);
static int i40e_dcb_setup(struct rte_eth_dev *dev);
static void i40e_stat_update_32(struct i40e_hw *hw, uint32_t reg,
bool offset_loaded, uint64_t *offset, uint64_t *stat);
static void i40e_stat_update_48(struct i40e_hw *hw,
uint32_t hireg,
uint32_t loreg,
bool offset_loaded,
uint64_t *offset,
uint64_t *stat);
static void i40e_pf_config_irq0(struct i40e_hw *hw, bool no_queue);
static void i40e_dev_interrupt_handler(struct rte_intr_handle *handle,
void *param);
static int i40e_res_pool_init(struct i40e_res_pool_info *pool,
uint32_t base, uint32_t num);
static void i40e_res_pool_destroy(struct i40e_res_pool_info *pool);
static int i40e_res_pool_free(struct i40e_res_pool_info *pool,
uint32_t base);
static int i40e_res_pool_alloc(struct i40e_res_pool_info *pool,
uint16_t num);
static int i40e_dev_init_vlan(struct rte_eth_dev *dev);
static int i40e_veb_release(struct i40e_veb *veb);
static struct i40e_veb *i40e_veb_setup(struct i40e_pf *pf,
struct i40e_vsi *vsi);
static int i40e_pf_config_mq_rx(struct i40e_pf *pf);
static int i40e_vsi_config_double_vlan(struct i40e_vsi *vsi, int on);
static inline int i40e_find_all_vlan_for_mac(struct i40e_vsi *vsi,
struct i40e_macvlan_filter *mv_f,
int num,
struct ether_addr *addr);
static inline int i40e_find_all_mac_for_vlan(struct i40e_vsi *vsi,
struct i40e_macvlan_filter *mv_f,
int num,
uint16_t vlan);
static int i40e_vsi_remove_all_macvlan_filter(struct i40e_vsi *vsi);
static int i40e_dev_rss_hash_update(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf);
static int i40e_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf);
static int i40e_dev_udp_tunnel_port_add(struct rte_eth_dev *dev,
struct rte_eth_udp_tunnel *udp_tunnel);
static int i40e_dev_udp_tunnel_port_del(struct rte_eth_dev *dev,
struct rte_eth_udp_tunnel *udp_tunnel);
static void i40e_filter_input_set_init(struct i40e_pf *pf);
static int i40e_ethertype_filter_handle(struct rte_eth_dev *dev,
enum rte_filter_op filter_op,
void *arg);
static int i40e_dev_filter_ctrl(struct rte_eth_dev *dev,
enum rte_filter_type filter_type,
enum rte_filter_op filter_op,
void *arg);
static int i40e_dev_get_dcb_info(struct rte_eth_dev *dev,
struct rte_eth_dcb_info *dcb_info);
static int i40e_dev_sync_phy_type(struct i40e_hw *hw);
static void i40e_configure_registers(struct i40e_hw *hw);
static void i40e_hw_init(struct rte_eth_dev *dev);
static int i40e_config_qinq(struct i40e_hw *hw, struct i40e_vsi *vsi);
static int i40e_mirror_rule_set(struct rte_eth_dev *dev,
struct rte_eth_mirror_conf *mirror_conf,
uint8_t sw_id, uint8_t on);
static int i40e_mirror_rule_reset(struct rte_eth_dev *dev, uint8_t sw_id);
static int i40e_timesync_enable(struct rte_eth_dev *dev);
static int i40e_timesync_disable(struct rte_eth_dev *dev);
static int i40e_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
struct timespec *timestamp,
uint32_t flags);
static int i40e_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
struct timespec *timestamp);
static void i40e_read_stats_registers(struct i40e_pf *pf, struct i40e_hw *hw);
static int i40e_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta);
static int i40e_timesync_read_time(struct rte_eth_dev *dev,
struct timespec *timestamp);
static int i40e_timesync_write_time(struct rte_eth_dev *dev,
const struct timespec *timestamp);
static int i40e_dev_rx_queue_intr_enable(struct rte_eth_dev *dev,
uint16_t queue_id);
static int i40e_dev_rx_queue_intr_disable(struct rte_eth_dev *dev,
uint16_t queue_id);
static int i40e_get_regs(struct rte_eth_dev *dev,
struct rte_dev_reg_info *regs);
static int i40e_get_eeprom_length(struct rte_eth_dev *dev);
static int i40e_get_eeprom(struct rte_eth_dev *dev,
struct rte_dev_eeprom_info *eeprom);
static void i40e_set_default_mac_addr(struct rte_eth_dev *dev,
struct ether_addr *mac_addr);
static int i40e_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
static int i40e_ethertype_filter_convert(
const struct rte_eth_ethertype_filter *input,
struct i40e_ethertype_filter *filter);
static int i40e_sw_ethertype_filter_insert(struct i40e_pf *pf,
struct i40e_ethertype_filter *filter);
static int i40e_tunnel_filter_convert(
struct i40e_aqc_add_remove_cloud_filters_element_data *cld_filter,
struct i40e_tunnel_filter *tunnel_filter);
static int i40e_sw_tunnel_filter_insert(struct i40e_pf *pf,
struct i40e_tunnel_filter *tunnel_filter);
static void i40e_ethertype_filter_restore(struct i40e_pf *pf);
static void i40e_tunnel_filter_restore(struct i40e_pf *pf);
static void i40e_filter_restore(struct i40e_pf *pf);
static const struct rte_pci_id pci_id_i40e_map[] = {
{ RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_SFP_XL710) },
{ RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_QEMU) },
{ RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_KX_B) },
{ RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_KX_C) },
{ RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_QSFP_A) },
{ RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_QSFP_B) },
{ RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_QSFP_C) },
{ RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_10G_BASE_T) },
{ RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_20G_KR2) },
{ RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_20G_KR2_A) },
{ RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_10G_BASE_T4) },
{ RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_25G_B) },
{ RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_25G_SFP28) },
{ RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_X722_A0) },
{ RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_KX_X722) },
{ RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_QSFP_X722) },
{ RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_SFP_X722) },
{ RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_1G_BASE_T_X722) },
{ RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_10G_BASE_T_X722) },
{ RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_SFP_I_X722) },
{ .vendor_id = 0, /* sentinel */ },
};
static const struct eth_dev_ops i40e_eth_dev_ops = {
.dev_configure = i40e_dev_configure,
.dev_start = i40e_dev_start,
.dev_stop = i40e_dev_stop,
.dev_close = i40e_dev_close,
.promiscuous_enable = i40e_dev_promiscuous_enable,
.promiscuous_disable = i40e_dev_promiscuous_disable,
.allmulticast_enable = i40e_dev_allmulticast_enable,
.allmulticast_disable = i40e_dev_allmulticast_disable,
.dev_set_link_up = i40e_dev_set_link_up,
.dev_set_link_down = i40e_dev_set_link_down,
.link_update = i40e_dev_link_update,
.stats_get = i40e_dev_stats_get,
.xstats_get = i40e_dev_xstats_get,
.xstats_get_names = i40e_dev_xstats_get_names,
.stats_reset = i40e_dev_stats_reset,
.xstats_reset = i40e_dev_stats_reset,
.queue_stats_mapping_set = i40e_dev_queue_stats_mapping_set,
.fw_version_get = i40e_fw_version_get,
.dev_infos_get = i40e_dev_info_get,
.dev_supported_ptypes_get = i40e_dev_supported_ptypes_get,
.vlan_filter_set = i40e_vlan_filter_set,
.vlan_tpid_set = i40e_vlan_tpid_set,
.vlan_offload_set = i40e_vlan_offload_set,
.vlan_strip_queue_set = i40e_vlan_strip_queue_set,
.vlan_pvid_set = i40e_vlan_pvid_set,
.rx_queue_start = i40e_dev_rx_queue_start,
.rx_queue_stop = i40e_dev_rx_queue_stop,
.tx_queue_start = i40e_dev_tx_queue_start,
.tx_queue_stop = i40e_dev_tx_queue_stop,
.rx_queue_setup = i40e_dev_rx_queue_setup,
.rx_queue_intr_enable = i40e_dev_rx_queue_intr_enable,
.rx_queue_intr_disable = i40e_dev_rx_queue_intr_disable,
.rx_queue_release = i40e_dev_rx_queue_release,
.rx_queue_count = i40e_dev_rx_queue_count,
.rx_descriptor_done = i40e_dev_rx_descriptor_done,
.tx_queue_setup = i40e_dev_tx_queue_setup,
.tx_queue_release = i40e_dev_tx_queue_release,
.dev_led_on = i40e_dev_led_on,
.dev_led_off = i40e_dev_led_off,
.flow_ctrl_get = i40e_flow_ctrl_get,
.flow_ctrl_set = i40e_flow_ctrl_set,
.priority_flow_ctrl_set = i40e_priority_flow_ctrl_set,
.mac_addr_add = i40e_macaddr_add,
.mac_addr_remove = i40e_macaddr_remove,
.reta_update = i40e_dev_rss_reta_update,
.reta_query = i40e_dev_rss_reta_query,
.rss_hash_update = i40e_dev_rss_hash_update,
.rss_hash_conf_get = i40e_dev_rss_hash_conf_get,
.udp_tunnel_port_add = i40e_dev_udp_tunnel_port_add,
.udp_tunnel_port_del = i40e_dev_udp_tunnel_port_del,
.filter_ctrl = i40e_dev_filter_ctrl,
.rxq_info_get = i40e_rxq_info_get,
.txq_info_get = i40e_txq_info_get,
.mirror_rule_set = i40e_mirror_rule_set,
.mirror_rule_reset = i40e_mirror_rule_reset,
.timesync_enable = i40e_timesync_enable,
.timesync_disable = i40e_timesync_disable,
.timesync_read_rx_timestamp = i40e_timesync_read_rx_timestamp,
.timesync_read_tx_timestamp = i40e_timesync_read_tx_timestamp,
.get_dcb_info = i40e_dev_get_dcb_info,
.timesync_adjust_time = i40e_timesync_adjust_time,
.timesync_read_time = i40e_timesync_read_time,
.timesync_write_time = i40e_timesync_write_time,
.get_reg = i40e_get_regs,
.get_eeprom_length = i40e_get_eeprom_length,
.get_eeprom = i40e_get_eeprom,
.mac_addr_set = i40e_set_default_mac_addr,
.mtu_set = i40e_dev_mtu_set,
};
/* store statistics names and its offset in stats structure */
struct rte_i40e_xstats_name_off {
char name[RTE_ETH_XSTATS_NAME_SIZE];
unsigned offset;
};
static const struct rte_i40e_xstats_name_off rte_i40e_stats_strings[] = {
{"rx_unicast_packets", offsetof(struct i40e_eth_stats, rx_unicast)},
{"rx_multicast_packets", offsetof(struct i40e_eth_stats, rx_multicast)},
{"rx_broadcast_packets", offsetof(struct i40e_eth_stats, rx_broadcast)},
{"rx_dropped", offsetof(struct i40e_eth_stats, rx_discards)},
{"rx_unknown_protocol_packets", offsetof(struct i40e_eth_stats,
rx_unknown_protocol)},
{"tx_unicast_packets", offsetof(struct i40e_eth_stats, tx_unicast)},
{"tx_multicast_packets", offsetof(struct i40e_eth_stats, tx_multicast)},
{"tx_broadcast_packets", offsetof(struct i40e_eth_stats, tx_broadcast)},
{"tx_dropped", offsetof(struct i40e_eth_stats, tx_discards)},
};
#define I40E_NB_ETH_XSTATS (sizeof(rte_i40e_stats_strings) / \
sizeof(rte_i40e_stats_strings[0]))
static const struct rte_i40e_xstats_name_off rte_i40e_hw_port_strings[] = {
{"tx_link_down_dropped", offsetof(struct i40e_hw_port_stats,
tx_dropped_link_down)},
{"rx_crc_errors", offsetof(struct i40e_hw_port_stats, crc_errors)},
{"rx_illegal_byte_errors", offsetof(struct i40e_hw_port_stats,
illegal_bytes)},
{"rx_error_bytes", offsetof(struct i40e_hw_port_stats, error_bytes)},
{"mac_local_errors", offsetof(struct i40e_hw_port_stats,
mac_local_faults)},
{"mac_remote_errors", offsetof(struct i40e_hw_port_stats,
mac_remote_faults)},
{"rx_length_errors", offsetof(struct i40e_hw_port_stats,
rx_length_errors)},
{"tx_xon_packets", offsetof(struct i40e_hw_port_stats, link_xon_tx)},
{"rx_xon_packets", offsetof(struct i40e_hw_port_stats, link_xon_rx)},
{"tx_xoff_packets", offsetof(struct i40e_hw_port_stats, link_xoff_tx)},
{"rx_xoff_packets", offsetof(struct i40e_hw_port_stats, link_xoff_rx)},
{"rx_size_64_packets", offsetof(struct i40e_hw_port_stats, rx_size_64)},
{"rx_size_65_to_127_packets", offsetof(struct i40e_hw_port_stats,
rx_size_127)},
{"rx_size_128_to_255_packets", offsetof(struct i40e_hw_port_stats,
rx_size_255)},
{"rx_size_256_to_511_packets", offsetof(struct i40e_hw_port_stats,
rx_size_511)},
{"rx_size_512_to_1023_packets", offsetof(struct i40e_hw_port_stats,
rx_size_1023)},
{"rx_size_1024_to_1522_packets", offsetof(struct i40e_hw_port_stats,
rx_size_1522)},
{"rx_size_1523_to_max_packets", offsetof(struct i40e_hw_port_stats,
rx_size_big)},
{"rx_undersized_errors", offsetof(struct i40e_hw_port_stats,
rx_undersize)},
{"rx_oversize_errors", offsetof(struct i40e_hw_port_stats,
rx_oversize)},
{"rx_mac_short_dropped", offsetof(struct i40e_hw_port_stats,
mac_short_packet_dropped)},
{"rx_fragmented_errors", offsetof(struct i40e_hw_port_stats,
rx_fragments)},
{"rx_jabber_errors", offsetof(struct i40e_hw_port_stats, rx_jabber)},
{"tx_size_64_packets", offsetof(struct i40e_hw_port_stats, tx_size_64)},
{"tx_size_65_to_127_packets", offsetof(struct i40e_hw_port_stats,
tx_size_127)},
{"tx_size_128_to_255_packets", offsetof(struct i40e_hw_port_stats,
tx_size_255)},
{"tx_size_256_to_511_packets", offsetof(struct i40e_hw_port_stats,
tx_size_511)},
{"tx_size_512_to_1023_packets", offsetof(struct i40e_hw_port_stats,
tx_size_1023)},
{"tx_size_1024_to_1522_packets", offsetof(struct i40e_hw_port_stats,
tx_size_1522)},
{"tx_size_1523_to_max_packets", offsetof(struct i40e_hw_port_stats,
tx_size_big)},
{"rx_flow_director_atr_match_packets",
offsetof(struct i40e_hw_port_stats, fd_atr_match)},
{"rx_flow_director_sb_match_packets",
offsetof(struct i40e_hw_port_stats, fd_sb_match)},
{"tx_low_power_idle_status", offsetof(struct i40e_hw_port_stats,
tx_lpi_status)},
{"rx_low_power_idle_status", offsetof(struct i40e_hw_port_stats,
rx_lpi_status)},
{"tx_low_power_idle_count", offsetof(struct i40e_hw_port_stats,
tx_lpi_count)},
{"rx_low_power_idle_count", offsetof(struct i40e_hw_port_stats,
rx_lpi_count)},
};
#define I40E_NB_HW_PORT_XSTATS (sizeof(rte_i40e_hw_port_strings) / \
sizeof(rte_i40e_hw_port_strings[0]))
static const struct rte_i40e_xstats_name_off rte_i40e_rxq_prio_strings[] = {
{"xon_packets", offsetof(struct i40e_hw_port_stats,
priority_xon_rx)},
{"xoff_packets", offsetof(struct i40e_hw_port_stats,
priority_xoff_rx)},
};
#define I40E_NB_RXQ_PRIO_XSTATS (sizeof(rte_i40e_rxq_prio_strings) / \
sizeof(rte_i40e_rxq_prio_strings[0]))
static const struct rte_i40e_xstats_name_off rte_i40e_txq_prio_strings[] = {
{"xon_packets", offsetof(struct i40e_hw_port_stats,
priority_xon_tx)},
{"xoff_packets", offsetof(struct i40e_hw_port_stats,
priority_xoff_tx)},
{"xon_to_xoff_packets", offsetof(struct i40e_hw_port_stats,
priority_xon_2_xoff)},
};
#define I40E_NB_TXQ_PRIO_XSTATS (sizeof(rte_i40e_txq_prio_strings) / \
sizeof(rte_i40e_txq_prio_strings[0]))
static struct eth_driver rte_i40e_pmd = {
.pci_drv = {
.id_table = pci_id_i40e_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
.probe = rte_eth_dev_pci_probe,
.remove = rte_eth_dev_pci_remove,
},
.eth_dev_init = eth_i40e_dev_init,
.eth_dev_uninit = eth_i40e_dev_uninit,
.dev_private_size = sizeof(struct i40e_adapter),
};
static inline int
rte_i40e_dev_atomic_read_link_status(struct rte_eth_dev *dev,
struct rte_eth_link *link)
{
struct rte_eth_link *dst = link;
struct rte_eth_link *src = &(dev->data->dev_link);
if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
*(uint64_t *)src) == 0)
return -1;
return 0;
}
static inline int
rte_i40e_dev_atomic_write_link_status(struct rte_eth_dev *dev,
struct rte_eth_link *link)
{
struct rte_eth_link *dst = &(dev->data->dev_link);
struct rte_eth_link *src = link;
if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
*(uint64_t *)src) == 0)
return -1;
return 0;
}
RTE_PMD_REGISTER_PCI(net_i40e, rte_i40e_pmd.pci_drv);
RTE_PMD_REGISTER_PCI_TABLE(net_i40e, pci_id_i40e_map);
RTE_PMD_REGISTER_KMOD_DEP(net_i40e, "* igb_uio | uio_pci_generic | vfio");
#ifndef I40E_GLQF_ORT
#define I40E_GLQF_ORT(_i) (0x00268900 + ((_i) * 4))
#endif
#ifndef I40E_GLQF_PIT
#define I40E_GLQF_PIT(_i) (0x00268C80 + ((_i) * 4))
#endif
static inline void i40e_GLQF_reg_init(struct i40e_hw *hw)
{
/*
* Initialize registers for flexible payload, which should be set by NVM.
* This should be removed from code once it is fixed in NVM.
*/
I40E_WRITE_REG(hw, I40E_GLQF_ORT(18), 0x00000030);
I40E_WRITE_REG(hw, I40E_GLQF_ORT(19), 0x00000030);
I40E_WRITE_REG(hw, I40E_GLQF_ORT(26), 0x0000002B);
I40E_WRITE_REG(hw, I40E_GLQF_ORT(30), 0x0000002B);
I40E_WRITE_REG(hw, I40E_GLQF_ORT(33), 0x000000E0);
I40E_WRITE_REG(hw, I40E_GLQF_ORT(34), 0x000000E3);
I40E_WRITE_REG(hw, I40E_GLQF_ORT(35), 0x000000E6);
I40E_WRITE_REG(hw, I40E_GLQF_ORT(20), 0x00000031);
I40E_WRITE_REG(hw, I40E_GLQF_ORT(23), 0x00000031);
I40E_WRITE_REG(hw, I40E_GLQF_ORT(63), 0x0000002D);
I40E_WRITE_REG(hw, I40E_GLQF_PIT(16), 0x00007480);
I40E_WRITE_REG(hw, I40E_GLQF_PIT(17), 0x00007440);
/* Initialize registers for parsing packet type of QinQ */
I40E_WRITE_REG(hw, I40E_GLQF_ORT(40), 0x00000029);
I40E_WRITE_REG(hw, I40E_GLQF_PIT(9), 0x00009420);
}
#define I40E_FLOW_CONTROL_ETHERTYPE 0x8808
/*
* Add a ethertype filter to drop all flow control frames transmitted
* from VSIs.
*/
static void
i40e_add_tx_flow_control_drop_filter(struct i40e_pf *pf)
{
struct i40e_hw *hw = I40E_PF_TO_HW(pf);
uint16_t flags = I40E_AQC_ADD_CONTROL_PACKET_FLAGS_IGNORE_MAC |
I40E_AQC_ADD_CONTROL_PACKET_FLAGS_DROP |
I40E_AQC_ADD_CONTROL_PACKET_FLAGS_TX;
int ret;
ret = i40e_aq_add_rem_control_packet_filter(hw, NULL,
I40E_FLOW_CONTROL_ETHERTYPE, flags,
pf->main_vsi_seid, 0,
TRUE, NULL, NULL);
if (ret)
PMD_INIT_LOG(ERR, "Failed to add filter to drop flow control "
" frames from VSIs.");
}
static int
floating_veb_list_handler(__rte_unused const char *key,
const char *floating_veb_value,
void *opaque)
{
int idx = 0;
unsigned int count = 0;
char *end = NULL;
int min, max;
bool *vf_floating_veb = opaque;
while (isblank(*floating_veb_value))
floating_veb_value++;
/* Reset floating VEB configuration for VFs */
for (idx = 0; idx < I40E_MAX_VF; idx++)
vf_floating_veb[idx] = false;
min = I40E_MAX_VF;
do {
while (isblank(*floating_veb_value))
floating_veb_value++;
if (*floating_veb_value == '\0')
return -1;
errno = 0;
idx = strtoul(floating_veb_value, &end, 10);
if (errno || end == NULL)
return -1;
while (isblank(*end))
end++;
if (*end == '-') {
min = idx;
} else if ((*end == ';') || (*end == '\0')) {
max = idx;
if (min == I40E_MAX_VF)
min = idx;
if (max >= I40E_MAX_VF)
max = I40E_MAX_VF - 1;
for (idx = min; idx <= max; idx++) {
vf_floating_veb[idx] = true;
count++;
}
min = I40E_MAX_VF;
} else {
return -1;
}
floating_veb_value = end + 1;
} while (*end != '\0');
if (count == 0)
return -1;
return 0;
}
static void
config_vf_floating_veb(struct rte_devargs *devargs,
uint16_t floating_veb,
bool *vf_floating_veb)
{
struct rte_kvargs *kvlist;
int i;
const char *floating_veb_list = ETH_I40E_FLOATING_VEB_LIST_ARG;
if (!floating_veb)
return;
/* All the VFs attach to the floating VEB by default
* when the floating VEB is enabled.
*/
for (i = 0; i < I40E_MAX_VF; i++)
vf_floating_veb[i] = true;
if (devargs == NULL)
return;
kvlist = rte_kvargs_parse(devargs->args, NULL);
if (kvlist == NULL)
return;
if (!rte_kvargs_count(kvlist, floating_veb_list)) {
rte_kvargs_free(kvlist);
return;
}
/* When the floating_veb_list parameter exists, all the VFs
* will attach to the legacy VEB firstly, then configure VFs
* to the floating VEB according to the floating_veb_list.
*/
if (rte_kvargs_process(kvlist, floating_veb_list,
floating_veb_list_handler,
vf_floating_veb) < 0) {
rte_kvargs_free(kvlist);
return;
}
rte_kvargs_free(kvlist);
}
static int
i40e_check_floating_handler(__rte_unused const char *key,
const char *value,
__rte_unused void *opaque)
{
if (strcmp(value, "1"))
return -1;
return 0;
}
static int
is_floating_veb_supported(struct rte_devargs *devargs)
{
struct rte_kvargs *kvlist;
const char *floating_veb_key = ETH_I40E_FLOATING_VEB_ARG;
if (devargs == NULL)
return 0;
kvlist = rte_kvargs_parse(devargs->args, NULL);
if (kvlist == NULL)
return 0;
if (!rte_kvargs_count(kvlist, floating_veb_key)) {
rte_kvargs_free(kvlist);
return 0;
}
/* Floating VEB is enabled when there's key-value:
* enable_floating_veb=1
*/
if (rte_kvargs_process(kvlist, floating_veb_key,
i40e_check_floating_handler, NULL) < 0) {
rte_kvargs_free(kvlist);
return 0;
}
rte_kvargs_free(kvlist);
return 1;
}
static void
config_floating_veb(struct rte_eth_dev *dev)
{
struct rte_pci_device *pci_dev = I40E_DEV_TO_PCI(dev);
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
memset(pf->floating_veb_list, 0, sizeof(pf->floating_veb_list));
if (hw->aq.fw_maj_ver >= FLOATING_VEB_SUPPORTED_FW_MAJ) {
pf->floating_veb =
is_floating_veb_supported(pci_dev->device.devargs);
config_vf_floating_veb(pci_dev->device.devargs,
pf->floating_veb,
pf->floating_veb_list);
} else {
pf->floating_veb = false;
}
}
#define I40E_L2_TAGS_S_TAG_SHIFT 1
#define I40E_L2_TAGS_S_TAG_MASK I40E_MASK(0x1, I40E_L2_TAGS_S_TAG_SHIFT)
static int
i40e_init_ethtype_filter_list(struct rte_eth_dev *dev)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_ethertype_rule *ethertype_rule = &pf->ethertype;
char ethertype_hash_name[RTE_HASH_NAMESIZE];
int ret;
struct rte_hash_parameters ethertype_hash_params = {
.name = ethertype_hash_name,
.entries = I40E_MAX_ETHERTYPE_FILTER_NUM,
.key_len = sizeof(struct i40e_ethertype_filter_input),
.hash_func = rte_hash_crc,
};
/* Initialize ethertype filter rule list and hash */
TAILQ_INIT(&ethertype_rule->ethertype_list);
snprintf(ethertype_hash_name, RTE_HASH_NAMESIZE,
"ethertype_%s", dev->data->name);
ethertype_rule->hash_table = rte_hash_create(&ethertype_hash_params);
if (!ethertype_rule->hash_table) {
PMD_INIT_LOG(ERR, "Failed to create ethertype hash table!");
return -EINVAL;
}
ethertype_rule->hash_map = rte_zmalloc("i40e_ethertype_hash_map",
sizeof(struct i40e_ethertype_filter *) *
I40E_MAX_ETHERTYPE_FILTER_NUM,
0);
if (!ethertype_rule->hash_map) {
PMD_INIT_LOG(ERR,
"Failed to allocate memory for ethertype hash map!");
ret = -ENOMEM;
goto err_ethertype_hash_map_alloc;
}
return 0;
err_ethertype_hash_map_alloc:
rte_hash_free(ethertype_rule->hash_table);
return ret;
}
static int
i40e_init_tunnel_filter_list(struct rte_eth_dev *dev)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_tunnel_rule *tunnel_rule = &pf->tunnel;
char tunnel_hash_name[RTE_HASH_NAMESIZE];
int ret;
struct rte_hash_parameters tunnel_hash_params = {
.name = tunnel_hash_name,
.entries = I40E_MAX_TUNNEL_FILTER_NUM,
.key_len = sizeof(struct i40e_tunnel_filter_input),
.hash_func = rte_hash_crc,
};
/* Initialize tunnel filter rule list and hash */
TAILQ_INIT(&tunnel_rule->tunnel_list);
snprintf(tunnel_hash_name, RTE_HASH_NAMESIZE,
"tunnel_%s", dev->data->name);
tunnel_rule->hash_table = rte_hash_create(&tunnel_hash_params);
if (!tunnel_rule->hash_table) {
PMD_INIT_LOG(ERR, "Failed to create tunnel hash table!");
return -EINVAL;
}
tunnel_rule->hash_map = rte_zmalloc("i40e_tunnel_hash_map",
sizeof(struct i40e_tunnel_filter *) *
I40E_MAX_TUNNEL_FILTER_NUM,
0);
if (!tunnel_rule->hash_map) {
PMD_INIT_LOG(ERR,
"Failed to allocate memory for tunnel hash map!");
ret = -ENOMEM;
goto err_tunnel_hash_map_alloc;
}
return 0;
err_tunnel_hash_map_alloc:
rte_hash_free(tunnel_rule->hash_table);
return ret;
}
static int
i40e_init_fdir_filter_list(struct rte_eth_dev *dev)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_fdir_info *fdir_info = &pf->fdir;
char fdir_hash_name[RTE_HASH_NAMESIZE];
int ret;
struct rte_hash_parameters fdir_hash_params = {
.name = fdir_hash_name,
.entries = I40E_MAX_FDIR_FILTER_NUM,
.key_len = sizeof(struct rte_eth_fdir_input),
.hash_func = rte_hash_crc,
};
/* Initialize flow director filter rule list and hash */
TAILQ_INIT(&fdir_info->fdir_list);
snprintf(fdir_hash_name, RTE_HASH_NAMESIZE,
"fdir_%s", dev->data->name);
fdir_info->hash_table = rte_hash_create(&fdir_hash_params);
if (!fdir_info->hash_table) {
PMD_INIT_LOG(ERR, "Failed to create fdir hash table!");
return -EINVAL;
}
fdir_info->hash_map = rte_zmalloc("i40e_fdir_hash_map",
sizeof(struct i40e_fdir_filter *) *
I40E_MAX_FDIR_FILTER_NUM,
0);
if (!fdir_info->hash_map) {
PMD_INIT_LOG(ERR,
"Failed to allocate memory for fdir hash map!");
ret = -ENOMEM;
goto err_fdir_hash_map_alloc;
}
return 0;
err_fdir_hash_map_alloc:
rte_hash_free(fdir_info->hash_table);
return ret;
}
static int
eth_i40e_dev_init(struct rte_eth_dev *dev)
{
struct rte_pci_device *pci_dev;
struct rte_intr_handle *intr_handle;
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_vsi *vsi;
int ret;
uint32_t len;
uint8_t aq_fail = 0;
PMD_INIT_FUNC_TRACE();
dev->dev_ops = &i40e_eth_dev_ops;
dev->rx_pkt_burst = i40e_recv_pkts;
dev->tx_pkt_burst = i40e_xmit_pkts;
dev->tx_pkt_prepare = i40e_prep_pkts;
/* for secondary processes, we don't initialise any further as primary
* has already done this work. Only check we don't need a different
* RX function */
if (rte_eal_process_type() != RTE_PROC_PRIMARY){
i40e_set_rx_function(dev);
i40e_set_tx_function(dev);
return 0;
}
pci_dev = I40E_DEV_TO_PCI(dev);
intr_handle = &pci_dev->intr_handle;
rte_eth_copy_pci_info(dev, pci_dev);
dev->data->dev_flags = RTE_ETH_DEV_DETACHABLE;
pf->adapter = I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
pf->adapter->eth_dev = dev;
pf->dev_data = dev->data;
hw->back = I40E_PF_TO_ADAPTER(pf);
hw->hw_addr = (uint8_t *)(pci_dev->mem_resource[0].addr);
if (!hw->hw_addr) {
PMD_INIT_LOG(ERR, "Hardware is not available, "
"as address is NULL");
return -ENODEV;
}
hw->vendor_id = pci_dev->id.vendor_id;
hw->device_id = pci_dev->id.device_id;
hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
hw->bus.device = pci_dev->addr.devid;
hw->bus.func = pci_dev->addr.function;
hw->adapter_stopped = 0;
/* Make sure all is clean before doing PF reset */
i40e_clear_hw(hw);
/* Initialize the hardware */
i40e_hw_init(dev);
/* Reset here to make sure all is clean for each PF */
ret = i40e_pf_reset(hw);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to reset pf: %d", ret);
return ret;
}
/* Initialize the shared code (base driver) */
ret = i40e_init_shared_code(hw);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to init shared code (base driver): %d", ret);
return ret;
}
/*
* To work around the NVM issue, initialize registers
* for flexible payload and packet type of QinQ by
* software. It should be removed once issues are fixed
* in NVM.
*/
i40e_GLQF_reg_init(hw);
/* Initialize the input set for filters (hash and fd) to default value */
i40e_filter_input_set_init(pf);
/* Initialize the parameters for adminq */
i40e_init_adminq_parameter(hw);
ret = i40e_init_adminq(hw);
if (ret != I40E_SUCCESS) {
PMD_INIT_LOG(ERR, "Failed to init adminq: %d", ret);
return -EIO;
}
PMD_INIT_LOG(INFO, "FW %d.%d API %d.%d NVM %02d.%02d.%02d eetrack %04x",
hw->aq.fw_maj_ver, hw->aq.fw_min_ver,
hw->aq.api_maj_ver, hw->aq.api_min_ver,
((hw->nvm.version >> 12) & 0xf),
((hw->nvm.version >> 4) & 0xff),
(hw->nvm.version & 0xf), hw->nvm.eetrack);
/* Need the special FW version to support floating VEB */
config_floating_veb(dev);
/* Clear PXE mode */
i40e_clear_pxe_mode(hw);
ret = i40e_dev_sync_phy_type(hw);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to sync phy type: %d", ret);
goto err_sync_phy_type;
}
/*
* On X710, performance number is far from the expectation on recent
* firmware versions. The fix for this issue may not be integrated in
* the following firmware version. So the workaround in software driver
* is needed. It needs to modify the initial values of 3 internal only
* registers. Note that the workaround can be removed when it is fixed
* in firmware in the future.
*/
i40e_configure_registers(hw);
/* Get hw capabilities */
ret = i40e_get_cap(hw);
if (ret != I40E_SUCCESS) {
PMD_INIT_LOG(ERR, "Failed to get capabilities: %d", ret);
goto err_get_capabilities;
}
/* Initialize parameters for PF */
ret = i40e_pf_parameter_init(dev);
if (ret != 0) {
PMD_INIT_LOG(ERR, "Failed to do parameter init: %d", ret);
goto err_parameter_init;
}
/* Initialize the queue management */
ret = i40e_res_pool_init(&pf->qp_pool, 0, hw->func_caps.num_tx_qp);
if (ret < 0) {
PMD_INIT_LOG(ERR, "Failed to init queue pool");
goto err_qp_pool_init;
}
ret = i40e_res_pool_init(&pf->msix_pool, 1,
hw->func_caps.num_msix_vectors - 1);
if (ret < 0) {
PMD_INIT_LOG(ERR, "Failed to init MSIX pool");
goto err_msix_pool_init;
}
/* Initialize lan hmc */
ret = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp,
hw->func_caps.num_rx_qp, 0, 0);
if (ret != I40E_SUCCESS) {
PMD_INIT_LOG(ERR, "Failed to init lan hmc: %d", ret);
goto err_init_lan_hmc;
}
/* Configure lan hmc */
ret = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY);
if (ret != I40E_SUCCESS) {
PMD_INIT_LOG(ERR, "Failed to configure lan hmc: %d", ret);
goto err_configure_lan_hmc;
}
/* Get and check the mac address */
i40e_get_mac_addr(hw, hw->mac.addr);
if (i40e_validate_mac_addr(hw->mac.addr) != I40E_SUCCESS) {
PMD_INIT_LOG(ERR, "mac address is not valid");
ret = -EIO;
goto err_get_mac_addr;
}
/* Copy the permanent MAC address */
ether_addr_copy((struct ether_addr *) hw->mac.addr,
(struct ether_addr *) hw->mac.perm_addr);
/* Disable flow control */
hw->fc.requested_mode = I40E_FC_NONE;
i40e_set_fc(hw, &aq_fail, TRUE);
/* Set the global registers with default ether type value */
ret = i40e_vlan_tpid_set(dev, ETH_VLAN_TYPE_OUTER, ETHER_TYPE_VLAN);
if (ret != I40E_SUCCESS) {
PMD_INIT_LOG(ERR, "Failed to set the default outer "
"VLAN ether type");
goto err_setup_pf_switch;
}
/* PF setup, which includes VSI setup */
ret = i40e_pf_setup(pf);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to setup pf switch: %d", ret);
goto err_setup_pf_switch;
}
/* reset all stats of the device, including pf and main vsi */
i40e_dev_stats_reset(dev);
vsi = pf->main_vsi;
/* Disable double vlan by default */
i40e_vsi_config_double_vlan(vsi, FALSE);
/* Disable S-TAG identification when floating_veb is disabled */
if (!pf->floating_veb) {
ret = I40E_READ_REG(hw, I40E_PRT_L2TAGSEN);
if (ret & I40E_L2_TAGS_S_TAG_MASK) {
ret &= ~I40E_L2_TAGS_S_TAG_MASK;
I40E_WRITE_REG(hw, I40E_PRT_L2TAGSEN, ret);
}
}
if (!vsi->max_macaddrs)
len = ETHER_ADDR_LEN;
else
len = ETHER_ADDR_LEN * vsi->max_macaddrs;
/* Should be after VSI initialized */
dev->data->mac_addrs = rte_zmalloc("i40e", len, 0);
if (!dev->data->mac_addrs) {
PMD_INIT_LOG(ERR, "Failed to allocated memory "
"for storing mac address");
goto err_mac_alloc;
}
ether_addr_copy((struct ether_addr *)hw->mac.perm_addr,
&dev->data->mac_addrs[0]);
/* initialize pf host driver to setup SRIOV resource if applicable */
i40e_pf_host_init(dev);
/* register callback func to eal lib */
rte_intr_callback_register(intr_handle,
i40e_dev_interrupt_handler, dev);
/* configure and enable device interrupt */
i40e_pf_config_irq0(hw, TRUE);
i40e_pf_enable_irq0(hw);
/* enable uio intr after callback register */
rte_intr_enable(intr_handle);
/*
* Add an ethertype filter to drop all flow control frames transmitted
* from VSIs. By doing so, we stop VF from sending out PAUSE or PFC
* frames to wire.
*/
i40e_add_tx_flow_control_drop_filter(pf);
/* Set the max frame size to 0x2600 by default,
* in case other drivers changed the default value.
*/
i40e_aq_set_mac_config(hw, I40E_FRAME_SIZE_MAX, TRUE, 0, NULL);
/* initialize mirror rule list */
TAILQ_INIT(&pf->mirror_list);
/* Init dcb to sw mode by default */
ret = i40e_dcb_init_configure(dev, TRUE);
if (ret != I40E_SUCCESS) {
PMD_INIT_LOG(INFO, "Failed to init dcb.");
pf->flags &= ~I40E_FLAG_DCB;
}
ret = i40e_init_ethtype_filter_list(dev);
if (ret < 0)
goto err_init_ethtype_filter_list;
ret = i40e_init_tunnel_filter_list(dev);
if (ret < 0)
goto err_init_tunnel_filter_list;
ret = i40e_init_fdir_filter_list(dev);
if (ret < 0)
goto err_init_fdir_filter_list;
return 0;
err_init_fdir_filter_list:
rte_free(pf->tunnel.hash_table);
rte_free(pf->tunnel.hash_map);
err_init_tunnel_filter_list:
rte_free(pf->ethertype.hash_table);
rte_free(pf->ethertype.hash_map);
err_init_ethtype_filter_list:
rte_free(dev->data->mac_addrs);
err_mac_alloc:
i40e_vsi_release(pf->main_vsi);
err_setup_pf_switch:
err_get_mac_addr:
err_configure_lan_hmc:
(void)i40e_shutdown_lan_hmc(hw);
err_init_lan_hmc:
i40e_res_pool_destroy(&pf->msix_pool);
err_msix_pool_init:
i40e_res_pool_destroy(&pf->qp_pool);
err_qp_pool_init:
err_parameter_init:
err_get_capabilities:
err_sync_phy_type:
(void)i40e_shutdown_adminq(hw);
return ret;
}
static void
i40e_rm_ethtype_filter_list(struct i40e_pf *pf)
{
struct i40e_ethertype_filter *p_ethertype;
struct i40e_ethertype_rule *ethertype_rule;
ethertype_rule = &pf->ethertype;
/* Remove all ethertype filter rules and hash */
if (ethertype_rule->hash_map)
rte_free(ethertype_rule->hash_map);
if (ethertype_rule->hash_table)
rte_hash_free(ethertype_rule->hash_table);
while ((p_ethertype = TAILQ_FIRST(&ethertype_rule->ethertype_list))) {
TAILQ_REMOVE(&ethertype_rule->ethertype_list,
p_ethertype, rules);
rte_free(p_ethertype);
}
}
static void
i40e_rm_tunnel_filter_list(struct i40e_pf *pf)
{
struct i40e_tunnel_filter *p_tunnel;
struct i40e_tunnel_rule *tunnel_rule;
tunnel_rule = &pf->tunnel;
/* Remove all tunnel director rules and hash */
if (tunnel_rule->hash_map)
rte_free(tunnel_rule->hash_map);
if (tunnel_rule->hash_table)
rte_hash_free(tunnel_rule->hash_table);
while ((p_tunnel = TAILQ_FIRST(&tunnel_rule->tunnel_list))) {
TAILQ_REMOVE(&tunnel_rule->tunnel_list, p_tunnel, rules);
rte_free(p_tunnel);
}
}
static void
i40e_rm_fdir_filter_list(struct i40e_pf *pf)
{
struct i40e_fdir_filter *p_fdir;
struct i40e_fdir_info *fdir_info;
fdir_info = &pf->fdir;
/* Remove all flow director rules and hash */
if (fdir_info->hash_map)
rte_free(fdir_info->hash_map);
if (fdir_info->hash_table)
rte_hash_free(fdir_info->hash_table);
while ((p_fdir = TAILQ_FIRST(&fdir_info->fdir_list))) {
TAILQ_REMOVE(&fdir_info->fdir_list, p_fdir, rules);
rte_free(p_fdir);
}
}
static int
eth_i40e_dev_uninit(struct rte_eth_dev *dev)
{
struct i40e_pf *pf;
struct rte_pci_device *pci_dev;
struct rte_intr_handle *intr_handle;
struct i40e_hw *hw;
struct i40e_filter_control_settings settings;
struct rte_flow *p_flow;
int ret;
uint8_t aq_fail = 0;
PMD_INIT_FUNC_TRACE();
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
pci_dev = I40E_DEV_TO_PCI(dev);
intr_handle = &pci_dev->intr_handle;
if (hw->adapter_stopped == 0)
i40e_dev_close(dev);
dev->dev_ops = NULL;
dev->rx_pkt_burst = NULL;
dev->tx_pkt_burst = NULL;
/* Clear PXE mode */
i40e_clear_pxe_mode(hw);
/* Unconfigure filter control */
memset(&settings, 0, sizeof(settings));
ret = i40e_set_filter_control(hw, &settings);
if (ret)
PMD_INIT_LOG(WARNING, "setup_pf_filter_control failed: %d",
ret);
/* Disable flow control */
hw->fc.requested_mode = I40E_FC_NONE;
i40e_set_fc(hw, &aq_fail, TRUE);
/* uninitialize pf host driver */
i40e_pf_host_uninit(dev);
rte_free(dev->data->mac_addrs);
dev->data->mac_addrs = NULL;
/* disable uio intr before callback unregister */
rte_intr_disable(intr_handle);
/* register callback func to eal lib */
rte_intr_callback_unregister(intr_handle,
i40e_dev_interrupt_handler, dev);
i40e_rm_ethtype_filter_list(pf);
i40e_rm_tunnel_filter_list(pf);
i40e_rm_fdir_filter_list(pf);
/* Remove all flows */
while ((p_flow = TAILQ_FIRST(&pf->flow_list))) {
TAILQ_REMOVE(&pf->flow_list, p_flow, node);
rte_free(p_flow);
}
return 0;
}
static int
i40e_dev_configure(struct rte_eth_dev *dev)
{
struct i40e_adapter *ad =
I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
enum rte_eth_rx_mq_mode mq_mode = dev->data->dev_conf.rxmode.mq_mode;
int i, ret;
/* Initialize to TRUE. If any of Rx queues doesn't meet the
* bulk allocation or vector Rx preconditions we will reset it.
*/
ad->rx_bulk_alloc_allowed = true;
ad->rx_vec_allowed = true;
ad->tx_simple_allowed = true;
ad->tx_vec_allowed = true;
if (dev->data->dev_conf.fdir_conf.mode == RTE_FDIR_MODE_PERFECT) {
ret = i40e_fdir_setup(pf);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to setup flow director.");
return -ENOTSUP;
}
ret = i40e_fdir_configure(dev);
if (ret < 0) {
PMD_DRV_LOG(ERR, "failed to configure fdir.");
goto err;
}
} else
i40e_fdir_teardown(pf);
ret = i40e_dev_init_vlan(dev);
if (ret < 0)
goto err;
/* VMDQ setup.
* Needs to move VMDQ setting out of i40e_pf_config_mq_rx() as VMDQ and
* RSS setting have different requirements.
* General PMD driver call sequence are NIC init, configure,
* rx/tx_queue_setup and dev_start. In rx/tx_queue_setup() function, it
* will try to lookup the VSI that specific queue belongs to if VMDQ
* applicable. So, VMDQ setting has to be done before
* rx/tx_queue_setup(). This function is good to place vmdq_setup.
* For RSS setting, it will try to calculate actual configured RX queue
* number, which will be available after rx_queue_setup(). dev_start()
* function is good to place RSS setup.
*/
if (mq_mode & ETH_MQ_RX_VMDQ_FLAG) {
ret = i40e_vmdq_setup(dev);
if (ret)
goto err;
}
if (mq_mode & ETH_MQ_RX_DCB_FLAG) {
ret = i40e_dcb_setup(dev);
if (ret) {
PMD_DRV_LOG(ERR, "failed to configure DCB.");
goto err_dcb;
}
}
TAILQ_INIT(&pf->flow_list);
return 0;
err_dcb:
/* need to release vmdq resource if exists */
for (i = 0; i < pf->nb_cfg_vmdq_vsi; i++) {
i40e_vsi_release(pf->vmdq[i].vsi);
pf->vmdq[i].vsi = NULL;
}
rte_free(pf->vmdq);
pf->vmdq = NULL;
err:
/* need to release fdir resource if exists */
i40e_fdir_teardown(pf);
return ret;
}
void
i40e_vsi_queues_unbind_intr(struct i40e_vsi *vsi)
{
struct rte_eth_dev *dev = vsi->adapter->eth_dev;
struct rte_pci_device *pci_dev = I40E_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
uint16_t msix_vect = vsi->msix_intr;
uint16_t i;
for (i = 0; i < vsi->nb_qps; i++) {
I40E_WRITE_REG(hw, I40E_QINT_TQCTL(vsi->base_queue + i), 0);
I40E_WRITE_REG(hw, I40E_QINT_RQCTL(vsi->base_queue + i), 0);
rte_wmb();
}
if (vsi->type != I40E_VSI_SRIOV) {
if (!rte_intr_allow_others(intr_handle)) {
I40E_WRITE_REG(hw, I40E_PFINT_LNKLST0,
I40E_PFINT_LNKLST0_FIRSTQ_INDX_MASK);
I40E_WRITE_REG(hw,
I40E_PFINT_ITR0(I40E_ITR_INDEX_DEFAULT),
0);
} else {
I40E_WRITE_REG(hw, I40E_PFINT_LNKLSTN(msix_vect - 1),
I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK);
I40E_WRITE_REG(hw,
I40E_PFINT_ITRN(I40E_ITR_INDEX_DEFAULT,
msix_vect - 1), 0);
}
} else {
uint32_t reg;
reg = (hw->func_caps.num_msix_vectors_vf - 1) *
vsi->user_param + (msix_vect - 1);
I40E_WRITE_REG(hw, I40E_VPINT_LNKLSTN(reg),
I40E_VPINT_LNKLSTN_FIRSTQ_INDX_MASK);
}
I40E_WRITE_FLUSH(hw);
}
static void
__vsi_queues_bind_intr(struct i40e_vsi *vsi, uint16_t msix_vect,
int base_queue, int nb_queue)
{
int i;
uint32_t val;
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
/* Bind all RX queues to allocated MSIX interrupt */
for (i = 0; i < nb_queue; i++) {
val = (msix_vect << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) |
I40E_QINT_RQCTL_ITR_INDX_MASK |
((base_queue + i + 1) <<
I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT) |
(0 << I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT) |
I40E_QINT_RQCTL_CAUSE_ENA_MASK;
if (i == nb_queue - 1)
val |= I40E_QINT_RQCTL_NEXTQ_INDX_MASK;
I40E_WRITE_REG(hw, I40E_QINT_RQCTL(base_queue + i), val);
}
/* Write first RX queue to Link list register as the head element */
if (vsi->type != I40E_VSI_SRIOV) {
uint16_t interval =
i40e_calc_itr_interval(RTE_LIBRTE_I40E_ITR_INTERVAL);
if (msix_vect == I40E_MISC_VEC_ID) {
I40E_WRITE_REG(hw, I40E_PFINT_LNKLST0,
(base_queue <<
I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT) |
(0x0 <<
I40E_PFINT_LNKLST0_FIRSTQ_TYPE_SHIFT));
I40E_WRITE_REG(hw,
I40E_PFINT_ITR0(I40E_ITR_INDEX_DEFAULT),
interval);
} else {
I40E_WRITE_REG(hw, I40E_PFINT_LNKLSTN(msix_vect - 1),
(base_queue <<
I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT) |
(0x0 <<
I40E_PFINT_LNKLSTN_FIRSTQ_TYPE_SHIFT));
I40E_WRITE_REG(hw,
I40E_PFINT_ITRN(I40E_ITR_INDEX_DEFAULT,
msix_vect - 1),
interval);
}
} else {
uint32_t reg;
if (msix_vect == I40E_MISC_VEC_ID) {
I40E_WRITE_REG(hw,
I40E_VPINT_LNKLST0(vsi->user_param),
(base_queue <<
I40E_VPINT_LNKLST0_FIRSTQ_INDX_SHIFT) |
(0x0 <<
I40E_VPINT_LNKLST0_FIRSTQ_TYPE_SHIFT));
} else {
/* num_msix_vectors_vf needs to minus irq0 */
reg = (hw->func_caps.num_msix_vectors_vf - 1) *
vsi->user_param + (msix_vect - 1);
I40E_WRITE_REG(hw, I40E_VPINT_LNKLSTN(reg),
(base_queue <<
I40E_VPINT_LNKLSTN_FIRSTQ_INDX_SHIFT) |
(0x0 <<
I40E_VPINT_LNKLSTN_FIRSTQ_TYPE_SHIFT));
}
}
I40E_WRITE_FLUSH(hw);
}
void
i40e_vsi_queues_bind_intr(struct i40e_vsi *vsi)
{
struct rte_eth_dev *dev = vsi->adapter->eth_dev;
struct rte_pci_device *pci_dev = I40E_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
uint16_t msix_vect = vsi->msix_intr;
uint16_t nb_msix = RTE_MIN(vsi->nb_msix, intr_handle->nb_efd);
uint16_t queue_idx = 0;
int record = 0;
uint32_t val;
int i;
for (i = 0; i < vsi->nb_qps; i++) {
I40E_WRITE_REG(hw, I40E_QINT_TQCTL(vsi->base_queue + i), 0);
I40E_WRITE_REG(hw, I40E_QINT_RQCTL(vsi->base_queue + i), 0);
}
/* INTENA flag is not auto-cleared for interrupt */
val = I40E_READ_REG(hw, I40E_GLINT_CTL);
val |= I40E_GLINT_CTL_DIS_AUTOMASK_PF0_MASK |
I40E_GLINT_CTL_DIS_AUTOMASK_N_MASK |
I40E_GLINT_CTL_DIS_AUTOMASK_VF0_MASK;
I40E_WRITE_REG(hw, I40E_GLINT_CTL, val);
/* VF bind interrupt */
if (vsi->type == I40E_VSI_SRIOV) {
__vsi_queues_bind_intr(vsi, msix_vect,
vsi->base_queue, vsi->nb_qps);
return;
}
/* PF & VMDq bind interrupt */
if (rte_intr_dp_is_en(intr_handle)) {
if (vsi->type == I40E_VSI_MAIN) {
queue_idx = 0;
record = 1;
} else if (vsi->type == I40E_VSI_VMDQ2) {
struct i40e_vsi *main_vsi =
I40E_DEV_PRIVATE_TO_MAIN_VSI(vsi->adapter);
queue_idx = vsi->base_queue - main_vsi->nb_qps;
record = 1;
}
}
for (i = 0; i < vsi->nb_used_qps; i++) {
if (nb_msix <= 1) {
if (!rte_intr_allow_others(intr_handle))
/* allow to share MISC_VEC_ID */
msix_vect = I40E_MISC_VEC_ID;
/* no enough msix_vect, map all to one */
__vsi_queues_bind_intr(vsi, msix_vect,
vsi->base_queue + i,
vsi->nb_used_qps - i);
for (; !!record && i < vsi->nb_used_qps; i++)
intr_handle->intr_vec[queue_idx + i] =
msix_vect;
break;
}
/* 1:1 queue/msix_vect mapping */
__vsi_queues_bind_intr(vsi, msix_vect,
vsi->base_queue + i, 1);
if (!!record)
intr_handle->intr_vec[queue_idx + i] = msix_vect;
msix_vect++;
nb_msix--;
}
}
static void
i40e_vsi_enable_queues_intr(struct i40e_vsi *vsi)
{
struct rte_eth_dev *dev = vsi->adapter->eth_dev;
struct rte_pci_device *pci_dev = I40E_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
uint16_t interval = i40e_calc_itr_interval(\
RTE_LIBRTE_I40E_ITR_INTERVAL);
uint16_t msix_intr, i;
if (rte_intr_allow_others(intr_handle))
for (i = 0; i < vsi->nb_msix; i++) {
msix_intr = vsi->msix_intr + i;
I40E_WRITE_REG(hw, I40E_PFINT_DYN_CTLN(msix_intr - 1),
I40E_PFINT_DYN_CTLN_INTENA_MASK |
I40E_PFINT_DYN_CTLN_CLEARPBA_MASK |
(0 << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
(interval <<
I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT));
}
else
I40E_WRITE_REG(hw, I40E_PFINT_DYN_CTL0,
I40E_PFINT_DYN_CTL0_INTENA_MASK |
I40E_PFINT_DYN_CTL0_CLEARPBA_MASK |
(0 << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT) |
(interval <<
I40E_PFINT_DYN_CTL0_INTERVAL_SHIFT));
I40E_WRITE_FLUSH(hw);
}
static void
i40e_vsi_disable_queues_intr(struct i40e_vsi *vsi)
{
struct rte_eth_dev *dev = vsi->adapter->eth_dev;
struct rte_pci_device *pci_dev = I40E_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
uint16_t msix_intr, i;
if (rte_intr_allow_others(intr_handle))
for (i = 0; i < vsi->nb_msix; i++) {
msix_intr = vsi->msix_intr + i;
I40E_WRITE_REG(hw, I40E_PFINT_DYN_CTLN(msix_intr - 1),
0);
}
else
I40E_WRITE_REG(hw, I40E_PFINT_DYN_CTL0, 0);
I40E_WRITE_FLUSH(hw);
}
static inline uint8_t
i40e_parse_link_speeds(uint16_t link_speeds)
{
uint8_t link_speed = I40E_LINK_SPEED_UNKNOWN;
if (link_speeds & ETH_LINK_SPEED_40G)
link_speed |= I40E_LINK_SPEED_40GB;
if (link_speeds & ETH_LINK_SPEED_25G)
link_speed |= I40E_LINK_SPEED_25GB;
if (link_speeds & ETH_LINK_SPEED_20G)
link_speed |= I40E_LINK_SPEED_20GB;
if (link_speeds & ETH_LINK_SPEED_10G)
link_speed |= I40E_LINK_SPEED_10GB;
if (link_speeds & ETH_LINK_SPEED_1G)
link_speed |= I40E_LINK_SPEED_1GB;
if (link_speeds & ETH_LINK_SPEED_100M)
link_speed |= I40E_LINK_SPEED_100MB;
return link_speed;
}
static int
i40e_phy_conf_link(struct i40e_hw *hw,
uint8_t abilities,
uint8_t force_speed)
{
enum i40e_status_code status;
struct i40e_aq_get_phy_abilities_resp phy_ab;
struct i40e_aq_set_phy_config phy_conf;
const uint8_t mask = I40E_AQ_PHY_FLAG_PAUSE_TX |
I40E_AQ_PHY_FLAG_PAUSE_RX |
I40E_AQ_PHY_FLAG_PAUSE_RX |
I40E_AQ_PHY_FLAG_LOW_POWER;
const uint8_t advt = I40E_LINK_SPEED_40GB |
I40E_LINK_SPEED_25GB |
I40E_LINK_SPEED_10GB |
I40E_LINK_SPEED_1GB |
I40E_LINK_SPEED_100MB;
int ret = -ENOTSUP;
status = i40e_aq_get_phy_capabilities(hw, false, false, &phy_ab,
NULL);
if (status)
return ret;
memset(&phy_conf, 0, sizeof(phy_conf));
/* bits 0-2 use the values from get_phy_abilities_resp */
abilities &= ~mask;
abilities |= phy_ab.abilities & mask;
/* update ablities and speed */
if (abilities & I40E_AQ_PHY_AN_ENABLED)
phy_conf.link_speed = advt;
else
phy_conf.link_speed = force_speed;
phy_conf.abilities = abilities;
/* use get_phy_abilities_resp value for the rest */
phy_conf.phy_type = phy_ab.phy_type;
phy_conf.phy_type_ext = phy_ab.phy_type_ext;
phy_conf.fec_config = phy_ab.fec_cfg_curr_mod_ext_info;
phy_conf.eee_capability = phy_ab.eee_capability;
phy_conf.eeer = phy_ab.eeer_val;
phy_conf.low_power_ctrl = phy_ab.d3_lpan;
PMD_DRV_LOG(DEBUG, "\tCurrent: abilities %x, link_speed %x",
phy_ab.abilities, phy_ab.link_speed);
PMD_DRV_LOG(DEBUG, "\tConfig: abilities %x, link_speed %x",
phy_conf.abilities, phy_conf.link_speed);
status = i40e_aq_set_phy_config(hw, &phy_conf, NULL);
if (status)
return ret;
return I40E_SUCCESS;
}
static int
i40e_apply_link_speed(struct rte_eth_dev *dev)
{
uint8_t speed;
uint8_t abilities = 0;
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_eth_conf *conf = &dev->data->dev_conf;
speed = i40e_parse_link_speeds(conf->link_speeds);
abilities |= I40E_AQ_PHY_ENABLE_ATOMIC_LINK;
if (!(conf->link_speeds & ETH_LINK_SPEED_FIXED))
abilities |= I40E_AQ_PHY_AN_ENABLED;
abilities |= I40E_AQ_PHY_LINK_ENABLED;
/* Skip changing speed on 40G interfaces, FW does not support */
if (I40E_PHY_TYPE_SUPPORT_40G(hw->phy.phy_types)) {
speed = I40E_LINK_SPEED_UNKNOWN;
abilities |= I40E_AQ_PHY_AN_ENABLED;
}
return i40e_phy_conf_link(hw, abilities, speed);
}
static int
i40e_dev_start(struct rte_eth_dev *dev)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_vsi *main_vsi = pf->main_vsi;
int ret, i;
struct rte_pci_device *pci_dev = I40E_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
uint32_t intr_vector = 0;
hw->adapter_stopped = 0;
if (dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED) {
PMD_INIT_LOG(ERR, "Invalid link_speeds for port %hhu; autonegotiation disabled",
dev->data->port_id);
return -EINVAL;
}
rte_intr_disable(intr_handle);
if ((rte_intr_cap_multiple(intr_handle) ||
!RTE_ETH_DEV_SRIOV(dev).active) &&
dev->data->dev_conf.intr_conf.rxq != 0) {
intr_vector = dev->data->nb_rx_queues;
if (rte_intr_efd_enable(intr_handle, intr_vector))
return -1;
}
if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
intr_handle->intr_vec =
rte_zmalloc("intr_vec",
dev->data->nb_rx_queues * sizeof(int),
0);
if (!intr_handle->intr_vec) {
PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
" intr_vec\n", dev->data->nb_rx_queues);
return -ENOMEM;
}
}
/* Initialize VSI */
ret = i40e_dev_rxtx_init(pf);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to init rx/tx queues");
goto err_up;
}
/* Map queues with MSIX interrupt */
main_vsi->nb_used_qps = dev->data->nb_rx_queues -
pf->nb_cfg_vmdq_vsi * RTE_LIBRTE_I40E_QUEUE_NUM_PER_VM;
i40e_vsi_queues_bind_intr(main_vsi);
i40e_vsi_enable_queues_intr(main_vsi);
/* Map VMDQ VSI queues with MSIX interrupt */
for (i = 0; i < pf->nb_cfg_vmdq_vsi; i++) {
pf->vmdq[i].vsi->nb_used_qps = RTE_LIBRTE_I40E_QUEUE_NUM_PER_VM;
i40e_vsi_queues_bind_intr(pf->vmdq[i].vsi);
i40e_vsi_enable_queues_intr(pf->vmdq[i].vsi);
}
/* enable FDIR MSIX interrupt */
if (pf->fdir.fdir_vsi) {
i40e_vsi_queues_bind_intr(pf->fdir.fdir_vsi);
i40e_vsi_enable_queues_intr(pf->fdir.fdir_vsi);
}
/* Enable all queues which have been configured */
ret = i40e_dev_switch_queues(pf, TRUE);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to enable VSI");
goto err_up;
}
/* Enable receiving broadcast packets */
ret = i40e_aq_set_vsi_broadcast(hw, main_vsi->seid, true, NULL);
if (ret != I40E_SUCCESS)
PMD_DRV_LOG(INFO, "fail to set vsi broadcast");
for (i = 0; i < pf->nb_cfg_vmdq_vsi; i++) {
ret = i40e_aq_set_vsi_broadcast(hw, pf->vmdq[i].vsi->seid,
true, NULL);
if (ret != I40E_SUCCESS)
PMD_DRV_LOG(INFO, "fail to set vsi broadcast");
}
/* Apply link configure */
if (dev->data->dev_conf.link_speeds & ~(ETH_LINK_SPEED_100M |
ETH_LINK_SPEED_1G | ETH_LINK_SPEED_10G |
ETH_LINK_SPEED_20G | ETH_LINK_SPEED_25G |
ETH_LINK_SPEED_40G)) {
PMD_DRV_LOG(ERR, "Invalid link setting");
goto err_up;
}
ret = i40e_apply_link_speed(dev);
if (I40E_SUCCESS != ret) {
PMD_DRV_LOG(ERR, "Fail to apply link setting");
goto err_up;
}
if (!rte_intr_allow_others(intr_handle)) {
rte_intr_callback_unregister(intr_handle,
i40e_dev_interrupt_handler,
(void *)dev);
/* configure and enable device interrupt */
i40e_pf_config_irq0(hw, FALSE);
i40e_pf_enable_irq0(hw);
if (dev->data->dev_conf.intr_conf.lsc != 0)
PMD_INIT_LOG(INFO, "lsc won't enable because of"
" no intr multiplex\n");
} else if (dev->data->dev_conf.intr_conf.lsc != 0) {
ret = i40e_aq_set_phy_int_mask(hw,
~(I40E_AQ_EVENT_LINK_UPDOWN |
I40E_AQ_EVENT_MODULE_QUAL_FAIL |
I40E_AQ_EVENT_MEDIA_NA), NULL);
if (ret != I40E_SUCCESS)
PMD_DRV_LOG(WARNING, "Fail to set phy mask");
/* Call get_link_info aq commond to enable LSE */
i40e_dev_link_update(dev, 0);
}
/* enable uio intr after callback register */
rte_intr_enable(intr_handle);
i40e_filter_restore(pf);
return I40E_SUCCESS;
err_up:
i40e_dev_switch_queues(pf, FALSE);
i40e_dev_clear_queues(dev);
return ret;
}
static void
i40e_dev_stop(struct rte_eth_dev *dev)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_vsi *main_vsi = pf->main_vsi;
struct i40e_mirror_rule *p_mirror;
struct rte_pci_device *pci_dev = I40E_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
int i;
/* Disable all queues */
i40e_dev_switch_queues(pf, FALSE);
/* un-map queues with interrupt registers */
i40e_vsi_disable_queues_intr(main_vsi);
i40e_vsi_queues_unbind_intr(main_vsi);
for (i = 0; i < pf->nb_cfg_vmdq_vsi; i++) {
i40e_vsi_disable_queues_intr(pf->vmdq[i].vsi);
i40e_vsi_queues_unbind_intr(pf->vmdq[i].vsi);
}
if (pf->fdir.fdir_vsi) {
i40e_vsi_queues_unbind_intr(pf->fdir.fdir_vsi);
i40e_vsi_disable_queues_intr(pf->fdir.fdir_vsi);
}
/* Clear all queues and release memory */
i40e_dev_clear_queues(dev);
/* Set link down */
i40e_dev_set_link_down(dev);
/* Remove all mirror rules */
while ((p_mirror = TAILQ_FIRST(&pf->mirror_list))) {
TAILQ_REMOVE(&pf->mirror_list, p_mirror, rules);
rte_free(p_mirror);
}
pf->nb_mirror_rule = 0;
if (!rte_intr_allow_others(intr_handle))
/* resume to the default handler */
rte_intr_callback_register(intr_handle,
i40e_dev_interrupt_handler,
(void *)dev);
/* Clean datapath event and queue/vec mapping */
rte_intr_efd_disable(intr_handle);
if (intr_handle->intr_vec) {
rte_free(intr_handle->intr_vec);
intr_handle->intr_vec = NULL;
}
}
static void
i40e_dev_close(struct rte_eth_dev *dev)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_pci_device *pci_dev = I40E_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
uint32_t reg;
int i;
PMD_INIT_FUNC_TRACE();
i40e_dev_stop(dev);
hw->adapter_stopped = 1;
i40e_dev_free_queues(dev);
/* Disable interrupt */
i40e_pf_disable_irq0(hw);
rte_intr_disable(intr_handle);
/* shutdown and destroy the HMC */
i40e_shutdown_lan_hmc(hw);
/* release all the existing VSIs and VEBs */
i40e_fdir_teardown(pf);
i40e_vsi_release(pf->main_vsi);
for (i = 0; i < pf->nb_cfg_vmdq_vsi; i++) {
i40e_vsi_release(pf->vmdq[i].vsi);
pf->vmdq[i].vsi = NULL;
}
rte_free(pf->vmdq);
pf->vmdq = NULL;
/* shutdown the adminq */
i40e_aq_queue_shutdown(hw, true);
i40e_shutdown_adminq(hw);
i40e_res_pool_destroy(&pf->qp_pool);
i40e_res_pool_destroy(&pf->msix_pool);
/* force a PF reset to clean anything leftover */
reg = I40E_READ_REG(hw, I40E_PFGEN_CTRL);
I40E_WRITE_REG(hw, I40E_PFGEN_CTRL,
(reg | I40E_PFGEN_CTRL_PFSWR_MASK));
I40E_WRITE_FLUSH(hw);
}
static void
i40e_dev_promiscuous_enable(struct rte_eth_dev *dev)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_vsi *vsi = pf->main_vsi;
int status;
status = i40e_aq_set_vsi_unicast_promiscuous(hw, vsi->seid,
true, NULL, true);
if (status != I40E_SUCCESS)
PMD_DRV_LOG(ERR, "Failed to enable unicast promiscuous");
status = i40e_aq_set_vsi_multicast_promiscuous(hw, vsi->seid,
TRUE, NULL);
if (status != I40E_SUCCESS)
PMD_DRV_LOG(ERR, "Failed to enable multicast promiscuous");
}
static void
i40e_dev_promiscuous_disable(struct rte_eth_dev *dev)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_vsi *vsi = pf->main_vsi;
int status;
status = i40e_aq_set_vsi_unicast_promiscuous(hw, vsi->seid,
false, NULL, true);
if (status != I40E_SUCCESS)
PMD_DRV_LOG(ERR, "Failed to disable unicast promiscuous");
status = i40e_aq_set_vsi_multicast_promiscuous(hw, vsi->seid,
false, NULL);
if (status != I40E_SUCCESS)
PMD_DRV_LOG(ERR, "Failed to disable multicast promiscuous");
}
static void
i40e_dev_allmulticast_enable(struct rte_eth_dev *dev)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_vsi *vsi = pf->main_vsi;
int ret;
ret = i40e_aq_set_vsi_multicast_promiscuous(hw, vsi->seid, TRUE, NULL);
if (ret != I40E_SUCCESS)
PMD_DRV_LOG(ERR, "Failed to enable multicast promiscuous");
}
static void
i40e_dev_allmulticast_disable(struct rte_eth_dev *dev)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_vsi *vsi = pf->main_vsi;
int ret;
if (dev->data->promiscuous == 1)
return; /* must remain in all_multicast mode */
ret = i40e_aq_set_vsi_multicast_promiscuous(hw,
vsi->seid, FALSE, NULL);
if (ret != I40E_SUCCESS)
PMD_DRV_LOG(ERR, "Failed to disable multicast promiscuous");
}
/*
* Set device link up.
*/
static int
i40e_dev_set_link_up(struct rte_eth_dev *dev)
{
/* re-apply link speed setting */
return i40e_apply_link_speed(dev);
}
/*
* Set device link down.
*/
static int
i40e_dev_set_link_down(struct rte_eth_dev *dev)
{
uint8_t speed = I40E_LINK_SPEED_UNKNOWN;
uint8_t abilities = 0;
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
abilities = I40E_AQ_PHY_ENABLE_ATOMIC_LINK;
return i40e_phy_conf_link(hw, abilities, speed);
}
int
i40e_dev_link_update(struct rte_eth_dev *dev,
int wait_to_complete)
{
#define CHECK_INTERVAL 100 /* 100ms */
#define MAX_REPEAT_TIME 10 /* 1s (10 * 100ms) in total */
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_link_status link_status;
struct rte_eth_link link, old;
int status;
unsigned rep_cnt = MAX_REPEAT_TIME;
bool enable_lse = dev->data->dev_conf.intr_conf.lsc ? true : false;
memset(&link, 0, sizeof(link));
memset(&old, 0, sizeof(old));
memset(&link_status, 0, sizeof(link_status));
rte_i40e_dev_atomic_read_link_status(dev, &old);
do {
/* Get link status information from hardware */
status = i40e_aq_get_link_info(hw, enable_lse,
&link_status, NULL);
if (status != I40E_SUCCESS) {
link.link_speed = ETH_SPEED_NUM_100M;
link.link_duplex = ETH_LINK_FULL_DUPLEX;
PMD_DRV_LOG(ERR, "Failed to get link info");
goto out;
}
link.link_status = link_status.link_info & I40E_AQ_LINK_UP;
if (!wait_to_complete)
break;
rte_delay_ms(CHECK_INTERVAL);
} while (!link.link_status && rep_cnt--);
if (!link.link_status)
goto out;
/* i40e uses full duplex only */
link.link_duplex = ETH_LINK_FULL_DUPLEX;
/* Parse the link status */
switch (link_status.link_speed) {
case I40E_LINK_SPEED_100MB:
link.link_speed = ETH_SPEED_NUM_100M;
break;
case I40E_LINK_SPEED_1GB:
link.link_speed = ETH_SPEED_NUM_1G;
break;
case I40E_LINK_SPEED_10GB:
link.link_speed = ETH_SPEED_NUM_10G;
break;
case I40E_LINK_SPEED_20GB:
link.link_speed = ETH_SPEED_NUM_20G;
break;
case I40E_LINK_SPEED_25GB:
link.link_speed = ETH_SPEED_NUM_25G;
break;
case I40E_LINK_SPEED_40GB:
link.link_speed = ETH_SPEED_NUM_40G;
break;
default:
link.link_speed = ETH_SPEED_NUM_100M;
break;
}
link.link_autoneg = !(dev->data->dev_conf.link_speeds &
ETH_LINK_SPEED_FIXED);
out:
rte_i40e_dev_atomic_write_link_status(dev, &link);
if (link.link_status == old.link_status)
return -1;
return 0;
}
/* Get all the statistics of a VSI */
void
i40e_update_vsi_stats(struct i40e_vsi *vsi)
{
struct i40e_eth_stats *oes = &vsi->eth_stats_offset;
struct i40e_eth_stats *nes = &vsi->eth_stats;
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
int idx = rte_le_to_cpu_16(vsi->info.stat_counter_idx);
i40e_stat_update_48(hw, I40E_GLV_GORCH(idx), I40E_GLV_GORCL(idx),
vsi->offset_loaded, &oes->rx_bytes,
&nes->rx_bytes);
i40e_stat_update_48(hw, I40E_GLV_UPRCH(idx), I40E_GLV_UPRCL(idx),
vsi->offset_loaded, &oes->rx_unicast,
&nes->rx_unicast);
i40e_stat_update_48(hw, I40E_GLV_MPRCH(idx), I40E_GLV_MPRCL(idx),
vsi->offset_loaded, &oes->rx_multicast,
&nes->rx_multicast);
i40e_stat_update_48(hw, I40E_GLV_BPRCH(idx), I40E_GLV_BPRCL(idx),
vsi->offset_loaded, &oes->rx_broadcast,
&nes->rx_broadcast);
i40e_stat_update_32(hw, I40E_GLV_RDPC(idx), vsi->offset_loaded,
&oes->rx_discards, &nes->rx_discards);
/* GLV_REPC not supported */
/* GLV_RMPC not supported */
i40e_stat_update_32(hw, I40E_GLV_RUPP(idx), vsi->offset_loaded,
&oes->rx_unknown_protocol,
&nes->rx_unknown_protocol);
i40e_stat_update_48(hw, I40E_GLV_GOTCH(idx), I40E_GLV_GOTCL(idx),
vsi->offset_loaded, &oes->tx_bytes,
&nes->tx_bytes);
i40e_stat_update_48(hw, I40E_GLV_UPTCH(idx), I40E_GLV_UPTCL(idx),
vsi->offset_loaded, &oes->tx_unicast,
&nes->tx_unicast);
i40e_stat_update_48(hw, I40E_GLV_MPTCH(idx), I40E_GLV_MPTCL(idx),
vsi->offset_loaded, &oes->tx_multicast,
&nes->tx_multicast);
i40e_stat_update_48(hw, I40E_GLV_BPTCH(idx), I40E_GLV_BPTCL(idx),
vsi->offset_loaded, &oes->tx_broadcast,
&nes->tx_broadcast);
/* GLV_TDPC not supported */
i40e_stat_update_32(hw, I40E_GLV_TEPC(idx), vsi->offset_loaded,
&oes->tx_errors, &nes->tx_errors);
vsi->offset_loaded = true;
PMD_DRV_LOG(DEBUG, "***************** VSI[%u] stats start *******************",
vsi->vsi_id);
PMD_DRV_LOG(DEBUG, "rx_bytes: %"PRIu64"", nes->rx_bytes);
PMD_DRV_LOG(DEBUG, "rx_unicast: %"PRIu64"", nes->rx_unicast);
PMD_DRV_LOG(DEBUG, "rx_multicast: %"PRIu64"", nes->rx_multicast);
PMD_DRV_LOG(DEBUG, "rx_broadcast: %"PRIu64"", nes->rx_broadcast);
PMD_DRV_LOG(DEBUG, "rx_discards: %"PRIu64"", nes->rx_discards);
PMD_DRV_LOG(DEBUG, "rx_unknown_protocol: %"PRIu64"",
nes->rx_unknown_protocol);
PMD_DRV_LOG(DEBUG, "tx_bytes: %"PRIu64"", nes->tx_bytes);
PMD_DRV_LOG(DEBUG, "tx_unicast: %"PRIu64"", nes->tx_unicast);
PMD_DRV_LOG(DEBUG, "tx_multicast: %"PRIu64"", nes->tx_multicast);
PMD_DRV_LOG(DEBUG, "tx_broadcast: %"PRIu64"", nes->tx_broadcast);
PMD_DRV_LOG(DEBUG, "tx_discards: %"PRIu64"", nes->tx_discards);
PMD_DRV_LOG(DEBUG, "tx_errors: %"PRIu64"", nes->tx_errors);
PMD_DRV_LOG(DEBUG, "***************** VSI[%u] stats end *******************",
vsi->vsi_id);
}
static void
i40e_read_stats_registers(struct i40e_pf *pf, struct i40e_hw *hw)
{
unsigned int i;
struct i40e_hw_port_stats *ns = &pf->stats; /* new stats */
struct i40e_hw_port_stats *os = &pf->stats_offset; /* old stats */
/* Get statistics of struct i40e_eth_stats */
i40e_stat_update_48(hw, I40E_GLPRT_GORCH(hw->port),
I40E_GLPRT_GORCL(hw->port),
pf->offset_loaded, &os->eth.rx_bytes,
&ns->eth.rx_bytes);
i40e_stat_update_48(hw, I40E_GLPRT_UPRCH(hw->port),
I40E_GLPRT_UPRCL(hw->port),
pf->offset_loaded, &os->eth.rx_unicast,
&ns->eth.rx_unicast);
i40e_stat_update_48(hw, I40E_GLPRT_MPRCH(hw->port),
I40E_GLPRT_MPRCL(hw->port),
pf->offset_loaded, &os->eth.rx_multicast,
&ns->eth.rx_multicast);
i40e_stat_update_48(hw, I40E_GLPRT_BPRCH(hw->port),
I40E_GLPRT_BPRCL(hw->port),
pf->offset_loaded, &os->eth.rx_broadcast,
&ns->eth.rx_broadcast);
/* Workaround: CRC size should not be included in byte statistics,
* so subtract ETHER_CRC_LEN from the byte counter for each rx packet.
*/
ns->eth.rx_bytes -= (ns->eth.rx_unicast + ns->eth.rx_multicast +
ns->eth.rx_broadcast) * ETHER_CRC_LEN;
i40e_stat_update_32(hw, I40E_GLPRT_RDPC(hw->port),
pf->offset_loaded, &os->eth.rx_discards,
&ns->eth.rx_discards);
/* GLPRT_REPC not supported */
/* GLPRT_RMPC not supported */
i40e_stat_update_32(hw, I40E_GLPRT_RUPP(hw->port),
pf->offset_loaded,
&os->eth.rx_unknown_protocol,
&ns->eth.rx_unknown_protocol);
i40e_stat_update_48(hw, I40E_GLPRT_GOTCH(hw->port),
I40E_GLPRT_GOTCL(hw->port),
pf->offset_loaded, &os->eth.tx_bytes,
&ns->eth.tx_bytes);
i40e_stat_update_48(hw, I40E_GLPRT_UPTCH(hw->port),
I40E_GLPRT_UPTCL(hw->port),
pf->offset_loaded, &os->eth.tx_unicast,
&ns->eth.tx_unicast);
i40e_stat_update_48(hw, I40E_GLPRT_MPTCH(hw->port),
I40E_GLPRT_MPTCL(hw->port),
pf->offset_loaded, &os->eth.tx_multicast,
&ns->eth.tx_multicast);
i40e_stat_update_48(hw, I40E_GLPRT_BPTCH(hw->port),
I40E_GLPRT_BPTCL(hw->port),
pf->offset_loaded, &os->eth.tx_broadcast,
&ns->eth.tx_broadcast);
ns->eth.tx_bytes -= (ns->eth.tx_unicast + ns->eth.tx_multicast +
ns->eth.tx_broadcast) * ETHER_CRC_LEN;
/* GLPRT_TEPC not supported */
/* additional port specific stats */
i40e_stat_update_32(hw, I40E_GLPRT_TDOLD(hw->port),
pf->offset_loaded, &os->tx_dropped_link_down,
&ns->tx_dropped_link_down);
i40e_stat_update_32(hw, I40E_GLPRT_CRCERRS(hw->port),
pf->offset_loaded, &os->crc_errors,
&ns->crc_errors);
i40e_stat_update_32(hw, I40E_GLPRT_ILLERRC(hw->port),
pf->offset_loaded, &os->illegal_bytes,
&ns->illegal_bytes);
/* GLPRT_ERRBC not supported */
i40e_stat_update_32(hw, I40E_GLPRT_MLFC(hw->port),
pf->offset_loaded, &os->mac_local_faults,
&ns->mac_local_faults);
i40e_stat_update_32(hw, I40E_GLPRT_MRFC(hw->port),
pf->offset_loaded, &os->mac_remote_faults,
&ns->mac_remote_faults);
i40e_stat_update_32(hw, I40E_GLPRT_RLEC(hw->port),
pf->offset_loaded, &os->rx_length_errors,
&ns->rx_length_errors);
i40e_stat_update_32(hw, I40E_GLPRT_LXONRXC(hw->port),
pf->offset_loaded, &os->link_xon_rx,
&ns->link_xon_rx);
i40e_stat_update_32(hw, I40E_GLPRT_LXOFFRXC(hw->port),
pf->offset_loaded, &os->link_xoff_rx,
&ns->link_xoff_rx);
for (i = 0; i < 8; i++) {
i40e_stat_update_32(hw, I40E_GLPRT_PXONRXC(hw->port, i),
pf->offset_loaded,
&os->priority_xon_rx[i],
&ns->priority_xon_rx[i]);
i40e_stat_update_32(hw, I40E_GLPRT_PXOFFRXC(hw->port, i),
pf->offset_loaded,
&os->priority_xoff_rx[i],
&ns->priority_xoff_rx[i]);
}
i40e_stat_update_32(hw, I40E_GLPRT_LXONTXC(hw->port),
pf->offset_loaded, &os->link_xon_tx,
&ns->link_xon_tx);
i40e_stat_update_32(hw, I40E_GLPRT_LXOFFTXC(hw->port),
pf->offset_loaded, &os->link_xoff_tx,
&ns->link_xoff_tx);
for (i = 0; i < 8; i++) {
i40e_stat_update_32(hw, I40E_GLPRT_PXONTXC(hw->port, i),
pf->offset_loaded,
&os->priority_xon_tx[i],
&ns->priority_xon_tx[i]);
i40e_stat_update_32(hw, I40E_GLPRT_PXOFFTXC(hw->port, i),
pf->offset_loaded,
&os->priority_xoff_tx[i],
&ns->priority_xoff_tx[i]);
i40e_stat_update_32(hw, I40E_GLPRT_RXON2OFFCNT(hw->port, i),
pf->offset_loaded,
&os->priority_xon_2_xoff[i],
&ns->priority_xon_2_xoff[i]);
}
i40e_stat_update_48(hw, I40E_GLPRT_PRC64H(hw->port),
I40E_GLPRT_PRC64L(hw->port),
pf->offset_loaded, &os->rx_size_64,
&ns->rx_size_64);
i40e_stat_update_48(hw, I40E_GLPRT_PRC127H(hw->port),
I40E_GLPRT_PRC127L(hw->port),
pf->offset_loaded, &os->rx_size_127,
&ns->rx_size_127);
i40e_stat_update_48(hw, I40E_GLPRT_PRC255H(hw->port),
I40E_GLPRT_PRC255L(hw->port),
pf->offset_loaded, &os->rx_size_255,
&ns->rx_size_255);
i40e_stat_update_48(hw, I40E_GLPRT_PRC511H(hw->port),
I40E_GLPRT_PRC511L(hw->port),
pf->offset_loaded, &os->rx_size_511,
&ns->rx_size_511);
i40e_stat_update_48(hw, I40E_GLPRT_PRC1023H(hw->port),
I40E_GLPRT_PRC1023L(hw->port),
pf->offset_loaded, &os->rx_size_1023,
&ns->rx_size_1023);
i40e_stat_update_48(hw, I40E_GLPRT_PRC1522H(hw->port),
I40E_GLPRT_PRC1522L(hw->port),
pf->offset_loaded, &os->rx_size_1522,
&ns->rx_size_1522);
i40e_stat_update_48(hw, I40E_GLPRT_PRC9522H(hw->port),
I40E_GLPRT_PRC9522L(hw->port),
pf->offset_loaded, &os->rx_size_big,
&ns->rx_size_big);
i40e_stat_update_32(hw, I40E_GLPRT_RUC(hw->port),
pf->offset_loaded, &os->rx_undersize,
&ns->rx_undersize);
i40e_stat_update_32(hw, I40E_GLPRT_RFC(hw->port),
pf->offset_loaded, &os->rx_fragments,
&ns->rx_fragments);
i40e_stat_update_32(hw, I40E_GLPRT_ROC(hw->port),
pf->offset_loaded, &os->rx_oversize,
&ns->rx_oversize);
i40e_stat_update_32(hw, I40E_GLPRT_RJC(hw->port),
pf->offset_loaded, &os->rx_jabber,
&ns->rx_jabber);
i40e_stat_update_48(hw, I40E_GLPRT_PTC64H(hw->port),
I40E_GLPRT_PTC64L(hw->port),
pf->offset_loaded, &os->tx_size_64,
&ns->tx_size_64);
i40e_stat_update_48(hw, I40E_GLPRT_PTC127H(hw->port),
I40E_GLPRT_PTC127L(hw->port),
pf->offset_loaded, &os->tx_size_127,
&ns->tx_size_127);
i40e_stat_update_48(hw, I40E_GLPRT_PTC255H(hw->port),
I40E_GLPRT_PTC255L(hw->port),
pf->offset_loaded, &os->tx_size_255,
&ns->tx_size_255);
i40e_stat_update_48(hw, I40E_GLPRT_PTC511H(hw->port),
I40E_GLPRT_PTC511L(hw->port),
pf->offset_loaded, &os->tx_size_511,
&ns->tx_size_511);
i40e_stat_update_48(hw, I40E_GLPRT_PTC1023H(hw->port),
I40E_GLPRT_PTC1023L(hw->port),
pf->offset_loaded, &os->tx_size_1023,
&ns->tx_size_1023);
i40e_stat_update_48(hw, I40E_GLPRT_PTC1522H(hw->port),
I40E_GLPRT_PTC1522L(hw->port),
pf->offset_loaded, &os->tx_size_1522,
&ns->tx_size_1522);
i40e_stat_update_48(hw, I40E_GLPRT_PTC9522H(hw->port),
I40E_GLPRT_PTC9522L(hw->port),
pf->offset_loaded, &os->tx_size_big,
&ns->tx_size_big);
i40e_stat_update_32(hw, I40E_GLQF_PCNT(pf->fdir.match_counter_index),
pf->offset_loaded,
&os->fd_sb_match, &ns->fd_sb_match);
/* GLPRT_MSPDC not supported */
/* GLPRT_XEC not supported */
pf->offset_loaded = true;
if (pf->main_vsi)
i40e_update_vsi_stats(pf->main_vsi);
}
/* Get all statistics of a port */
static void
i40e_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_hw_port_stats *ns = &pf->stats; /* new stats */
unsigned i;
/* call read registers - updates values, now write them to struct */
i40e_read_stats_registers(pf, hw);
stats->ipackets = pf->main_vsi->eth_stats.rx_unicast +
pf->main_vsi->eth_stats.rx_multicast +
pf->main_vsi->eth_stats.rx_broadcast -
pf->main_vsi->eth_stats.rx_discards;
stats->opackets = pf->main_vsi->eth_stats.tx_unicast +
pf->main_vsi->eth_stats.tx_multicast +
pf->main_vsi->eth_stats.tx_broadcast;
stats->ibytes = ns->eth.rx_bytes;
stats->obytes = ns->eth.tx_bytes;
stats->oerrors = ns->eth.tx_errors +
pf->main_vsi->eth_stats.tx_errors;
/* Rx Errors */
stats->imissed = ns->eth.rx_discards +
pf->main_vsi->eth_stats.rx_discards;
stats->ierrors = ns->crc_errors +
ns->rx_length_errors + ns->rx_undersize +
ns->rx_oversize + ns->rx_fragments + ns->rx_jabber;
PMD_DRV_LOG(DEBUG, "***************** PF stats start *******************");
PMD_DRV_LOG(DEBUG, "rx_bytes: %"PRIu64"", ns->eth.rx_bytes);
PMD_DRV_LOG(DEBUG, "rx_unicast: %"PRIu64"", ns->eth.rx_unicast);
PMD_DRV_LOG(DEBUG, "rx_multicast: %"PRIu64"", ns->eth.rx_multicast);
PMD_DRV_LOG(DEBUG, "rx_broadcast: %"PRIu64"", ns->eth.rx_broadcast);
PMD_DRV_LOG(DEBUG, "rx_discards: %"PRIu64"", ns->eth.rx_discards);
PMD_DRV_LOG(DEBUG, "rx_unknown_protocol: %"PRIu64"",
ns->eth.rx_unknown_protocol);
PMD_DRV_LOG(DEBUG, "tx_bytes: %"PRIu64"", ns->eth.tx_bytes);
PMD_DRV_LOG(DEBUG, "tx_unicast: %"PRIu64"", ns->eth.tx_unicast);
PMD_DRV_LOG(DEBUG, "tx_multicast: %"PRIu64"", ns->eth.tx_multicast);
PMD_DRV_LOG(DEBUG, "tx_broadcast: %"PRIu64"", ns->eth.tx_broadcast);
PMD_DRV_LOG(DEBUG, "tx_discards: %"PRIu64"", ns->eth.tx_discards);
PMD_DRV_LOG(DEBUG, "tx_errors: %"PRIu64"", ns->eth.tx_errors);
PMD_DRV_LOG(DEBUG, "tx_dropped_link_down: %"PRIu64"",
ns->tx_dropped_link_down);
PMD_DRV_LOG(DEBUG, "crc_errors: %"PRIu64"", ns->crc_errors);
PMD_DRV_LOG(DEBUG, "illegal_bytes: %"PRIu64"",
ns->illegal_bytes);
PMD_DRV_LOG(DEBUG, "error_bytes: %"PRIu64"", ns->error_bytes);
PMD_DRV_LOG(DEBUG, "mac_local_faults: %"PRIu64"",
ns->mac_local_faults);
PMD_DRV_LOG(DEBUG, "mac_remote_faults: %"PRIu64"",
ns->mac_remote_faults);
PMD_DRV_LOG(DEBUG, "rx_length_errors: %"PRIu64"",
ns->rx_length_errors);
PMD_DRV_LOG(DEBUG, "link_xon_rx: %"PRIu64"", ns->link_xon_rx);
PMD_DRV_LOG(DEBUG, "link_xoff_rx: %"PRIu64"", ns->link_xoff_rx);
for (i = 0; i < 8; i++) {
PMD_DRV_LOG(DEBUG, "priority_xon_rx[%d]: %"PRIu64"",
i, ns->priority_xon_rx[i]);
PMD_DRV_LOG(DEBUG, "priority_xoff_rx[%d]: %"PRIu64"",
i, ns->priority_xoff_rx[i]);
}
PMD_DRV_LOG(DEBUG, "link_xon_tx: %"PRIu64"", ns->link_xon_tx);
PMD_DRV_LOG(DEBUG, "link_xoff_tx: %"PRIu64"", ns->link_xoff_tx);
for (i = 0; i < 8; i++) {
PMD_DRV_LOG(DEBUG, "priority_xon_tx[%d]: %"PRIu64"",
i, ns->priority_xon_tx[i]);
PMD_DRV_LOG(DEBUG, "priority_xoff_tx[%d]: %"PRIu64"",
i, ns->priority_xoff_tx[i]);
PMD_DRV_LOG(DEBUG, "priority_xon_2_xoff[%d]: %"PRIu64"",
i, ns->priority_xon_2_xoff[i]);
}
PMD_DRV_LOG(DEBUG, "rx_size_64: %"PRIu64"", ns->rx_size_64);
PMD_DRV_LOG(DEBUG, "rx_size_127: %"PRIu64"", ns->rx_size_127);
PMD_DRV_LOG(DEBUG, "rx_size_255: %"PRIu64"", ns->rx_size_255);
PMD_DRV_LOG(DEBUG, "rx_size_511: %"PRIu64"", ns->rx_size_511);
PMD_DRV_LOG(DEBUG, "rx_size_1023: %"PRIu64"", ns->rx_size_1023);
PMD_DRV_LOG(DEBUG, "rx_size_1522: %"PRIu64"", ns->rx_size_1522);
PMD_DRV_LOG(DEBUG, "rx_size_big: %"PRIu64"", ns->rx_size_big);
PMD_DRV_LOG(DEBUG, "rx_undersize: %"PRIu64"", ns->rx_undersize);
PMD_DRV_LOG(DEBUG, "rx_fragments: %"PRIu64"", ns->rx_fragments);
PMD_DRV_LOG(DEBUG, "rx_oversize: %"PRIu64"", ns->rx_oversize);
PMD_DRV_LOG(DEBUG, "rx_jabber: %"PRIu64"", ns->rx_jabber);
PMD_DRV_LOG(DEBUG, "tx_size_64: %"PRIu64"", ns->tx_size_64);
PMD_DRV_LOG(DEBUG, "tx_size_127: %"PRIu64"", ns->tx_size_127);
PMD_DRV_LOG(DEBUG, "tx_size_255: %"PRIu64"", ns->tx_size_255);
PMD_DRV_LOG(DEBUG, "tx_size_511: %"PRIu64"", ns->tx_size_511);
PMD_DRV_LOG(DEBUG, "tx_size_1023: %"PRIu64"", ns->tx_size_1023);
PMD_DRV_LOG(DEBUG, "tx_size_1522: %"PRIu64"", ns->tx_size_1522);
PMD_DRV_LOG(DEBUG, "tx_size_big: %"PRIu64"", ns->tx_size_big);
PMD_DRV_LOG(DEBUG, "mac_short_packet_dropped: %"PRIu64"",
ns->mac_short_packet_dropped);
PMD_DRV_LOG(DEBUG, "checksum_error: %"PRIu64"",
ns->checksum_error);
PMD_DRV_LOG(DEBUG, "fdir_match: %"PRIu64"", ns->fd_sb_match);
PMD_DRV_LOG(DEBUG, "***************** PF stats end ********************");
}
/* Reset the statistics */
static void
i40e_dev_stats_reset(struct rte_eth_dev *dev)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* Mark PF and VSI stats to update the offset, aka "reset" */
pf->offset_loaded = false;
if (pf->main_vsi)
pf->main_vsi->offset_loaded = false;
/* read the stats, reading current register values into offset */
i40e_read_stats_registers(pf, hw);
}
static uint32_t
i40e_xstats_calc_num(void)
{
return I40E_NB_ETH_XSTATS + I40E_NB_HW_PORT_XSTATS +
(I40E_NB_RXQ_PRIO_XSTATS * 8) +
(I40E_NB_TXQ_PRIO_XSTATS * 8);
}
static int i40e_dev_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
struct rte_eth_xstat_name *xstats_names,
__rte_unused unsigned limit)
{
unsigned count = 0;
unsigned i, prio;
if (xstats_names == NULL)
return i40e_xstats_calc_num();
/* Note: limit checked in rte_eth_xstats_names() */
/* Get stats from i40e_eth_stats struct */
for (i = 0; i < I40E_NB_ETH_XSTATS; i++) {
snprintf(xstats_names[count].name,
sizeof(xstats_names[count].name),
"%s", rte_i40e_stats_strings[i].name);
count++;
}
/* Get individiual stats from i40e_hw_port struct */
for (i = 0; i < I40E_NB_HW_PORT_XSTATS; i++) {
snprintf(xstats_names[count].name,
sizeof(xstats_names[count].name),
"%s", rte_i40e_hw_port_strings[i].name);
count++;
}
for (i = 0; i < I40E_NB_RXQ_PRIO_XSTATS; i++) {
for (prio = 0; prio < 8; prio++) {
snprintf(xstats_names[count].name,
sizeof(xstats_names[count].name),
"rx_priority%u_%s", prio,
rte_i40e_rxq_prio_strings[i].name);
count++;
}
}
for (i = 0; i < I40E_NB_TXQ_PRIO_XSTATS; i++) {
for (prio = 0; prio < 8; prio++) {
snprintf(xstats_names[count].name,
sizeof(xstats_names[count].name),
"tx_priority%u_%s", prio,
rte_i40e_txq_prio_strings[i].name);
count++;
}
}
return count;
}
static int
i40e_dev_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
unsigned n)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
unsigned i, count, prio;
struct i40e_hw_port_stats *hw_stats = &pf->stats;
count = i40e_xstats_calc_num();
if (n < count)
return count;
i40e_read_stats_registers(pf, hw);
if (xstats == NULL)
return 0;
count = 0;
/* Get stats from i40e_eth_stats struct */
for (i = 0; i < I40E_NB_ETH_XSTATS; i++) {
xstats[count].value = *(uint64_t *)(((char *)&hw_stats->eth) +
rte_i40e_stats_strings[i].offset);
xstats[count].id = count;
count++;
}
/* Get individiual stats from i40e_hw_port struct */
for (i = 0; i < I40E_NB_HW_PORT_XSTATS; i++) {
xstats[count].value = *(uint64_t *)(((char *)hw_stats) +
rte_i40e_hw_port_strings[i].offset);
xstats[count].id = count;
count++;
}
for (i = 0; i < I40E_NB_RXQ_PRIO_XSTATS; i++) {
for (prio = 0; prio < 8; prio++) {
xstats[count].value =
*(uint64_t *)(((char *)hw_stats) +
rte_i40e_rxq_prio_strings[i].offset +
(sizeof(uint64_t) * prio));
xstats[count].id = count;
count++;
}
}
for (i = 0; i < I40E_NB_TXQ_PRIO_XSTATS; i++) {
for (prio = 0; prio < 8; prio++) {
xstats[count].value =
*(uint64_t *)(((char *)hw_stats) +
rte_i40e_txq_prio_strings[i].offset +
(sizeof(uint64_t) * prio));
xstats[count].id = count;
count++;
}
}
return count;
}
static int
i40e_dev_queue_stats_mapping_set(__rte_unused struct rte_eth_dev *dev,
__rte_unused uint16_t queue_id,
__rte_unused uint8_t stat_idx,
__rte_unused uint8_t is_rx)
{
PMD_INIT_FUNC_TRACE();
return -ENOSYS;
}
static int
i40e_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
u32 full_ver;
u8 ver, patch;
u16 build;
int ret;
full_ver = hw->nvm.oem_ver;
ver = (u8)(full_ver >> 24);
build = (u16)((full_ver >> 8) & 0xffff);
patch = (u8)(full_ver & 0xff);
ret = snprintf(fw_version, fw_size,
"%d.%d%d 0x%08x %d.%d.%d",
((hw->nvm.version >> 12) & 0xf),
((hw->nvm.version >> 4) & 0xff),
(hw->nvm.version & 0xf), hw->nvm.eetrack,
ver, build, patch);
ret += 1; /* add the size of '\0' */
if (fw_size < (u32)ret)
return ret;
else
return 0;
}
static void
i40e_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_vsi *vsi = pf->main_vsi;
struct rte_pci_device *pci_dev = I40E_DEV_TO_PCI(dev);
dev_info->pci_dev = pci_dev;
dev_info->max_rx_queues = vsi->nb_qps;
dev_info->max_tx_queues = vsi->nb_qps;
dev_info->min_rx_bufsize = I40E_BUF_SIZE_MIN;
dev_info->max_rx_pktlen = I40E_FRAME_SIZE_MAX;
dev_info->max_mac_addrs = vsi->max_macaddrs;
dev_info->max_vfs = pci_dev->max_vfs;
dev_info->rx_offload_capa =
DEV_RX_OFFLOAD_VLAN_STRIP |
DEV_RX_OFFLOAD_QINQ_STRIP |
DEV_RX_OFFLOAD_IPV4_CKSUM |
DEV_RX_OFFLOAD_UDP_CKSUM |
DEV_RX_OFFLOAD_TCP_CKSUM;
dev_info->tx_offload_capa =
DEV_TX_OFFLOAD_VLAN_INSERT |
DEV_TX_OFFLOAD_QINQ_INSERT |
DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_UDP_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM |
DEV_TX_OFFLOAD_SCTP_CKSUM |
DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
DEV_TX_OFFLOAD_TCP_TSO |
DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
DEV_TX_OFFLOAD_GRE_TNL_TSO |
DEV_TX_OFFLOAD_IPIP_TNL_TSO |
DEV_TX_OFFLOAD_GENEVE_TNL_TSO;
dev_info->hash_key_size = (I40E_PFQF_HKEY_MAX_INDEX + 1) *
sizeof(uint32_t);
dev_info->reta_size = pf->hash_lut_size;
dev_info->flow_type_rss_offloads = I40E_RSS_OFFLOAD_ALL;
dev_info->default_rxconf = (struct rte_eth_rxconf) {
.rx_thresh = {
.pthresh = I40E_DEFAULT_RX_PTHRESH,
.hthresh = I40E_DEFAULT_RX_HTHRESH,
.wthresh = I40E_DEFAULT_RX_WTHRESH,
},
.rx_free_thresh = I40E_DEFAULT_RX_FREE_THRESH,
.rx_drop_en = 0,
};
dev_info->default_txconf = (struct rte_eth_txconf) {
.tx_thresh = {
.pthresh = I40E_DEFAULT_TX_PTHRESH,
.hthresh = I40E_DEFAULT_TX_HTHRESH,
.wthresh = I40E_DEFAULT_TX_WTHRESH,
},
.tx_free_thresh = I40E_DEFAULT_TX_FREE_THRESH,
.tx_rs_thresh = I40E_DEFAULT_TX_RSBIT_THRESH,
.txq_flags = ETH_TXQ_FLAGS_NOMULTSEGS |
ETH_TXQ_FLAGS_NOOFFLOADS,
};
dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
.nb_max = I40E_MAX_RING_DESC,
.nb_min = I40E_MIN_RING_DESC,
.nb_align = I40E_ALIGN_RING_DESC,
};
dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
.nb_max = I40E_MAX_RING_DESC,
.nb_min = I40E_MIN_RING_DESC,
.nb_align = I40E_ALIGN_RING_DESC,
.nb_seg_max = I40E_TX_MAX_SEG,
.nb_mtu_seg_max = I40E_TX_MAX_MTU_SEG,
};
if (pf->flags & I40E_FLAG_VMDQ) {
dev_info->max_vmdq_pools = pf->max_nb_vmdq_vsi;
dev_info->vmdq_queue_base = dev_info->max_rx_queues;
dev_info->vmdq_queue_num = pf->vmdq_nb_qps *
pf->max_nb_vmdq_vsi;
dev_info->vmdq_pool_base = I40E_VMDQ_POOL_BASE;
dev_info->max_rx_queues += dev_info->vmdq_queue_num;
dev_info->max_tx_queues += dev_info->vmdq_queue_num;
}
if (I40E_PHY_TYPE_SUPPORT_40G(hw->phy.phy_types))
/* For XL710 */
dev_info->speed_capa = ETH_LINK_SPEED_40G;
else if (I40E_PHY_TYPE_SUPPORT_25G(hw->phy.phy_types))
/* For XXV710 */
dev_info->speed_capa = ETH_LINK_SPEED_25G;
else
/* For X710 */
dev_info->speed_capa = ETH_LINK_SPEED_1G | ETH_LINK_SPEED_10G;
}
static int
i40e_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_vsi *vsi = pf->main_vsi;
PMD_INIT_FUNC_TRACE();
if (on)
return i40e_vsi_add_vlan(vsi, vlan_id);
else
return i40e_vsi_delete_vlan(vsi, vlan_id);
}
static int
i40e_vlan_tpid_set(struct rte_eth_dev *dev,
enum rte_vlan_type vlan_type,
uint16_t tpid)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint64_t reg_r = 0, reg_w = 0;
uint16_t reg_id = 0;
int ret = 0;
int qinq = dev->data->dev_conf.rxmode.hw_vlan_extend;
switch (vlan_type) {
case ETH_VLAN_TYPE_OUTER:
if (qinq)
reg_id = 2;
else
reg_id = 3;
break;
case ETH_VLAN_TYPE_INNER:
if (qinq)
reg_id = 3;
else {
ret = -EINVAL;
PMD_DRV_LOG(ERR,
"Unsupported vlan type in single vlan.\n");
return ret;
}
break;
default:
ret = -EINVAL;
PMD_DRV_LOG(ERR, "Unsupported vlan type %d", vlan_type);
return ret;
}
ret = i40e_aq_debug_read_register(hw, I40E_GL_SWT_L2TAGCTRL(reg_id),
&reg_r, NULL);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Fail to debug read from "
"I40E_GL_SWT_L2TAGCTRL[%d]", reg_id);
ret = -EIO;
return ret;
}
PMD_DRV_LOG(DEBUG, "Debug read from I40E_GL_SWT_L2TAGCTRL[%d]: "
"0x%08"PRIx64"", reg_id, reg_r);
reg_w = reg_r & (~(I40E_GL_SWT_L2TAGCTRL_ETHERTYPE_MASK));
reg_w |= ((uint64_t)tpid << I40E_GL_SWT_L2TAGCTRL_ETHERTYPE_SHIFT);
if (reg_r == reg_w) {
ret = 0;
PMD_DRV_LOG(DEBUG, "No need to write");
return ret;
}
ret = i40e_aq_debug_write_register(hw, I40E_GL_SWT_L2TAGCTRL(reg_id),
reg_w, NULL);
if (ret != I40E_SUCCESS) {
ret = -EIO;
PMD_DRV_LOG(ERR, "Fail to debug write to "
"I40E_GL_SWT_L2TAGCTRL[%d]", reg_id);
return ret;
}
PMD_DRV_LOG(DEBUG, "Debug write 0x%08"PRIx64" to "
"I40E_GL_SWT_L2TAGCTRL[%d]", reg_w, reg_id);
return ret;
}
static void
i40e_vlan_offload_set(struct rte_eth_dev *dev, int mask)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_vsi *vsi = pf->main_vsi;
if (mask & ETH_VLAN_FILTER_MASK) {
if (dev->data->dev_conf.rxmode.hw_vlan_filter)
i40e_vsi_config_vlan_filter(vsi, TRUE);
else
i40e_vsi_config_vlan_filter(vsi, FALSE);
}
if (mask & ETH_VLAN_STRIP_MASK) {
/* Enable or disable VLAN stripping */
if (dev->data->dev_conf.rxmode.hw_vlan_strip)
i40e_vsi_config_vlan_stripping(vsi, TRUE);
else
i40e_vsi_config_vlan_stripping(vsi, FALSE);
}
if (mask & ETH_VLAN_EXTEND_MASK) {
if (dev->data->dev_conf.rxmode.hw_vlan_extend) {
i40e_vsi_config_double_vlan(vsi, TRUE);
/* Set global registers with default ether type value */
i40e_vlan_tpid_set(dev, ETH_VLAN_TYPE_OUTER,
ETHER_TYPE_VLAN);
i40e_vlan_tpid_set(dev, ETH_VLAN_TYPE_INNER,
ETHER_TYPE_VLAN);
}
else
i40e_vsi_config_double_vlan(vsi, FALSE);
}
}
static void
i40e_vlan_strip_queue_set(__rte_unused struct rte_eth_dev *dev,
__rte_unused uint16_t queue,
__rte_unused int on)
{
PMD_INIT_FUNC_TRACE();
}
static int
i40e_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_vsi *vsi = pf->main_vsi;
struct rte_eth_dev_data *data = I40E_VSI_TO_DEV_DATA(vsi);
struct i40e_vsi_vlan_pvid_info info;
memset(&info, 0, sizeof(info));
info.on = on;
if (info.on)
info.config.pvid = pvid;
else {
info.config.reject.tagged =
data->dev_conf.txmode.hw_vlan_reject_tagged;
info.config.reject.untagged =
data->dev_conf.txmode.hw_vlan_reject_untagged;
}
return i40e_vsi_vlan_pvid_set(vsi, &info);
}
static int
i40e_dev_led_on(struct rte_eth_dev *dev)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t mode = i40e_led_get(hw);
if (mode == 0)
i40e_led_set(hw, 0xf, true); /* 0xf means led always true */
return 0;
}
static int
i40e_dev_led_off(struct rte_eth_dev *dev)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t mode = i40e_led_get(hw);
if (mode != 0)
i40e_led_set(hw, 0, false);
return 0;
}
static int
i40e_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
fc_conf->pause_time = pf->fc_conf.pause_time;
fc_conf->high_water = pf->fc_conf.high_water[I40E_MAX_TRAFFIC_CLASS];
fc_conf->low_water = pf->fc_conf.low_water[I40E_MAX_TRAFFIC_CLASS];
/* Return current mode according to actual setting*/
switch (hw->fc.current_mode) {
case I40E_FC_FULL:
fc_conf->mode = RTE_FC_FULL;
break;
case I40E_FC_TX_PAUSE:
fc_conf->mode = RTE_FC_TX_PAUSE;
break;
case I40E_FC_RX_PAUSE:
fc_conf->mode = RTE_FC_RX_PAUSE;
break;
case I40E_FC_NONE:
default:
fc_conf->mode = RTE_FC_NONE;
};
return 0;
}
static int
i40e_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
{
uint32_t mflcn_reg, fctrl_reg, reg;
uint32_t max_high_water;
uint8_t i, aq_failure;
int err;
struct i40e_hw *hw;
struct i40e_pf *pf;
enum i40e_fc_mode rte_fcmode_2_i40e_fcmode[] = {
[RTE_FC_NONE] = I40E_FC_NONE,
[RTE_FC_RX_PAUSE] = I40E_FC_RX_PAUSE,
[RTE_FC_TX_PAUSE] = I40E_FC_TX_PAUSE,
[RTE_FC_FULL] = I40E_FC_FULL
};
/* high_water field in the rte_eth_fc_conf using the kilobytes unit */
max_high_water = I40E_RXPBSIZE >> I40E_KILOSHIFT;
if ((fc_conf->high_water > max_high_water) ||
(fc_conf->high_water < fc_conf->low_water)) {
PMD_INIT_LOG(ERR, "Invalid high/low water setup value in KB, "
"High_water must <= %d.", max_high_water);
return -EINVAL;
}
hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
hw->fc.requested_mode = rte_fcmode_2_i40e_fcmode[fc_conf->mode];
pf->fc_conf.pause_time = fc_conf->pause_time;
pf->fc_conf.high_water[I40E_MAX_TRAFFIC_CLASS] = fc_conf->high_water;
pf->fc_conf.low_water[I40E_MAX_TRAFFIC_CLASS] = fc_conf->low_water;
PMD_INIT_FUNC_TRACE();
/* All the link flow control related enable/disable register
* configuration is handle by the F/W
*/
err = i40e_set_fc(hw, &aq_failure, true);
if (err < 0)
return -ENOSYS;
if (I40E_PHY_TYPE_SUPPORT_40G(hw->phy.phy_types)) {
/* Configure flow control refresh threshold,
* the value for stat_tx_pause_refresh_timer[8]
* is used for global pause operation.
*/
I40E_WRITE_REG(hw,
I40E_PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(8),
pf->fc_conf.pause_time);
/* configure the timer value included in transmitted pause
* frame,
* the value for stat_tx_pause_quanta[8] is used for global
* pause operation
*/
I40E_WRITE_REG(hw, I40E_PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(8),
pf->fc_conf.pause_time);
fctrl_reg = I40E_READ_REG(hw,
I40E_PRTMAC_HSEC_CTL_RX_FORWARD_CONTROL);
if (fc_conf->mac_ctrl_frame_fwd != 0)
fctrl_reg |= I40E_PRTMAC_FWD_CTRL;
else
fctrl_reg &= ~I40E_PRTMAC_FWD_CTRL;
I40E_WRITE_REG(hw, I40E_PRTMAC_HSEC_CTL_RX_FORWARD_CONTROL,
fctrl_reg);
} else {
/* Configure pause time (2 TCs per register) */
reg = (uint32_t)pf->fc_conf.pause_time * (uint32_t)0x00010001;
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS / 2; i++)
I40E_WRITE_REG(hw, I40E_PRTDCB_FCTTVN(i), reg);
/* Configure flow control refresh threshold value */
I40E_WRITE_REG(hw, I40E_PRTDCB_FCRTV,
pf->fc_conf.pause_time / 2);
mflcn_reg = I40E_READ_REG(hw, I40E_PRTDCB_MFLCN);
/* set or clear MFLCN.PMCF & MFLCN.DPF bits
*depending on configuration
*/
if (fc_conf->mac_ctrl_frame_fwd != 0) {
mflcn_reg |= I40E_PRTDCB_MFLCN_PMCF_MASK;
mflcn_reg &= ~I40E_PRTDCB_MFLCN_DPF_MASK;
} else {
mflcn_reg &= ~I40E_PRTDCB_MFLCN_PMCF_MASK;
mflcn_reg |= I40E_PRTDCB_MFLCN_DPF_MASK;
}
I40E_WRITE_REG(hw, I40E_PRTDCB_MFLCN, mflcn_reg);
}
/* config the water marker both based on the packets and bytes */
I40E_WRITE_REG(hw, I40E_GLRPB_PHW,
(pf->fc_conf.high_water[I40E_MAX_TRAFFIC_CLASS]
<< I40E_KILOSHIFT) / I40E_PACKET_AVERAGE_SIZE);
I40E_WRITE_REG(hw, I40E_GLRPB_PLW,
(pf->fc_conf.low_water[I40E_MAX_TRAFFIC_CLASS]
<< I40E_KILOSHIFT) / I40E_PACKET_AVERAGE_SIZE);
I40E_WRITE_REG(hw, I40E_GLRPB_GHW,
pf->fc_conf.high_water[I40E_MAX_TRAFFIC_CLASS]
<< I40E_KILOSHIFT);
I40E_WRITE_REG(hw, I40E_GLRPB_GLW,
pf->fc_conf.low_water[I40E_MAX_TRAFFIC_CLASS]
<< I40E_KILOSHIFT);
I40E_WRITE_FLUSH(hw);
return 0;
}
static int
i40e_priority_flow_ctrl_set(__rte_unused struct rte_eth_dev *dev,
__rte_unused struct rte_eth_pfc_conf *pfc_conf)
{
PMD_INIT_FUNC_TRACE();
return -ENOSYS;
}
/* Add a MAC address, and update filters */
static void
i40e_macaddr_add(struct rte_eth_dev *dev,
struct ether_addr *mac_addr,
__rte_unused uint32_t index,
uint32_t pool)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_mac_filter_info mac_filter;
struct i40e_vsi *vsi;
int ret;
/* If VMDQ not enabled or configured, return */
if (pool != 0 && (!(pf->flags & I40E_FLAG_VMDQ) ||
!pf->nb_cfg_vmdq_vsi)) {
PMD_DRV_LOG(ERR, "VMDQ not %s, can't set mac to pool %u",
pf->flags & I40E_FLAG_VMDQ ? "configured" : "enabled",
pool);
return;
}
if (pool > pf->nb_cfg_vmdq_vsi) {
PMD_DRV_LOG(ERR, "Pool number %u invalid. Max pool is %u",
pool, pf->nb_cfg_vmdq_vsi);
return;
}
(void)rte_memcpy(&mac_filter.mac_addr, mac_addr, ETHER_ADDR_LEN);
if (dev->data->dev_conf.rxmode.hw_vlan_filter)
mac_filter.filter_type = RTE_MACVLAN_PERFECT_MATCH;
else
mac_filter.filter_type = RTE_MAC_PERFECT_MATCH;
if (pool == 0)
vsi = pf->main_vsi;
else
vsi = pf->vmdq[pool - 1].vsi;
ret = i40e_vsi_add_mac(vsi, &mac_filter);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to add MACVLAN filter");
return;
}
}
/* Remove a MAC address, and update filters */
static void
i40e_macaddr_remove(struct rte_eth_dev *dev, uint32_t index)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_vsi *vsi;
struct rte_eth_dev_data *data = dev->data;
struct ether_addr *macaddr;
int ret;
uint32_t i;
uint64_t pool_sel;
macaddr = &(data->mac_addrs[index]);
pool_sel = dev->data->mac_pool_sel[index];
for (i = 0; i < sizeof(pool_sel) * CHAR_BIT; i++) {
if (pool_sel & (1ULL << i)) {
if (i == 0)
vsi = pf->main_vsi;
else {
/* No VMDQ pool enabled or configured */
if (!(pf->flags & I40E_FLAG_VMDQ) ||
(i > pf->nb_cfg_vmdq_vsi)) {
PMD_DRV_LOG(ERR, "No VMDQ pool enabled"
"/configured");
return;
}
vsi = pf->vmdq[i - 1].vsi;
}
ret = i40e_vsi_delete_mac(vsi, macaddr);
if (ret) {
PMD_DRV_LOG(ERR, "Failed to remove MACVLAN filter");
return;
}
}
}
}
/* Set perfect match or hash match of MAC and VLAN for a VF */
static int
i40e_vf_mac_filter_set(struct i40e_pf *pf,
struct rte_eth_mac_filter *filter,
bool add)
{
struct i40e_hw *hw;
struct i40e_mac_filter_info mac_filter;
struct ether_addr old_mac;
struct ether_addr *new_mac;
struct i40e_pf_vf *vf = NULL;
uint16_t vf_id;
int ret;
if (pf == NULL) {
PMD_DRV_LOG(ERR, "Invalid PF argument.");
return -EINVAL;
}
hw = I40E_PF_TO_HW(pf);
if (filter == NULL) {
PMD_DRV_LOG(ERR, "Invalid mac filter argument.");
return -EINVAL;
}
new_mac = &filter->mac_addr;
if (is_zero_ether_addr(new_mac)) {
PMD_DRV_LOG(ERR, "Invalid ethernet address.");
return -EINVAL;
}
vf_id = filter->dst_id;
if (vf_id > pf->vf_num - 1 || !pf->vfs) {
PMD_DRV_LOG(ERR, "Invalid argument.");
return -EINVAL;
}
vf = &pf->vfs[vf_id];
if (add && is_same_ether_addr(new_mac, &(pf->dev_addr))) {
PMD_DRV_LOG(INFO, "Ignore adding permanent MAC address.");
return -EINVAL;
}
if (add) {
(void)rte_memcpy(&old_mac, hw->mac.addr, ETHER_ADDR_LEN);
(void)rte_memcpy(hw->mac.addr, new_mac->addr_bytes,
ETHER_ADDR_LEN);
(void)rte_memcpy(&mac_filter.mac_addr, &filter->mac_addr,
ETHER_ADDR_LEN);
mac_filter.filter_type = filter->filter_type;
ret = i40e_vsi_add_mac(vf->vsi, &mac_filter);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to add MAC filter.");
return -1;
}
ether_addr_copy(new_mac, &pf->dev_addr);
} else {
(void)rte_memcpy(hw->mac.addr, hw->mac.perm_addr,
ETHER_ADDR_LEN);
ret = i40e_vsi_delete_mac(vf->vsi, &filter->mac_addr);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to delete MAC filter.");
return -1;
}
/* Clear device address as it has been removed */
if (is_same_ether_addr(&(pf->dev_addr), new_mac))
memset(&pf->dev_addr, 0, sizeof(struct ether_addr));
}
return 0;
}
/* MAC filter handle */
static int
i40e_mac_filter_handle(struct rte_eth_dev *dev, enum rte_filter_op filter_op,
void *arg)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct rte_eth_mac_filter *filter;
struct i40e_hw *hw = I40E_PF_TO_HW(pf);
int ret = I40E_NOT_SUPPORTED;
filter = (struct rte_eth_mac_filter *)(arg);
switch (filter_op) {
case RTE_ETH_FILTER_NOP:
ret = I40E_SUCCESS;
break;
case RTE_ETH_FILTER_ADD:
i40e_pf_disable_irq0(hw);
if (filter->is_vf)
ret = i40e_vf_mac_filter_set(pf, filter, 1);
i40e_pf_enable_irq0(hw);
break;
case RTE_ETH_FILTER_DELETE:
i40e_pf_disable_irq0(hw);
if (filter->is_vf)
ret = i40e_vf_mac_filter_set(pf, filter, 0);
i40e_pf_enable_irq0(hw);
break;
default:
PMD_DRV_LOG(ERR, "unknown operation %u", filter_op);
ret = I40E_ERR_PARAM;
break;
}
return ret;
}
static int
i40e_get_rss_lut(struct i40e_vsi *vsi, uint8_t *lut, uint16_t lut_size)
{
struct i40e_pf *pf = I40E_VSI_TO_PF(vsi);
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
int ret;
if (!lut)
return -EINVAL;
if (pf->flags & I40E_FLAG_RSS_AQ_CAPABLE) {
ret = i40e_aq_get_rss_lut(hw, vsi->vsi_id, TRUE,
lut, lut_size);
if (ret) {
PMD_DRV_LOG(ERR, "Failed to get RSS lookup table");
return ret;
}
} else {
uint32_t *lut_dw = (uint32_t *)lut;
uint16_t i, lut_size_dw = lut_size / 4;
for (i = 0; i < lut_size_dw; i++)
lut_dw[i] = I40E_READ_REG(hw, I40E_PFQF_HLUT(i));
}
return 0;
}
static int
i40e_set_rss_lut(struct i40e_vsi *vsi, uint8_t *lut, uint16_t lut_size)
{
struct i40e_pf *pf;
struct i40e_hw *hw;
int ret;
if (!vsi || !lut)
return -EINVAL;
pf = I40E_VSI_TO_PF(vsi);
hw = I40E_VSI_TO_HW(vsi);
if (pf->flags & I40E_FLAG_RSS_AQ_CAPABLE) {
ret = i40e_aq_set_rss_lut(hw, vsi->vsi_id, TRUE,
lut, lut_size);
if (ret) {
PMD_DRV_LOG(ERR, "Failed to set RSS lookup table");
return ret;
}
} else {
uint32_t *lut_dw = (uint32_t *)lut;
uint16_t i, lut_size_dw = lut_size / 4;
for (i = 0; i < lut_size_dw; i++)
I40E_WRITE_REG(hw, I40E_PFQF_HLUT(i), lut_dw[i]);
I40E_WRITE_FLUSH(hw);
}
return 0;
}
static int
i40e_dev_rss_reta_update(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
uint16_t i, lut_size = pf->hash_lut_size;
uint16_t idx, shift;
uint8_t *lut;
int ret;
if (reta_size != lut_size ||
reta_size > ETH_RSS_RETA_SIZE_512) {
PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
"(%d) doesn't match the number hardware can supported "
"(%d)\n", reta_size, lut_size);
return -EINVAL;
}
lut = rte_zmalloc("i40e_rss_lut", reta_size, 0);
if (!lut) {
PMD_DRV_LOG(ERR, "No memory can be allocated");
return -ENOMEM;
}
ret = i40e_get_rss_lut(pf->main_vsi, lut, reta_size);
if (ret)
goto out;
for (i = 0; i < reta_size; i++) {
idx = i / RTE_RETA_GROUP_SIZE;
shift = i % RTE_RETA_GROUP_SIZE;
if (reta_conf[idx].mask & (1ULL << shift))
lut[i] = reta_conf[idx].reta[shift];
}
ret = i40e_set_rss_lut(pf->main_vsi, lut, reta_size);
out:
rte_free(lut);
return ret;
}
static int
i40e_dev_rss_reta_query(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
uint16_t i, lut_size = pf->hash_lut_size;
uint16_t idx, shift;
uint8_t *lut;
int ret;
if (reta_size != lut_size ||
reta_size > ETH_RSS_RETA_SIZE_512) {
PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
"(%d) doesn't match the number hardware can supported "
"(%d)\n", reta_size, lut_size);
return -EINVAL;
}
lut = rte_zmalloc("i40e_rss_lut", reta_size, 0);
if (!lut) {
PMD_DRV_LOG(ERR, "No memory can be allocated");
return -ENOMEM;
}
ret = i40e_get_rss_lut(pf->main_vsi, lut, reta_size);
if (ret)
goto out;
for (i = 0; i < reta_size; i++) {
idx = i / RTE_RETA_GROUP_SIZE;
shift = i % RTE_RETA_GROUP_SIZE;
if (reta_conf[idx].mask & (1ULL << shift))
reta_conf[idx].reta[shift] = lut[i];
}
out:
rte_free(lut);
return ret;
}
/**
* i40e_allocate_dma_mem_d - specific memory alloc for shared code (base driver)
* @hw: pointer to the HW structure
* @mem: pointer to mem struct to fill out
* @size: size of memory requested
* @alignment: what to align the allocation to
**/
enum i40e_status_code
i40e_allocate_dma_mem_d(__attribute__((unused)) struct i40e_hw *hw,
struct i40e_dma_mem *mem,
u64 size,
u32 alignment)
{
const struct rte_memzone *mz = NULL;
char z_name[RTE_MEMZONE_NAMESIZE];
if (!mem)
return I40E_ERR_PARAM;
snprintf(z_name, sizeof(z_name), "i40e_dma_%"PRIu64, rte_rand());
mz = rte_memzone_reserve_bounded(z_name, size, SOCKET_ID_ANY, 0,
alignment, RTE_PGSIZE_2M);
if (!mz)
return I40E_ERR_NO_MEMORY;
mem->size = size;
mem->va = mz->addr;
mem->pa = rte_mem_phy2mch(mz->memseg_id, mz->phys_addr);
mem->zone = (const void *)mz;
PMD_DRV_LOG(DEBUG, "memzone %s allocated with physical address: "
"%"PRIu64, mz->name, mem->pa);
return I40E_SUCCESS;
}
/**
* i40e_free_dma_mem_d - specific memory free for shared code (base driver)
* @hw: pointer to the HW structure
* @mem: ptr to mem struct to free
**/
enum i40e_status_code
i40e_free_dma_mem_d(__attribute__((unused)) struct i40e_hw *hw,
struct i40e_dma_mem *mem)
{
if (!mem)
return I40E_ERR_PARAM;
PMD_DRV_LOG(DEBUG, "memzone %s to be freed with physical address: "
"%"PRIu64, ((const struct rte_memzone *)mem->zone)->name,
mem->pa);
rte_memzone_free((const struct rte_memzone *)mem->zone);
mem->zone = NULL;
mem->va = NULL;
mem->pa = (u64)0;
return I40E_SUCCESS;
}
/**
* i40e_allocate_virt_mem_d - specific memory alloc for shared code (base driver)
* @hw: pointer to the HW structure
* @mem: pointer to mem struct to fill out
* @size: size of memory requested
**/
enum i40e_status_code
i40e_allocate_virt_mem_d(__attribute__((unused)) struct i40e_hw *hw,
struct i40e_virt_mem *mem,
u32 size)
{
if (!mem)
return I40E_ERR_PARAM;
mem->size = size;
mem->va = rte_zmalloc("i40e", size, 0);
if (mem->va)
return I40E_SUCCESS;
else
return I40E_ERR_NO_MEMORY;
}
/**
* i40e_free_virt_mem_d - specific memory free for shared code (base driver)
* @hw: pointer to the HW structure
* @mem: pointer to mem struct to free
**/
enum i40e_status_code
i40e_free_virt_mem_d(__attribute__((unused)) struct i40e_hw *hw,
struct i40e_virt_mem *mem)
{
if (!mem)
return I40E_ERR_PARAM;
rte_free(mem->va);
mem->va = NULL;
return I40E_SUCCESS;
}
void
i40e_init_spinlock_d(struct i40e_spinlock *sp)
{
rte_spinlock_init(&sp->spinlock);
}
void
i40e_acquire_spinlock_d(struct i40e_spinlock *sp)
{
rte_spinlock_lock(&sp->spinlock);
}
void
i40e_release_spinlock_d(struct i40e_spinlock *sp)
{
rte_spinlock_unlock(&sp->spinlock);
}
void
i40e_destroy_spinlock_d(__attribute__((unused)) struct i40e_spinlock *sp)
{
return;
}
/**
* Get the hardware capabilities, which will be parsed
* and saved into struct i40e_hw.
*/
static int
i40e_get_cap(struct i40e_hw *hw)
{
struct i40e_aqc_list_capabilities_element_resp *buf;
uint16_t len, size = 0;
int ret;
/* Calculate a huge enough buff for saving response data temporarily */
len = sizeof(struct i40e_aqc_list_capabilities_element_resp) *
I40E_MAX_CAP_ELE_NUM;
buf = rte_zmalloc("i40e", len, 0);
if (!buf) {
PMD_DRV_LOG(ERR, "Failed to allocate memory");
return I40E_ERR_NO_MEMORY;
}
/* Get, parse the capabilities and save it to hw */
ret = i40e_aq_discover_capabilities(hw, buf, len, &size,
i40e_aqc_opc_list_func_capabilities, NULL);
if (ret != I40E_SUCCESS)
PMD_DRV_LOG(ERR, "Failed to discover capabilities");
/* Free the temporary buffer after being used */
rte_free(buf);
return ret;
}
static int
i40e_pf_parameter_init(struct rte_eth_dev *dev)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_hw *hw = I40E_PF_TO_HW(pf);
struct rte_pci_device *pci_dev = I40E_DEV_TO_PCI(dev);
uint16_t qp_count = 0, vsi_count = 0;
if (pci_dev->max_vfs && !hw->func_caps.sr_iov_1_1) {
PMD_INIT_LOG(ERR, "HW configuration doesn't support SRIOV");
return -EINVAL;
}
/* Add the parameter init for LFC */
pf->fc_conf.pause_time = I40E_DEFAULT_PAUSE_TIME;
pf->fc_conf.high_water[I40E_MAX_TRAFFIC_CLASS] = I40E_DEFAULT_HIGH_WATER;
pf->fc_conf.low_water[I40E_MAX_TRAFFIC_CLASS] = I40E_DEFAULT_LOW_WATER;
pf->flags = I40E_FLAG_HEADER_SPLIT_DISABLED;
pf->max_num_vsi = hw->func_caps.num_vsis;
pf->lan_nb_qp_max = RTE_LIBRTE_I40E_QUEUE_NUM_PER_PF;
pf->vmdq_nb_qp_max = RTE_LIBRTE_I40E_QUEUE_NUM_PER_VM;
pf->vf_nb_qp_max = RTE_LIBRTE_I40E_QUEUE_NUM_PER_VF;
/* FDir queue/VSI allocation */
pf->fdir_qp_offset = 0;
if (hw->func_caps.fd) {
pf->flags |= I40E_FLAG_FDIR;
pf->fdir_nb_qps = I40E_DEFAULT_QP_NUM_FDIR;
} else {
pf->fdir_nb_qps = 0;
}
qp_count += pf->fdir_nb_qps;
vsi_count += 1;
/* LAN queue/VSI allocation */
pf->lan_qp_offset = pf->fdir_qp_offset + pf->fdir_nb_qps;
if (!hw->func_caps.rss) {
pf->lan_nb_qps = 1;
} else {
pf->flags |= I40E_FLAG_RSS;
if (hw->mac.type == I40E_MAC_X722)
pf->flags |= I40E_FLAG_RSS_AQ_CAPABLE;
pf->lan_nb_qps = pf->lan_nb_qp_max;
}
qp_count += pf->lan_nb_qps;
vsi_count += 1;
/* VF queue/VSI allocation */
pf->vf_qp_offset = pf->lan_qp_offset + pf->lan_nb_qps;
if (hw->func_caps.sr_iov_1_1 && pci_dev->max_vfs) {
pf->flags |= I40E_FLAG_SRIOV;
pf->vf_nb_qps = RTE_LIBRTE_I40E_QUEUE_NUM_PER_VF;
pf->vf_num = pci_dev->max_vfs;
PMD_DRV_LOG(DEBUG, "%u VF VSIs, %u queues per VF VSI, "
"in total %u queues", pf->vf_num, pf->vf_nb_qps,
pf->vf_nb_qps * pf->vf_num);
} else {
pf->vf_nb_qps = 0;
pf->vf_num = 0;
}
qp_count += pf->vf_nb_qps * pf->vf_num;
vsi_count += pf->vf_num;
/* VMDq queue/VSI allocation */
pf->vmdq_qp_offset = pf->vf_qp_offset + pf->vf_nb_qps * pf->vf_num;
pf->vmdq_nb_qps = 0;
pf->max_nb_vmdq_vsi = 0;
if (hw->func_caps.vmdq) {
if (qp_count < hw->func_caps.num_tx_qp &&
vsi_count < hw->func_caps.num_vsis) {
pf->max_nb_vmdq_vsi = (hw->func_caps.num_tx_qp -
qp_count) / pf->vmdq_nb_qp_max;
/* Limit the maximum number of VMDq vsi to the maximum
* ethdev can support
*/
pf->max_nb_vmdq_vsi = RTE_MIN(pf->max_nb_vmdq_vsi,
hw->func_caps.num_vsis - vsi_count);
pf->max_nb_vmdq_vsi = RTE_MIN(pf->max_nb_vmdq_vsi,
ETH_64_POOLS);
if (pf->max_nb_vmdq_vsi) {
pf->flags |= I40E_FLAG_VMDQ;
pf->vmdq_nb_qps = pf->vmdq_nb_qp_max;
PMD_DRV_LOG(DEBUG, "%u VMDQ VSIs, %u queues "
"per VMDQ VSI, in total %u queues",
pf->max_nb_vmdq_vsi,
pf->vmdq_nb_qps, pf->vmdq_nb_qps *
pf->max_nb_vmdq_vsi);
} else {
PMD_DRV_LOG(INFO, "No enough queues left for "
"VMDq");
}
} else {
PMD_DRV_LOG(INFO, "No queue or VSI left for VMDq");
}
}
qp_count += pf->vmdq_nb_qps * pf->max_nb_vmdq_vsi;
vsi_count += pf->max_nb_vmdq_vsi;
if (hw->func_caps.dcb)
pf->flags |= I40E_FLAG_DCB;
if (qp_count > hw->func_caps.num_tx_qp) {
PMD_DRV_LOG(ERR, "Failed to allocate %u queues, which exceeds "
"the hardware maximum %u", qp_count,
hw->func_caps.num_tx_qp);
return -EINVAL;
}
if (vsi_count > hw->func_caps.num_vsis) {
PMD_DRV_LOG(ERR, "Failed to allocate %u VSIs, which exceeds "
"the hardware maximum %u", vsi_count,
hw->func_caps.num_vsis);
return -EINVAL;
}
return 0;
}
static int
i40e_pf_get_switch_config(struct i40e_pf *pf)
{
struct i40e_hw *hw = I40E_PF_TO_HW(pf);
struct i40e_aqc_get_switch_config_resp *switch_config;
struct i40e_aqc_switch_config_element_resp *element;
uint16_t start_seid = 0, num_reported;
int ret;
switch_config = (struct i40e_aqc_get_switch_config_resp *)\
rte_zmalloc("i40e", I40E_AQ_LARGE_BUF, 0);
if (!switch_config) {
PMD_DRV_LOG(ERR, "Failed to allocated memory");
return -ENOMEM;
}
/* Get the switch configurations */
ret = i40e_aq_get_switch_config(hw, switch_config,
I40E_AQ_LARGE_BUF, &start_seid, NULL);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to get switch configurations");
goto fail;
}
num_reported = rte_le_to_cpu_16(switch_config->header.num_reported);
if (num_reported != 1) { /* The number should be 1 */
PMD_DRV_LOG(ERR, "Wrong number of switch config reported");
goto fail;
}
/* Parse the switch configuration elements */
element = &(switch_config->element[0]);
if (element->element_type == I40E_SWITCH_ELEMENT_TYPE_VSI) {
pf->mac_seid = rte_le_to_cpu_16(element->uplink_seid);
pf->main_vsi_seid = rte_le_to_cpu_16(element->seid);
} else
PMD_DRV_LOG(INFO, "Unknown element type");
fail:
rte_free(switch_config);
return ret;
}
static int
i40e_res_pool_init (struct i40e_res_pool_info *pool, uint32_t base,
uint32_t num)
{
struct pool_entry *entry;
if (pool == NULL || num == 0)
return -EINVAL;
entry = rte_zmalloc("i40e", sizeof(*entry), 0);
if (entry == NULL) {
PMD_DRV_LOG(ERR, "Failed to allocate memory for resource pool");
return -ENOMEM;
}
/* queue heap initialize */
pool->num_free = num;
pool->num_alloc = 0;
pool->base = base;
LIST_INIT(&pool->alloc_list);
LIST_INIT(&pool->free_list);
/* Initialize element */
entry->base = 0;
entry->len = num;
LIST_INSERT_HEAD(&pool->free_list, entry, next);
return 0;
}
static void
i40e_res_pool_destroy(struct i40e_res_pool_info *pool)
{
struct pool_entry *entry, *next_entry;
if (pool == NULL)
return;
for (entry = LIST_FIRST(&pool->alloc_list);
entry && (next_entry = LIST_NEXT(entry, next), 1);
entry = next_entry) {
LIST_REMOVE(entry, next);
rte_free(entry);
}
for (entry = LIST_FIRST(&pool->free_list);
entry && (next_entry = LIST_NEXT(entry, next), 1);
entry = next_entry) {
LIST_REMOVE(entry, next);
rte_free(entry);
}
pool->num_free = 0;
pool->num_alloc = 0;
pool->base = 0;
LIST_INIT(&pool->alloc_list);
LIST_INIT(&pool->free_list);
}
static int
i40e_res_pool_free(struct i40e_res_pool_info *pool,
uint32_t base)
{
struct pool_entry *entry, *next, *prev, *valid_entry = NULL;
uint32_t pool_offset;
int insert;
if (pool == NULL) {
PMD_DRV_LOG(ERR, "Invalid parameter");
return -EINVAL;
}
pool_offset = base - pool->base;
/* Lookup in alloc list */
LIST_FOREACH(entry, &pool->alloc_list, next) {
if (entry->base == pool_offset) {
valid_entry = entry;
LIST_REMOVE(entry, next);
break;
}
}
/* Not find, return */
if (valid_entry == NULL) {
PMD_DRV_LOG(ERR, "Failed to find entry");
return -EINVAL;
}
/**
* Found it, move it to free list and try to merge.
* In order to make merge easier, always sort it by qbase.
* Find adjacent prev and last entries.
*/
prev = next = NULL;
LIST_FOREACH(entry, &pool->free_list, next) {
if (entry->base > valid_entry->base) {
next = entry;
break;
}
prev = entry;
}
insert = 0;
/* Try to merge with next one*/
if (next != NULL) {
/* Merge with next one */
if (valid_entry->base + valid_entry->len == next->base) {
next->base = valid_entry->base;
next->len += valid_entry->len;
rte_free(valid_entry);
valid_entry = next;
insert = 1;
}
}
if (prev != NULL) {
/* Merge with previous one */
if (prev->base + prev->len == valid_entry->base) {
prev->len += valid_entry->len;
/* If it merge with next one, remove next node */
if (insert == 1) {
LIST_REMOVE(valid_entry, next);
rte_free(valid_entry);
} else {
rte_free(valid_entry);
insert = 1;
}
}
}
/* Not find any entry to merge, insert */
if (insert == 0) {
if (prev != NULL)
LIST_INSERT_AFTER(prev, valid_entry, next);
else if (next != NULL)
LIST_INSERT_BEFORE(next, valid_entry, next);
else /* It's empty list, insert to head */
LIST_INSERT_HEAD(&pool->free_list, valid_entry, next);
}
pool->num_free += valid_entry->len;
pool->num_alloc -= valid_entry->len;
return 0;
}
static int
i40e_res_pool_alloc(struct i40e_res_pool_info *pool,
uint16_t num)
{
struct pool_entry *entry, *valid_entry;
if (pool == NULL || num == 0) {
PMD_DRV_LOG(ERR, "Invalid parameter");
return -EINVAL;
}
if (pool->num_free < num) {
PMD_DRV_LOG(ERR, "No resource. ask:%u, available:%u",
num, pool->num_free);
return -ENOMEM;
}
valid_entry = NULL;
/* Lookup in free list and find most fit one */
LIST_FOREACH(entry, &pool->free_list, next) {
if (entry->len >= num) {
/* Find best one */
if (entry->len == num) {
valid_entry = entry;
break;
}
if (valid_entry == NULL || valid_entry->len > entry->len)
valid_entry = entry;
}
}
/* Not find one to satisfy the request, return */
if (valid_entry == NULL) {
PMD_DRV_LOG(ERR, "No valid entry found");
return -ENOMEM;
}
/**
* The entry have equal queue number as requested,
* remove it from alloc_list.
*/
if (valid_entry->len == num) {
LIST_REMOVE(valid_entry, next);
} else {
/**
* The entry have more numbers than requested,
* create a new entry for alloc_list and minus its
* queue base and number in free_list.
*/
entry = rte_zmalloc("res_pool", sizeof(*entry), 0);
if (entry == NULL) {
PMD_DRV_LOG(ERR, "Failed to allocate memory for "
"resource pool");
return -ENOMEM;
}
entry->base = valid_entry->base;
entry->len = num;
valid_entry->base += num;
valid_entry->len -= num;
valid_entry = entry;
}
/* Insert it into alloc list, not sorted */
LIST_INSERT_HEAD(&pool->alloc_list, valid_entry, next);
pool->num_free -= valid_entry->len;
pool->num_alloc += valid_entry->len;
return valid_entry->base + pool->base;
}
/**
* bitmap_is_subset - Check whether src2 is subset of src1
**/
static inline int
bitmap_is_subset(uint8_t src1, uint8_t src2)
{
return !((src1 ^ src2) & src2);
}
static enum i40e_status_code
validate_tcmap_parameter(struct i40e_vsi *vsi, uint8_t enabled_tcmap)
{
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
/* If DCB is not supported, only default TC is supported */
if (!hw->func_caps.dcb && enabled_tcmap != I40E_DEFAULT_TCMAP) {
PMD_DRV_LOG(ERR, "DCB is not enabled, only TC0 is supported");
return I40E_NOT_SUPPORTED;
}
if (!bitmap_is_subset(hw->func_caps.enabled_tcmap, enabled_tcmap)) {
PMD_DRV_LOG(ERR, "Enabled TC map 0x%x not applicable to "
"HW support 0x%x", hw->func_caps.enabled_tcmap,
enabled_tcmap);
return I40E_NOT_SUPPORTED;
}
return I40E_SUCCESS;
}
int
i40e_vsi_vlan_pvid_set(struct i40e_vsi *vsi,
struct i40e_vsi_vlan_pvid_info *info)
{
struct i40e_hw *hw;
struct i40e_vsi_context ctxt;
uint8_t vlan_flags = 0;
int ret;
if (vsi == NULL || info == NULL) {
PMD_DRV_LOG(ERR, "invalid parameters");
return I40E_ERR_PARAM;
}
if (info->on) {
vsi->info.pvid = info->config.pvid;
/**
* If insert pvid is enabled, only tagged pkts are
* allowed to be sent out.
*/
vlan_flags |= I40E_AQ_VSI_PVLAN_INSERT_PVID |
I40E_AQ_VSI_PVLAN_MODE_TAGGED;
} else {
vsi->info.pvid = 0;
if (info->config.reject.tagged == 0)
vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_TAGGED;
if (info->config.reject.untagged == 0)
vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_UNTAGGED;
}
vsi->info.port_vlan_flags &= ~(I40E_AQ_VSI_PVLAN_INSERT_PVID |
I40E_AQ_VSI_PVLAN_MODE_MASK);
vsi->info.port_vlan_flags |= vlan_flags;
vsi->info.valid_sections =
rte_cpu_to_le_16(I40E_AQ_VSI_PROP_VLAN_VALID);
memset(&ctxt, 0, sizeof(ctxt));
(void)rte_memcpy(&ctxt.info, &vsi->info, sizeof(vsi->info));
ctxt.seid = vsi->seid;
hw = I40E_VSI_TO_HW(vsi);
ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL);
if (ret != I40E_SUCCESS)
PMD_DRV_LOG(ERR, "Failed to update VSI params");
return ret;
}
static int
i40e_vsi_update_tc_bandwidth(struct i40e_vsi *vsi, uint8_t enabled_tcmap)
{
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
int i, ret;
struct i40e_aqc_configure_vsi_tc_bw_data tc_bw_data;
ret = validate_tcmap_parameter(vsi, enabled_tcmap);
if (ret != I40E_SUCCESS)
return ret;
if (!vsi->seid) {
PMD_DRV_LOG(ERR, "seid not valid");
return -EINVAL;
}
memset(&tc_bw_data, 0, sizeof(tc_bw_data));
tc_bw_data.tc_valid_bits = enabled_tcmap;
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++)
tc_bw_data.tc_bw_credits[i] =
(enabled_tcmap & (1 << i)) ? 1 : 0;
ret = i40e_aq_config_vsi_tc_bw(hw, vsi->seid, &tc_bw_data, NULL);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to configure TC BW");
return ret;
}
(void)rte_memcpy(vsi->info.qs_handle, tc_bw_data.qs_handles,
sizeof(vsi->info.qs_handle));
return I40E_SUCCESS;
}
static enum i40e_status_code
i40e_vsi_config_tc_queue_mapping(struct i40e_vsi *vsi,
struct i40e_aqc_vsi_properties_data *info,
uint8_t enabled_tcmap)
{
enum i40e_status_code ret;
int i, total_tc = 0;
uint16_t qpnum_per_tc, bsf, qp_idx;
ret = validate_tcmap_parameter(vsi, enabled_tcmap);
if (ret != I40E_SUCCESS)
return ret;
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++)
if (enabled_tcmap & (1 << i))
total_tc++;
vsi->enabled_tc = enabled_tcmap;
/* Number of queues per enabled TC */
qpnum_per_tc = i40e_align_floor(vsi->nb_qps / total_tc);
qpnum_per_tc = RTE_MIN(qpnum_per_tc, I40E_MAX_Q_PER_TC);
bsf = rte_bsf32(qpnum_per_tc);
/* Adjust the queue number to actual queues that can be applied */
if (!(vsi->type == I40E_VSI_MAIN && total_tc == 1))
vsi->nb_qps = qpnum_per_tc * total_tc;
/**
* Configure TC and queue mapping parameters, for enabled TC,
* allocate qpnum_per_tc queues to this traffic. For disabled TC,
* default queue will serve it.
*/
qp_idx = 0;
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
if (vsi->enabled_tc & (1 << i)) {
info->tc_mapping[i] = rte_cpu_to_le_16((qp_idx <<
I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) |
(bsf << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT));
qp_idx += qpnum_per_tc;
} else
info->tc_mapping[i] = 0;
}
/* Associate queue number with VSI */
if (vsi->type == I40E_VSI_SRIOV) {
info->mapping_flags |=
rte_cpu_to_le_16(I40E_AQ_VSI_QUE_MAP_NONCONTIG);
for (i = 0; i < vsi->nb_qps; i++)
info->queue_mapping[i] =
rte_cpu_to_le_16(vsi->base_queue + i);
} else {
info->mapping_flags |=
rte_cpu_to_le_16(I40E_AQ_VSI_QUE_MAP_CONTIG);
info->queue_mapping[0] = rte_cpu_to_le_16(vsi->base_queue);
}
info->valid_sections |=
rte_cpu_to_le_16(I40E_AQ_VSI_PROP_QUEUE_MAP_VALID);
return I40E_SUCCESS;
}
static int
i40e_veb_release(struct i40e_veb *veb)
{
struct i40e_vsi *vsi;
struct i40e_hw *hw;
if (veb == NULL)
return -EINVAL;
if (!TAILQ_EMPTY(&veb->head)) {
PMD_DRV_LOG(ERR, "VEB still has VSI attached, can't remove");
return -EACCES;
}
/* associate_vsi field is NULL for floating VEB */
if (veb->associate_vsi != NULL) {
vsi = veb->associate_vsi;
hw = I40E_VSI_TO_HW(vsi);
vsi->uplink_seid = veb->uplink_seid;
vsi->veb = NULL;
} else {
veb->associate_pf->main_vsi->floating_veb = NULL;
hw = I40E_VSI_TO_HW(veb->associate_pf->main_vsi);
}
i40e_aq_delete_element(hw, veb->seid, NULL);
rte_free(veb);
return I40E_SUCCESS;
}
/* Setup a veb */
static struct i40e_veb *
i40e_veb_setup(struct i40e_pf *pf, struct i40e_vsi *vsi)
{
struct i40e_veb *veb;
int ret;
struct i40e_hw *hw;
if (pf == NULL) {
PMD_DRV_LOG(ERR,
"veb setup failed, associated PF shouldn't null");
return NULL;
}
hw = I40E_PF_TO_HW(pf);
veb = rte_zmalloc("i40e_veb", sizeof(struct i40e_veb), 0);
if (!veb) {
PMD_DRV_LOG(ERR, "Failed to allocate memory for veb");
goto fail;
}
veb->associate_vsi = vsi;
veb->associate_pf = pf;
TAILQ_INIT(&veb->head);
veb->uplink_seid = vsi ? vsi->uplink_seid : 0;
/* create floating veb if vsi is NULL */
if (vsi != NULL) {
ret = i40e_aq_add_veb(hw, veb->uplink_seid, vsi->seid,
I40E_DEFAULT_TCMAP, false,
&veb->seid, false, NULL);
} else {
ret = i40e_aq_add_veb(hw, 0, 0, I40E_DEFAULT_TCMAP,
true, &veb->seid, false, NULL);
}
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Add veb failed, aq_err: %d",
hw->aq.asq_last_status);
goto fail;
}
/* get statistics index */
ret = i40e_aq_get_veb_parameters(hw, veb->seid, NULL, NULL,
&veb->stats_idx, NULL, NULL, NULL);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Get veb statistics index failed, aq_err: %d",
hw->aq.asq_last_status);
goto fail;
}
/* Get VEB bandwidth, to be implemented */
/* Now associated vsi binding to the VEB, set uplink to this VEB */
if (vsi)
vsi->uplink_seid = veb->seid;
return veb;
fail:
rte_free(veb);
return NULL;
}
int
i40e_vsi_release(struct i40e_vsi *vsi)
{
struct i40e_pf *pf;
struct i40e_hw *hw;
struct i40e_vsi_list *vsi_list;
void *temp;
int ret;
struct i40e_mac_filter *f;
uint16_t user_param;
if (!vsi)
return I40E_SUCCESS;
user_param = vsi->user_param;
pf = I40E_VSI_TO_PF(vsi);
hw = I40E_VSI_TO_HW(vsi);
/* VSI has child to attach, release child first */
if (vsi->veb) {
TAILQ_FOREACH_SAFE(vsi_list, &vsi->veb->head, list, temp) {
if (i40e_vsi_release(vsi_list->vsi) != I40E_SUCCESS)
return -1;
}
i40e_veb_release(vsi->veb);
}
if (vsi->floating_veb) {
TAILQ_FOREACH_SAFE(vsi_list, &vsi->floating_veb->head, list, temp) {
if (i40e_vsi_release(vsi_list->vsi) != I40E_SUCCESS)
return -1;
}
}
/* Remove all macvlan filters of the VSI */
i40e_vsi_remove_all_macvlan_filter(vsi);
TAILQ_FOREACH_SAFE(f, &vsi->mac_list, next, temp)
rte_free(f);
if (vsi->type != I40E_VSI_MAIN &&
((vsi->type != I40E_VSI_SRIOV) ||
!pf->floating_veb_list[user_param])) {
/* Remove vsi from parent's sibling list */
if (vsi->parent_vsi == NULL || vsi->parent_vsi->veb == NULL) {
PMD_DRV_LOG(ERR, "VSI's parent VSI is NULL");
return I40E_ERR_PARAM;
}
TAILQ_REMOVE(&vsi->parent_vsi->veb->head,
&vsi->sib_vsi_list, list);
/* Remove all switch element of the VSI */
ret = i40e_aq_delete_element(hw, vsi->seid, NULL);
if (ret != I40E_SUCCESS)
PMD_DRV_LOG(ERR, "Failed to delete element");
}
if ((vsi->type == I40E_VSI_SRIOV) &&
pf->floating_veb_list[user_param]) {
/* Remove vsi from parent's sibling list */
if (vsi->parent_vsi == NULL ||
vsi->parent_vsi->floating_veb == NULL) {
PMD_DRV_LOG(ERR, "VSI's parent VSI is NULL");
return I40E_ERR_PARAM;
}
TAILQ_REMOVE(&vsi->parent_vsi->floating_veb->head,
&vsi->sib_vsi_list, list);
/* Remove all switch element of the VSI */
ret = i40e_aq_delete_element(hw, vsi->seid, NULL);
if (ret != I40E_SUCCESS)
PMD_DRV_LOG(ERR, "Failed to delete element");
}
i40e_res_pool_free(&pf->qp_pool, vsi->base_queue);
if (vsi->type != I40E_VSI_SRIOV)
i40e_res_pool_free(&pf->msix_pool, vsi->msix_intr);
rte_free(vsi);
return I40E_SUCCESS;
}
static int
i40e_update_default_filter_setting(struct i40e_vsi *vsi)
{
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
struct i40e_aqc_remove_macvlan_element_data def_filter;
struct i40e_mac_filter_info filter;
int ret;
if (vsi->type != I40E_VSI_MAIN)
return I40E_ERR_CONFIG;
memset(&def_filter, 0, sizeof(def_filter));
(void)rte_memcpy(def_filter.mac_addr, hw->mac.perm_addr,
ETH_ADDR_LEN);
def_filter.vlan_tag = 0;
def_filter.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH |
I40E_AQC_MACVLAN_DEL_IGNORE_VLAN;
ret = i40e_aq_remove_macvlan(hw, vsi->seid, &def_filter, 1, NULL);
if (ret != I40E_SUCCESS) {
struct i40e_mac_filter *f;
struct ether_addr *mac;
PMD_DRV_LOG(WARNING, "Cannot remove the default "
"macvlan filter");
/* It needs to add the permanent mac into mac list */
f = rte_zmalloc("macv_filter", sizeof(*f), 0);
if (f == NULL) {
PMD_DRV_LOG(ERR, "failed to allocate memory");
return I40E_ERR_NO_MEMORY;
}
mac = &f->mac_info.mac_addr;
(void)rte_memcpy(&mac->addr_bytes, hw->mac.perm_addr,
ETH_ADDR_LEN);
f->mac_info.filter_type = RTE_MACVLAN_PERFECT_MATCH;
TAILQ_INSERT_TAIL(&vsi->mac_list, f, next);
vsi->mac_num++;
return ret;
}
(void)rte_memcpy(&filter.mac_addr,
(struct ether_addr *)(hw->mac.perm_addr), ETH_ADDR_LEN);
filter.filter_type = RTE_MACVLAN_PERFECT_MATCH;
return i40e_vsi_add_mac(vsi, &filter);
}
/*
* i40e_vsi_get_bw_config - Query VSI BW Information
* @vsi: the VSI to be queried
*
* Returns 0 on success, negative value on failure
*/
static enum i40e_status_code
i40e_vsi_get_bw_config(struct i40e_vsi *vsi)
{
struct i40e_aqc_query_vsi_bw_config_resp bw_config;
struct i40e_aqc_query_vsi_ets_sla_config_resp ets_sla_config;
struct i40e_hw *hw = &vsi->adapter->hw;
i40e_status ret;
int i;
uint32_t bw_max;
memset(&bw_config, 0, sizeof(bw_config));
ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, &bw_config, NULL);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "VSI failed to get bandwidth configuration %u",
hw->aq.asq_last_status);
return ret;
}
memset(&ets_sla_config, 0, sizeof(ets_sla_config));
ret = i40e_aq_query_vsi_ets_sla_config(hw, vsi->seid,
&ets_sla_config, NULL);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "VSI failed to get TC bandwdith "
"configuration %u", hw->aq.asq_last_status);
return ret;
}
/* store and print out BW info */
vsi->bw_info.bw_limit = rte_le_to_cpu_16(bw_config.port_bw_limit);
vsi->bw_info.bw_max = bw_config.max_bw;
PMD_DRV_LOG(DEBUG, "VSI bw limit:%u", vsi->bw_info.bw_limit);
PMD_DRV_LOG(DEBUG, "VSI max_bw:%u", vsi->bw_info.bw_max);
bw_max = rte_le_to_cpu_16(ets_sla_config.tc_bw_max[0]) |
(rte_le_to_cpu_16(ets_sla_config.tc_bw_max[1]) <<
I40E_16_BIT_WIDTH);
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
vsi->bw_info.bw_ets_share_credits[i] =
ets_sla_config.share_credits[i];
vsi->bw_info.bw_ets_credits[i] =
rte_le_to_cpu_16(ets_sla_config.credits[i]);
/* 4 bits per TC, 4th bit is reserved */
vsi->bw_info.bw_ets_max[i] =
(uint8_t)((bw_max >> (i * I40E_4_BIT_WIDTH)) &
RTE_LEN2MASK(3, uint8_t));
PMD_DRV_LOG(DEBUG, "\tVSI TC%u:share credits %u", i,
vsi->bw_info.bw_ets_share_credits[i]);
PMD_DRV_LOG(DEBUG, "\tVSI TC%u:credits %u", i,
vsi->bw_info.bw_ets_credits[i]);
PMD_DRV_LOG(DEBUG, "\tVSI TC%u: max credits: %u", i,
vsi->bw_info.bw_ets_max[i]);
}
return I40E_SUCCESS;
}
/* i40e_enable_pf_lb
* @pf: pointer to the pf structure
*
* allow loopback on pf
*/
static inline void
i40e_enable_pf_lb(struct i40e_pf *pf)
{
struct i40e_hw *hw = I40E_PF_TO_HW(pf);
struct i40e_vsi_context ctxt;
int ret;
/* Use the FW API if FW >= v5.0 */
if (hw->aq.fw_maj_ver < 5) {
PMD_INIT_LOG(ERR, "FW < v5.0, cannot enable loopback");
return;
}
memset(&ctxt, 0, sizeof(ctxt));
ctxt.seid = pf->main_vsi_seid;
ctxt.pf_num = hw->pf_id;
ret = i40e_aq_get_vsi_params(hw, &ctxt, NULL);
if (ret) {
PMD_DRV_LOG(ERR, "cannot get pf vsi config, err %d, aq_err %d",
ret, hw->aq.asq_last_status);
return;
}
ctxt.flags = I40E_AQ_VSI_TYPE_PF;
ctxt.info.valid_sections =
rte_cpu_to_le_16(I40E_AQ_VSI_PROP_SWITCH_VALID);
ctxt.info.switch_id |=
rte_cpu_to_le_16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB);
ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL);
if (ret)
PMD_DRV_LOG(ERR, "update vsi switch failed, aq_err=%d\n",
hw->aq.asq_last_status);
}
/* Setup a VSI */
struct i40e_vsi *
i40e_vsi_setup(struct i40e_pf *pf,
enum i40e_vsi_type type,
struct i40e_vsi *uplink_vsi,
uint16_t user_param)
{
struct i40e_hw *hw = I40E_PF_TO_HW(pf);
struct i40e_vsi *vsi;
struct i40e_mac_filter_info filter;
int ret;
struct i40e_vsi_context ctxt;
struct ether_addr broadcast =
{.addr_bytes = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}};
if (type != I40E_VSI_MAIN && type != I40E_VSI_SRIOV &&
uplink_vsi == NULL) {
PMD_DRV_LOG(ERR, "VSI setup failed, "
"VSI link shouldn't be NULL");
return NULL;
}
if (type == I40E_VSI_MAIN && uplink_vsi != NULL) {
PMD_DRV_LOG(ERR, "VSI setup failed, MAIN VSI "
"uplink VSI should be NULL");
return NULL;
}
/* two situations
* 1.type is not MAIN and uplink vsi is not NULL
* If uplink vsi didn't setup VEB, create one first under veb field
* 2.type is SRIOV and the uplink is NULL
* If floating VEB is NULL, create one veb under floating veb field
*/
if (type != I40E_VSI_MAIN && uplink_vsi != NULL &&
uplink_vsi->veb == NULL) {
uplink_vsi->veb = i40e_veb_setup(pf, uplink_vsi);
if (uplink_vsi->veb == NULL) {
PMD_DRV_LOG(ERR, "VEB setup failed");
return NULL;
}
/* set ALLOWLOOPBACk on pf, when veb is created */
i40e_enable_pf_lb(pf);
}
if (type == I40E_VSI_SRIOV && uplink_vsi == NULL &&
pf->main_vsi->floating_veb == NULL) {
pf->main_vsi->floating_veb = i40e_veb_setup(pf, uplink_vsi);
if (pf->main_vsi->floating_veb == NULL) {
PMD_DRV_LOG(ERR, "VEB setup failed");
return NULL;
}
}
vsi = rte_zmalloc("i40e_vsi", sizeof(struct i40e_vsi), 0);
if (!vsi) {
PMD_DRV_LOG(ERR, "Failed to allocate memory for vsi");
return NULL;
}
TAILQ_INIT(&vsi->mac_list);
vsi->type = type;
vsi->adapter = I40E_PF_TO_ADAPTER(pf);
vsi->max_macaddrs = I40E_NUM_MACADDR_MAX;
vsi->parent_vsi = uplink_vsi ? uplink_vsi : pf->main_vsi;
vsi->user_param = user_param;
/* Allocate queues */
switch (vsi->type) {
case I40E_VSI_MAIN :
vsi->nb_qps = pf->lan_nb_qps;
break;
case I40E_VSI_SRIOV :
vsi->nb_qps = pf->vf_nb_qps;
break;
case I40E_VSI_VMDQ2:
vsi->nb_qps = pf->vmdq_nb_qps;
break;
case I40E_VSI_FDIR:
vsi->nb_qps = pf->fdir_nb_qps;
break;
default:
goto fail_mem;
}
/*
* The filter status descriptor is reported in rx queue 0,
* while the tx queue for fdir filter programming has no
* such constraints, can be non-zero queues.
* To simplify it, choose FDIR vsi use queue 0 pair.
* To make sure it will use queue 0 pair, queue allocation
* need be done before this function is called
*/
if (type != I40E_VSI_FDIR) {
ret = i40e_res_pool_alloc(&pf->qp_pool, vsi->nb_qps);
if (ret < 0) {
PMD_DRV_LOG(ERR, "VSI %d allocate queue failed %d",
vsi->seid, ret);
goto fail_mem;
}
vsi->base_queue = ret;
} else
vsi->base_queue = I40E_FDIR_QUEUE_ID;
/* VF has MSIX interrupt in VF range, don't allocate here */
if (type == I40E_VSI_MAIN) {
ret = i40e_res_pool_alloc(&pf->msix_pool,
RTE_MIN(vsi->nb_qps,
RTE_MAX_RXTX_INTR_VEC_ID));
if (ret < 0) {
PMD_DRV_LOG(ERR, "VSI MAIN %d get heap failed %d",
vsi->seid, ret);
goto fail_queue_alloc;
}
vsi->msix_intr = ret;
vsi->nb_msix = RTE_MIN(vsi->nb_qps, RTE_MAX_RXTX_INTR_VEC_ID);
} else if (type != I40E_VSI_SRIOV) {
ret = i40e_res_pool_alloc(&pf->msix_pool, 1);
if (ret < 0) {
PMD_DRV_LOG(ERR, "VSI %d get heap failed %d", vsi->seid, ret);
goto fail_queue_alloc;
}
vsi->msix_intr = ret;
vsi->nb_msix = 1;
} else {
vsi->msix_intr = 0;
vsi->nb_msix = 0;
}
/* Add VSI */
if (type == I40E_VSI_MAIN) {
/* For main VSI, no need to add since it's default one */
vsi->uplink_seid = pf->mac_seid;
vsi->seid = pf->main_vsi_seid;
/* Bind queues with specific MSIX interrupt */
/**
* Needs 2 interrupt at least, one for misc cause which will
* enabled from OS side, Another for queues binding the
* interrupt from device side only.
*/
/* Get default VSI parameters from hardware */
memset(&ctxt, 0, sizeof(ctxt));
ctxt.seid = vsi->seid;
ctxt.pf_num = hw->pf_id;
ctxt.uplink_seid = vsi->uplink_seid;
ctxt.vf_num = 0;
ret = i40e_aq_get_vsi_params(hw, &ctxt, NULL);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to get VSI params");
goto fail_msix_alloc;
}
(void)rte_memcpy(&vsi->info, &ctxt.info,
sizeof(struct i40e_aqc_vsi_properties_data));
vsi->vsi_id = ctxt.vsi_number;
vsi->info.valid_sections = 0;
/* Configure tc, enabled TC0 only */
if (i40e_vsi_update_tc_bandwidth(vsi, I40E_DEFAULT_TCMAP) !=
I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to update TC bandwidth");
goto fail_msix_alloc;
}
/* TC, queue mapping */
memset(&ctxt, 0, sizeof(ctxt));
vsi->info.valid_sections |=
rte_cpu_to_le_16(I40E_AQ_VSI_PROP_VLAN_VALID);
vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL |
I40E_AQ_VSI_PVLAN_EMOD_STR_BOTH;
(void)rte_memcpy(&ctxt.info, &vsi->info,
sizeof(struct i40e_aqc_vsi_properties_data));
ret = i40e_vsi_config_tc_queue_mapping(vsi, &ctxt.info,
I40E_DEFAULT_TCMAP);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to configure "
"TC queue mapping");
goto fail_msix_alloc;
}
ctxt.seid = vsi->seid;
ctxt.pf_num = hw->pf_id;
ctxt.uplink_seid = vsi->uplink_seid;
ctxt.vf_num = 0;
/* Update VSI parameters */
ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to update VSI params");
goto fail_msix_alloc;
}
(void)rte_memcpy(&vsi->info.tc_mapping, &ctxt.info.tc_mapping,
sizeof(vsi->info.tc_mapping));
(void)rte_memcpy(&vsi->info.queue_mapping,
&ctxt.info.queue_mapping,
sizeof(vsi->info.queue_mapping));
vsi->info.mapping_flags = ctxt.info.mapping_flags;
vsi->info.valid_sections = 0;
(void)rte_memcpy(pf->dev_addr.addr_bytes, hw->mac.perm_addr,
ETH_ADDR_LEN);
/**
* Updating default filter settings are necessary to prevent
* reception of tagged packets.
* Some old firmware configurations load a default macvlan
* filter which accepts both tagged and untagged packets.
* The updating is to use a normal filter instead if needed.
* For NVM 4.2.2 or after, the updating is not needed anymore.
* The firmware with correct configurations load the default
* macvlan filter which is expected and cannot be removed.
*/
i40e_update_default_filter_setting(vsi);
i40e_config_qinq(hw, vsi);
} else if (type == I40E_VSI_SRIOV) {
memset(&ctxt, 0, sizeof(ctxt));
/**
* For other VSI, the uplink_seid equals to uplink VSI's
* uplink_seid since they share same VEB
*/
if (uplink_vsi == NULL)
vsi->uplink_seid = pf->main_vsi->floating_veb->seid;
else
vsi->uplink_seid = uplink_vsi->uplink_seid;
ctxt.pf_num = hw->pf_id;
ctxt.vf_num = hw->func_caps.vf_base_id + user_param;
ctxt.uplink_seid = vsi->uplink_seid;
ctxt.connection_type = 0x1;
ctxt.flags = I40E_AQ_VSI_TYPE_VF;
/* Use the VEB configuration if FW >= v5.0 */
if (hw->aq.fw_maj_ver >= 5) {
/* Configure switch ID */
ctxt.info.valid_sections |=
rte_cpu_to_le_16(I40E_AQ_VSI_PROP_SWITCH_VALID);
ctxt.info.switch_id =
rte_cpu_to_le_16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB);
}
/* Configure port/vlan */
ctxt.info.valid_sections |=
rte_cpu_to_le_16(I40E_AQ_VSI_PROP_VLAN_VALID);
ctxt.info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_ALL;
ret = i40e_vsi_config_tc_queue_mapping(vsi, &ctxt.info,
I40E_DEFAULT_TCMAP);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to configure "
"TC queue mapping");
goto fail_msix_alloc;
}
ctxt.info.up_enable_bits = I40E_DEFAULT_TCMAP;
ctxt.info.valid_sections |=
rte_cpu_to_le_16(I40E_AQ_VSI_PROP_SCHED_VALID);
/**
* Since VSI is not created yet, only configure parameter,
* will add vsi below.
*/
i40e_config_qinq(hw, vsi);
} else if (type == I40E_VSI_VMDQ2) {
memset(&ctxt, 0, sizeof(ctxt));
/*
* For other VSI, the uplink_seid equals to uplink VSI's
* uplink_seid since they share same VEB
*/
vsi->uplink_seid = uplink_vsi->uplink_seid;
ctxt.pf_num = hw->pf_id;
ctxt.vf_num = 0;
ctxt.uplink_seid = vsi->uplink_seid;
ctxt.connection_type = 0x1;
ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2;
ctxt.info.valid_sections |=
rte_cpu_to_le_16(I40E_AQ_VSI_PROP_SWITCH_VALID);
/* user_param carries flag to enable loop back */
if (user_param) {
ctxt.info.switch_id =
rte_cpu_to_le_16(I40E_AQ_VSI_SW_ID_FLAG_LOCAL_LB);
ctxt.info.switch_id |=
rte_cpu_to_le_16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB);
}
/* Configure port/vlan */
ctxt.info.valid_sections |=
rte_cpu_to_le_16(I40E_AQ_VSI_PROP_VLAN_VALID);
ctxt.info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_ALL;
ret = i40e_vsi_config_tc_queue_mapping(vsi, &ctxt.info,
I40E_DEFAULT_TCMAP);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to configure "
"TC queue mapping");
goto fail_msix_alloc;
}
ctxt.info.up_enable_bits = I40E_DEFAULT_TCMAP;
ctxt.info.valid_sections |=
rte_cpu_to_le_16(I40E_AQ_VSI_PROP_SCHED_VALID);
} else if (type == I40E_VSI_FDIR) {
memset(&ctxt, 0, sizeof(ctxt));
vsi->uplink_seid = uplink_vsi->uplink_seid;
ctxt.pf_num = hw->pf_id;
ctxt.vf_num = 0;
ctxt.uplink_seid = vsi->uplink_seid;
ctxt.connection_type = 0x1; /* regular data port */
ctxt.flags = I40E_AQ_VSI_TYPE_PF;
ret = i40e_vsi_config_tc_queue_mapping(vsi, &ctxt.info,
I40E_DEFAULT_TCMAP);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to configure "
"TC queue mapping.");
goto fail_msix_alloc;
}
ctxt.info.up_enable_bits = I40E_DEFAULT_TCMAP;
ctxt.info.valid_sections |=
rte_cpu_to_le_16(I40E_AQ_VSI_PROP_SCHED_VALID);
} else {
PMD_DRV_LOG(ERR, "VSI: Not support other type VSI yet");
goto fail_msix_alloc;
}
if (vsi->type != I40E_VSI_MAIN) {
ret = i40e_aq_add_vsi(hw, &ctxt, NULL);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "add vsi failed, aq_err=%d",
hw->aq.asq_last_status);
goto fail_msix_alloc;
}
memcpy(&vsi->info, &ctxt.info, sizeof(ctxt.info));
vsi->info.valid_sections = 0;
vsi->seid = ctxt.seid;
vsi->vsi_id = ctxt.vsi_number;
vsi->sib_vsi_list.vsi = vsi;
if (vsi->type == I40E_VSI_SRIOV && uplink_vsi == NULL) {
TAILQ_INSERT_TAIL(&pf->main_vsi->floating_veb->head,
&vsi->sib_vsi_list, list);
} else {
TAILQ_INSERT_TAIL(&uplink_vsi->veb->head,
&vsi->sib_vsi_list, list);
}
}
/* MAC/VLAN configuration */
(void)rte_memcpy(&filter.mac_addr, &broadcast, ETHER_ADDR_LEN);
filter.filter_type = RTE_MACVLAN_PERFECT_MATCH;
ret = i40e_vsi_add_mac(vsi, &filter);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to add MACVLAN filter");
goto fail_msix_alloc;
}
/* Get VSI BW information */
i40e_vsi_get_bw_config(vsi);
return vsi;
fail_msix_alloc:
i40e_res_pool_free(&pf->msix_pool,vsi->msix_intr);
fail_queue_alloc:
i40e_res_pool_free(&pf->qp_pool,vsi->base_queue);
fail_mem:
rte_free(vsi);
return NULL;
}
/* Configure vlan filter on or off */
int
i40e_vsi_config_vlan_filter(struct i40e_vsi *vsi, bool on)
{
int i, num;
struct i40e_mac_filter *f;
void *temp;
struct i40e_mac_filter_info *mac_filter;
enum rte_mac_filter_type desired_filter;
int ret = I40E_SUCCESS;
if (on) {
/* Filter to match MAC and VLAN */
desired_filter = RTE_MACVLAN_PERFECT_MATCH;
} else {
/* Filter to match only MAC */
desired_filter = RTE_MAC_PERFECT_MATCH;
}
num = vsi->mac_num;
mac_filter = rte_zmalloc("mac_filter_info_data",
num * sizeof(*mac_filter), 0);
if (mac_filter == NULL) {
PMD_DRV_LOG(ERR, "failed to allocate memory");
return I40E_ERR_NO_MEMORY;
}
i = 0;
/* Remove all existing mac */
TAILQ_FOREACH_SAFE(f, &vsi->mac_list, next, temp) {
mac_filter[i] = f->mac_info;
ret = i40e_vsi_delete_mac(vsi, &f->mac_info.mac_addr);
if (ret) {
PMD_DRV_LOG(ERR, "Update VSI failed to %s vlan filter",
on ? "enable" : "disable");
goto DONE;
}
i++;
}
/* Override with new filter */
for (i = 0; i < num; i++) {
mac_filter[i].filter_type = desired_filter;
ret = i40e_vsi_add_mac(vsi, &mac_filter[i]);
if (ret) {
PMD_DRV_LOG(ERR, "Update VSI failed to %s vlan filter",
on ? "enable" : "disable");
goto DONE;
}
}
DONE:
rte_free(mac_filter);
return ret;
}
/* Configure vlan stripping on or off */
int
i40e_vsi_config_vlan_stripping(struct i40e_vsi *vsi, bool on)
{
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
struct i40e_vsi_context ctxt;
uint8_t vlan_flags;
int ret = I40E_SUCCESS;
/* Check if it has been already on or off */
if (vsi->info.valid_sections &
rte_cpu_to_le_16(I40E_AQ_VSI_PROP_VLAN_VALID)) {
if (on) {
if ((vsi->info.port_vlan_flags &
I40E_AQ_VSI_PVLAN_EMOD_MASK) == 0)
return 0; /* already on */
} else {
if ((vsi->info.port_vlan_flags &
I40E_AQ_VSI_PVLAN_EMOD_MASK) ==
I40E_AQ_VSI_PVLAN_EMOD_MASK)
return 0; /* already off */
}
}
if (on)
vlan_flags = I40E_AQ_VSI_PVLAN_EMOD_STR_BOTH;
else
vlan_flags = I40E_AQ_VSI_PVLAN_EMOD_NOTHING;
vsi->info.valid_sections =
rte_cpu_to_le_16(I40E_AQ_VSI_PROP_VLAN_VALID);
vsi->info.port_vlan_flags &= ~(I40E_AQ_VSI_PVLAN_EMOD_MASK);
vsi->info.port_vlan_flags |= vlan_flags;
ctxt.seid = vsi->seid;
(void)rte_memcpy(&ctxt.info, &vsi->info, sizeof(vsi->info));
ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL);
if (ret)
PMD_DRV_LOG(INFO, "Update VSI failed to %s vlan stripping",
on ? "enable" : "disable");
return ret;
}
static int
i40e_dev_init_vlan(struct rte_eth_dev *dev)
{
struct rte_eth_dev_data *data = dev->data;
int ret;
int mask = 0;
/* Apply vlan offload setting */
mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK;
i40e_vlan_offload_set(dev, mask);
/* Apply double-vlan setting, not implemented yet */
/* Apply pvid setting */
ret = i40e_vlan_pvid_set(dev, data->dev_conf.txmode.pvid,
data->dev_conf.txmode.hw_vlan_insert_pvid);
if (ret)
PMD_DRV_LOG(INFO, "Failed to update VSI params");
return ret;
}
static int
i40e_vsi_config_double_vlan(struct i40e_vsi *vsi, int on)
{
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
return i40e_aq_set_port_parameters(hw, vsi->seid, 0, 1, on, NULL);
}
static int
i40e_update_flow_control(struct i40e_hw *hw)
{
#define I40E_LINK_PAUSE_RXTX (I40E_AQ_LINK_PAUSE_RX | I40E_AQ_LINK_PAUSE_TX)
struct i40e_link_status link_status;
uint32_t rxfc = 0, txfc = 0, reg;
uint8_t an_info;
int ret;
memset(&link_status, 0, sizeof(link_status));
ret = i40e_aq_get_link_info(hw, FALSE, &link_status, NULL);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to get link status information");
goto write_reg; /* Disable flow control */
}
an_info = hw->phy.link_info.an_info;
if (!(an_info & I40E_AQ_AN_COMPLETED)) {
PMD_DRV_LOG(INFO, "Link auto negotiation not completed");
ret = I40E_ERR_NOT_READY;
goto write_reg; /* Disable flow control */
}
/**
* If link auto negotiation is enabled, flow control needs to
* be configured according to it
*/
switch (an_info & I40E_LINK_PAUSE_RXTX) {
case I40E_LINK_PAUSE_RXTX:
rxfc = 1;
txfc = 1;
hw->fc.current_mode = I40E_FC_FULL;
break;
case I40E_AQ_LINK_PAUSE_RX:
rxfc = 1;
hw->fc.current_mode = I40E_FC_RX_PAUSE;
break;
case I40E_AQ_LINK_PAUSE_TX:
txfc = 1;
hw->fc.current_mode = I40E_FC_TX_PAUSE;
break;
default:
hw->fc.current_mode = I40E_FC_NONE;
break;
}
write_reg:
I40E_WRITE_REG(hw, I40E_PRTDCB_FCCFG,
txfc << I40E_PRTDCB_FCCFG_TFCE_SHIFT);
reg = I40E_READ_REG(hw, I40E_PRTDCB_MFLCN);
reg &= ~I40E_PRTDCB_MFLCN_RFCE_MASK;
reg |= rxfc << I40E_PRTDCB_MFLCN_RFCE_SHIFT;
I40E_WRITE_REG(hw, I40E_PRTDCB_MFLCN, reg);
return ret;
}
/* PF setup */
static int
i40e_pf_setup(struct i40e_pf *pf)
{
struct i40e_hw *hw = I40E_PF_TO_HW(pf);
struct i40e_filter_control_settings settings;
struct i40e_vsi *vsi;
int ret;
/* Clear all stats counters */
pf->offset_loaded = FALSE;
memset(&pf->stats, 0, sizeof(struct i40e_hw_port_stats));
memset(&pf->stats_offset, 0, sizeof(struct i40e_hw_port_stats));
ret = i40e_pf_get_switch_config(pf);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Could not get switch config, err %d", ret);
return ret;
}
if (pf->flags & I40E_FLAG_FDIR) {
/* make queue allocated first, let FDIR use queue pair 0*/
ret = i40e_res_pool_alloc(&pf->qp_pool, I40E_DEFAULT_QP_NUM_FDIR);
if (ret != I40E_FDIR_QUEUE_ID) {
PMD_DRV_LOG(ERR, "queue allocation fails for FDIR :"
" ret =%d", ret);
pf->flags &= ~I40E_FLAG_FDIR;
}
}
/* main VSI setup */
vsi = i40e_vsi_setup(pf, I40E_VSI_MAIN, NULL, 0);
if (!vsi) {
PMD_DRV_LOG(ERR, "Setup of main vsi failed");
return I40E_ERR_NOT_READY;
}
pf->main_vsi = vsi;
/* Configure filter control */
memset(&settings, 0, sizeof(settings));
if (hw->func_caps.rss_table_size == ETH_RSS_RETA_SIZE_128)
settings.hash_lut_size = I40E_HASH_LUT_SIZE_128;
else if (hw->func_caps.rss_table_size == ETH_RSS_RETA_SIZE_512)
settings.hash_lut_size = I40E_HASH_LUT_SIZE_512;
else {
PMD_DRV_LOG(ERR, "Hash lookup table size (%u) not supported\n",
hw->func_caps.rss_table_size);
return I40E_ERR_PARAM;
}
PMD_DRV_LOG(INFO, "Hardware capability of hash lookup table "
"size: %u\n", hw->func_caps.rss_table_size);
pf->hash_lut_size = hw->func_caps.rss_table_size;
/* Enable ethtype and macvlan filters */
settings.enable_ethtype = TRUE;
settings.enable_macvlan = TRUE;
ret = i40e_set_filter_control(hw, &settings);
if (ret)
PMD_INIT_LOG(WARNING, "setup_pf_filter_control failed: %d",
ret);
/* Update flow control according to the auto negotiation */
i40e_update_flow_control(hw);
return I40E_SUCCESS;
}
int
i40e_switch_tx_queue(struct i40e_hw *hw, uint16_t q_idx, bool on)
{
uint32_t reg;
uint16_t j;
/**
* Set or clear TX Queue Disable flags,
* which is required by hardware.
*/
i40e_pre_tx_queue_cfg(hw, q_idx, on);
rte_delay_us(I40E_PRE_TX_Q_CFG_WAIT_US);
/* Wait until the request is finished */
for (j = 0; j < I40E_CHK_Q_ENA_COUNT; j++) {
rte_delay_us(I40E_CHK_Q_ENA_INTERVAL_US);
reg = I40E_READ_REG(hw, I40E_QTX_ENA(q_idx));
if (!(((reg >> I40E_QTX_ENA_QENA_REQ_SHIFT) & 0x1) ^
((reg >> I40E_QTX_ENA_QENA_STAT_SHIFT)
& 0x1))) {
break;
}
}
if (on) {
if (reg & I40E_QTX_ENA_QENA_STAT_MASK)
return I40E_SUCCESS; /* already on, skip next steps */
I40E_WRITE_REG(hw, I40E_QTX_HEAD(q_idx), 0);
reg |= I40E_QTX_ENA_QENA_REQ_MASK;
} else {
if (!(reg & I40E_QTX_ENA_QENA_STAT_MASK))
return I40E_SUCCESS; /* already off, skip next steps */
reg &= ~I40E_QTX_ENA_QENA_REQ_MASK;
}
/* Write the register */
I40E_WRITE_REG(hw, I40E_QTX_ENA(q_idx), reg);
/* Check the result */
for (j = 0; j < I40E_CHK_Q_ENA_COUNT; j++) {
rte_delay_us(I40E_CHK_Q_ENA_INTERVAL_US);
reg = I40E_READ_REG(hw, I40E_QTX_ENA(q_idx));
if (on) {
if ((reg & I40E_QTX_ENA_QENA_REQ_MASK) &&
(reg & I40E_QTX_ENA_QENA_STAT_MASK))
break;
} else {
if (!(reg & I40E_QTX_ENA_QENA_REQ_MASK) &&
!(reg & I40E_QTX_ENA_QENA_STAT_MASK))
break;
}
}
/* Check if it is timeout */
if (j >= I40E_CHK_Q_ENA_COUNT) {
PMD_DRV_LOG(ERR, "Failed to %s tx queue[%u]",
(on ? "enable" : "disable"), q_idx);
return I40E_ERR_TIMEOUT;
}
return I40E_SUCCESS;
}
/* Swith on or off the tx queues */
static int
i40e_dev_switch_tx_queues(struct i40e_pf *pf, bool on)
{
struct rte_eth_dev_data *dev_data = pf->dev_data;
struct i40e_tx_queue *txq;
struct rte_eth_dev *dev = pf->adapter->eth_dev;
uint16_t i;
int ret;
for (i = 0; i < dev_data->nb_tx_queues; i++) {
txq = dev_data->tx_queues[i];
/* Don't operate the queue if not configured or
* if starting only per queue */
if (!txq || !txq->q_set || (on && txq->tx_deferred_start))
continue;
if (on)
ret = i40e_dev_tx_queue_start(dev, i);
else
ret = i40e_dev_tx_queue_stop(dev, i);
if ( ret != I40E_SUCCESS)
return ret;
}
return I40E_SUCCESS;
}
int
i40e_switch_rx_queue(struct i40e_hw *hw, uint16_t q_idx, bool on)
{
uint32_t reg;
uint16_t j;
/* Wait until the request is finished */
for (j = 0; j < I40E_CHK_Q_ENA_COUNT; j++) {
rte_delay_us(I40E_CHK_Q_ENA_INTERVAL_US);
reg = I40E_READ_REG(hw, I40E_QRX_ENA(q_idx));
if (!((reg >> I40E_QRX_ENA_QENA_REQ_SHIFT) & 0x1) ^
((reg >> I40E_QRX_ENA_QENA_STAT_SHIFT) & 0x1))
break;
}
if (on) {
if (reg & I40E_QRX_ENA_QENA_STAT_MASK)
return I40E_SUCCESS; /* Already on, skip next steps */
reg |= I40E_QRX_ENA_QENA_REQ_MASK;
} else {
if (!(reg & I40E_QRX_ENA_QENA_STAT_MASK))
return I40E_SUCCESS; /* Already off, skip next steps */
reg &= ~I40E_QRX_ENA_QENA_REQ_MASK;
}
/* Write the register */
I40E_WRITE_REG(hw, I40E_QRX_ENA(q_idx), reg);
/* Check the result */
for (j = 0; j < I40E_CHK_Q_ENA_COUNT; j++) {
rte_delay_us(I40E_CHK_Q_ENA_INTERVAL_US);
reg = I40E_READ_REG(hw, I40E_QRX_ENA(q_idx));
if (on) {
if ((reg & I40E_QRX_ENA_QENA_REQ_MASK) &&
(reg & I40E_QRX_ENA_QENA_STAT_MASK))
break;
} else {
if (!(reg & I40E_QRX_ENA_QENA_REQ_MASK) &&
!(reg & I40E_QRX_ENA_QENA_STAT_MASK))
break;
}
}
/* Check if it is timeout */
if (j >= I40E_CHK_Q_ENA_COUNT) {
PMD_DRV_LOG(ERR, "Failed to %s rx queue[%u]",
(on ? "enable" : "disable"), q_idx);
return I40E_ERR_TIMEOUT;
}
return I40E_SUCCESS;
}
/* Switch on or off the rx queues */
static int
i40e_dev_switch_rx_queues(struct i40e_pf *pf, bool on)
{
struct rte_eth_dev_data *dev_data = pf->dev_data;
struct i40e_rx_queue *rxq;
struct rte_eth_dev *dev = pf->adapter->eth_dev;
uint16_t i;
int ret;
for (i = 0; i < dev_data->nb_rx_queues; i++) {
rxq = dev_data->rx_queues[i];
/* Don't operate the queue if not configured or
* if starting only per queue */
if (!rxq || !rxq->q_set || (on && rxq->rx_deferred_start))
continue;
if (on)
ret = i40e_dev_rx_queue_start(dev, i);
else
ret = i40e_dev_rx_queue_stop(dev, i);
if (ret != I40E_SUCCESS)
return ret;
}
return I40E_SUCCESS;
}
/* Switch on or off all the rx/tx queues */
int
i40e_dev_switch_queues(struct i40e_pf *pf, bool on)
{
int ret;
if (on) {
/* enable rx queues before enabling tx queues */
ret = i40e_dev_switch_rx_queues(pf, on);
if (ret) {
PMD_DRV_LOG(ERR, "Failed to switch rx queues");
return ret;
}
ret = i40e_dev_switch_tx_queues(pf, on);
} else {
/* Stop tx queues before stopping rx queues */
ret = i40e_dev_switch_tx_queues(pf, on);
if (ret) {
PMD_DRV_LOG(ERR, "Failed to switch tx queues");
return ret;
}
ret = i40e_dev_switch_rx_queues(pf, on);
}
return ret;
}
/* Initialize VSI for TX */
static int
i40e_dev_tx_init(struct i40e_pf *pf)
{
struct rte_eth_dev_data *data = pf->dev_data;
uint16_t i;
uint32_t ret = I40E_SUCCESS;
struct i40e_tx_queue *txq;
for (i = 0; i < data->nb_tx_queues; i++) {
txq = data->tx_queues[i];
if (!txq || !txq->q_set)
continue;
ret = i40e_tx_queue_init(txq);
if (ret != I40E_SUCCESS)
break;
}
if (ret == I40E_SUCCESS)
i40e_set_tx_function(container_of(pf, struct i40e_adapter, pf)
->eth_dev);
return ret;
}
/* Initialize VSI for RX */
static int
i40e_dev_rx_init(struct i40e_pf *pf)
{
struct rte_eth_dev_data *data = pf->dev_data;
int ret = I40E_SUCCESS;
uint16_t i;
struct i40e_rx_queue *rxq;
i40e_pf_config_mq_rx(pf);
for (i = 0; i < data->nb_rx_queues; i++) {
rxq = data->rx_queues[i];
if (!rxq || !rxq->q_set)
continue;
ret = i40e_rx_queue_init(rxq);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to do RX queue "
"initialization");
break;
}
}
if (ret == I40E_SUCCESS)
i40e_set_rx_function(container_of(pf, struct i40e_adapter, pf)
->eth_dev);
return ret;
}
static int
i40e_dev_rxtx_init(struct i40e_pf *pf)
{
int err;
err = i40e_dev_tx_init(pf);
if (err) {
PMD_DRV_LOG(ERR, "Failed to do TX initialization");
return err;
}
err = i40e_dev_rx_init(pf);
if (err) {
PMD_DRV_LOG(ERR, "Failed to do RX initialization");
return err;
}
return err;
}
static int
i40e_vmdq_setup(struct rte_eth_dev *dev)
{
struct rte_eth_conf *conf = &dev->data->dev_conf;
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
int i, err, conf_vsis, j, loop;
struct i40e_vsi *vsi;
struct i40e_vmdq_info *vmdq_info;
struct rte_eth_vmdq_rx_conf *vmdq_conf;
struct i40e_hw *hw = I40E_PF_TO_HW(pf);
/*
* Disable interrupt to avoid message from VF. Furthermore, it will
* avoid race condition in VSI creation/destroy.
*/
i40e_pf_disable_irq0(hw);
if ((pf->flags & I40E_FLAG_VMDQ) == 0) {
PMD_INIT_LOG(ERR, "FW doesn't support VMDQ");
return -ENOTSUP;
}
conf_vsis = conf->rx_adv_conf.vmdq_rx_conf.nb_queue_pools;
if (conf_vsis > pf->max_nb_vmdq_vsi) {
PMD_INIT_LOG(ERR, "VMDQ config: %u, max support:%u",
conf->rx_adv_conf.vmdq_rx_conf.nb_queue_pools,
pf->max_nb_vmdq_vsi);
return -ENOTSUP;
}
if (pf->vmdq != NULL) {
PMD_INIT_LOG(INFO, "VMDQ already configured");
return 0;
}
pf->vmdq = rte_zmalloc("vmdq_info_struct",
sizeof(*vmdq_info) * conf_vsis, 0);
if (pf->vmdq == NULL) {
PMD_INIT_LOG(ERR, "Failed to allocate memory");
return -ENOMEM;
}
vmdq_conf = &conf->rx_adv_conf.vmdq_rx_conf;
/* Create VMDQ VSI */
for (i = 0; i < conf_vsis; i++) {
vsi = i40e_vsi_setup(pf, I40E_VSI_VMDQ2, pf->main_vsi,
vmdq_conf->enable_loop_back);
if (vsi == NULL) {
PMD_INIT_LOG(ERR, "Failed to create VMDQ VSI");
err = -1;
goto err_vsi_setup;
}
vmdq_info = &pf->vmdq[i];
vmdq_info->pf = pf;
vmdq_info->vsi = vsi;
}
pf->nb_cfg_vmdq_vsi = conf_vsis;
/* Configure Vlan */
loop = sizeof(vmdq_conf->pool_map[0].pools) * CHAR_BIT;
for (i = 0; i < vmdq_conf->nb_pool_maps; i++) {
for (j = 0; j < loop && j < pf->nb_cfg_vmdq_vsi; j++) {
if (vmdq_conf->pool_map[i].pools & (1UL << j)) {
PMD_INIT_LOG(INFO, "Add vlan %u to vmdq pool %u",
vmdq_conf->pool_map[i].vlan_id, j);
err = i40e_vsi_add_vlan(pf->vmdq[j].vsi,
vmdq_conf->pool_map[i].vlan_id);
if (err) {
PMD_INIT_LOG(ERR, "Failed to add vlan");
err = -1;
goto err_vsi_setup;
}
}
}
}
i40e_pf_enable_irq0(hw);
return 0;
err_vsi_setup:
for (i = 0; i < conf_vsis; i++)
if (pf->vmdq[i].vsi == NULL)
break;
else
i40e_vsi_release(pf->vmdq[i].vsi);
rte_free(pf->vmdq);
pf->vmdq = NULL;
i40e_pf_enable_irq0(hw);
return err;
}
static void
i40e_stat_update_32(struct i40e_hw *hw,
uint32_t reg,
bool offset_loaded,
uint64_t *offset,
uint64_t *stat)
{
uint64_t new_data;
new_data = (uint64_t)I40E_READ_REG(hw, reg);
if (!offset_loaded)
*offset = new_data;
if (new_data >= *offset)
*stat = (uint64_t)(new_data - *offset);
else
*stat = (uint64_t)((new_data +
((uint64_t)1 << I40E_32_BIT_WIDTH)) - *offset);
}
static void
i40e_stat_update_48(struct i40e_hw *hw,
uint32_t hireg,
uint32_t loreg,
bool offset_loaded,
uint64_t *offset,
uint64_t *stat)
{
uint64_t new_data;
new_data = (uint64_t)I40E_READ_REG(hw, loreg);
new_data |= ((uint64_t)(I40E_READ_REG(hw, hireg) &
I40E_16_BIT_MASK)) << I40E_32_BIT_WIDTH;
if (!offset_loaded)
*offset = new_data;
if (new_data >= *offset)
*stat = new_data - *offset;
else
*stat = (uint64_t)((new_data +
((uint64_t)1 << I40E_48_BIT_WIDTH)) - *offset);
*stat &= I40E_48_BIT_MASK;
}
/* Disable IRQ0 */
void
i40e_pf_disable_irq0(struct i40e_hw *hw)
{
/* Disable all interrupt types */
I40E_WRITE_REG(hw, I40E_PFINT_DYN_CTL0, 0);
I40E_WRITE_FLUSH(hw);
}
/* Enable IRQ0 */
void
i40e_pf_enable_irq0(struct i40e_hw *hw)
{
I40E_WRITE_REG(hw, I40E_PFINT_DYN_CTL0,
I40E_PFINT_DYN_CTL0_INTENA_MASK |
I40E_PFINT_DYN_CTL0_CLEARPBA_MASK |
I40E_PFINT_DYN_CTL0_ITR_INDX_MASK);
I40E_WRITE_FLUSH(hw);
}
static void
i40e_pf_config_irq0(struct i40e_hw *hw, bool no_queue)
{
/* read pending request and disable first */
i40e_pf_disable_irq0(hw);
I40E_WRITE_REG(hw, I40E_PFINT_ICR0_ENA, I40E_PFINT_ICR0_ENA_MASK);
I40E_WRITE_REG(hw, I40E_PFINT_STAT_CTL0,
I40E_PFINT_STAT_CTL0_OTHER_ITR_INDX_MASK);
if (no_queue)
/* Link no queues with irq0 */
I40E_WRITE_REG(hw, I40E_PFINT_LNKLST0,
I40E_PFINT_LNKLST0_FIRSTQ_INDX_MASK);
}
static void
i40e_dev_handle_vfr_event(struct rte_eth_dev *dev)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
int i;
uint16_t abs_vf_id;
uint32_t index, offset, val;
if (!pf->vfs)
return;
/**
* Try to find which VF trigger a reset, use absolute VF id to access
* since the reg is global register.
*/
for (i = 0; i < pf->vf_num; i++) {
abs_vf_id = hw->func_caps.vf_base_id + i;
index = abs_vf_id / I40E_UINT32_BIT_SIZE;
offset = abs_vf_id % I40E_UINT32_BIT_SIZE;
val = I40E_READ_REG(hw, I40E_GLGEN_VFLRSTAT(index));
/* VFR event occured */
if (val & (0x1 << offset)) {
int ret;
/* Clear the event first */
I40E_WRITE_REG(hw, I40E_GLGEN_VFLRSTAT(index),
(0x1 << offset));
PMD_DRV_LOG(INFO, "VF %u reset occured", abs_vf_id);
/**
* Only notify a VF reset event occured,
* don't trigger another SW reset
*/
ret = i40e_pf_host_vf_reset(&pf->vfs[i], 0);
if (ret != I40E_SUCCESS)
PMD_DRV_LOG(ERR, "Failed to do VF reset");
}
}
}
static void
i40e_notify_all_vfs_link_status(struct rte_eth_dev *dev)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_virtchnl_pf_event event;
int i;
event.event = I40E_VIRTCHNL_EVENT_LINK_CHANGE;
event.event_data.link_event.link_status =
dev->data->dev_link.link_status;
event.event_data.link_event.link_speed =
(enum i40e_aq_link_speed)dev->data->dev_link.link_speed;
for (i = 0; i < pf->vf_num; i++)
i40e_pf_host_send_msg_to_vf(&pf->vfs[i], I40E_VIRTCHNL_OP_EVENT,
I40E_SUCCESS, (uint8_t *)&event, sizeof(event));
}
static void
i40e_dev_handle_aq_msg(struct rte_eth_dev *dev)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_arq_event_info info;
uint16_t pending, opcode;
int ret;
info.buf_len = I40E_AQ_BUF_SZ;
info.msg_buf = rte_zmalloc("msg_buffer", info.buf_len, 0);
if (!info.msg_buf) {
PMD_DRV_LOG(ERR, "Failed to allocate mem");
return;
}
pending = 1;
while (pending) {
ret = i40e_clean_arq_element(hw, &info, &pending);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(INFO, "Failed to read msg from AdminQ, "
"aq_err: %u", hw->aq.asq_last_status);
break;
}
opcode = rte_le_to_cpu_16(info.desc.opcode);
switch (opcode) {
case i40e_aqc_opc_send_msg_to_pf:
/* Refer to i40e_aq_send_msg_to_pf() for argument layout*/
i40e_pf_host_handle_vf_msg(dev,
rte_le_to_cpu_16(info.desc.retval),
rte_le_to_cpu_32(info.desc.cookie_high),
rte_le_to_cpu_32(info.desc.cookie_low),
info.msg_buf,
info.msg_len);
break;
case i40e_aqc_opc_get_link_status:
ret = i40e_dev_link_update(dev, 0);
if (!ret) {
i40e_notify_all_vfs_link_status(dev);
_rte_eth_dev_callback_process(dev,
RTE_ETH_EVENT_INTR_LSC, NULL);
}
break;
default:
PMD_DRV_LOG(ERR, "Request %u is not supported yet",
opcode);
break;
}
}
rte_free(info.msg_buf);
}
/**
* Interrupt handler triggered by NIC for handling
* specific interrupt.
*
* @param handle
* Pointer to interrupt handle.
* @param param
* The address of parameter (struct rte_eth_dev *) regsitered before.
*
* @return
* void
*/
static void
i40e_dev_interrupt_handler(struct rte_intr_handle *intr_handle,
void *param)
{
struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t icr0;
/* Disable interrupt */
i40e_pf_disable_irq0(hw);
/* read out interrupt causes */
icr0 = I40E_READ_REG(hw, I40E_PFINT_ICR0);
/* No interrupt event indicated */
if (!(icr0 & I40E_PFINT_ICR0_INTEVENT_MASK)) {
PMD_DRV_LOG(INFO, "No interrupt event");
goto done;
}
#ifdef RTE_LIBRTE_I40E_DEBUG_DRIVER
if (icr0 & I40E_PFINT_ICR0_ECC_ERR_MASK)
PMD_DRV_LOG(ERR, "ICR0: unrecoverable ECC error");
if (icr0 & I40E_PFINT_ICR0_MAL_DETECT_MASK)
PMD_DRV_LOG(ERR, "ICR0: malicious programming detected");
if (icr0 & I40E_PFINT_ICR0_GRST_MASK)
PMD_DRV_LOG(INFO, "ICR0: global reset requested");
if (icr0 & I40E_PFINT_ICR0_PCI_EXCEPTION_MASK)
PMD_DRV_LOG(INFO, "ICR0: PCI exception activated");
if (icr0 & I40E_PFINT_ICR0_STORM_DETECT_MASK)
PMD_DRV_LOG(INFO, "ICR0: a change in the storm control state");
if (icr0 & I40E_PFINT_ICR0_HMC_ERR_MASK)
PMD_DRV_LOG(ERR, "ICR0: HMC error");
if (icr0 & I40E_PFINT_ICR0_PE_CRITERR_MASK)
PMD_DRV_LOG(ERR, "ICR0: protocol engine critical error");
#endif /* RTE_LIBRTE_I40E_DEBUG_DRIVER */
if (icr0 & I40E_PFINT_ICR0_VFLR_MASK) {
PMD_DRV_LOG(INFO, "ICR0: VF reset detected");
i40e_dev_handle_vfr_event(dev);
}
if (icr0 & I40E_PFINT_ICR0_ADMINQ_MASK) {
PMD_DRV_LOG(INFO, "ICR0: adminq event");
i40e_dev_handle_aq_msg(dev);
}
done:
/* Enable interrupt */
i40e_pf_enable_irq0(hw);
rte_intr_enable(intr_handle);
}
static int
i40e_add_macvlan_filters(struct i40e_vsi *vsi,
struct i40e_macvlan_filter *filter,
int total)
{
int ele_num, ele_buff_size;
int num, actual_num, i;
uint16_t flags;
int ret = I40E_SUCCESS;
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
struct i40e_aqc_add_macvlan_element_data *req_list;
if (filter == NULL || total == 0)
return I40E_ERR_PARAM;
ele_num = hw->aq.asq_buf_size / sizeof(*req_list);
ele_buff_size = hw->aq.asq_buf_size;
req_list = rte_zmalloc("macvlan_add", ele_buff_size, 0);
if (req_list == NULL) {
PMD_DRV_LOG(ERR, "Fail to allocate memory");
return I40E_ERR_NO_MEMORY;
}
num = 0;
do {
actual_num = (num + ele_num > total) ? (total - num) : ele_num;
memset(req_list, 0, ele_buff_size);
for (i = 0; i < actual_num; i++) {
(void)rte_memcpy(req_list[i].mac_addr,
&filter[num + i].macaddr, ETH_ADDR_LEN);
req_list[i].vlan_tag =
rte_cpu_to_le_16(filter[num + i].vlan_id);
switch (filter[num + i].filter_type) {
case RTE_MAC_PERFECT_MATCH:
flags = I40E_AQC_MACVLAN_ADD_PERFECT_MATCH |
I40E_AQC_MACVLAN_ADD_IGNORE_VLAN;
break;
case RTE_MACVLAN_PERFECT_MATCH:
flags = I40E_AQC_MACVLAN_ADD_PERFECT_MATCH;
break;
case RTE_MAC_HASH_MATCH:
flags = I40E_AQC_MACVLAN_ADD_HASH_MATCH |
I40E_AQC_MACVLAN_ADD_IGNORE_VLAN;
break;
case RTE_MACVLAN_HASH_MATCH:
flags = I40E_AQC_MACVLAN_ADD_HASH_MATCH;
break;
default:
PMD_DRV_LOG(ERR, "Invalid MAC match type\n");
ret = I40E_ERR_PARAM;
goto DONE;
}
req_list[i].queue_number = 0;
req_list[i].flags = rte_cpu_to_le_16(flags);
}
ret = i40e_aq_add_macvlan(hw, vsi->seid, req_list,
actual_num, NULL);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to add macvlan filter");
goto DONE;
}
num += actual_num;
} while (num < total);
DONE:
rte_free(req_list);
return ret;
}
static int
i40e_remove_macvlan_filters(struct i40e_vsi *vsi,
struct i40e_macvlan_filter *filter,
int total)
{
int ele_num, ele_buff_size;
int num, actual_num, i;
uint16_t flags;
int ret = I40E_SUCCESS;
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
struct i40e_aqc_remove_macvlan_element_data *req_list;
if (filter == NULL || total == 0)
return I40E_ERR_PARAM;
ele_num = hw->aq.asq_buf_size / sizeof(*req_list);
ele_buff_size = hw->aq.asq_buf_size;
req_list = rte_zmalloc("macvlan_remove", ele_buff_size, 0);
if (req_list == NULL) {
PMD_DRV_LOG(ERR, "Fail to allocate memory");
return I40E_ERR_NO_MEMORY;
}
num = 0;
do {
actual_num = (num + ele_num > total) ? (total - num) : ele_num;
memset(req_list, 0, ele_buff_size);
for (i = 0; i < actual_num; i++) {
(void)rte_memcpy(req_list[i].mac_addr,
&filter[num + i].macaddr, ETH_ADDR_LEN);
req_list[i].vlan_tag =
rte_cpu_to_le_16(filter[num + i].vlan_id);
switch (filter[num + i].filter_type) {
case RTE_MAC_PERFECT_MATCH:
flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH |
I40E_AQC_MACVLAN_DEL_IGNORE_VLAN;
break;
case RTE_MACVLAN_PERFECT_MATCH:
flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH;
break;
case RTE_MAC_HASH_MATCH:
flags = I40E_AQC_MACVLAN_DEL_HASH_MATCH |
I40E_AQC_MACVLAN_DEL_IGNORE_VLAN;
break;
case RTE_MACVLAN_HASH_MATCH:
flags = I40E_AQC_MACVLAN_DEL_HASH_MATCH;
break;
default:
PMD_DRV_LOG(ERR, "Invalid MAC filter type\n");
ret = I40E_ERR_PARAM;
goto DONE;
}
req_list[i].flags = rte_cpu_to_le_16(flags);
}
ret = i40e_aq_remove_macvlan(hw, vsi->seid, req_list,
actual_num, NULL);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to remove macvlan filter");
goto DONE;
}
num += actual_num;
} while (num < total);
DONE:
rte_free(req_list);
return ret;
}
/* Find out specific MAC filter */
static struct i40e_mac_filter *
i40e_find_mac_filter(struct i40e_vsi *vsi,
struct ether_addr *macaddr)
{
struct i40e_mac_filter *f;
TAILQ_FOREACH(f, &vsi->mac_list, next) {
if (is_same_ether_addr(macaddr, &f->mac_info.mac_addr))
return f;
}
return NULL;
}
static bool
i40e_find_vlan_filter(struct i40e_vsi *vsi,
uint16_t vlan_id)
{
uint32_t vid_idx, vid_bit;
if (vlan_id > ETH_VLAN_ID_MAX)
return 0;
vid_idx = I40E_VFTA_IDX(vlan_id);
vid_bit = I40E_VFTA_BIT(vlan_id);
if (vsi->vfta[vid_idx] & vid_bit)
return 1;
else
return 0;
}
static void
i40e_set_vlan_filter(struct i40e_vsi *vsi,
uint16_t vlan_id, bool on)
{
uint32_t vid_idx, vid_bit;
if (vlan_id > ETH_VLAN_ID_MAX)
return;
vid_idx = I40E_VFTA_IDX(vlan_id);
vid_bit = I40E_VFTA_BIT(vlan_id);
if (on)
vsi->vfta[vid_idx] |= vid_bit;
else
vsi->vfta[vid_idx] &= ~vid_bit;
}
/**
* Find all vlan options for specific mac addr,
* return with actual vlan found.
*/
static inline int
i40e_find_all_vlan_for_mac(struct i40e_vsi *vsi,
struct i40e_macvlan_filter *mv_f,
int num, struct ether_addr *addr)
{
int i;
uint32_t j, k;
/**
* Not to use i40e_find_vlan_filter to decrease the loop time,
* although the code looks complex.
*/
if (num < vsi->vlan_num)
return I40E_ERR_PARAM;
i = 0;
for (j = 0; j < I40E_VFTA_SIZE; j++) {
if (vsi->vfta[j]) {
for (k = 0; k < I40E_UINT32_BIT_SIZE; k++) {
if (vsi->vfta[j] & (1 << k)) {
if (i > num - 1) {
PMD_DRV_LOG(ERR, "vlan number "
"not match");
return I40E_ERR_PARAM;
}
(void)rte_memcpy(&mv_f[i].macaddr,
addr, ETH_ADDR_LEN);
mv_f[i].vlan_id =
j * I40E_UINT32_BIT_SIZE + k;
i++;
}
}
}
}
return I40E_SUCCESS;
}
static inline int
i40e_find_all_mac_for_vlan(struct i40e_vsi *vsi,
struct i40e_macvlan_filter *mv_f,
int num,
uint16_t vlan)
{
int i = 0;
struct i40e_mac_filter *f;
if (num < vsi->mac_num)
return I40E_ERR_PARAM;
TAILQ_FOREACH(f, &vsi->mac_list, next) {
if (i > num - 1) {
PMD_DRV_LOG(ERR, "buffer number not match");
return I40E_ERR_PARAM;
}
(void)rte_memcpy(&mv_f[i].macaddr, &f->mac_info.mac_addr,
ETH_ADDR_LEN);
mv_f[i].vlan_id = vlan;
mv_f[i].filter_type = f->mac_info.filter_type;
i++;
}
return I40E_SUCCESS;
}
static int
i40e_vsi_remove_all_macvlan_filter(struct i40e_vsi *vsi)
{
int i, num;
struct i40e_mac_filter *f;
struct i40e_macvlan_filter *mv_f;
int ret = I40E_SUCCESS;
if (vsi == NULL || vsi->mac_num == 0)
return I40E_ERR_PARAM;
/* Case that no vlan is set */
if (vsi->vlan_num == 0)
num = vsi->mac_num;
else
num = vsi->mac_num * vsi->vlan_num;
mv_f = rte_zmalloc("macvlan_data", num * sizeof(*mv_f), 0);
if (mv_f == NULL) {
PMD_DRV_LOG(ERR, "failed to allocate memory");
return I40E_ERR_NO_MEMORY;
}
i = 0;
if (vsi->vlan_num == 0) {
TAILQ_FOREACH(f, &vsi->mac_list, next) {
(void)rte_memcpy(&mv_f[i].macaddr,
&f->mac_info.mac_addr, ETH_ADDR_LEN);
mv_f[i].vlan_id = 0;
i++;
}
} else {
TAILQ_FOREACH(f, &vsi->mac_list, next) {
ret = i40e_find_all_vlan_for_mac(vsi,&mv_f[i],
vsi->vlan_num, &f->mac_info.mac_addr);
if (ret != I40E_SUCCESS)
goto DONE;
i += vsi->vlan_num;
}
}
ret = i40e_remove_macvlan_filters(vsi, mv_f, num);
DONE:
rte_free(mv_f);
return ret;
}
int
i40e_vsi_add_vlan(struct i40e_vsi *vsi, uint16_t vlan)
{
struct i40e_macvlan_filter *mv_f;
int mac_num;
int ret = I40E_SUCCESS;
if (!vsi || vlan > ETHER_MAX_VLAN_ID)
return I40E_ERR_PARAM;
/* If it's already set, just return */
if (i40e_find_vlan_filter(vsi,vlan))
return I40E_SUCCESS;
mac_num = vsi->mac_num;
if (mac_num == 0) {
PMD_DRV_LOG(ERR, "Error! VSI doesn't have a mac addr");
return I40E_ERR_PARAM;
}
mv_f = rte_zmalloc("macvlan_data", mac_num * sizeof(*mv_f), 0);
if (mv_f == NULL) {
PMD_DRV_LOG(ERR, "failed to allocate memory");
return I40E_ERR_NO_MEMORY;
}
ret = i40e_find_all_mac_for_vlan(vsi, mv_f, mac_num, vlan);
if (ret != I40E_SUCCESS)
goto DONE;
ret = i40e_add_macvlan_filters(vsi, mv_f, mac_num);
if (ret != I40E_SUCCESS)
goto DONE;
i40e_set_vlan_filter(vsi, vlan, 1);
vsi->vlan_num++;
ret = I40E_SUCCESS;
DONE:
rte_free(mv_f);
return ret;
}
int
i40e_vsi_delete_vlan(struct i40e_vsi *vsi, uint16_t vlan)
{
struct i40e_macvlan_filter *mv_f;
int mac_num;
int ret = I40E_SUCCESS;
/**
* Vlan 0 is the generic filter for untagged packets
* and can't be removed.
*/
if (!vsi || vlan == 0 || vlan > ETHER_MAX_VLAN_ID)
return I40E_ERR_PARAM;
/* If can't find it, just return */
if (!i40e_find_vlan_filter(vsi, vlan))
return I40E_ERR_PARAM;
mac_num = vsi->mac_num;
if (mac_num == 0) {
PMD_DRV_LOG(ERR, "Error! VSI doesn't have a mac addr");
return I40E_ERR_PARAM;
}
mv_f = rte_zmalloc("macvlan_data", mac_num * sizeof(*mv_f), 0);
if (mv_f == NULL) {
PMD_DRV_LOG(ERR, "failed to allocate memory");
return I40E_ERR_NO_MEMORY;
}
ret = i40e_find_all_mac_for_vlan(vsi, mv_f, mac_num, vlan);
if (ret != I40E_SUCCESS)
goto DONE;
ret = i40e_remove_macvlan_filters(vsi, mv_f, mac_num);
if (ret != I40E_SUCCESS)
goto DONE;
/* This is last vlan to remove, replace all mac filter with vlan 0 */
if (vsi->vlan_num == 1) {
ret = i40e_find_all_mac_for_vlan(vsi, mv_f, mac_num, 0);
if (ret != I40E_SUCCESS)
goto DONE;
ret = i40e_add_macvlan_filters(vsi, mv_f, mac_num);
if (ret != I40E_SUCCESS)
goto DONE;
}
i40e_set_vlan_filter(vsi, vlan, 0);
vsi->vlan_num--;
ret = I40E_SUCCESS;
DONE:
rte_free(mv_f);
return ret;
}
int
i40e_vsi_add_mac(struct i40e_vsi *vsi, struct i40e_mac_filter_info *mac_filter)
{
struct i40e_mac_filter *f;
struct i40e_macvlan_filter *mv_f;
int i, vlan_num = 0;
int ret = I40E_SUCCESS;
/* If it's add and we've config it, return */
f = i40e_find_mac_filter(vsi, &mac_filter->mac_addr);
if (f != NULL)
return I40E_SUCCESS;
if ((mac_filter->filter_type == RTE_MACVLAN_PERFECT_MATCH) ||
(mac_filter->filter_type == RTE_MACVLAN_HASH_MATCH)) {
/**
* If vlan_num is 0, that's the first time to add mac,
* set mask for vlan_id 0.
*/
if (vsi->vlan_num == 0) {
i40e_set_vlan_filter(vsi, 0, 1);
vsi->vlan_num = 1;
}
vlan_num = vsi->vlan_num;
} else if ((mac_filter->filter_type == RTE_MAC_PERFECT_MATCH) ||
(mac_filter->filter_type == RTE_MAC_HASH_MATCH))
vlan_num = 1;
mv_f = rte_zmalloc("macvlan_data", vlan_num * sizeof(*mv_f), 0);
if (mv_f == NULL) {
PMD_DRV_LOG(ERR, "failed to allocate memory");
return I40E_ERR_NO_MEMORY;
}
for (i = 0; i < vlan_num; i++) {
mv_f[i].filter_type = mac_filter->filter_type;
(void)rte_memcpy(&mv_f[i].macaddr, &mac_filter->mac_addr,
ETH_ADDR_LEN);
}
if (mac_filter->filter_type == RTE_MACVLAN_PERFECT_MATCH ||
mac_filter->filter_type == RTE_MACVLAN_HASH_MATCH) {
ret = i40e_find_all_vlan_for_mac(vsi, mv_f, vlan_num,
&mac_filter->mac_addr);
if (ret != I40E_SUCCESS)
goto DONE;
}
ret = i40e_add_macvlan_filters(vsi, mv_f, vlan_num);
if (ret != I40E_SUCCESS)
goto DONE;
/* Add the mac addr into mac list */
f = rte_zmalloc("macv_filter", sizeof(*f), 0);
if (f == NULL) {
PMD_DRV_LOG(ERR, "failed to allocate memory");
ret = I40E_ERR_NO_MEMORY;
goto DONE;
}
(void)rte_memcpy(&f->mac_info.mac_addr, &mac_filter->mac_addr,
ETH_ADDR_LEN);
f->mac_info.filter_type = mac_filter->filter_type;
TAILQ_INSERT_TAIL(&vsi->mac_list, f, next);
vsi->mac_num++;
ret = I40E_SUCCESS;
DONE:
rte_free(mv_f);
return ret;
}
int
i40e_vsi_delete_mac(struct i40e_vsi *vsi, struct ether_addr *addr)
{
struct i40e_mac_filter *f;
struct i40e_macvlan_filter *mv_f;
int i, vlan_num;
enum rte_mac_filter_type filter_type;
int ret = I40E_SUCCESS;
/* Can't find it, return an error */
f = i40e_find_mac_filter(vsi, addr);
if (f == NULL)
return I40E_ERR_PARAM;
vlan_num = vsi->vlan_num;
filter_type = f->mac_info.filter_type;
if (filter_type == RTE_MACVLAN_PERFECT_MATCH ||
filter_type == RTE_MACVLAN_HASH_MATCH) {
if (vlan_num == 0) {
PMD_DRV_LOG(ERR, "VLAN number shouldn't be 0\n");
return I40E_ERR_PARAM;
}
} else if (filter_type == RTE_MAC_PERFECT_MATCH ||
filter_type == RTE_MAC_HASH_MATCH)
vlan_num = 1;
mv_f = rte_zmalloc("macvlan_data", vlan_num * sizeof(*mv_f), 0);
if (mv_f == NULL) {
PMD_DRV_LOG(ERR, "failed to allocate memory");
return I40E_ERR_NO_MEMORY;
}
for (i = 0; i < vlan_num; i++) {
mv_f[i].filter_type = filter_type;
(void)rte_memcpy(&mv_f[i].macaddr, &f->mac_info.mac_addr,
ETH_ADDR_LEN);
}
if (filter_type == RTE_MACVLAN_PERFECT_MATCH ||
filter_type == RTE_MACVLAN_HASH_MATCH) {
ret = i40e_find_all_vlan_for_mac(vsi, mv_f, vlan_num, addr);
if (ret != I40E_SUCCESS)
goto DONE;
}
ret = i40e_remove_macvlan_filters(vsi, mv_f, vlan_num);
if (ret != I40E_SUCCESS)
goto DONE;
/* Remove the mac addr into mac list */
TAILQ_REMOVE(&vsi->mac_list, f, next);
rte_free(f);
vsi->mac_num--;
ret = I40E_SUCCESS;
DONE:
rte_free(mv_f);
return ret;
}
/* Configure hash enable flags for RSS */
uint64_t
i40e_config_hena(uint64_t flags, enum i40e_mac_type type)
{
uint64_t hena = 0;
if (!flags)
return hena;
if (flags & ETH_RSS_FRAG_IPV4)
hena |= 1ULL << I40E_FILTER_PCTYPE_FRAG_IPV4;
if (flags & ETH_RSS_NONFRAG_IPV4_TCP) {
if (type == I40E_MAC_X722) {
hena |= (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP) |
(1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK);
} else
hena |= 1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
}
if (flags & ETH_RSS_NONFRAG_IPV4_UDP) {
if (type == I40E_MAC_X722) {
hena |= (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_UDP) |
(1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) |
(1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP);
} else
hena |= 1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
}
if (flags & ETH_RSS_NONFRAG_IPV4_SCTP)
hena |= 1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
if (flags & ETH_RSS_NONFRAG_IPV4_OTHER)
hena |= 1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
if (flags & ETH_RSS_FRAG_IPV6)
hena |= 1ULL << I40E_FILTER_PCTYPE_FRAG_IPV6;
if (flags & ETH_RSS_NONFRAG_IPV6_TCP) {
if (type == I40E_MAC_X722) {
hena |= (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP) |
(1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK);
} else
hena |= 1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP;
}
if (flags & ETH_RSS_NONFRAG_IPV6_UDP) {
if (type == I40E_MAC_X722) {
hena |= (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_UDP) |
(1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) |
(1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP);
} else
hena |= 1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_UDP;
}
if (flags & ETH_RSS_NONFRAG_IPV6_SCTP)
hena |= 1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_SCTP;
if (flags & ETH_RSS_NONFRAG_IPV6_OTHER)
hena |= 1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_OTHER;
if (flags & ETH_RSS_L2_PAYLOAD)
hena |= 1ULL << I40E_FILTER_PCTYPE_L2_PAYLOAD;
return hena;
}
/* Parse the hash enable flags */
uint64_t
i40e_parse_hena(uint64_t flags)
{
uint64_t rss_hf = 0;
if (!flags)
return rss_hf;
if (flags & (1ULL << I40E_FILTER_PCTYPE_FRAG_IPV4))
rss_hf |= ETH_RSS_FRAG_IPV4;
if (flags & (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP))
rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
if (flags & (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK))
rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
if (flags & (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_UDP))
rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
if (flags & (1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP))
rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
if (flags & (1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP))
rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
if (flags & (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_SCTP))
rss_hf |= ETH_RSS_NONFRAG_IPV4_SCTP;
if (flags & (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_OTHER))
rss_hf |= ETH_RSS_NONFRAG_IPV4_OTHER;
if (flags & (1ULL << I40E_FILTER_PCTYPE_FRAG_IPV6))
rss_hf |= ETH_RSS_FRAG_IPV6;
if (flags & (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP))
rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
if (flags & (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK))
rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
if (flags & (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_UDP))
rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
if (flags & (1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP))
rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
if (flags & (1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP))
rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
if (flags & (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_SCTP))
rss_hf |= ETH_RSS_NONFRAG_IPV6_SCTP;
if (flags & (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_OTHER))
rss_hf |= ETH_RSS_NONFRAG_IPV6_OTHER;
if (flags & (1ULL << I40E_FILTER_PCTYPE_L2_PAYLOAD))
rss_hf |= ETH_RSS_L2_PAYLOAD;
return rss_hf;
}
/* Disable RSS */
static void
i40e_pf_disable_rss(struct i40e_pf *pf)
{
struct i40e_hw *hw = I40E_PF_TO_HW(pf);
uint64_t hena;
hena = (uint64_t)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(0));
hena |= ((uint64_t)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(1))) << 32;
if (hw->mac.type == I40E_MAC_X722)
hena &= ~I40E_RSS_HENA_ALL_X722;
else
hena &= ~I40E_RSS_HENA_ALL;
i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (uint32_t)hena);
i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (uint32_t)(hena >> 32));
I40E_WRITE_FLUSH(hw);
}
static int
i40e_set_rss_key(struct i40e_vsi *vsi, uint8_t *key, uint8_t key_len)
{
struct i40e_pf *pf = I40E_VSI_TO_PF(vsi);
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
int ret = 0;
if (!key || key_len == 0) {
PMD_DRV_LOG(DEBUG, "No key to be configured");
return 0;
} else if (key_len != (I40E_PFQF_HKEY_MAX_INDEX + 1) *
sizeof(uint32_t)) {
PMD_DRV_LOG(ERR, "Invalid key length %u", key_len);
return -EINVAL;
}
if (pf->flags & I40E_FLAG_RSS_AQ_CAPABLE) {
struct i40e_aqc_get_set_rss_key_data *key_dw =
(struct i40e_aqc_get_set_rss_key_data *)key;
ret = i40e_aq_set_rss_key(hw, vsi->vsi_id, key_dw);
if (ret)
PMD_INIT_LOG(ERR, "Failed to configure RSS key "
"via AQ");
} else {
uint32_t *hash_key = (uint32_t *)key;
uint16_t i;
for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++)
i40e_write_rx_ctl(hw, I40E_PFQF_HKEY(i), hash_key[i]);
I40E_WRITE_FLUSH(hw);
}
return ret;
}
static int
i40e_get_rss_key(struct i40e_vsi *vsi, uint8_t *key, uint8_t *key_len)
{
struct i40e_pf *pf = I40E_VSI_TO_PF(vsi);
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
int ret;
if (!key || !key_len)
return -EINVAL;
if (pf->flags & I40E_FLAG_RSS_AQ_CAPABLE) {
ret = i40e_aq_get_rss_key(hw, vsi->vsi_id,
(struct i40e_aqc_get_set_rss_key_data *)key);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to get RSS key via AQ");
return ret;
}
} else {
uint32_t *key_dw = (uint32_t *)key;
uint16_t i;
for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++)
key_dw[i] = i40e_read_rx_ctl(hw, I40E_PFQF_HKEY(i));
}
*key_len = (I40E_PFQF_HKEY_MAX_INDEX + 1) * sizeof(uint32_t);
return 0;
}
static int
i40e_hw_rss_hash_set(struct i40e_pf *pf, struct rte_eth_rss_conf *rss_conf)
{
struct i40e_hw *hw = I40E_PF_TO_HW(pf);
uint64_t rss_hf;
uint64_t hena;
int ret;
ret = i40e_set_rss_key(pf->main_vsi, rss_conf->rss_key,
rss_conf->rss_key_len);
if (ret)
return ret;
rss_hf = rss_conf->rss_hf;
hena = (uint64_t)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(0));
hena |= ((uint64_t)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(1))) << 32;
if (hw->mac.type == I40E_MAC_X722)
hena &= ~I40E_RSS_HENA_ALL_X722;
else
hena &= ~I40E_RSS_HENA_ALL;
hena |= i40e_config_hena(rss_hf, hw->mac.type);
i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (uint32_t)hena);
i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (uint32_t)(hena >> 32));
I40E_WRITE_FLUSH(hw);
return 0;
}
static int
i40e_dev_rss_hash_update(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint64_t rss_hf = rss_conf->rss_hf & I40E_RSS_OFFLOAD_ALL;
uint64_t hena;
hena = (uint64_t)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(0));
hena |= ((uint64_t)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(1))) << 32;
if (!(hena & ((hw->mac.type == I40E_MAC_X722)
? I40E_RSS_HENA_ALL_X722
: I40E_RSS_HENA_ALL))) { /* RSS disabled */
if (rss_hf != 0) /* Enable RSS */
return -EINVAL;
return 0; /* Nothing to do */
}
/* RSS enabled */
if (rss_hf == 0) /* Disable RSS */
return -EINVAL;
return i40e_hw_rss_hash_set(pf, rss_conf);
}
static int
i40e_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint64_t hena;
i40e_get_rss_key(pf->main_vsi, rss_conf->rss_key,
&rss_conf->rss_key_len);
hena = (uint64_t)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(0));
hena |= ((uint64_t)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(1))) << 32;
rss_conf->rss_hf = i40e_parse_hena(hena);
return 0;
}
static int
i40e_dev_get_filter_type(uint16_t filter_type, uint16_t *flag)
{
switch (filter_type) {
case RTE_TUNNEL_FILTER_IMAC_IVLAN:
*flag = I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN;
break;
case RTE_TUNNEL_FILTER_IMAC_IVLAN_TENID:
*flag = I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN_TEN_ID;
break;
case RTE_TUNNEL_FILTER_IMAC_TENID:
*flag = I40E_AQC_ADD_CLOUD_FILTER_IMAC_TEN_ID;
break;
case RTE_TUNNEL_FILTER_OMAC_TENID_IMAC:
*flag = I40E_AQC_ADD_CLOUD_FILTER_OMAC_TEN_ID_IMAC;
break;
case ETH_TUNNEL_FILTER_IMAC:
*flag = I40E_AQC_ADD_CLOUD_FILTER_IMAC;
break;
case ETH_TUNNEL_FILTER_OIP:
*flag = I40E_AQC_ADD_CLOUD_FILTER_OIP;
break;
case ETH_TUNNEL_FILTER_IIP:
*flag = I40E_AQC_ADD_CLOUD_FILTER_IIP;
break;
default:
PMD_DRV_LOG(ERR, "invalid tunnel filter type");
return -EINVAL;
}
return 0;
}
/* Convert tunnel filter structure */
static int
i40e_tunnel_filter_convert(struct i40e_aqc_add_remove_cloud_filters_element_data
*cld_filter,
struct i40e_tunnel_filter *tunnel_filter)
{
ether_addr_copy((struct ether_addr *)&cld_filter->outer_mac,
(struct ether_addr *)&tunnel_filter->input.outer_mac);
ether_addr_copy((struct ether_addr *)&cld_filter->inner_mac,
(struct ether_addr *)&tunnel_filter->input.inner_mac);
tunnel_filter->input.inner_vlan = cld_filter->inner_vlan;
tunnel_filter->input.flags = cld_filter->flags;
tunnel_filter->input.tenant_id = cld_filter->tenant_id;
tunnel_filter->queue = cld_filter->queue_number;
return 0;
}
/* Check if there exists the tunnel filter */
struct i40e_tunnel_filter *
i40e_sw_tunnel_filter_lookup(struct i40e_tunnel_rule *tunnel_rule,
const struct i40e_tunnel_filter_input *input)
{
int ret;
ret = rte_hash_lookup(tunnel_rule->hash_table, (const void *)input);
if (ret < 0)
return NULL;
return tunnel_rule->hash_map[ret];
}
/* Add a tunnel filter into the SW list */
static int
i40e_sw_tunnel_filter_insert(struct i40e_pf *pf,
struct i40e_tunnel_filter *tunnel_filter)
{
struct i40e_tunnel_rule *rule = &pf->tunnel;
int ret;
ret = rte_hash_add_key(rule->hash_table, &tunnel_filter->input);
if (ret < 0) {
PMD_DRV_LOG(ERR,
"Failed to insert tunnel filter to hash table %d!",
ret);
return ret;
}
rule->hash_map[ret] = tunnel_filter;
TAILQ_INSERT_TAIL(&rule->tunnel_list, tunnel_filter, rules);
return 0;
}
/* Delete a tunnel filter from the SW list */
int
i40e_sw_tunnel_filter_del(struct i40e_pf *pf,
struct i40e_tunnel_filter_input *input)
{
struct i40e_tunnel_rule *rule = &pf->tunnel;
struct i40e_tunnel_filter *tunnel_filter;
int ret;
ret = rte_hash_del_key(rule->hash_table, input);
if (ret < 0) {
PMD_DRV_LOG(ERR,
"Failed to delete tunnel filter to hash table %d!",
ret);
return ret;
}
tunnel_filter = rule->hash_map[ret];
rule->hash_map[ret] = NULL;
TAILQ_REMOVE(&rule->tunnel_list, tunnel_filter, rules);
rte_free(tunnel_filter);
return 0;
}
int
i40e_dev_tunnel_filter_set(struct i40e_pf *pf,
struct rte_eth_tunnel_filter_conf *tunnel_filter,
uint8_t add)
{
uint16_t ip_type;
uint32_t ipv4_addr;
uint8_t i, tun_type = 0;
/* internal varialbe to convert ipv6 byte order */
uint32_t convert_ipv6[4];
int val, ret = 0;
struct i40e_hw *hw = I40E_PF_TO_HW(pf);
struct i40e_vsi *vsi = pf->main_vsi;
struct i40e_aqc_add_remove_cloud_filters_element_data *cld_filter;
struct i40e_aqc_add_remove_cloud_filters_element_data *pfilter;
struct i40e_tunnel_rule *tunnel_rule = &pf->tunnel;
struct i40e_tunnel_filter *tunnel, *node;
struct i40e_tunnel_filter check_filter; /* Check if filter exists */
cld_filter = rte_zmalloc("tunnel_filter",
sizeof(struct i40e_aqc_add_remove_cloud_filters_element_data),
0);
if (NULL == cld_filter) {
PMD_DRV_LOG(ERR, "Failed to alloc memory.");
return -EINVAL;
}
pfilter = cld_filter;
ether_addr_copy(&tunnel_filter->outer_mac, (struct ether_addr*)&pfilter->outer_mac);
ether_addr_copy(&tunnel_filter->inner_mac, (struct ether_addr*)&pfilter->inner_mac);
pfilter->inner_vlan = rte_cpu_to_le_16(tunnel_filter->inner_vlan);
if (tunnel_filter->ip_type == RTE_TUNNEL_IPTYPE_IPV4) {
ip_type = I40E_AQC_ADD_CLOUD_FLAGS_IPV4;
ipv4_addr = rte_be_to_cpu_32(tunnel_filter->ip_addr.ipv4_addr);
rte_memcpy(&pfilter->ipaddr.v4.data,
&rte_cpu_to_le_32(ipv4_addr),
sizeof(pfilter->ipaddr.v4.data));
} else {
ip_type = I40E_AQC_ADD_CLOUD_FLAGS_IPV6;
for (i = 0; i < 4; i++) {
convert_ipv6[i] =
rte_cpu_to_le_32(rte_be_to_cpu_32(tunnel_filter->ip_addr.ipv6_addr[i]));
}
rte_memcpy(&pfilter->ipaddr.v6.data, &convert_ipv6,
sizeof(pfilter->ipaddr.v6.data));
}
/* check tunneled type */
switch (tunnel_filter->tunnel_type) {
case RTE_TUNNEL_TYPE_VXLAN:
tun_type = I40E_AQC_ADD_CLOUD_TNL_TYPE_VXLAN;
break;
case RTE_TUNNEL_TYPE_NVGRE:
tun_type = I40E_AQC_ADD_CLOUD_TNL_TYPE_NVGRE_OMAC;
break;
case RTE_TUNNEL_TYPE_IP_IN_GRE:
tun_type = I40E_AQC_ADD_CLOUD_TNL_TYPE_IP;
break;
default:
/* Other tunnel types is not supported. */
PMD_DRV_LOG(ERR, "tunnel type is not supported.");
rte_free(cld_filter);
return -EINVAL;
}
val = i40e_dev_get_filter_type(tunnel_filter->filter_type,
&pfilter->flags);
if (val < 0) {
rte_free(cld_filter);
return -EINVAL;
}
pfilter->flags |= rte_cpu_to_le_16(
I40E_AQC_ADD_CLOUD_FLAGS_TO_QUEUE |
ip_type | (tun_type << I40E_AQC_ADD_CLOUD_TNL_TYPE_SHIFT));
pfilter->tenant_id = rte_cpu_to_le_32(tunnel_filter->tenant_id);
pfilter->queue_number = rte_cpu_to_le_16(tunnel_filter->queue_id);
/* Check if there is the filter in SW list */
memset(&check_filter, 0, sizeof(check_filter));
i40e_tunnel_filter_convert(cld_filter, &check_filter);
node = i40e_sw_tunnel_filter_lookup(tunnel_rule, &check_filter.input);
if (add && node) {
PMD_DRV_LOG(ERR, "Conflict with existing tunnel rules!");
return -EINVAL;
}
if (!add && !node) {
PMD_DRV_LOG(ERR, "There's no corresponding tunnel filter!");
return -EINVAL;
}
if (add) {
ret = i40e_aq_add_cloud_filters(hw, vsi->seid, cld_filter, 1);
if (ret < 0) {
PMD_DRV_LOG(ERR, "Failed to add a tunnel filter.");
return ret;
}
tunnel = rte_zmalloc("tunnel_filter", sizeof(*tunnel), 0);
rte_memcpy(tunnel, &check_filter, sizeof(check_filter));
ret = i40e_sw_tunnel_filter_insert(pf, tunnel);
} else {
ret = i40e_aq_remove_cloud_filters(hw, vsi->seid,
cld_filter, 1);
if (ret < 0) {
PMD_DRV_LOG(ERR, "Failed to delete a tunnel filter.");
return ret;
}
ret = i40e_sw_tunnel_filter_del(pf, &node->input);
}
rte_free(cld_filter);
return ret;
}
static int
i40e_get_vxlan_port_idx(struct i40e_pf *pf, uint16_t port)
{
uint8_t i;
for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) {
if (pf->vxlan_ports[i] == port)
return i;
}
return -1;
}
static int
i40e_add_vxlan_port(struct i40e_pf *pf, uint16_t port)
{
int idx, ret;
uint8_t filter_idx;
struct i40e_hw *hw = I40E_PF_TO_HW(pf);
idx = i40e_get_vxlan_port_idx(pf, port);
/* Check if port already exists */
if (idx >= 0) {
PMD_DRV_LOG(ERR, "Port %d already offloaded", port);
return -EINVAL;
}
/* Now check if there is space to add the new port */
idx = i40e_get_vxlan_port_idx(pf, 0);
if (idx < 0) {
PMD_DRV_LOG(ERR, "Maximum number of UDP ports reached,"
"not adding port %d", port);
return -ENOSPC;
}
ret = i40e_aq_add_udp_tunnel(hw, port, I40E_AQC_TUNNEL_TYPE_VXLAN,
&filter_idx, NULL);
if (ret < 0) {
PMD_DRV_LOG(ERR, "Failed to add VXLAN UDP port %d", port);
return -1;
}
PMD_DRV_LOG(INFO, "Added port %d with AQ command with index %d",
port, filter_idx);
/* New port: add it and mark its index in the bitmap */
pf->vxlan_ports[idx] = port;
pf->vxlan_bitmap |= (1 << idx);
if (!(pf->flags & I40E_FLAG_VXLAN))
pf->flags |= I40E_FLAG_VXLAN;
return 0;
}
static int
i40e_del_vxlan_port(struct i40e_pf *pf, uint16_t port)
{
int idx;
struct i40e_hw *hw = I40E_PF_TO_HW(pf);
if (!(pf->flags & I40E_FLAG_VXLAN)) {
PMD_DRV_LOG(ERR, "VXLAN UDP port was not configured.");
return -EINVAL;
}
idx = i40e_get_vxlan_port_idx(pf, port);
if (idx < 0) {
PMD_DRV_LOG(ERR, "Port %d doesn't exist", port);
return -EINVAL;
}
if (i40e_aq_del_udp_tunnel(hw, idx, NULL) < 0) {
PMD_DRV_LOG(ERR, "Failed to delete VXLAN UDP port %d", port);
return -1;
}
PMD_DRV_LOG(INFO, "Deleted port %d with AQ command with index %d",
port, idx);
pf->vxlan_ports[idx] = 0;
pf->vxlan_bitmap &= ~(1 << idx);
if (!pf->vxlan_bitmap)
pf->flags &= ~I40E_FLAG_VXLAN;
return 0;
}
/* Add UDP tunneling port */
static int
i40e_dev_udp_tunnel_port_add(struct rte_eth_dev *dev,
struct rte_eth_udp_tunnel *udp_tunnel)
{
int ret = 0;
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
if (udp_tunnel == NULL)
return -EINVAL;
switch (udp_tunnel->prot_type) {
case RTE_TUNNEL_TYPE_VXLAN:
ret = i40e_add_vxlan_port(pf, udp_tunnel->udp_port);
break;
case RTE_TUNNEL_TYPE_GENEVE:
case RTE_TUNNEL_TYPE_TEREDO:
PMD_DRV_LOG(ERR, "Tunnel type is not supported now.");
ret = -1;
break;
default:
PMD_DRV_LOG(ERR, "Invalid tunnel type");
ret = -1;
break;
}
return ret;
}
/* Remove UDP tunneling port */
static int
i40e_dev_udp_tunnel_port_del(struct rte_eth_dev *dev,
struct rte_eth_udp_tunnel *udp_tunnel)
{
int ret = 0;
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
if (udp_tunnel == NULL)
return -EINVAL;
switch (udp_tunnel->prot_type) {
case RTE_TUNNEL_TYPE_VXLAN:
ret = i40e_del_vxlan_port(pf, udp_tunnel->udp_port);
break;
case RTE_TUNNEL_TYPE_GENEVE:
case RTE_TUNNEL_TYPE_TEREDO:
PMD_DRV_LOG(ERR, "Tunnel type is not supported now.");
ret = -1;
break;
default:
PMD_DRV_LOG(ERR, "Invalid tunnel type");
ret = -1;
break;
}
return ret;
}
/* Calculate the maximum number of contiguous PF queues that are configured */
static int
i40e_pf_calc_configured_queues_num(struct i40e_pf *pf)
{
struct rte_eth_dev_data *data = pf->dev_data;
int i, num;
struct i40e_rx_queue *rxq;
num = 0;
for (i = 0; i < pf->lan_nb_qps; i++) {
rxq = data->rx_queues[i];
if (rxq && rxq->q_set)
num++;
else
break;
}
return num;
}
/* Configure RSS */
static int
i40e_pf_config_rss(struct i40e_pf *pf)
{
struct i40e_hw *hw = I40E_PF_TO_HW(pf);
struct rte_eth_rss_conf rss_conf;
uint32_t i, lut = 0;
uint16_t j, num;
/*
* If both VMDQ and RSS enabled, not all of PF queues are configured.
* It's necessary to calulate the actual PF queues that are configured.
*/
if (pf->dev_data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_VMDQ_FLAG)
num = i40e_pf_calc_configured_queues_num(pf);
else
num = pf->dev_data->nb_rx_queues;
num = RTE_MIN(num, I40E_MAX_Q_PER_TC);
PMD_INIT_LOG(INFO, "Max of contiguous %u PF queues are configured",
num);
if (num == 0) {
PMD_INIT_LOG(ERR, "No PF queues are configured to enable RSS");
return -ENOTSUP;
}
for (i = 0, j = 0; i < hw->func_caps.rss_table_size; i++, j++) {
if (j == num)
j = 0;
lut = (lut << 8) | (j & ((0x1 <<
hw->func_caps.rss_table_entry_width) - 1));
if ((i & 3) == 3)
I40E_WRITE_REG(hw, I40E_PFQF_HLUT(i >> 2), lut);
}
rss_conf = pf->dev_data->dev_conf.rx_adv_conf.rss_conf;
if ((rss_conf.rss_hf & I40E_RSS_OFFLOAD_ALL) == 0) {
i40e_pf_disable_rss(pf);
return 0;
}
if (rss_conf.rss_key == NULL || rss_conf.rss_key_len <
(I40E_PFQF_HKEY_MAX_INDEX + 1) * sizeof(uint32_t)) {
/* Random default keys */
static uint32_t rss_key_default[] = {0x6b793944,
0x23504cb5, 0x5bea75b6, 0x309f4f12, 0x3dc0a2b8,
0x024ddcdf, 0x339b8ca0, 0x4c4af64a, 0x34fac605,
0x55d85839, 0x3a58997d, 0x2ec938e1, 0x66031581};
rss_conf.rss_key = (uint8_t *)rss_key_default;
rss_conf.rss_key_len = (I40E_PFQF_HKEY_MAX_INDEX + 1) *
sizeof(uint32_t);
}
return i40e_hw_rss_hash_set(pf, &rss_conf);
}
static int
i40e_tunnel_filter_param_check(struct i40e_pf *pf,
struct rte_eth_tunnel_filter_conf *filter)
{
if (pf == NULL || filter == NULL) {
PMD_DRV_LOG(ERR, "Invalid parameter");
return -EINVAL;
}
if (filter->queue_id >= pf->dev_data->nb_rx_queues) {
PMD_DRV_LOG(ERR, "Invalid queue ID");
return -EINVAL;
}
if (filter->inner_vlan > ETHER_MAX_VLAN_ID) {
PMD_DRV_LOG(ERR, "Invalid inner VLAN ID");
return -EINVAL;
}
if ((filter->filter_type & ETH_TUNNEL_FILTER_OMAC) &&
(is_zero_ether_addr(&filter->outer_mac))) {
PMD_DRV_LOG(ERR, "Cannot add NULL outer MAC address");
return -EINVAL;
}
if ((filter->filter_type & ETH_TUNNEL_FILTER_IMAC) &&
(is_zero_ether_addr(&filter->inner_mac))) {
PMD_DRV_LOG(ERR, "Cannot add NULL inner MAC address");
return -EINVAL;
}
return 0;
}
#define I40E_GL_PRS_FVBM_MSK_ENA 0x80000000
#define I40E_GL_PRS_FVBM(_i) (0x00269760 + ((_i) * 4))
static int
i40e_dev_set_gre_key_len(struct i40e_hw *hw, uint8_t len)
{
uint32_t val, reg;
int ret = -EINVAL;
val = I40E_READ_REG(hw, I40E_GL_PRS_FVBM(2));
PMD_DRV_LOG(DEBUG, "Read original GL_PRS_FVBM with 0x%08x\n", val);
if (len == 3) {
reg = val | I40E_GL_PRS_FVBM_MSK_ENA;
} else if (len == 4) {
reg = val & ~I40E_GL_PRS_FVBM_MSK_ENA;
} else {
PMD_DRV_LOG(ERR, "Unsupported GRE key length of %u", len);
return ret;
}
if (reg != val) {
ret = i40e_aq_debug_write_register(hw, I40E_GL_PRS_FVBM(2),
reg, NULL);
if (ret != 0)
return ret;
} else {
ret = 0;
}
PMD_DRV_LOG(DEBUG, "Read modified GL_PRS_FVBM with 0x%08x\n",
I40E_READ_REG(hw, I40E_GL_PRS_FVBM(2)));
return ret;
}
static int
i40e_dev_global_config_set(struct i40e_hw *hw, struct rte_eth_global_cfg *cfg)
{
int ret = -EINVAL;
if (!hw || !cfg)
return -EINVAL;
switch (cfg->cfg_type) {
case RTE_ETH_GLOBAL_CFG_TYPE_GRE_KEY_LEN:
ret = i40e_dev_set_gre_key_len(hw, cfg->cfg.gre_key_len);
break;
default:
PMD_DRV_LOG(ERR, "Unknown config type %u", cfg->cfg_type);
break;
}
return ret;
}
static int
i40e_filter_ctrl_global_config(struct rte_eth_dev *dev,
enum rte_filter_op filter_op,
void *arg)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
int ret = I40E_ERR_PARAM;
switch (filter_op) {
case RTE_ETH_FILTER_SET:
ret = i40e_dev_global_config_set(hw,
(struct rte_eth_global_cfg *)arg);
break;
default:
PMD_DRV_LOG(ERR, "unknown operation %u", filter_op);
break;
}
return ret;
}
static int
i40e_tunnel_filter_handle(struct rte_eth_dev *dev,
enum rte_filter_op filter_op,
void *arg)
{
struct rte_eth_tunnel_filter_conf *filter;
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
int ret = I40E_SUCCESS;
filter = (struct rte_eth_tunnel_filter_conf *)(arg);
if (i40e_tunnel_filter_param_check(pf, filter) < 0)
return I40E_ERR_PARAM;
switch (filter_op) {
case RTE_ETH_FILTER_NOP:
if (!(pf->flags & I40E_FLAG_VXLAN))
ret = I40E_NOT_SUPPORTED;
break;
case RTE_ETH_FILTER_ADD:
ret = i40e_dev_tunnel_filter_set(pf, filter, 1);
break;
case RTE_ETH_FILTER_DELETE:
ret = i40e_dev_tunnel_filter_set(pf, filter, 0);
break;
default:
PMD_DRV_LOG(ERR, "unknown operation %u", filter_op);
ret = I40E_ERR_PARAM;
break;
}
return ret;
}
static int
i40e_pf_config_mq_rx(struct i40e_pf *pf)
{
int ret = 0;
enum rte_eth_rx_mq_mode mq_mode = pf->dev_data->dev_conf.rxmode.mq_mode;
/* RSS setup */
if (mq_mode & ETH_MQ_RX_RSS_FLAG)
ret = i40e_pf_config_rss(pf);
else
i40e_pf_disable_rss(pf);
return ret;
}
/* Get the symmetric hash enable configurations per port */
static void
i40e_get_symmetric_hash_enable_per_port(struct i40e_hw *hw, uint8_t *enable)
{
uint32_t reg = i40e_read_rx_ctl(hw, I40E_PRTQF_CTL_0);
*enable = reg & I40E_PRTQF_CTL_0_HSYM_ENA_MASK ? 1 : 0;
}
/* Set the symmetric hash enable configurations per port */
static void
i40e_set_symmetric_hash_enable_per_port(struct i40e_hw *hw, uint8_t enable)
{
uint32_t reg = i40e_read_rx_ctl(hw, I40E_PRTQF_CTL_0);
if (enable > 0) {
if (reg & I40E_PRTQF_CTL_0_HSYM_ENA_MASK) {
PMD_DRV_LOG(INFO, "Symmetric hash has already "
"been enabled");
return;
}
reg |= I40E_PRTQF_CTL_0_HSYM_ENA_MASK;
} else {
if (!(reg & I40E_PRTQF_CTL_0_HSYM_ENA_MASK)) {
PMD_DRV_LOG(INFO, "Symmetric hash has already "
"been disabled");
return;
}
reg &= ~I40E_PRTQF_CTL_0_HSYM_ENA_MASK;
}
i40e_write_rx_ctl(hw, I40E_PRTQF_CTL_0, reg);
I40E_WRITE_FLUSH(hw);
}
/*
* Get global configurations of hash function type and symmetric hash enable
* per flow type (pctype). Note that global configuration means it affects all
* the ports on the same NIC.
*/
static int
i40e_get_hash_filter_global_config(struct i40e_hw *hw,
struct rte_eth_hash_global_conf *g_cfg)
{
uint32_t reg, mask = I40E_FLOW_TYPES;
uint16_t i;
enum i40e_filter_pctype pctype;
memset(g_cfg, 0, sizeof(*g_cfg));
reg = i40e_read_rx_ctl(hw, I40E_GLQF_CTL);
if (reg & I40E_GLQF_CTL_HTOEP_MASK)
g_cfg->hash_func = RTE_ETH_HASH_FUNCTION_TOEPLITZ;
else
g_cfg->hash_func = RTE_ETH_HASH_FUNCTION_SIMPLE_XOR;
PMD_DRV_LOG(DEBUG, "Hash function is %s",
(reg & I40E_GLQF_CTL_HTOEP_MASK) ? "Toeplitz" : "Simple XOR");
for (i = 0; mask && i < RTE_ETH_FLOW_MAX; i++) {
if (!(mask & (1UL << i)))
continue;
mask &= ~(1UL << i);
/* Bit set indicats the coresponding flow type is supported */
g_cfg->valid_bit_mask[0] |= (1UL << i);
/* if flowtype is invalid, continue */
if (!I40E_VALID_FLOW(i))
continue;
pctype = i40e_flowtype_to_pctype(i);
reg = i40e_read_rx_ctl(hw, I40E_GLQF_HSYM(pctype));
if (reg & I40E_GLQF_HSYM_SYMH_ENA_MASK)
g_cfg->sym_hash_enable_mask[0] |= (1UL << i);
}
return 0;
}
static int
i40e_hash_global_config_check(struct rte_eth_hash_global_conf *g_cfg)
{
uint32_t i;
uint32_t mask0, i40e_mask = I40E_FLOW_TYPES;
if (g_cfg->hash_func != RTE_ETH_HASH_FUNCTION_TOEPLITZ &&
g_cfg->hash_func != RTE_ETH_HASH_FUNCTION_SIMPLE_XOR &&
g_cfg->hash_func != RTE_ETH_HASH_FUNCTION_DEFAULT) {
PMD_DRV_LOG(ERR, "Unsupported hash function type %d",
g_cfg->hash_func);
return -EINVAL;
}
/*
* As i40e supports less than 32 flow types, only first 32 bits need to
* be checked.
*/
mask0 = g_cfg->valid_bit_mask[0];
for (i = 0; i < RTE_SYM_HASH_MASK_ARRAY_SIZE; i++) {
if (i == 0) {
/* Check if any unsupported flow type configured */
if ((mask0 | i40e_mask) ^ i40e_mask)
goto mask_err;
} else {
if (g_cfg->valid_bit_mask[i])
goto mask_err;
}
}
return 0;
mask_err:
PMD_DRV_LOG(ERR, "i40e unsupported flow type bit(s) configured");
return -EINVAL;
}
/*
* Set global configurations of hash function type and symmetric hash enable
* per flow type (pctype). Note any modifying global configuration will affect
* all the ports on the same NIC.
*/
static int
i40e_set_hash_filter_global_config(struct i40e_hw *hw,
struct rte_eth_hash_global_conf *g_cfg)
{
int ret;
uint16_t i;
uint32_t reg;
uint32_t mask0 = g_cfg->valid_bit_mask[0];
enum i40e_filter_pctype pctype;
/* Check the input parameters */
ret = i40e_hash_global_config_check(g_cfg);
if (ret < 0)
return ret;
for (i = 0; mask0 && i < UINT32_BIT; i++) {
if (!(mask0 & (1UL << i)))
continue;
mask0 &= ~(1UL << i);
/* if flowtype is invalid, continue */
if (!I40E_VALID_FLOW(i))
continue;
pctype = i40e_flowtype_to_pctype(i);
reg = (g_cfg->sym_hash_enable_mask[0] & (1UL << i)) ?
I40E_GLQF_HSYM_SYMH_ENA_MASK : 0;
i40e_write_rx_ctl(hw, I40E_GLQF_HSYM(pctype), reg);
}
reg = i40e_read_rx_ctl(hw, I40E_GLQF_CTL);
if (g_cfg->hash_func == RTE_ETH_HASH_FUNCTION_TOEPLITZ) {
/* Toeplitz */
if (reg & I40E_GLQF_CTL_HTOEP_MASK) {
PMD_DRV_LOG(DEBUG, "Hash function already set to "
"Toeplitz");
goto out;
}
reg |= I40E_GLQF_CTL_HTOEP_MASK;
} else if (g_cfg->hash_func == RTE_ETH_HASH_FUNCTION_SIMPLE_XOR) {
/* Simple XOR */
if (!(reg & I40E_GLQF_CTL_HTOEP_MASK)) {
PMD_DRV_LOG(DEBUG, "Hash function already set to "
"Simple XOR");
goto out;
}
reg &= ~I40E_GLQF_CTL_HTOEP_MASK;
} else
/* Use the default, and keep it as it is */
goto out;
i40e_write_rx_ctl(hw, I40E_GLQF_CTL, reg);
out:
I40E_WRITE_FLUSH(hw);
return 0;
}
/**
* Valid input sets for hash and flow director filters per PCTYPE
*/
static uint64_t
i40e_get_valid_input_set(enum i40e_filter_pctype pctype,
enum rte_filter_type filter)
{
uint64_t valid;
static const uint64_t valid_hash_inset_table[] = {
[I40E_FILTER_PCTYPE_FRAG_IPV4] =
I40E_INSET_DMAC | I40E_INSET_SMAC |
I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER |
I40E_INSET_VLAN_TUNNEL | I40E_INSET_IPV4_SRC |
I40E_INSET_IPV4_DST | I40E_INSET_IPV4_TOS |
I40E_INSET_IPV4_PROTO | I40E_INSET_IPV4_TTL |
I40E_INSET_TUNNEL_DMAC | I40E_INSET_TUNNEL_ID |
I40E_INSET_FLEX_PAYLOAD,
[I40E_FILTER_PCTYPE_NONF_IPV4_UDP] =
I40E_INSET_DMAC | I40E_INSET_SMAC |
I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER |
I40E_INSET_VLAN_TUNNEL | I40E_INSET_IPV4_TOS |
I40E_INSET_IPV4_PROTO | I40E_INSET_IPV4_TTL |
I40E_INSET_TUNNEL_DMAC | I40E_INSET_TUNNEL_ID |
I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST |
I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT |
I40E_INSET_FLEX_PAYLOAD,
[I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP] =
I40E_INSET_DMAC | I40E_INSET_SMAC |
I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER |
I40E_INSET_VLAN_TUNNEL | I40E_INSET_IPV4_TOS |
I40E_INSET_IPV4_PROTO | I40E_INSET_IPV4_TTL |
I40E_INSET_TUNNEL_DMAC | I40E_INSET_TUNNEL_ID |
I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST |
I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT |
I40E_INSET_FLEX_PAYLOAD,
[I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP] =
I40E_INSET_DMAC | I40E_INSET_SMAC |
I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER |
I40E_INSET_VLAN_TUNNEL | I40E_INSET_IPV4_TOS |
I40E_INSET_IPV4_PROTO | I40E_INSET_IPV4_TTL |
I40E_INSET_TUNNEL_DMAC | I40E_INSET_TUNNEL_ID |
I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST |
I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT |
I40E_INSET_FLEX_PAYLOAD,
[I40E_FILTER_PCTYPE_NONF_IPV4_TCP] =
I40E_INSET_DMAC | I40E_INSET_SMAC |
I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER |
I40E_INSET_VLAN_TUNNEL | I40E_INSET_IPV4_TOS |
I40E_INSET_IPV4_PROTO | I40E_INSET_IPV4_TTL |
I40E_INSET_TUNNEL_DMAC | I40E_INSET_TUNNEL_ID |
I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST |
I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT |
I40E_INSET_TCP_FLAGS | I40E_INSET_FLEX_PAYLOAD,
[I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK] =
I40E_INSET_DMAC | I40E_INSET_SMAC |
I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER |
I40E_INSET_VLAN_TUNNEL | I40E_INSET_IPV4_TOS |
I40E_INSET_IPV4_PROTO | I40E_INSET_IPV4_TTL |
I40E_INSET_TUNNEL_DMAC | I40E_INSET_TUNNEL_ID |
I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST |
I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT |
I40E_INSET_TCP_FLAGS | I40E_INSET_FLEX_PAYLOAD,
[I40E_FILTER_PCTYPE_NONF_IPV4_SCTP] =
I40E_INSET_DMAC | I40E_INSET_SMAC |
I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER |
I40E_INSET_VLAN_TUNNEL | I40E_INSET_IPV4_TOS |
I40E_INSET_IPV4_PROTO | I40E_INSET_IPV4_TTL |
I40E_INSET_TUNNEL_DMAC | I40E_INSET_TUNNEL_ID |
I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST |
I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT |
I40E_INSET_SCTP_VT | I40E_INSET_FLEX_PAYLOAD,
[I40E_FILTER_PCTYPE_NONF_IPV4_OTHER] =
I40E_INSET_DMAC | I40E_INSET_SMAC |
I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER |
I40E_INSET_VLAN_TUNNEL | I40E_INSET_IPV4_TOS |
I40E_INSET_IPV4_PROTO | I40E_INSET_IPV4_TTL |
I40E_INSET_TUNNEL_DMAC | I40E_INSET_TUNNEL_ID |
I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST |
I40E_INSET_FLEX_PAYLOAD,
[I40E_FILTER_PCTYPE_FRAG_IPV6] =
I40E_INSET_DMAC | I40E_INSET_SMAC |
I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER |
I40E_INSET_VLAN_TUNNEL | I40E_INSET_IPV6_TC |
I40E_INSET_IPV6_FLOW | I40E_INSET_IPV6_NEXT_HDR |
I40E_INSET_IPV6_HOP_LIMIT | I40E_INSET_TUNNEL_DMAC |
I40E_INSET_TUNNEL_ID | I40E_INSET_IPV6_SRC |
I40E_INSET_IPV6_DST | I40E_INSET_FLEX_PAYLOAD,
[I40E_FILTER_PCTYPE_NONF_IPV6_UDP] =
I40E_INSET_DMAC | I40E_INSET_SMAC |
I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER |
I40E_INSET_VLAN_TUNNEL | I40E_INSET_IPV6_TC |
I40E_INSET_IPV6_FLOW | I40E_INSET_IPV6_NEXT_HDR |
I40E_INSET_IPV6_HOP_LIMIT | I40E_INSET_IPV6_SRC |
I40E_INSET_IPV6_DST | I40E_INSET_SRC_PORT |
I40E_INSET_DST_PORT | I40E_INSET_FLEX_PAYLOAD,
[I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP] =
I40E_INSET_DMAC | I40E_INSET_SMAC |
I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER |
I40E_INSET_VLAN_TUNNEL | I40E_INSET_IPV6_TC |
I40E_INSET_IPV6_FLOW | I40E_INSET_IPV6_NEXT_HDR |
I40E_INSET_IPV6_HOP_LIMIT | I40E_INSET_IPV6_SRC |
I40E_INSET_IPV6_DST | I40E_INSET_SRC_PORT |
I40E_INSET_DST_PORT | I40E_INSET_TCP_FLAGS |
I40E_INSET_FLEX_PAYLOAD,
[I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP] =
I40E_INSET_DMAC | I40E_INSET_SMAC |
I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER |
I40E_INSET_VLAN_TUNNEL | I40E_INSET_IPV6_TC |
I40E_INSET_IPV6_FLOW | I40E_INSET_IPV6_NEXT_HDR |
I40E_INSET_IPV6_HOP_LIMIT | I40E_INSET_IPV6_SRC |
I40E_INSET_IPV6_DST | I40E_INSET_SRC_PORT |
I40E_INSET_DST_PORT | I40E_INSET_TCP_FLAGS |
I40E_INSET_FLEX_PAYLOAD,
[I40E_FILTER_PCTYPE_NONF_IPV6_TCP] =
I40E_INSET_DMAC | I40E_INSET_SMAC |
I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER |
I40E_INSET_VLAN_TUNNEL | I40E_INSET_IPV6_TC |
I40E_INSET_IPV6_FLOW | I40E_INSET_IPV6_NEXT_HDR |
I40E_INSET_IPV6_HOP_LIMIT | I40E_INSET_IPV6_SRC |
I40E_INSET_IPV6_DST | I40E_INSET_SRC_PORT |
I40E_INSET_DST_PORT | I40E_INSET_TCP_FLAGS |
I40E_INSET_FLEX_PAYLOAD,
[I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK] =
I40E_INSET_DMAC | I40E_INSET_SMAC |
I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER |
I40E_INSET_VLAN_TUNNEL | I40E_INSET_IPV6_TC |
I40E_INSET_IPV6_FLOW | I40E_INSET_IPV6_NEXT_HDR |
I40E_INSET_IPV6_HOP_LIMIT | I40E_INSET_IPV6_SRC |
I40E_INSET_IPV6_DST | I40E_INSET_SRC_PORT |
I40E_INSET_DST_PORT | I40E_INSET_TCP_FLAGS |
I40E_INSET_FLEX_PAYLOAD,
[I40E_FILTER_PCTYPE_NONF_IPV6_SCTP] =
I40E_INSET_DMAC | I40E_INSET_SMAC |
I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER |
I40E_INSET_VLAN_TUNNEL | I40E_INSET_IPV6_TC |
I40E_INSET_IPV6_FLOW | I40E_INSET_IPV6_NEXT_HDR |
I40E_INSET_IPV6_HOP_LIMIT | I40E_INSET_IPV6_SRC |
I40E_INSET_IPV6_DST | I40E_INSET_SRC_PORT |
I40E_INSET_DST_PORT | I40E_INSET_SCTP_VT |
I40E_INSET_FLEX_PAYLOAD,
[I40E_FILTER_PCTYPE_NONF_IPV6_OTHER] =
I40E_INSET_DMAC | I40E_INSET_SMAC |
I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER |
I40E_INSET_VLAN_TUNNEL | I40E_INSET_IPV6_TC |
I40E_INSET_IPV6_FLOW | I40E_INSET_IPV6_NEXT_HDR |
I40E_INSET_IPV6_HOP_LIMIT | I40E_INSET_IPV6_SRC |
I40E_INSET_IPV6_DST | I40E_INSET_TUNNEL_ID |
I40E_INSET_FLEX_PAYLOAD,
[I40E_FILTER_PCTYPE_L2_PAYLOAD] =
I40E_INSET_DMAC | I40E_INSET_SMAC |
I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER |
I40E_INSET_VLAN_TUNNEL | I40E_INSET_LAST_ETHER_TYPE |
I40E_INSET_FLEX_PAYLOAD,
};
/**
* Flow director supports only fields defined in
* union rte_eth_fdir_flow.
*/
static const uint64_t valid_fdir_inset_table[] = {
[I40E_FILTER_PCTYPE_FRAG_IPV4] =
I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER |
I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST |
I40E_INSET_IPV4_TOS | I40E_INSET_IPV4_PROTO |
I40E_INSET_IPV4_TTL,
[I40E_FILTER_PCTYPE_NONF_IPV4_UDP] =
I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER |
I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST |
I40E_INSET_IPV4_TOS | I40E_INSET_IPV4_TTL |
I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT,
[I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP] =
I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER |
I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST |
I40E_INSET_IPV4_TOS | I40E_INSET_IPV4_TTL |
I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT,
[I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP] =
I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER |
I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST |
I40E_INSET_IPV4_TOS | I40E_INSET_IPV4_TTL |
I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT,
[I40E_FILTER_PCTYPE_NONF_IPV4_TCP] =
I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER |
I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST |
I40E_INSET_IPV4_TOS | I40E_INSET_IPV4_TTL |
I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT,
[I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK] =
I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER |
I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST |
I40E_INSET_IPV4_TOS | I40E_INSET_IPV4_TTL |
I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT,
[I40E_FILTER_PCTYPE_NONF_IPV4_SCTP] =
I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER |
I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST |
I40E_INSET_IPV4_TOS | I40E_INSET_IPV4_TTL |
I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT |
I40E_INSET_SCTP_VT,
[I40E_FILTER_PCTYPE_NONF_IPV4_OTHER] =
I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER |
I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST |
I40E_INSET_IPV4_TOS | I40E_INSET_IPV4_PROTO |
I40E_INSET_IPV4_TTL,
[I40E_FILTER_PCTYPE_FRAG_IPV6] =
I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER |
I40E_INSET_IPV6_SRC | I40E_INSET_IPV6_DST |
I40E_INSET_IPV6_TC | I40E_INSET_IPV6_NEXT_HDR |
I40E_INSET_IPV6_HOP_LIMIT,
[I40E_FILTER_PCTYPE_NONF_IPV6_UDP] =
I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER |
I40E_INSET_IPV6_SRC | I40E_INSET_IPV6_DST |
I40E_INSET_IPV6_TC | I40E_INSET_IPV6_HOP_LIMIT |
I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT,
[I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP] =
I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER |
I40E_INSET_IPV6_SRC | I40E_INSET_IPV6_DST |
I40E_INSET_IPV6_TC | I40E_INSET_IPV6_HOP_LIMIT |
I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT,
[I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP] =
I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER |
I40E_INSET_IPV6_SRC | I40E_INSET_IPV6_DST |
I40E_INSET_IPV6_TC | I40E_INSET_IPV6_HOP_LIMIT |
I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT,
[I40E_FILTER_PCTYPE_NONF_IPV6_TCP] =
I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER |
I40E_INSET_IPV6_SRC | I40E_INSET_IPV6_DST |
I40E_INSET_IPV6_TC | I40E_INSET_IPV6_HOP_LIMIT |
I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT,
[I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK] =
I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER |
I40E_INSET_IPV6_SRC | I40E_INSET_IPV6_DST |
I40E_INSET_IPV6_TC | I40E_INSET_IPV6_HOP_LIMIT |
I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT,
[I40E_FILTER_PCTYPE_NONF_IPV6_SCTP] =
I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER |
I40E_INSET_IPV6_SRC | I40E_INSET_IPV6_DST |
I40E_INSET_IPV6_TC | I40E_INSET_IPV6_HOP_LIMIT |
I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT |
I40E_INSET_SCTP_VT,
[I40E_FILTER_PCTYPE_NONF_IPV6_OTHER] =
I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER |
I40E_INSET_IPV6_SRC | I40E_INSET_IPV6_DST |
I40E_INSET_IPV6_TC | I40E_INSET_IPV6_NEXT_HDR |
I40E_INSET_IPV6_HOP_LIMIT,
[I40E_FILTER_PCTYPE_L2_PAYLOAD] =
I40E_INSET_VLAN_OUTER | I40E_INSET_VLAN_INNER |
I40E_INSET_LAST_ETHER_TYPE,
};
if (pctype > I40E_FILTER_PCTYPE_L2_PAYLOAD)
return 0;
if (filter == RTE_ETH_FILTER_HASH)
valid = valid_hash_inset_table[pctype];
else
valid = valid_fdir_inset_table[pctype];
return valid;
}
/**
* Validate if the input set is allowed for a specific PCTYPE
*/
static int
i40e_validate_input_set(enum i40e_filter_pctype pctype,
enum rte_filter_type filter, uint64_t inset)
{
uint64_t valid;
valid = i40e_get_valid_input_set(pctype, filter);
if (inset & (~valid))
return -EINVAL;
return 0;
}
/* default input set fields combination per pctype */
uint64_t
i40e_get_default_input_set(uint16_t pctype)
{
static const uint64_t default_inset_table[] = {
[I40E_FILTER_PCTYPE_FRAG_IPV4] =
I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST,
[I40E_FILTER_PCTYPE_NONF_IPV4_UDP] =
I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST |
I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT,
[I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP] =
I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST |
I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT,
[I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP] =
I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST |
I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT,
[I40E_FILTER_PCTYPE_NONF_IPV4_TCP] =
I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST |
I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT,
[I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK] =
I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST |
I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT,
[I40E_FILTER_PCTYPE_NONF_IPV4_SCTP] =
I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST |
I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT |
I40E_INSET_SCTP_VT,
[I40E_FILTER_PCTYPE_NONF_IPV4_OTHER] =
I40E_INSET_IPV4_SRC | I40E_INSET_IPV4_DST,
[I40E_FILTER_PCTYPE_FRAG_IPV6] =
I40E_INSET_IPV6_SRC | I40E_INSET_IPV6_DST,
[I40E_FILTER_PCTYPE_NONF_IPV6_UDP] =
I40E_INSET_IPV6_SRC | I40E_INSET_IPV6_DST |
I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT,
[I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP] =
I40E_INSET_IPV6_SRC | I40E_INSET_IPV6_DST |
I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT,
[I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP] =
I40E_INSET_IPV6_SRC | I40E_INSET_IPV6_DST |
I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT,
[I40E_FILTER_PCTYPE_NONF_IPV6_TCP] =
I40E_INSET_IPV6_SRC | I40E_INSET_IPV6_DST |
I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT,
[I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK] =
I40E_INSET_IPV6_SRC | I40E_INSET_IPV6_DST |
I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT,
[I40E_FILTER_PCTYPE_NONF_IPV6_SCTP] =
I40E_INSET_IPV6_SRC | I40E_INSET_IPV6_DST |
I40E_INSET_SRC_PORT | I40E_INSET_DST_PORT |
I40E_INSET_SCTP_VT,
[I40E_FILTER_PCTYPE_NONF_IPV6_OTHER] =
I40E_INSET_IPV6_SRC | I40E_INSET_IPV6_DST,
[I40E_FILTER_PCTYPE_L2_PAYLOAD] =
I40E_INSET_LAST_ETHER_TYPE,
};
if (pctype > I40E_FILTER_PCTYPE_L2_PAYLOAD)
return 0;
return default_inset_table[pctype];
}
/**
* Parse the input set from index to logical bit masks
*/
static int
i40e_parse_input_set(uint64_t *inset,
enum i40e_filter_pctype pctype,
enum rte_eth_input_set_field *field,
uint16_t size)
{
uint16_t i, j;
int ret = -EINVAL;
static const struct {
enum rte_eth_input_set_field field;
uint64_t inset;
} inset_convert_table[] = {
{RTE_ETH_INPUT_SET_NONE, I40E_INSET_NONE},
{RTE_ETH_INPUT_SET_L2_SRC_MAC, I40E_INSET_SMAC},
{RTE_ETH_INPUT_SET_L2_DST_MAC, I40E_INSET_DMAC},
{RTE_ETH_INPUT_SET_L2_OUTER_VLAN, I40E_INSET_VLAN_OUTER},
{RTE_ETH_INPUT_SET_L2_INNER_VLAN, I40E_INSET_VLAN_INNER},
{RTE_ETH_INPUT_SET_L2_ETHERTYPE, I40E_INSET_LAST_ETHER_TYPE},
{RTE_ETH_INPUT_SET_L3_SRC_IP4, I40E_INSET_IPV4_SRC},
{RTE_ETH_INPUT_SET_L3_DST_IP4, I40E_INSET_IPV4_DST},
{RTE_ETH_INPUT_SET_L3_IP4_TOS, I40E_INSET_IPV4_TOS},
{RTE_ETH_INPUT_SET_L3_IP4_PROTO, I40E_INSET_IPV4_PROTO},
{RTE_ETH_INPUT_SET_L3_IP4_TTL, I40E_INSET_IPV4_TTL},
{RTE_ETH_INPUT_SET_L3_SRC_IP6, I40E_INSET_IPV6_SRC},
{RTE_ETH_INPUT_SET_L3_DST_IP6, I40E_INSET_IPV6_DST},
{RTE_ETH_INPUT_SET_L3_IP6_TC, I40E_INSET_IPV6_TC},
{RTE_ETH_INPUT_SET_L3_IP6_NEXT_HEADER,
I40E_INSET_IPV6_NEXT_HDR},
{RTE_ETH_INPUT_SET_L3_IP6_HOP_LIMITS,
I40E_INSET_IPV6_HOP_LIMIT},
{RTE_ETH_INPUT_SET_L4_UDP_SRC_PORT, I40E_INSET_SRC_PORT},
{RTE_ETH_INPUT_SET_L4_TCP_SRC_PORT, I40E_INSET_SRC_PORT},
{RTE_ETH_INPUT_SET_L4_SCTP_SRC_PORT, I40E_INSET_SRC_PORT},
{RTE_ETH_INPUT_SET_L4_UDP_DST_PORT, I40E_INSET_DST_PORT},
{RTE_ETH_INPUT_SET_L4_TCP_DST_PORT, I40E_INSET_DST_PORT},
{RTE_ETH_INPUT_SET_L4_SCTP_DST_PORT, I40E_INSET_DST_PORT},
{RTE_ETH_INPUT_SET_L4_SCTP_VERIFICATION_TAG,
I40E_INSET_SCTP_VT},
{RTE_ETH_INPUT_SET_TUNNEL_L2_INNER_DST_MAC,
I40E_INSET_TUNNEL_DMAC},
{RTE_ETH_INPUT_SET_TUNNEL_L2_INNER_VLAN,
I40E_INSET_VLAN_TUNNEL},
{RTE_ETH_INPUT_SET_TUNNEL_L4_UDP_KEY,
I40E_INSET_TUNNEL_ID},
{RTE_ETH_INPUT_SET_TUNNEL_GRE_KEY, I40E_INSET_TUNNEL_ID},
{RTE_ETH_INPUT_SET_FLEX_PAYLOAD_1ST_WORD,
I40E_INSET_FLEX_PAYLOAD_W1},
{RTE_ETH_INPUT_SET_FLEX_PAYLOAD_2ND_WORD,
I40E_INSET_FLEX_PAYLOAD_W2},
{RTE_ETH_INPUT_SET_FLEX_PAYLOAD_3RD_WORD,
I40E_INSET_FLEX_PAYLOAD_W3},
{RTE_ETH_INPUT_SET_FLEX_PAYLOAD_4TH_WORD,
I40E_INSET_FLEX_PAYLOAD_W4},
{RTE_ETH_INPUT_SET_FLEX_PAYLOAD_5TH_WORD,
I40E_INSET_FLEX_PAYLOAD_W5},
{RTE_ETH_INPUT_SET_FLEX_PAYLOAD_6TH_WORD,
I40E_INSET_FLEX_PAYLOAD_W6},
{RTE_ETH_INPUT_SET_FLEX_PAYLOAD_7TH_WORD,
I40E_INSET_FLEX_PAYLOAD_W7},
{RTE_ETH_INPUT_SET_FLEX_PAYLOAD_8TH_WORD,
I40E_INSET_FLEX_PAYLOAD_W8},
};
if (!inset || !field || size > RTE_ETH_INSET_SIZE_MAX)
return ret;
/* Only one item allowed for default or all */
if (size == 1) {
if (field[0] == RTE_ETH_INPUT_SET_DEFAULT) {
*inset = i40e_get_default_input_set(pctype);
return 0;
} else if (field[0] == RTE_ETH_INPUT_SET_NONE) {
*inset = I40E_INSET_NONE;
return 0;
}
}
for (i = 0, *inset = 0; i < size; i++) {
for (j = 0; j < RTE_DIM(inset_convert_table); j++) {
if (field[i] == inset_convert_table[j].field) {
*inset |= inset_convert_table[j].inset;
break;
}
}
/* It contains unsupported input set, return immediately */
if (j == RTE_DIM(inset_convert_table))
return ret;
}
return 0;
}
/**
* Translate the input set from bit masks to register aware bit masks
* and vice versa
*/
static uint64_t
i40e_translate_input_set_reg(enum i40e_mac_type type, uint64_t input)
{
uint64_t val = 0;
uint16_t i;
struct inset_map {
uint64_t inset;
uint64_t inset_reg;
};
static const struct inset_map inset_map_common[] = {
{I40E_INSET_DMAC, I40E_REG_INSET_L2_DMAC},
{I40E_INSET_SMAC, I40E_REG_INSET_L2_SMAC},
{I40E_INSET_VLAN_OUTER, I40E_REG_INSET_L2_OUTER_VLAN},
{I40E_INSET_VLAN_INNER, I40E_REG_INSET_L2_INNER_VLAN},
{I40E_INSET_LAST_ETHER_TYPE, I40E_REG_INSET_LAST_ETHER_TYPE},
{I40E_INSET_IPV4_TOS, I40E_REG_INSET_L3_IP4_TOS},
{I40E_INSET_IPV6_SRC, I40E_REG_INSET_L3_SRC_IP6},
{I40E_INSET_IPV6_DST, I40E_REG_INSET_L3_DST_IP6},
{I40E_INSET_IPV6_TC, I40E_REG_INSET_L3_IP6_TC},
{I40E_INSET_IPV6_NEXT_HDR, I40E_REG_INSET_L3_IP6_NEXT_HDR},
{I40E_INSET_IPV6_HOP_LIMIT, I40E_REG_INSET_L3_IP6_HOP_LIMIT},
{I40E_INSET_SRC_PORT, I40E_REG_INSET_L4_SRC_PORT},
{I40E_INSET_DST_PORT, I40E_REG_INSET_L4_DST_PORT},
{I40E_INSET_SCTP_VT, I40E_REG_INSET_L4_SCTP_VERIFICATION_TAG},
{I40E_INSET_TUNNEL_ID, I40E_REG_INSET_TUNNEL_ID},
{I40E_INSET_TUNNEL_DMAC,
I40E_REG_INSET_TUNNEL_L2_INNER_DST_MAC},
{I40E_INSET_TUNNEL_IPV4_DST, I40E_REG_INSET_TUNNEL_L3_DST_IP4},
{I40E_INSET_TUNNEL_IPV6_DST, I40E_REG_INSET_TUNNEL_L3_DST_IP6},
{I40E_INSET_TUNNEL_SRC_PORT,
I40E_REG_INSET_TUNNEL_L4_UDP_SRC_PORT},
{I40E_INSET_TUNNEL_DST_PORT,
I40E_REG_INSET_TUNNEL_L4_UDP_DST_PORT},
{I40E_INSET_VLAN_TUNNEL, I40E_REG_INSET_TUNNEL_VLAN},
{I40E_INSET_FLEX_PAYLOAD_W1, I40E_REG_INSET_FLEX_PAYLOAD_WORD1},
{I40E_INSET_FLEX_PAYLOAD_W2, I40E_REG_INSET_FLEX_PAYLOAD_WORD2},
{I40E_INSET_FLEX_PAYLOAD_W3, I40E_REG_INSET_FLEX_PAYLOAD_WORD3},
{I40E_INSET_FLEX_PAYLOAD_W4, I40E_REG_INSET_FLEX_PAYLOAD_WORD4},
{I40E_INSET_FLEX_PAYLOAD_W5, I40E_REG_INSET_FLEX_PAYLOAD_WORD5},
{I40E_INSET_FLEX_PAYLOAD_W6, I40E_REG_INSET_FLEX_PAYLOAD_WORD6},
{I40E_INSET_FLEX_PAYLOAD_W7, I40E_REG_INSET_FLEX_PAYLOAD_WORD7},
{I40E_INSET_FLEX_PAYLOAD_W8, I40E_REG_INSET_FLEX_PAYLOAD_WORD8},
};
/* some different registers map in x722*/
static const struct inset_map inset_map_diff_x722[] = {
{I40E_INSET_IPV4_SRC, I40E_X722_REG_INSET_L3_SRC_IP4},
{I40E_INSET_IPV4_DST, I40E_X722_REG_INSET_L3_DST_IP4},
{I40E_INSET_IPV4_PROTO, I40E_X722_REG_INSET_L3_IP4_PROTO},
{I40E_INSET_IPV4_TTL, I40E_X722_REG_INSET_L3_IP4_TTL},
};
static const struct inset_map inset_map_diff_not_x722[] = {
{I40E_INSET_IPV4_SRC, I40E_REG_INSET_L3_SRC_IP4},
{I40E_INSET_IPV4_DST, I40E_REG_INSET_L3_DST_IP4},
{I40E_INSET_IPV4_PROTO, I40E_REG_INSET_L3_IP4_PROTO},
{I40E_INSET_IPV4_TTL, I40E_REG_INSET_L3_IP4_TTL},
};
if (input == 0)
return val;
/* Translate input set to register aware inset */
if (type == I40E_MAC_X722) {
for (i = 0; i < RTE_DIM(inset_map_diff_x722); i++) {
if (input & inset_map_diff_x722[i].inset)
val |= inset_map_diff_x722[i].inset_reg;
}
} else {
for (i = 0; i < RTE_DIM(inset_map_diff_not_x722); i++) {
if (input & inset_map_diff_not_x722[i].inset)
val |= inset_map_diff_not_x722[i].inset_reg;
}
}
for (i = 0; i < RTE_DIM(inset_map_common); i++) {
if (input & inset_map_common[i].inset)
val |= inset_map_common[i].inset_reg;
}
return val;
}
static int
i40e_generate_inset_mask_reg(uint64_t inset, uint32_t *mask, uint8_t nb_elem)
{
uint8_t i, idx = 0;
uint64_t inset_need_mask = inset;
static const struct {
uint64_t inset;
uint32_t mask;
} inset_mask_map[] = {
{I40E_INSET_IPV4_TOS, I40E_INSET_IPV4_TOS_MASK},
{I40E_INSET_IPV4_PROTO | I40E_INSET_IPV4_TTL, 0},
{I40E_INSET_IPV4_PROTO, I40E_INSET_IPV4_PROTO_MASK},
{I40E_INSET_IPV4_TTL, I40E_INSET_IPv4_TTL_MASK},
{I40E_INSET_IPV6_TC, I40E_INSET_IPV6_TC_MASK},
{I40E_INSET_IPV6_NEXT_HDR | I40E_INSET_IPV6_HOP_LIMIT, 0},
{I40E_INSET_IPV6_NEXT_HDR, I40E_INSET_IPV6_NEXT_HDR_MASK},
{I40E_INSET_IPV6_HOP_LIMIT, I40E_INSET_IPV6_HOP_LIMIT_MASK},
};
if (!inset || !mask || !nb_elem)
return 0;
for (i = 0, idx = 0; i < RTE_DIM(inset_mask_map); i++) {
/* Clear the inset bit, if no MASK is required,
* for example proto + ttl
*/
if ((inset & inset_mask_map[i].inset) ==
inset_mask_map[i].inset && inset_mask_map[i].mask == 0)
inset_need_mask &= ~inset_mask_map[i].inset;
if (!inset_need_mask)
return 0;
}
for (i = 0, idx = 0; i < RTE_DIM(inset_mask_map); i++) {
if ((inset_need_mask & inset_mask_map[i].inset) ==
inset_mask_map[i].inset) {
if (idx >= nb_elem) {
PMD_DRV_LOG(ERR, "exceed maximal number of bitmasks");
return -EINVAL;
}
mask[idx] = inset_mask_map[i].mask;
idx++;
}
}
return idx;
}
static void
i40e_check_write_reg(struct i40e_hw *hw, uint32_t addr, uint32_t val)
{
uint32_t reg = i40e_read_rx_ctl(hw, addr);
PMD_DRV_LOG(DEBUG, "[0x%08x] original: 0x%08x\n", addr, reg);
if (reg != val)
i40e_write_rx_ctl(hw, addr, val);
PMD_DRV_LOG(DEBUG, "[0x%08x] after: 0x%08x\n", addr,
(uint32_t)i40e_read_rx_ctl(hw, addr));
}
static void
i40e_filter_input_set_init(struct i40e_pf *pf)
{
struct i40e_hw *hw = I40E_PF_TO_HW(pf);
enum i40e_filter_pctype pctype;
uint64_t input_set, inset_reg;
uint32_t mask_reg[I40E_INSET_MASK_NUM_REG] = {0};
int num, i;
for (pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
pctype <= I40E_FILTER_PCTYPE_L2_PAYLOAD; pctype++) {
if (hw->mac.type == I40E_MAC_X722) {
if (!I40E_VALID_PCTYPE_X722(pctype))
continue;
} else {
if (!I40E_VALID_PCTYPE(pctype))
continue;
}
input_set = i40e_get_default_input_set(pctype);
num = i40e_generate_inset_mask_reg(input_set, mask_reg,
I40E_INSET_MASK_NUM_REG);
if (num < 0)
return;
inset_reg = i40e_translate_input_set_reg(hw->mac.type,
input_set);
i40e_check_write_reg(hw, I40E_PRTQF_FD_INSET(pctype, 0),
(uint32_t)(inset_reg & UINT32_MAX));
i40e_check_write_reg(hw, I40E_PRTQF_FD_INSET(pctype, 1),
(uint32_t)((inset_reg >>
I40E_32_BIT_WIDTH) & UINT32_MAX));
i40e_check_write_reg(hw, I40E_GLQF_HASH_INSET(0, pctype),
(uint32_t)(inset_reg & UINT32_MAX));
i40e_check_write_reg(hw, I40E_GLQF_HASH_INSET(1, pctype),
(uint32_t)((inset_reg >>
I40E_32_BIT_WIDTH) & UINT32_MAX));
for (i = 0; i < num; i++) {
i40e_check_write_reg(hw, I40E_GLQF_FD_MSK(i, pctype),
mask_reg[i]);
i40e_check_write_reg(hw, I40E_GLQF_HASH_MSK(i, pctype),
mask_reg[i]);
}
/*clear unused mask registers of the pctype */
for (i = num; i < I40E_INSET_MASK_NUM_REG; i++) {
i40e_check_write_reg(hw, I40E_GLQF_FD_MSK(i, pctype),
0);
i40e_check_write_reg(hw, I40E_GLQF_HASH_MSK(i, pctype),
0);
}
I40E_WRITE_FLUSH(hw);
/* store the default input set */
pf->hash_input_set[pctype] = input_set;
pf->fdir.input_set[pctype] = input_set;
}
}
int
i40e_hash_filter_inset_select(struct i40e_hw *hw,
struct rte_eth_input_set_conf *conf)
{
struct i40e_pf *pf = &((struct i40e_adapter *)hw->back)->pf;
enum i40e_filter_pctype pctype;
uint64_t input_set, inset_reg = 0;
uint32_t mask_reg[I40E_INSET_MASK_NUM_REG] = {0};
int ret, i, num;
if (!conf) {
PMD_DRV_LOG(ERR, "Invalid pointer");
return -EFAULT;
}
if (conf->op != RTE_ETH_INPUT_SET_SELECT &&
conf->op != RTE_ETH_INPUT_SET_ADD) {
PMD_DRV_LOG(ERR, "Unsupported input set operation");
return -EINVAL;
}
if (!I40E_VALID_FLOW(conf->flow_type)) {
PMD_DRV_LOG(ERR, "invalid flow_type input.");
return -EINVAL;
}
if (hw->mac.type == I40E_MAC_X722) {
/* get translated pctype value in fd pctype register */
pctype = (enum i40e_filter_pctype)i40e_read_rx_ctl(hw,
I40E_GLQF_FD_PCTYPES((int)i40e_flowtype_to_pctype(
conf->flow_type)));
} else
pctype = i40e_flowtype_to_pctype(conf->flow_type);
ret = i40e_parse_input_set(&input_set, pctype, conf->field,
conf->inset_size);
if (ret) {
PMD_DRV_LOG(ERR, "Failed to parse input set");
return -EINVAL;
}
if (i40e_validate_input_set(pctype, RTE_ETH_FILTER_HASH,
input_set) != 0) {
PMD_DRV_LOG(ERR, "Invalid input set");
return -EINVAL;
}
if (conf->op == RTE_ETH_INPUT_SET_ADD) {
/* get inset value in register */
inset_reg = i40e_read_rx_ctl(hw, I40E_GLQF_HASH_INSET(1, pctype));
inset_reg <<= I40E_32_BIT_WIDTH;
inset_reg |= i40e_read_rx_ctl(hw, I40E_GLQF_HASH_INSET(0, pctype));
input_set |= pf->hash_input_set[pctype];
}
num = i40e_generate_inset_mask_reg(input_set, mask_reg,
I40E_INSET_MASK_NUM_REG);
if (num < 0)
return -EINVAL;
inset_reg |= i40e_translate_input_set_reg(hw->mac.type, input_set);
i40e_check_write_reg(hw, I40E_GLQF_HASH_INSET(0, pctype),
(uint32_t)(inset_reg & UINT32_MAX));
i40e_check_write_reg(hw, I40E_GLQF_HASH_INSET(1, pctype),
(uint32_t)((inset_reg >>
I40E_32_BIT_WIDTH) & UINT32_MAX));
for (i = 0; i < num; i++)
i40e_check_write_reg(hw, I40E_GLQF_HASH_MSK(i, pctype),
mask_reg[i]);
/*clear unused mask registers of the pctype */
for (i = num; i < I40E_INSET_MASK_NUM_REG; i++)
i40e_check_write_reg(hw, I40E_GLQF_HASH_MSK(i, pctype),
0);
I40E_WRITE_FLUSH(hw);
pf->hash_input_set[pctype] = input_set;
return 0;
}
int
i40e_fdir_filter_inset_select(struct i40e_pf *pf,
struct rte_eth_input_set_conf *conf)
{
struct i40e_hw *hw = I40E_PF_TO_HW(pf);
enum i40e_filter_pctype pctype;
uint64_t input_set, inset_reg = 0;
uint32_t mask_reg[I40E_INSET_MASK_NUM_REG] = {0};
int ret, i, num;
if (!hw || !conf) {
PMD_DRV_LOG(ERR, "Invalid pointer");
return -EFAULT;
}
if (conf->op != RTE_ETH_INPUT_SET_SELECT &&
conf->op != RTE_ETH_INPUT_SET_ADD) {
PMD_DRV_LOG(ERR, "Unsupported input set operation");
return -EINVAL;
}
if (!I40E_VALID_FLOW(conf->flow_type)) {
PMD_DRV_LOG(ERR, "invalid flow_type input.");
return -EINVAL;
}
pctype = i40e_flowtype_to_pctype(conf->flow_type);
ret = i40e_parse_input_set(&input_set, pctype, conf->field,
conf->inset_size);
if (ret) {
PMD_DRV_LOG(ERR, "Failed to parse input set");
return -EINVAL;
}
if (i40e_validate_input_set(pctype, RTE_ETH_FILTER_FDIR,
input_set) != 0) {
PMD_DRV_LOG(ERR, "Invalid input set");
return -EINVAL;
}
/* get inset value in register */
inset_reg = i40e_read_rx_ctl(hw, I40E_PRTQF_FD_INSET(pctype, 1));
inset_reg <<= I40E_32_BIT_WIDTH;
inset_reg |= i40e_read_rx_ctl(hw, I40E_PRTQF_FD_INSET(pctype, 0));
/* Can not change the inset reg for flex payload for fdir,
* it is done by writing I40E_PRTQF_FD_FLXINSET
* in i40e_set_flex_mask_on_pctype.
*/
if (conf->op == RTE_ETH_INPUT_SET_SELECT)
inset_reg &= I40E_REG_INSET_FLEX_PAYLOAD_WORDS;
else
input_set |= pf->fdir.input_set[pctype];
num = i40e_generate_inset_mask_reg(input_set, mask_reg,
I40E_INSET_MASK_NUM_REG);
if (num < 0)
return -EINVAL;
inset_reg |= i40e_translate_input_set_reg(hw->mac.type, input_set);
i40e_check_write_reg(hw, I40E_PRTQF_FD_INSET(pctype, 0),
(uint32_t)(inset_reg & UINT32_MAX));
i40e_check_write_reg(hw, I40E_PRTQF_FD_INSET(pctype, 1),
(uint32_t)((inset_reg >>
I40E_32_BIT_WIDTH) & UINT32_MAX));
for (i = 0; i < num; i++)
i40e_check_write_reg(hw, I40E_GLQF_FD_MSK(i, pctype),
mask_reg[i]);
/*clear unused mask registers of the pctype */
for (i = num; i < I40E_INSET_MASK_NUM_REG; i++)
i40e_check_write_reg(hw, I40E_GLQF_FD_MSK(i, pctype),
0);
I40E_WRITE_FLUSH(hw);
pf->fdir.input_set[pctype] = input_set;
return 0;
}
static int
i40e_hash_filter_get(struct i40e_hw *hw, struct rte_eth_hash_filter_info *info)
{
int ret = 0;
if (!hw || !info) {
PMD_DRV_LOG(ERR, "Invalid pointer");
return -EFAULT;
}
switch (info->info_type) {
case RTE_ETH_HASH_FILTER_SYM_HASH_ENA_PER_PORT:
i40e_get_symmetric_hash_enable_per_port(hw,
&(info->info.enable));
break;
case RTE_ETH_HASH_FILTER_GLOBAL_CONFIG:
ret = i40e_get_hash_filter_global_config(hw,
&(info->info.global_conf));
break;
default:
PMD_DRV_LOG(ERR, "Hash filter info type (%d) not supported",
info->info_type);
ret = -EINVAL;
break;
}
return ret;
}
static int
i40e_hash_filter_set(struct i40e_hw *hw, struct rte_eth_hash_filter_info *info)
{
int ret = 0;
if (!hw || !info) {
PMD_DRV_LOG(ERR, "Invalid pointer");
return -EFAULT;
}
switch (info->info_type) {
case RTE_ETH_HASH_FILTER_SYM_HASH_ENA_PER_PORT:
i40e_set_symmetric_hash_enable_per_port(hw, info->info.enable);
break;
case RTE_ETH_HASH_FILTER_GLOBAL_CONFIG:
ret = i40e_set_hash_filter_global_config(hw,
&(info->info.global_conf));
break;
case RTE_ETH_HASH_FILTER_INPUT_SET_SELECT:
ret = i40e_hash_filter_inset_select(hw,
&(info->info.input_set_conf));
break;
default:
PMD_DRV_LOG(ERR, "Hash filter info type (%d) not supported",
info->info_type);
ret = -EINVAL;
break;
}
return ret;
}
/* Operations for hash function */
static int
i40e_hash_filter_ctrl(struct rte_eth_dev *dev,
enum rte_filter_op filter_op,
void *arg)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
int ret = 0;
switch (filter_op) {
case RTE_ETH_FILTER_NOP:
break;
case RTE_ETH_FILTER_GET:
ret = i40e_hash_filter_get(hw,
(struct rte_eth_hash_filter_info *)arg);
break;
case RTE_ETH_FILTER_SET:
ret = i40e_hash_filter_set(hw,
(struct rte_eth_hash_filter_info *)arg);
break;
default:
PMD_DRV_LOG(WARNING, "Filter operation (%d) not supported",
filter_op);
ret = -ENOTSUP;
break;
}
return ret;
}
/* Convert ethertype filter structure */
static int
i40e_ethertype_filter_convert(const struct rte_eth_ethertype_filter *input,
struct i40e_ethertype_filter *filter)
{
rte_memcpy(&filter->input.mac_addr, &input->mac_addr, ETHER_ADDR_LEN);
filter->input.ether_type = input->ether_type;
filter->flags = input->flags;
filter->queue = input->queue;
return 0;
}
/* Check if there exists the ehtertype filter */
struct i40e_ethertype_filter *
i40e_sw_ethertype_filter_lookup(struct i40e_ethertype_rule *ethertype_rule,
const struct i40e_ethertype_filter_input *input)
{
int ret;
ret = rte_hash_lookup(ethertype_rule->hash_table, (const void *)input);
if (ret < 0)
return NULL;
return ethertype_rule->hash_map[ret];
}
/* Add ethertype filter in SW list */
static int
i40e_sw_ethertype_filter_insert(struct i40e_pf *pf,
struct i40e_ethertype_filter *filter)
{
struct i40e_ethertype_rule *rule = &pf->ethertype;
int ret;
ret = rte_hash_add_key(rule->hash_table, &filter->input);
if (ret < 0) {
PMD_DRV_LOG(ERR,
"Failed to insert ethertype filter"
" to hash table %d!",
ret);
return ret;
}
rule->hash_map[ret] = filter;
TAILQ_INSERT_TAIL(&rule->ethertype_list, filter, rules);
return 0;
}
/* Delete ethertype filter in SW list */
int
i40e_sw_ethertype_filter_del(struct i40e_pf *pf,
struct i40e_ethertype_filter_input *input)
{
struct i40e_ethertype_rule *rule = &pf->ethertype;
struct i40e_ethertype_filter *filter;
int ret;
ret = rte_hash_del_key(rule->hash_table, input);
if (ret < 0) {
PMD_DRV_LOG(ERR,
"Failed to delete ethertype filter"
" to hash table %d!",
ret);
return ret;
}
filter = rule->hash_map[ret];
rule->hash_map[ret] = NULL;
TAILQ_REMOVE(&rule->ethertype_list, filter, rules);
rte_free(filter);
return 0;
}
/*
* Configure ethertype filter, which can director packet by filtering
* with mac address and ether_type or only ether_type
*/
int
i40e_ethertype_filter_set(struct i40e_pf *pf,
struct rte_eth_ethertype_filter *filter,
bool add)
{
struct i40e_hw *hw = I40E_PF_TO_HW(pf);
struct i40e_ethertype_rule *ethertype_rule = &pf->ethertype;
struct i40e_ethertype_filter *ethertype_filter, *node;
struct i40e_ethertype_filter check_filter;
struct i40e_control_filter_stats stats;
uint16_t flags = 0;
int ret;
if (filter->queue >= pf->dev_data->nb_rx_queues) {
PMD_DRV_LOG(ERR, "Invalid queue ID");
return -EINVAL;
}
if (filter->ether_type == ETHER_TYPE_IPv4 ||
filter->ether_type == ETHER_TYPE_IPv6) {
PMD_DRV_LOG(ERR, "unsupported ether_type(0x%04x) in"
" control packet filter.", filter->ether_type);
return -EINVAL;
}
if (filter->ether_type == ETHER_TYPE_VLAN)
PMD_DRV_LOG(WARNING, "filter vlan ether_type in first tag is"
" not supported.");
/* Check if there is the filter in SW list */
memset(&check_filter, 0, sizeof(check_filter));
i40e_ethertype_filter_convert(filter, &check_filter);
node = i40e_sw_ethertype_filter_lookup(ethertype_rule,
&check_filter.input);
if (add && node) {
PMD_DRV_LOG(ERR, "Conflict with existing ethertype rules!");
return -EINVAL;
}
if (!add && !node) {
PMD_DRV_LOG(ERR, "There's no corresponding ethertype filter!");
return -EINVAL;
}
if (!(filter->flags & RTE_ETHTYPE_FLAGS_MAC))
flags |= I40E_AQC_ADD_CONTROL_PACKET_FLAGS_IGNORE_MAC;
if (filter->flags & RTE_ETHTYPE_FLAGS_DROP)
flags |= I40E_AQC_ADD_CONTROL_PACKET_FLAGS_DROP;
flags |= I40E_AQC_ADD_CONTROL_PACKET_FLAGS_TO_QUEUE;
memset(&stats, 0, sizeof(stats));
ret = i40e_aq_add_rem_control_packet_filter(hw,
filter->mac_addr.addr_bytes,
filter->ether_type, flags,
pf->main_vsi->seid,
filter->queue, add, &stats, NULL);
PMD_DRV_LOG(INFO, "add/rem control packet filter, return %d,"
" mac_etype_used = %u, etype_used = %u,"
" mac_etype_free = %u, etype_free = %u\n",
ret, stats.mac_etype_used, stats.etype_used,
stats.mac_etype_free, stats.etype_free);
if (ret < 0)
return -ENOSYS;
/* Add or delete a filter in SW list */
if (add) {
ethertype_filter = rte_zmalloc("ethertype_filter",
sizeof(*ethertype_filter), 0);
rte_memcpy(ethertype_filter, &check_filter,
sizeof(check_filter));
ret = i40e_sw_ethertype_filter_insert(pf, ethertype_filter);
} else {
ret = i40e_sw_ethertype_filter_del(pf, &node->input);
}
return ret;
}
/*
* Handle operations for ethertype filter.
*/
static int
i40e_ethertype_filter_handle(struct rte_eth_dev *dev,
enum rte_filter_op filter_op,
void *arg)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
int ret = 0;
if (filter_op == RTE_ETH_FILTER_NOP)
return ret;
if (arg == NULL) {
PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u",
filter_op);
return -EINVAL;
}
switch (filter_op) {
case RTE_ETH_FILTER_ADD:
ret = i40e_ethertype_filter_set(pf,
(struct rte_eth_ethertype_filter *)arg,
TRUE);
break;
case RTE_ETH_FILTER_DELETE:
ret = i40e_ethertype_filter_set(pf,
(struct rte_eth_ethertype_filter *)arg,
FALSE);
break;
default:
PMD_DRV_LOG(ERR, "unsupported operation %u\n", filter_op);
ret = -ENOSYS;
break;
}
return ret;
}
static int
i40e_dev_filter_ctrl(struct rte_eth_dev *dev,
enum rte_filter_type filter_type,
enum rte_filter_op filter_op,
void *arg)
{
int ret = 0;
if (dev == NULL)
return -EINVAL;
switch (filter_type) {
case RTE_ETH_FILTER_NONE:
/* For global configuration */
ret = i40e_filter_ctrl_global_config(dev, filter_op, arg);
break;
case RTE_ETH_FILTER_HASH:
ret = i40e_hash_filter_ctrl(dev, filter_op, arg);
break;
case RTE_ETH_FILTER_MACVLAN:
ret = i40e_mac_filter_handle(dev, filter_op, arg);
break;
case RTE_ETH_FILTER_ETHERTYPE:
ret = i40e_ethertype_filter_handle(dev, filter_op, arg);
break;
case RTE_ETH_FILTER_TUNNEL:
ret = i40e_tunnel_filter_handle(dev, filter_op, arg);
break;
case RTE_ETH_FILTER_FDIR:
ret = i40e_fdir_ctrl_func(dev, filter_op, arg);
break;
case RTE_ETH_FILTER_GENERIC:
if (filter_op != RTE_ETH_FILTER_GET)
return -EINVAL;
*(const void **)arg = &i40e_flow_ops;
break;
default:
PMD_DRV_LOG(WARNING, "Filter type (%d) not supported",
filter_type);
ret = -EINVAL;
break;
}
return ret;
}
/*
* Check and enable Extended Tag.
* Enabling Extended Tag is important for 40G performance.
*/
static void
i40e_enable_extended_tag(struct rte_eth_dev *dev)
{
struct rte_pci_device *pci_dev = I40E_DEV_TO_PCI(dev);
uint32_t buf = 0;
int ret;
ret = rte_eal_pci_read_config(pci_dev, &buf, sizeof(buf),
PCI_DEV_CAP_REG);
if (ret < 0) {
PMD_DRV_LOG(ERR, "Failed to read PCI offset 0x%x",
PCI_DEV_CAP_REG);
return;
}
if (!(buf & PCI_DEV_CAP_EXT_TAG_MASK)) {
PMD_DRV_LOG(ERR, "Does not support Extended Tag");
return;
}
buf = 0;
ret = rte_eal_pci_read_config(pci_dev, &buf, sizeof(buf),
PCI_DEV_CTRL_REG);
if (ret < 0) {
PMD_DRV_LOG(ERR, "Failed to read PCI offset 0x%x",
PCI_DEV_CTRL_REG);
return;
}
if (buf & PCI_DEV_CTRL_EXT_TAG_MASK) {
PMD_DRV_LOG(DEBUG, "Extended Tag has already been enabled");
return;
}
buf |= PCI_DEV_CTRL_EXT_TAG_MASK;
ret = rte_eal_pci_write_config(pci_dev, &buf, sizeof(buf),
PCI_DEV_CTRL_REG);
if (ret < 0) {
PMD_DRV_LOG(ERR, "Failed to write PCI offset 0x%x",
PCI_DEV_CTRL_REG);
return;
}
}
/*
* As some registers wouldn't be reset unless a global hardware reset,
* hardware initialization is needed to put those registers into an
* expected initial state.
*/
static void
i40e_hw_init(struct rte_eth_dev *dev)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
i40e_enable_extended_tag(dev);
/* clear the PF Queue Filter control register */
i40e_write_rx_ctl(hw, I40E_PFQF_CTL_0, 0);
/* Disable symmetric hash per port */
i40e_set_symmetric_hash_enable_per_port(hw, 0);
}
enum i40e_filter_pctype
i40e_flowtype_to_pctype(uint16_t flow_type)
{
static const enum i40e_filter_pctype pctype_table[] = {
[RTE_ETH_FLOW_FRAG_IPV4] = I40E_FILTER_PCTYPE_FRAG_IPV4,
[RTE_ETH_FLOW_NONFRAG_IPV4_UDP] =
I40E_FILTER_PCTYPE_NONF_IPV4_UDP,
[RTE_ETH_FLOW_NONFRAG_IPV4_TCP] =
I40E_FILTER_PCTYPE_NONF_IPV4_TCP,
[RTE_ETH_FLOW_NONFRAG_IPV4_SCTP] =
I40E_FILTER_PCTYPE_NONF_IPV4_SCTP,
[RTE_ETH_FLOW_NONFRAG_IPV4_OTHER] =
I40E_FILTER_PCTYPE_NONF_IPV4_OTHER,
[RTE_ETH_FLOW_FRAG_IPV6] = I40E_FILTER_PCTYPE_FRAG_IPV6,
[RTE_ETH_FLOW_NONFRAG_IPV6_UDP] =
I40E_FILTER_PCTYPE_NONF_IPV6_UDP,
[RTE_ETH_FLOW_NONFRAG_IPV6_TCP] =
I40E_FILTER_PCTYPE_NONF_IPV6_TCP,
[RTE_ETH_FLOW_NONFRAG_IPV6_SCTP] =
I40E_FILTER_PCTYPE_NONF_IPV6_SCTP,
[RTE_ETH_FLOW_NONFRAG_IPV6_OTHER] =
I40E_FILTER_PCTYPE_NONF_IPV6_OTHER,
[RTE_ETH_FLOW_L2_PAYLOAD] = I40E_FILTER_PCTYPE_L2_PAYLOAD,
};
return pctype_table[flow_type];
}
uint16_t
i40e_pctype_to_flowtype(enum i40e_filter_pctype pctype)
{
static const uint16_t flowtype_table[] = {
[I40E_FILTER_PCTYPE_FRAG_IPV4] = RTE_ETH_FLOW_FRAG_IPV4,
[I40E_FILTER_PCTYPE_NONF_IPV4_UDP] =
RTE_ETH_FLOW_NONFRAG_IPV4_UDP,
[I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP] =
RTE_ETH_FLOW_NONFRAG_IPV4_UDP,
[I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP] =
RTE_ETH_FLOW_NONFRAG_IPV4_UDP,
[I40E_FILTER_PCTYPE_NONF_IPV4_TCP] =
RTE_ETH_FLOW_NONFRAG_IPV4_TCP,
[I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK] =
RTE_ETH_FLOW_NONFRAG_IPV4_TCP,
[I40E_FILTER_PCTYPE_NONF_IPV4_SCTP] =
RTE_ETH_FLOW_NONFRAG_IPV4_SCTP,
[I40E_FILTER_PCTYPE_NONF_IPV4_OTHER] =
RTE_ETH_FLOW_NONFRAG_IPV4_OTHER,
[I40E_FILTER_PCTYPE_FRAG_IPV6] = RTE_ETH_FLOW_FRAG_IPV6,
[I40E_FILTER_PCTYPE_NONF_IPV6_UDP] =
RTE_ETH_FLOW_NONFRAG_IPV6_UDP,
[I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP] =
RTE_ETH_FLOW_NONFRAG_IPV6_UDP,
[I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP] =
RTE_ETH_FLOW_NONFRAG_IPV6_UDP,
[I40E_FILTER_PCTYPE_NONF_IPV6_TCP] =
RTE_ETH_FLOW_NONFRAG_IPV6_TCP,
[I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK] =
RTE_ETH_FLOW_NONFRAG_IPV6_TCP,
[I40E_FILTER_PCTYPE_NONF_IPV6_SCTP] =
RTE_ETH_FLOW_NONFRAG_IPV6_SCTP,
[I40E_FILTER_PCTYPE_NONF_IPV6_OTHER] =
RTE_ETH_FLOW_NONFRAG_IPV6_OTHER,
[I40E_FILTER_PCTYPE_L2_PAYLOAD] = RTE_ETH_FLOW_L2_PAYLOAD,
};
return flowtype_table[pctype];
}
/*
* On X710, performance number is far from the expectation on recent firmware
* versions; on XL710, performance number is also far from the expectation on
* recent firmware versions, if promiscuous mode is disabled, or promiscuous
* mode is enabled and port MAC address is equal to the packet destination MAC
* address. The fix for this issue may not be integrated in the following
* firmware version. So the workaround in software driver is needed. It needs
* to modify the initial values of 3 internal only registers for both X710 and
* XL710. Note that the values for X710 or XL710 could be different, and the
* workaround can be removed when it is fixed in firmware in the future.
*/
/* For both X710 and XL710 */
#define I40E_GL_SWR_PRI_JOIN_MAP_0_VALUE 0x10000200
#define I40E_GL_SWR_PRI_JOIN_MAP_0 0x26CE00
#define I40E_GL_SWR_PRI_JOIN_MAP_2_VALUE 0x011f0200
#define I40E_GL_SWR_PRI_JOIN_MAP_2 0x26CE08
/* For X710 */
#define I40E_GL_SWR_PM_UP_THR_EF_VALUE 0x03030303
/* For XL710 */
#define I40E_GL_SWR_PM_UP_THR_SF_VALUE 0x06060606
#define I40E_GL_SWR_PM_UP_THR 0x269FBC
static int
i40e_dev_sync_phy_type(struct i40e_hw *hw)
{
enum i40e_status_code status;
struct i40e_aq_get_phy_abilities_resp phy_ab;
int ret = -ENOTSUP;
status = i40e_aq_get_phy_capabilities(hw, false, true, &phy_ab,
NULL);
if (status)
return ret;
return 0;
}
static void
i40e_configure_registers(struct i40e_hw *hw)
{
static struct {
uint32_t addr;
uint64_t val;
} reg_table[] = {
{I40E_GL_SWR_PRI_JOIN_MAP_0, I40E_GL_SWR_PRI_JOIN_MAP_0_VALUE},
{I40E_GL_SWR_PRI_JOIN_MAP_2, I40E_GL_SWR_PRI_JOIN_MAP_2_VALUE},
{I40E_GL_SWR_PM_UP_THR, 0}, /* Compute value dynamically */
};
uint64_t reg;
uint32_t i;
int ret;
for (i = 0; i < RTE_DIM(reg_table); i++) {
if (reg_table[i].addr == I40E_GL_SWR_PM_UP_THR) {
if (I40E_PHY_TYPE_SUPPORT_40G(hw->phy.phy_types) || /* For XL710 */
I40E_PHY_TYPE_SUPPORT_25G(hw->phy.phy_types)) /* For XXV710 */
reg_table[i].val =
I40E_GL_SWR_PM_UP_THR_SF_VALUE;
else /* For X710 */
reg_table[i].val =
I40E_GL_SWR_PM_UP_THR_EF_VALUE;
}
ret = i40e_aq_debug_read_register(hw, reg_table[i].addr,
&reg, NULL);
if (ret < 0) {
PMD_DRV_LOG(ERR, "Failed to read from 0x%"PRIx32,
reg_table[i].addr);
break;
}
PMD_DRV_LOG(DEBUG, "Read from 0x%"PRIx32": 0x%"PRIx64,
reg_table[i].addr, reg);
if (reg == reg_table[i].val)
continue;
ret = i40e_aq_debug_write_register(hw, reg_table[i].addr,
reg_table[i].val, NULL);
if (ret < 0) {
PMD_DRV_LOG(ERR, "Failed to write 0x%"PRIx64" to the "
"address of 0x%"PRIx32, reg_table[i].val,
reg_table[i].addr);
break;
}
PMD_DRV_LOG(DEBUG, "Write 0x%"PRIx64" to the address of "
"0x%"PRIx32, reg_table[i].val, reg_table[i].addr);
}
}
#define I40E_VSI_TSR(_i) (0x00050800 + ((_i) * 4))
#define I40E_VSI_TSR_QINQ_CONFIG 0xc030
#define I40E_VSI_L2TAGSTXVALID(_i) (0x00042800 + ((_i) * 4))
#define I40E_VSI_L2TAGSTXVALID_QINQ 0xab
static int
i40e_config_qinq(struct i40e_hw *hw, struct i40e_vsi *vsi)
{
uint32_t reg;
int ret;
if (vsi->vsi_id >= I40E_MAX_NUM_VSIS) {
PMD_DRV_LOG(ERR, "VSI ID exceeds the maximum");
return -EINVAL;
}
/* Configure for double VLAN RX stripping */
reg = I40E_READ_REG(hw, I40E_VSI_TSR(vsi->vsi_id));
if ((reg & I40E_VSI_TSR_QINQ_CONFIG) != I40E_VSI_TSR_QINQ_CONFIG) {
reg |= I40E_VSI_TSR_QINQ_CONFIG;
ret = i40e_aq_debug_write_register(hw,
I40E_VSI_TSR(vsi->vsi_id),
reg, NULL);
if (ret < 0) {
PMD_DRV_LOG(ERR, "Failed to update VSI_TSR[%d]",
vsi->vsi_id);
return I40E_ERR_CONFIG;
}
}
/* Configure for double VLAN TX insertion */
reg = I40E_READ_REG(hw, I40E_VSI_L2TAGSTXVALID(vsi->vsi_id));
if ((reg & 0xff) != I40E_VSI_L2TAGSTXVALID_QINQ) {
reg = I40E_VSI_L2TAGSTXVALID_QINQ;
ret = i40e_aq_debug_write_register(hw,
I40E_VSI_L2TAGSTXVALID(
vsi->vsi_id), reg, NULL);
if (ret < 0) {
PMD_DRV_LOG(ERR, "Failed to update "
"VSI_L2TAGSTXVALID[%d]", vsi->vsi_id);
return I40E_ERR_CONFIG;
}
}
return 0;
}
/**
* i40e_aq_add_mirror_rule
* @hw: pointer to the hardware structure
* @seid: VEB seid to add mirror rule to
* @dst_id: destination vsi seid
* @entries: Buffer which contains the entities to be mirrored
* @count: number of entities contained in the buffer
* @rule_id:the rule_id of the rule to be added
*
* Add a mirror rule for a given veb.
*
**/
static enum i40e_status_code
i40e_aq_add_mirror_rule(struct i40e_hw *hw,
uint16_t seid, uint16_t dst_id,
uint16_t rule_type, uint16_t *entries,
uint16_t count, uint16_t *rule_id)
{
struct i40e_aq_desc desc;
struct i40e_aqc_add_delete_mirror_rule cmd;
struct i40e_aqc_add_delete_mirror_rule_completion *resp =
(struct i40e_aqc_add_delete_mirror_rule_completion *)
&desc.params.raw;
uint16_t buff_len;
enum i40e_status_code status;
i40e_fill_default_direct_cmd_desc(&desc,
i40e_aqc_opc_add_mirror_rule);
memset(&cmd, 0, sizeof(cmd));
buff_len = sizeof(uint16_t) * count;
desc.datalen = rte_cpu_to_le_16(buff_len);
if (buff_len > 0)
desc.flags |= rte_cpu_to_le_16(
(uint16_t)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
cmd.rule_type = rte_cpu_to_le_16(rule_type <<
I40E_AQC_MIRROR_RULE_TYPE_SHIFT);
cmd.num_entries = rte_cpu_to_le_16(count);
cmd.seid = rte_cpu_to_le_16(seid);
cmd.destination = rte_cpu_to_le_16(dst_id);
rte_memcpy(&desc.params.raw, &cmd, sizeof(cmd));
status = i40e_asq_send_command(hw, &desc, entries, buff_len, NULL);
PMD_DRV_LOG(INFO, "i40e_aq_add_mirror_rule, aq_status %d,"
"rule_id = %u"
" mirror_rules_used = %u, mirror_rules_free = %u,",
hw->aq.asq_last_status, resp->rule_id,
resp->mirror_rules_used, resp->mirror_rules_free);
*rule_id = rte_le_to_cpu_16(resp->rule_id);
return status;
}
/**
* i40e_aq_del_mirror_rule
* @hw: pointer to the hardware structure
* @seid: VEB seid to add mirror rule to
* @entries: Buffer which contains the entities to be mirrored
* @count: number of entities contained in the buffer
* @rule_id:the rule_id of the rule to be delete
*
* Delete a mirror rule for a given veb.
*
**/
static enum i40e_status_code
i40e_aq_del_mirror_rule(struct i40e_hw *hw,
uint16_t seid, uint16_t rule_type, uint16_t *entries,
uint16_t count, uint16_t rule_id)
{
struct i40e_aq_desc desc;
struct i40e_aqc_add_delete_mirror_rule cmd;
uint16_t buff_len = 0;
enum i40e_status_code status;
void *buff = NULL;
i40e_fill_default_direct_cmd_desc(&desc,
i40e_aqc_opc_delete_mirror_rule);
memset(&cmd, 0, sizeof(cmd));
if (rule_type == I40E_AQC_MIRROR_RULE_TYPE_VLAN) {
desc.flags |= rte_cpu_to_le_16((uint16_t)(I40E_AQ_FLAG_BUF |
I40E_AQ_FLAG_RD));
cmd.num_entries = count;
buff_len = sizeof(uint16_t) * count;
desc.datalen = rte_cpu_to_le_16(buff_len);
buff = (void *)entries;
} else
/* rule id is filled in destination field for deleting mirror rule */
cmd.destination = rte_cpu_to_le_16(rule_id);
cmd.rule_type = rte_cpu_to_le_16(rule_type <<
I40E_AQC_MIRROR_RULE_TYPE_SHIFT);
cmd.seid = rte_cpu_to_le_16(seid);
rte_memcpy(&desc.params.raw, &cmd, sizeof(cmd));
status = i40e_asq_send_command(hw, &desc, buff, buff_len, NULL);
return status;
}
/**
* i40e_mirror_rule_set
* @dev: pointer to the hardware structure
* @mirror_conf: mirror rule info
* @sw_id: mirror rule's sw_id
* @on: enable/disable
*
* set a mirror rule.
*
**/
static int
i40e_mirror_rule_set(struct rte_eth_dev *dev,
struct rte_eth_mirror_conf *mirror_conf,
uint8_t sw_id, uint8_t on)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_mirror_rule *it, *mirr_rule = NULL;
struct i40e_mirror_rule *parent = NULL;
uint16_t seid, dst_seid, rule_id;
uint16_t i, j = 0;
int ret;
PMD_DRV_LOG(DEBUG, "i40e_mirror_rule_set: sw_id = %d.", sw_id);
if (pf->main_vsi->veb == NULL || pf->vfs == NULL) {
PMD_DRV_LOG(ERR, "mirror rule can not be configured"
" without veb or vfs.");
return -ENOSYS;
}
if (pf->nb_mirror_rule > I40E_MAX_MIRROR_RULES) {
PMD_DRV_LOG(ERR, "mirror table is full.");
return -ENOSPC;
}
if (mirror_conf->dst_pool > pf->vf_num) {
PMD_DRV_LOG(ERR, "invalid destination pool %u.",
mirror_conf->dst_pool);
return -EINVAL;
}
seid = pf->main_vsi->veb->seid;
TAILQ_FOREACH(it, &pf->mirror_list, rules) {
if (sw_id <= it->index) {
mirr_rule = it;
break;
}
parent = it;
}
if (mirr_rule && sw_id == mirr_rule->index) {
if (on) {
PMD_DRV_LOG(ERR, "mirror rule exists.");
return -EEXIST;
} else {
ret = i40e_aq_del_mirror_rule(hw, seid,
mirr_rule->rule_type,
mirr_rule->entries,
mirr_rule->num_entries, mirr_rule->id);
if (ret < 0) {
PMD_DRV_LOG(ERR, "failed to remove mirror rule:"
" ret = %d, aq_err = %d.",
ret, hw->aq.asq_last_status);
return -ENOSYS;
}
TAILQ_REMOVE(&pf->mirror_list, mirr_rule, rules);
rte_free(mirr_rule);
pf->nb_mirror_rule--;
return 0;
}
} else if (!on) {
PMD_DRV_LOG(ERR, "mirror rule doesn't exist.");
return -ENOENT;
}
mirr_rule = rte_zmalloc("i40e_mirror_rule",
sizeof(struct i40e_mirror_rule) , 0);
if (!mirr_rule) {
PMD_DRV_LOG(ERR, "failed to allocate memory");
return I40E_ERR_NO_MEMORY;
}
switch (mirror_conf->rule_type) {
case ETH_MIRROR_VLAN:
for (i = 0, j = 0; i < ETH_MIRROR_MAX_VLANS; i++) {
if (mirror_conf->vlan.vlan_mask & (1ULL << i)) {
mirr_rule->entries[j] =
mirror_conf->vlan.vlan_id[i];
j++;
}
}
if (j == 0) {
PMD_DRV_LOG(ERR, "vlan is not specified.");
rte_free(mirr_rule);
return -EINVAL;
}
mirr_rule->rule_type = I40E_AQC_MIRROR_RULE_TYPE_VLAN;
break;
case ETH_MIRROR_VIRTUAL_POOL_UP:
case ETH_MIRROR_VIRTUAL_POOL_DOWN:
/* check if the specified pool bit is out of range */
if (mirror_conf->pool_mask > (uint64_t)(1ULL << (pf->vf_num + 1))) {
PMD_DRV_LOG(ERR, "pool mask is out of range.");
rte_free(mirr_rule);
return -EINVAL;
}
for (i = 0, j = 0; i < pf->vf_num; i++) {
if (mirror_conf->pool_mask & (1ULL << i)) {
mirr_rule->entries[j] = pf->vfs[i].vsi->seid;
j++;
}
}
if (mirror_conf->pool_mask & (1ULL << pf->vf_num)) {
/* add pf vsi to entries */
mirr_rule->entries[j] = pf->main_vsi_seid;
j++;
}
if (j == 0) {
PMD_DRV_LOG(ERR, "pool is not specified.");
rte_free(mirr_rule);
return -EINVAL;
}
/* egress and ingress in aq commands means from switch but not port */
mirr_rule->rule_type =
(mirror_conf->rule_type == ETH_MIRROR_VIRTUAL_POOL_UP) ?
I40E_AQC_MIRROR_RULE_TYPE_VPORT_EGRESS :
I40E_AQC_MIRROR_RULE_TYPE_VPORT_INGRESS;
break;
case ETH_MIRROR_UPLINK_PORT:
/* egress and ingress in aq commands means from switch but not port*/
mirr_rule->rule_type = I40E_AQC_MIRROR_RULE_TYPE_ALL_EGRESS;
break;
case ETH_MIRROR_DOWNLINK_PORT:
mirr_rule->rule_type = I40E_AQC_MIRROR_RULE_TYPE_ALL_INGRESS;
break;
default:
PMD_DRV_LOG(ERR, "unsupported mirror type %d.",
mirror_conf->rule_type);
rte_free(mirr_rule);
return -EINVAL;
}
/* If the dst_pool is equal to vf_num, consider it as PF */
if (mirror_conf->dst_pool == pf->vf_num)
dst_seid = pf->main_vsi_seid;
else
dst_seid = pf->vfs[mirror_conf->dst_pool].vsi->seid;
ret = i40e_aq_add_mirror_rule(hw, seid, dst_seid,
mirr_rule->rule_type, mirr_rule->entries,
j, &rule_id);
if (ret < 0) {
PMD_DRV_LOG(ERR, "failed to add mirror rule:"
" ret = %d, aq_err = %d.",
ret, hw->aq.asq_last_status);
rte_free(mirr_rule);
return -ENOSYS;
}
mirr_rule->index = sw_id;
mirr_rule->num_entries = j;
mirr_rule->id = rule_id;
mirr_rule->dst_vsi_seid = dst_seid;
if (parent)
TAILQ_INSERT_AFTER(&pf->mirror_list, parent, mirr_rule, rules);
else
TAILQ_INSERT_HEAD(&pf->mirror_list, mirr_rule, rules);
pf->nb_mirror_rule++;
return 0;
}
/**
* i40e_mirror_rule_reset
* @dev: pointer to the device
* @sw_id: mirror rule's sw_id
*
* reset a mirror rule.
*
**/
static int
i40e_mirror_rule_reset(struct rte_eth_dev *dev, uint8_t sw_id)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_mirror_rule *it, *mirr_rule = NULL;
uint16_t seid;
int ret;
PMD_DRV_LOG(DEBUG, "i40e_mirror_rule_reset: sw_id = %d.", sw_id);
seid = pf->main_vsi->veb->seid;
TAILQ_FOREACH(it, &pf->mirror_list, rules) {
if (sw_id == it->index) {
mirr_rule = it;
break;
}
}
if (mirr_rule) {
ret = i40e_aq_del_mirror_rule(hw, seid,
mirr_rule->rule_type,
mirr_rule->entries,
mirr_rule->num_entries, mirr_rule->id);
if (ret < 0) {
PMD_DRV_LOG(ERR, "failed to remove mirror rule:"
" status = %d, aq_err = %d.",
ret, hw->aq.asq_last_status);
return -ENOSYS;
}
TAILQ_REMOVE(&pf->mirror_list, mirr_rule, rules);
rte_free(mirr_rule);
pf->nb_mirror_rule--;
} else {
PMD_DRV_LOG(ERR, "mirror rule doesn't exist.");
return -ENOENT;
}
return 0;
}
static uint64_t
i40e_read_systime_cyclecounter(struct rte_eth_dev *dev)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint64_t systim_cycles;
systim_cycles = (uint64_t)I40E_READ_REG(hw, I40E_PRTTSYN_TIME_L);
systim_cycles |= (uint64_t)I40E_READ_REG(hw, I40E_PRTTSYN_TIME_H)
<< 32;
return systim_cycles;
}
static uint64_t
i40e_read_rx_tstamp_cyclecounter(struct rte_eth_dev *dev, uint8_t index)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint64_t rx_tstamp;
rx_tstamp = (uint64_t)I40E_READ_REG(hw, I40E_PRTTSYN_RXTIME_L(index));
rx_tstamp |= (uint64_t)I40E_READ_REG(hw, I40E_PRTTSYN_RXTIME_H(index))
<< 32;
return rx_tstamp;
}
static uint64_t
i40e_read_tx_tstamp_cyclecounter(struct rte_eth_dev *dev)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint64_t tx_tstamp;
tx_tstamp = (uint64_t)I40E_READ_REG(hw, I40E_PRTTSYN_TXTIME_L);
tx_tstamp |= (uint64_t)I40E_READ_REG(hw, I40E_PRTTSYN_TXTIME_H)
<< 32;
return tx_tstamp;
}
static void
i40e_start_timecounters(struct rte_eth_dev *dev)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_adapter *adapter =
(struct i40e_adapter *)dev->data->dev_private;
struct rte_eth_link link;
uint32_t tsync_inc_l;
uint32_t tsync_inc_h;
/* Get current link speed. */
memset(&link, 0, sizeof(link));
i40e_dev_link_update(dev, 1);
rte_i40e_dev_atomic_read_link_status(dev, &link);
switch (link.link_speed) {
case ETH_SPEED_NUM_40G:
tsync_inc_l = I40E_PTP_40GB_INCVAL & 0xFFFFFFFF;
tsync_inc_h = I40E_PTP_40GB_INCVAL >> 32;
break;
case ETH_SPEED_NUM_10G:
tsync_inc_l = I40E_PTP_10GB_INCVAL & 0xFFFFFFFF;
tsync_inc_h = I40E_PTP_10GB_INCVAL >> 32;
break;
case ETH_SPEED_NUM_1G:
tsync_inc_l = I40E_PTP_1GB_INCVAL & 0xFFFFFFFF;
tsync_inc_h = I40E_PTP_1GB_INCVAL >> 32;
break;
default:
tsync_inc_l = 0x0;
tsync_inc_h = 0x0;
}
/* Set the timesync increment value. */
I40E_WRITE_REG(hw, I40E_PRTTSYN_INC_L, tsync_inc_l);
I40E_WRITE_REG(hw, I40E_PRTTSYN_INC_H, tsync_inc_h);
memset(&adapter->systime_tc, 0, sizeof(struct rte_timecounter));
memset(&adapter->rx_tstamp_tc, 0, sizeof(struct rte_timecounter));
memset(&adapter->tx_tstamp_tc, 0, sizeof(struct rte_timecounter));
adapter->systime_tc.cc_mask = I40E_CYCLECOUNTER_MASK;
adapter->systime_tc.cc_shift = 0;
adapter->systime_tc.nsec_mask = 0;
adapter->rx_tstamp_tc.cc_mask = I40E_CYCLECOUNTER_MASK;
adapter->rx_tstamp_tc.cc_shift = 0;
adapter->rx_tstamp_tc.nsec_mask = 0;
adapter->tx_tstamp_tc.cc_mask = I40E_CYCLECOUNTER_MASK;
adapter->tx_tstamp_tc.cc_shift = 0;
adapter->tx_tstamp_tc.nsec_mask = 0;
}
static int
i40e_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta)
{
struct i40e_adapter *adapter =
(struct i40e_adapter *)dev->data->dev_private;
adapter->systime_tc.nsec += delta;
adapter->rx_tstamp_tc.nsec += delta;
adapter->tx_tstamp_tc.nsec += delta;
return 0;
}
static int
i40e_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts)
{
uint64_t ns;
struct i40e_adapter *adapter =
(struct i40e_adapter *)dev->data->dev_private;
ns = rte_timespec_to_ns(ts);
/* Set the timecounters to a new value. */
adapter->systime_tc.nsec = ns;
adapter->rx_tstamp_tc.nsec = ns;
adapter->tx_tstamp_tc.nsec = ns;
return 0;
}
static int
i40e_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts)
{
uint64_t ns, systime_cycles;
struct i40e_adapter *adapter =
(struct i40e_adapter *)dev->data->dev_private;
systime_cycles = i40e_read_systime_cyclecounter(dev);
ns = rte_timecounter_update(&adapter->systime_tc, systime_cycles);
*ts = rte_ns_to_timespec(ns);
return 0;
}
static int
i40e_timesync_enable(struct rte_eth_dev *dev)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t tsync_ctl_l;
uint32_t tsync_ctl_h;
/* Stop the timesync system time. */
I40E_WRITE_REG(hw, I40E_PRTTSYN_INC_L, 0x0);
I40E_WRITE_REG(hw, I40E_PRTTSYN_INC_H, 0x0);
/* Reset the timesync system time value. */
I40E_WRITE_REG(hw, I40E_PRTTSYN_TIME_L, 0x0);
I40E_WRITE_REG(hw, I40E_PRTTSYN_TIME_H, 0x0);
i40e_start_timecounters(dev);
/* Clear timesync registers. */
I40E_READ_REG(hw, I40E_PRTTSYN_STAT_0);
I40E_READ_REG(hw, I40E_PRTTSYN_TXTIME_H);
I40E_READ_REG(hw, I40E_PRTTSYN_RXTIME_H(0));
I40E_READ_REG(hw, I40E_PRTTSYN_RXTIME_H(1));
I40E_READ_REG(hw, I40E_PRTTSYN_RXTIME_H(2));
I40E_READ_REG(hw, I40E_PRTTSYN_RXTIME_H(3));
/* Enable timestamping of PTP packets. */
tsync_ctl_l = I40E_READ_REG(hw, I40E_PRTTSYN_CTL0);
tsync_ctl_l |= I40E_PRTTSYN_TSYNENA;
tsync_ctl_h = I40E_READ_REG(hw, I40E_PRTTSYN_CTL1);
tsync_ctl_h |= I40E_PRTTSYN_TSYNENA;
tsync_ctl_h |= I40E_PRTTSYN_TSYNTYPE;
I40E_WRITE_REG(hw, I40E_PRTTSYN_CTL0, tsync_ctl_l);
I40E_WRITE_REG(hw, I40E_PRTTSYN_CTL1, tsync_ctl_h);
return 0;
}
static int
i40e_timesync_disable(struct rte_eth_dev *dev)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t tsync_ctl_l;
uint32_t tsync_ctl_h;
/* Disable timestamping of transmitted PTP packets. */
tsync_ctl_l = I40E_READ_REG(hw, I40E_PRTTSYN_CTL0);
tsync_ctl_l &= ~I40E_PRTTSYN_TSYNENA;
tsync_ctl_h = I40E_READ_REG(hw, I40E_PRTTSYN_CTL1);
tsync_ctl_h &= ~I40E_PRTTSYN_TSYNENA;
I40E_WRITE_REG(hw, I40E_PRTTSYN_CTL0, tsync_ctl_l);
I40E_WRITE_REG(hw, I40E_PRTTSYN_CTL1, tsync_ctl_h);
/* Reset the timesync increment value. */
I40E_WRITE_REG(hw, I40E_PRTTSYN_INC_L, 0x0);
I40E_WRITE_REG(hw, I40E_PRTTSYN_INC_H, 0x0);
return 0;
}
static int
i40e_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
struct timespec *timestamp, uint32_t flags)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_adapter *adapter =
(struct i40e_adapter *)dev->data->dev_private;
uint32_t sync_status;
uint32_t index = flags & 0x03;
uint64_t rx_tstamp_cycles;
uint64_t ns;
sync_status = I40E_READ_REG(hw, I40E_PRTTSYN_STAT_1);
if ((sync_status & (1 << index)) == 0)
return -EINVAL;
rx_tstamp_cycles = i40e_read_rx_tstamp_cyclecounter(dev, index);
ns = rte_timecounter_update(&adapter->rx_tstamp_tc, rx_tstamp_cycles);
*timestamp = rte_ns_to_timespec(ns);
return 0;
}
static int
i40e_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
struct timespec *timestamp)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_adapter *adapter =
(struct i40e_adapter *)dev->data->dev_private;
uint32_t sync_status;
uint64_t tx_tstamp_cycles;
uint64_t ns;
sync_status = I40E_READ_REG(hw, I40E_PRTTSYN_STAT_0);
if ((sync_status & I40E_PRTTSYN_STAT_0_TXTIME_MASK) == 0)
return -EINVAL;
tx_tstamp_cycles = i40e_read_tx_tstamp_cyclecounter(dev);
ns = rte_timecounter_update(&adapter->tx_tstamp_tc, tx_tstamp_cycles);
*timestamp = rte_ns_to_timespec(ns);
return 0;
}
/*
* i40e_parse_dcb_configure - parse dcb configure from user
* @dev: the device being configured
* @dcb_cfg: pointer of the result of parse
* @*tc_map: bit map of enabled traffic classes
*
* Returns 0 on success, negative value on failure
*/
static int
i40e_parse_dcb_configure(struct rte_eth_dev *dev,
struct i40e_dcbx_config *dcb_cfg,
uint8_t *tc_map)
{
struct rte_eth_dcb_rx_conf *dcb_rx_conf;
uint8_t i, tc_bw, bw_lf;
memset(dcb_cfg, 0, sizeof(struct i40e_dcbx_config));
dcb_rx_conf = &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
if (dcb_rx_conf->nb_tcs > I40E_MAX_TRAFFIC_CLASS) {
PMD_INIT_LOG(ERR, "number of tc exceeds max.");
return -EINVAL;
}
/* assume each tc has the same bw */
tc_bw = I40E_MAX_PERCENT / dcb_rx_conf->nb_tcs;
for (i = 0; i < dcb_rx_conf->nb_tcs; i++)
dcb_cfg->etscfg.tcbwtable[i] = tc_bw;
/* to ensure the sum of tcbw is equal to 100 */
bw_lf = I40E_MAX_PERCENT % dcb_rx_conf->nb_tcs;
for (i = 0; i < bw_lf; i++)
dcb_cfg->etscfg.tcbwtable[i]++;
/* assume each tc has the same Transmission Selection Algorithm */
for (i = 0; i < dcb_rx_conf->nb_tcs; i++)
dcb_cfg->etscfg.tsatable[i] = I40E_IEEE_TSA_ETS;
for (i = 0; i < I40E_MAX_USER_PRIORITY; i++)
dcb_cfg->etscfg.prioritytable[i] =
dcb_rx_conf->dcb_tc[i];
/* FW needs one App to configure HW */
dcb_cfg->numapps = I40E_DEFAULT_DCB_APP_NUM;
dcb_cfg->app[0].selector = I40E_APP_SEL_ETHTYPE;
dcb_cfg->app[0].priority = I40E_DEFAULT_DCB_APP_PRIO;
dcb_cfg->app[0].protocolid = I40E_APP_PROTOID_FCOE;
if (dcb_rx_conf->nb_tcs == 0)
*tc_map = 1; /* tc0 only */
else
*tc_map = RTE_LEN2MASK(dcb_rx_conf->nb_tcs, uint8_t);
if (dev->data->dev_conf.dcb_capability_en & ETH_DCB_PFC_SUPPORT) {
dcb_cfg->pfc.willing = 0;
dcb_cfg->pfc.pfccap = I40E_MAX_TRAFFIC_CLASS;
dcb_cfg->pfc.pfcenable = *tc_map;
}
return 0;
}
static enum i40e_status_code
i40e_vsi_update_queue_mapping(struct i40e_vsi *vsi,
struct i40e_aqc_vsi_properties_data *info,
uint8_t enabled_tcmap)
{
enum i40e_status_code ret;
int i, total_tc = 0;
uint16_t qpnum_per_tc, bsf, qp_idx;
struct rte_eth_dev_data *dev_data = I40E_VSI_TO_DEV_DATA(vsi);
struct i40e_pf *pf = I40E_VSI_TO_PF(vsi);
uint16_t used_queues;
ret = validate_tcmap_parameter(vsi, enabled_tcmap);
if (ret != I40E_SUCCESS)
return ret;
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
if (enabled_tcmap & (1 << i))
total_tc++;
}
if (total_tc == 0)
total_tc = 1;
vsi->enabled_tc = enabled_tcmap;
/* different VSI has different queues assigned */
if (vsi->type == I40E_VSI_MAIN)
used_queues = dev_data->nb_rx_queues -
pf->nb_cfg_vmdq_vsi * RTE_LIBRTE_I40E_QUEUE_NUM_PER_VM;
else if (vsi->type == I40E_VSI_VMDQ2)
used_queues = RTE_LIBRTE_I40E_QUEUE_NUM_PER_VM;
else {
PMD_INIT_LOG(ERR, "unsupported VSI type.");
return I40E_ERR_NO_AVAILABLE_VSI;
}
qpnum_per_tc = used_queues / total_tc;
/* Number of queues per enabled TC */
if (qpnum_per_tc == 0) {
PMD_INIT_LOG(ERR, " number of queues is less that tcs.");
return I40E_ERR_INVALID_QP_ID;
}
qpnum_per_tc = RTE_MIN(i40e_align_floor(qpnum_per_tc),
I40E_MAX_Q_PER_TC);
bsf = rte_bsf32(qpnum_per_tc);
/**
* Configure TC and queue mapping parameters, for enabled TC,
* allocate qpnum_per_tc queues to this traffic. For disabled TC,
* default queue will serve it.
*/
qp_idx = 0;
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
if (vsi->enabled_tc & (1 << i)) {
info->tc_mapping[i] = rte_cpu_to_le_16((qp_idx <<
I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) |
(bsf << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT));
qp_idx += qpnum_per_tc;
} else
info->tc_mapping[i] = 0;
}
/* Associate queue number with VSI, Keep vsi->nb_qps unchanged */
if (vsi->type == I40E_VSI_SRIOV) {
info->mapping_flags |=
rte_cpu_to_le_16(I40E_AQ_VSI_QUE_MAP_NONCONTIG);
for (i = 0; i < vsi->nb_qps; i++)
info->queue_mapping[i] =
rte_cpu_to_le_16(vsi->base_queue + i);
} else {
info->mapping_flags |=
rte_cpu_to_le_16(I40E_AQ_VSI_QUE_MAP_CONTIG);
info->queue_mapping[0] = rte_cpu_to_le_16(vsi->base_queue);
}
info->valid_sections |=
rte_cpu_to_le_16(I40E_AQ_VSI_PROP_QUEUE_MAP_VALID);
return I40E_SUCCESS;
}
/*
* i40e_config_switch_comp_tc - Configure VEB tc setting for given TC map
* @veb: VEB to be configured
* @tc_map: enabled TC bitmap
*
* Returns 0 on success, negative value on failure
*/
static enum i40e_status_code
i40e_config_switch_comp_tc(struct i40e_veb *veb, uint8_t tc_map)
{
struct i40e_aqc_configure_switching_comp_bw_config_data veb_bw;
struct i40e_aqc_query_switching_comp_bw_config_resp bw_query;
struct i40e_aqc_query_switching_comp_ets_config_resp ets_query;
struct i40e_hw *hw = I40E_VSI_TO_HW(veb->associate_vsi);
enum i40e_status_code ret = I40E_SUCCESS;
int i;
uint32_t bw_max;
/* Check if enabled_tc is same as existing or new TCs */
if (veb->enabled_tc == tc_map)
return ret;
/* configure tc bandwidth */
memset(&veb_bw, 0, sizeof(veb_bw));
veb_bw.tc_valid_bits = tc_map;
/* Enable ETS TCs with equal BW Share for now across all VSIs */
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
if (tc_map & BIT_ULL(i))
veb_bw.tc_bw_share_credits[i] = 1;
}
ret = i40e_aq_config_switch_comp_bw_config(hw, veb->seid,
&veb_bw, NULL);
if (ret) {
PMD_INIT_LOG(ERR, "AQ command Config switch_comp BW allocation"
" per TC failed = %d",
hw->aq.asq_last_status);
return ret;
}
memset(&ets_query, 0, sizeof(ets_query));
ret = i40e_aq_query_switch_comp_ets_config(hw, veb->seid,
&ets_query, NULL);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to get switch_comp ETS"
" configuration %u", hw->aq.asq_last_status);
return ret;
}
memset(&bw_query, 0, sizeof(bw_query));
ret = i40e_aq_query_switch_comp_bw_config(hw, veb->seid,
&bw_query, NULL);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to get switch_comp bandwidth"
" configuration %u", hw->aq.asq_last_status);
return ret;
}
/* store and print out BW info */
veb->bw_info.bw_limit = rte_le_to_cpu_16(ets_query.port_bw_limit);
veb->bw_info.bw_max = ets_query.tc_bw_max;
PMD_DRV_LOG(DEBUG, "switch_comp bw limit:%u", veb->bw_info.bw_limit);
PMD_DRV_LOG(DEBUG, "switch_comp max_bw:%u", veb->bw_info.bw_max);
bw_max = rte_le_to_cpu_16(bw_query.tc_bw_max[0]) |
(rte_le_to_cpu_16(bw_query.tc_bw_max[1]) <<
I40E_16_BIT_WIDTH);
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
veb->bw_info.bw_ets_share_credits[i] =
bw_query.tc_bw_share_credits[i];
veb->bw_info.bw_ets_credits[i] =
rte_le_to_cpu_16(bw_query.tc_bw_limits[i]);
/* 4 bits per TC, 4th bit is reserved */
veb->bw_info.bw_ets_max[i] =
(uint8_t)((bw_max >> (i * I40E_4_BIT_WIDTH)) &
RTE_LEN2MASK(3, uint8_t));
PMD_DRV_LOG(DEBUG, "\tVEB TC%u:share credits %u", i,
veb->bw_info.bw_ets_share_credits[i]);
PMD_DRV_LOG(DEBUG, "\tVEB TC%u:credits %u", i,
veb->bw_info.bw_ets_credits[i]);
PMD_DRV_LOG(DEBUG, "\tVEB TC%u: max credits: %u", i,
veb->bw_info.bw_ets_max[i]);
}
veb->enabled_tc = tc_map;
return ret;
}
/*
* i40e_vsi_config_tc - Configure VSI tc setting for given TC map
* @vsi: VSI to be configured
* @tc_map: enabled TC bitmap
*
* Returns 0 on success, negative value on failure
*/
static enum i40e_status_code
i40e_vsi_config_tc(struct i40e_vsi *vsi, uint8_t tc_map)
{
struct i40e_aqc_configure_vsi_tc_bw_data bw_data;
struct i40e_vsi_context ctxt;
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
enum i40e_status_code ret = I40E_SUCCESS;
int i;
/* Check if enabled_tc is same as existing or new TCs */
if (vsi->enabled_tc == tc_map)
return ret;
/* configure tc bandwidth */
memset(&bw_data, 0, sizeof(bw_data));
bw_data.tc_valid_bits = tc_map;
/* Enable ETS TCs with equal BW Share for now across all VSIs */
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
if (tc_map & BIT_ULL(i))
bw_data.tc_bw_credits[i] = 1;
}
ret = i40e_aq_config_vsi_tc_bw(hw, vsi->seid, &bw_data, NULL);
if (ret) {
PMD_INIT_LOG(ERR, "AQ command Config VSI BW allocation"
" per TC failed = %d",
hw->aq.asq_last_status);
goto out;
}
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++)
vsi->info.qs_handle[i] = bw_data.qs_handles[i];
/* Update Queue Pairs Mapping for currently enabled UPs */
ctxt.seid = vsi->seid;
ctxt.pf_num = hw->pf_id;
ctxt.vf_num = 0;
ctxt.uplink_seid = vsi->uplink_seid;
ctxt.info = vsi->info;
i40e_get_cap(hw);
ret = i40e_vsi_update_queue_mapping(vsi, &ctxt.info, tc_map);
if (ret)
goto out;
/* Update the VSI after updating the VSI queue-mapping information */
ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to configure "
"TC queue mapping = %d",
hw->aq.asq_last_status);
goto out;
}
/* update the local VSI info with updated queue map */
(void)rte_memcpy(&vsi->info.tc_mapping, &ctxt.info.tc_mapping,
sizeof(vsi->info.tc_mapping));
(void)rte_memcpy(&vsi->info.queue_mapping,
&ctxt.info.queue_mapping,
sizeof(vsi->info.queue_mapping));
vsi->info.mapping_flags = ctxt.info.mapping_flags;
vsi->info.valid_sections = 0;
/* query and update current VSI BW information */
ret = i40e_vsi_get_bw_config(vsi);
if (ret) {
PMD_INIT_LOG(ERR,
"Failed updating vsi bw info, err %s aq_err %s",
i40e_stat_str(hw, ret),
i40e_aq_str(hw, hw->aq.asq_last_status));
goto out;
}
vsi->enabled_tc = tc_map;
out:
return ret;
}
/*
* i40e_dcb_hw_configure - program the dcb setting to hw
* @pf: pf the configuration is taken on
* @new_cfg: new configuration
* @tc_map: enabled TC bitmap
*
* Returns 0 on success, negative value on failure
*/
static enum i40e_status_code
i40e_dcb_hw_configure(struct i40e_pf *pf,
struct i40e_dcbx_config *new_cfg,
uint8_t tc_map)
{
struct i40e_hw *hw = I40E_PF_TO_HW(pf);
struct i40e_dcbx_config *old_cfg = &hw->local_dcbx_config;
struct i40e_vsi *main_vsi = pf->main_vsi;
struct i40e_vsi_list *vsi_list;
enum i40e_status_code ret;
int i;
uint32_t val;
/* Use the FW API if FW > v4.4*/
if (!(((hw->aq.fw_maj_ver == 4) && (hw->aq.fw_min_ver >= 4)) ||
(hw->aq.fw_maj_ver >= 5))) {
PMD_INIT_LOG(ERR, "FW < v4.4, can not use FW LLDP API"
" to configure DCB");
return I40E_ERR_FIRMWARE_API_VERSION;
}
/* Check if need reconfiguration */
if (!memcmp(new_cfg, old_cfg, sizeof(struct i40e_dcbx_config))) {
PMD_INIT_LOG(ERR, "No Change in DCB Config required.");
return I40E_SUCCESS;
}
/* Copy the new config to the current config */
*old_cfg = *new_cfg;
old_cfg->etsrec = old_cfg->etscfg;
ret = i40e_set_dcb_config(hw);
if (ret) {
PMD_INIT_LOG(ERR,
"Set DCB Config failed, err %s aq_err %s\n",
i40e_stat_str(hw, ret),
i40e_aq_str(hw, hw->aq.asq_last_status));
return ret;
}
/* set receive Arbiter to RR mode and ETS scheme by default */
for (i = 0; i <= I40E_PRTDCB_RETSTCC_MAX_INDEX; i++) {
val = I40E_READ_REG(hw, I40E_PRTDCB_RETSTCC(i));
val &= ~(I40E_PRTDCB_RETSTCC_BWSHARE_MASK |
I40E_PRTDCB_RETSTCC_UPINTC_MODE_MASK |
I40E_PRTDCB_RETSTCC_ETSTC_SHIFT);
val |= ((uint32_t)old_cfg->etscfg.tcbwtable[i] <<
I40E_PRTDCB_RETSTCC_BWSHARE_SHIFT) &
I40E_PRTDCB_RETSTCC_BWSHARE_MASK;
val |= ((uint32_t)1 << I40E_PRTDCB_RETSTCC_UPINTC_MODE_SHIFT) &
I40E_PRTDCB_RETSTCC_UPINTC_MODE_MASK;
val |= ((uint32_t)1 << I40E_PRTDCB_RETSTCC_ETSTC_SHIFT) &
I40E_PRTDCB_RETSTCC_ETSTC_MASK;
I40E_WRITE_REG(hw, I40E_PRTDCB_RETSTCC(i), val);
}
/* get local mib to check whether it is configured correctly */
/* IEEE mode */
hw->local_dcbx_config.dcbx_mode = I40E_DCBX_MODE_IEEE;
/* Get Local DCB Config */
i40e_aq_get_dcb_config(hw, I40E_AQ_LLDP_MIB_LOCAL, 0,
&hw->local_dcbx_config);
/* if Veb is created, need to update TC of it at first */
if (main_vsi->veb) {
ret = i40e_config_switch_comp_tc(main_vsi->veb, tc_map);
if (ret)
PMD_INIT_LOG(WARNING,
"Failed configuring TC for VEB seid=%d\n",
main_vsi->veb->seid);
}
/* Update each VSI */
i40e_vsi_config_tc(main_vsi, tc_map);
if (main_vsi->veb) {
TAILQ_FOREACH(vsi_list, &main_vsi->veb->head, list) {
/* Beside main VSI and VMDQ VSIs, only enable default
* TC for other VSIs
*/
if (vsi_list->vsi->type == I40E_VSI_VMDQ2)
ret = i40e_vsi_config_tc(vsi_list->vsi,
tc_map);
else
ret = i40e_vsi_config_tc(vsi_list->vsi,
I40E_DEFAULT_TCMAP);
if (ret)
PMD_INIT_LOG(WARNING,
"Failed configuring TC for VSI seid=%d\n",
vsi_list->vsi->seid);
/* continue */
}
}
return I40E_SUCCESS;
}
/*
* i40e_dcb_init_configure - initial dcb config
* @dev: device being configured
* @sw_dcb: indicate whether dcb is sw configured or hw offload
*
* Returns 0 on success, negative value on failure
*/
static int
i40e_dcb_init_configure(struct rte_eth_dev *dev, bool sw_dcb)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
int ret = 0;
if ((pf->flags & I40E_FLAG_DCB) == 0) {
PMD_INIT_LOG(ERR, "HW doesn't support DCB");
return -ENOTSUP;
}
/* DCB initialization:
* Update DCB configuration from the Firmware and configure
* LLDP MIB change event.
*/
if (sw_dcb == TRUE) {
ret = i40e_init_dcb(hw);
/* If lldp agent is stopped, the return value from
* i40e_init_dcb we expect is failure with I40E_AQ_RC_EPERM
* adminq status. Otherwise, it should return success.
*/
if ((ret == I40E_SUCCESS) || (ret != I40E_SUCCESS &&
hw->aq.asq_last_status == I40E_AQ_RC_EPERM)) {
memset(&hw->local_dcbx_config, 0,
sizeof(struct i40e_dcbx_config));
/* set dcb default configuration */
hw->local_dcbx_config.etscfg.willing = 0;
hw->local_dcbx_config.etscfg.maxtcs = 0;
hw->local_dcbx_config.etscfg.tcbwtable[0] = 100;
hw->local_dcbx_config.etscfg.tsatable[0] =
I40E_IEEE_TSA_ETS;
hw->local_dcbx_config.etsrec =
hw->local_dcbx_config.etscfg;
hw->local_dcbx_config.pfc.willing = 0;
hw->local_dcbx_config.pfc.pfccap =
I40E_MAX_TRAFFIC_CLASS;
/* FW needs one App to configure HW */
hw->local_dcbx_config.numapps = 1;
hw->local_dcbx_config.app[0].selector =
I40E_APP_SEL_ETHTYPE;
hw->local_dcbx_config.app[0].priority = 3;
hw->local_dcbx_config.app[0].protocolid =
I40E_APP_PROTOID_FCOE;
ret = i40e_set_dcb_config(hw);
if (ret) {
PMD_INIT_LOG(ERR, "default dcb config fails."
" err = %d, aq_err = %d.", ret,
hw->aq.asq_last_status);
return -ENOSYS;
}
} else {
PMD_INIT_LOG(ERR, "DCB initialization in FW fails,"
" err = %d, aq_err = %d.", ret,
hw->aq.asq_last_status);
return -ENOTSUP;
}
} else {
ret = i40e_aq_start_lldp(hw, NULL);
if (ret != I40E_SUCCESS)
PMD_INIT_LOG(DEBUG, "Failed to start lldp");
ret = i40e_init_dcb(hw);
if (!ret) {
if (hw->dcbx_status == I40E_DCBX_STATUS_DISABLED) {
PMD_INIT_LOG(ERR, "HW doesn't support"
" DCBX offload.");
return -ENOTSUP;
}
} else {
PMD_INIT_LOG(ERR, "DCBX configuration failed, err = %d,"
" aq_err = %d.", ret,
hw->aq.asq_last_status);
return -ENOTSUP;
}
}
return 0;
}
/*
* i40e_dcb_setup - setup dcb related config
* @dev: device being configured
*
* Returns 0 on success, negative value on failure
*/
static int
i40e_dcb_setup(struct rte_eth_dev *dev)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_dcbx_config dcb_cfg;
uint8_t tc_map = 0;
int ret = 0;
if ((pf->flags & I40E_FLAG_DCB) == 0) {
PMD_INIT_LOG(ERR, "HW doesn't support DCB");
return -ENOTSUP;
}
if (pf->vf_num != 0)
PMD_INIT_LOG(DEBUG, " DCB only works on pf and vmdq vsis.");
ret = i40e_parse_dcb_configure(dev, &dcb_cfg, &tc_map);
if (ret) {
PMD_INIT_LOG(ERR, "invalid dcb config");
return -EINVAL;
}
ret = i40e_dcb_hw_configure(pf, &dcb_cfg, tc_map);
if (ret) {
PMD_INIT_LOG(ERR, "dcb sw configure fails");
return -ENOSYS;
}
return 0;
}
static int
i40e_dev_get_dcb_info(struct rte_eth_dev *dev,
struct rte_eth_dcb_info *dcb_info)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_vsi *vsi = pf->main_vsi;
struct i40e_dcbx_config *dcb_cfg = &hw->local_dcbx_config;
uint16_t bsf, tc_mapping;
int i, j = 0;
if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_DCB_FLAG)
dcb_info->nb_tcs = rte_bsf32(vsi->enabled_tc + 1);
else
dcb_info->nb_tcs = 1;
for (i = 0; i < I40E_MAX_USER_PRIORITY; i++)
dcb_info->prio_tc[i] = dcb_cfg->etscfg.prioritytable[i];
for (i = 0; i < dcb_info->nb_tcs; i++)
dcb_info->tc_bws[i] = dcb_cfg->etscfg.tcbwtable[i];
/* get queue mapping if vmdq is disabled */
if (!pf->nb_cfg_vmdq_vsi) {
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
if (!(vsi->enabled_tc & (1 << i)))
continue;
tc_mapping = rte_le_to_cpu_16(vsi->info.tc_mapping[i]);
dcb_info->tc_queue.tc_rxq[j][i].base =
(tc_mapping & I40E_AQ_VSI_TC_QUE_OFFSET_MASK) >>
I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT;
dcb_info->tc_queue.tc_txq[j][i].base =
dcb_info->tc_queue.tc_rxq[j][i].base;
bsf = (tc_mapping & I40E_AQ_VSI_TC_QUE_NUMBER_MASK) >>
I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT;
dcb_info->tc_queue.tc_rxq[j][i].nb_queue = 1 << bsf;
dcb_info->tc_queue.tc_txq[j][i].nb_queue =
dcb_info->tc_queue.tc_rxq[j][i].nb_queue;
}
return 0;
}
/* get queue mapping if vmdq is enabled */
do {
vsi = pf->vmdq[j].vsi;
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
if (!(vsi->enabled_tc & (1 << i)))
continue;
tc_mapping = rte_le_to_cpu_16(vsi->info.tc_mapping[i]);
dcb_info->tc_queue.tc_rxq[j][i].base =
(tc_mapping & I40E_AQ_VSI_TC_QUE_OFFSET_MASK) >>
I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT;
dcb_info->tc_queue.tc_txq[j][i].base =
dcb_info->tc_queue.tc_rxq[j][i].base;
bsf = (tc_mapping & I40E_AQ_VSI_TC_QUE_NUMBER_MASK) >>
I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT;
dcb_info->tc_queue.tc_rxq[j][i].nb_queue = 1 << bsf;
dcb_info->tc_queue.tc_txq[j][i].nb_queue =
dcb_info->tc_queue.tc_rxq[j][i].nb_queue;
}
j++;
} while (j < RTE_MIN(pf->nb_cfg_vmdq_vsi, ETH_MAX_VMDQ_POOL));
return 0;
}
static int
i40e_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
{
struct rte_pci_device *pci_dev = I40E_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint16_t interval =
i40e_calc_itr_interval(RTE_LIBRTE_I40E_ITR_INTERVAL);
uint16_t msix_intr;
msix_intr = intr_handle->intr_vec[queue_id];
if (msix_intr == I40E_MISC_VEC_ID)
I40E_WRITE_REG(hw, I40E_PFINT_DYN_CTL0,
I40E_PFINT_DYN_CTLN_INTENA_MASK |
I40E_PFINT_DYN_CTLN_CLEARPBA_MASK |
(0 << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
(interval <<
I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT));
else
I40E_WRITE_REG(hw,
I40E_PFINT_DYN_CTLN(msix_intr -
I40E_RX_VEC_START),
I40E_PFINT_DYN_CTLN_INTENA_MASK |
I40E_PFINT_DYN_CTLN_CLEARPBA_MASK |
(0 << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
(interval <<
I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT));
I40E_WRITE_FLUSH(hw);
rte_intr_enable(&pci_dev->intr_handle);
return 0;
}
static int
i40e_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
{
struct rte_pci_device *pci_dev = I40E_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint16_t msix_intr;
msix_intr = intr_handle->intr_vec[queue_id];
if (msix_intr == I40E_MISC_VEC_ID)
I40E_WRITE_REG(hw, I40E_PFINT_DYN_CTL0, 0);
else
I40E_WRITE_REG(hw,
I40E_PFINT_DYN_CTLN(msix_intr -
I40E_RX_VEC_START),
0);
I40E_WRITE_FLUSH(hw);
return 0;
}
static int i40e_get_regs(struct rte_eth_dev *dev,
struct rte_dev_reg_info *regs)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t *ptr_data = regs->data;
uint32_t reg_idx, arr_idx, arr_idx2, reg_offset;
const struct i40e_reg_info *reg_info;
if (ptr_data == NULL) {
regs->length = I40E_GLGEN_STAT_CLEAR + 4;
regs->width = sizeof(uint32_t);
return 0;
}
/* The first few registers have to be read using AQ operations */
reg_idx = 0;
while (i40e_regs_adminq[reg_idx].name) {
reg_info = &i40e_regs_adminq[reg_idx++];
for (arr_idx = 0; arr_idx <= reg_info->count1; arr_idx++)
for (arr_idx2 = 0;
arr_idx2 <= reg_info->count2;
arr_idx2++) {
reg_offset = arr_idx * reg_info->stride1 +
arr_idx2 * reg_info->stride2;
reg_offset += reg_info->base_addr;
ptr_data[reg_offset >> 2] =
i40e_read_rx_ctl(hw, reg_offset);
}
}
/* The remaining registers can be read using primitives */
reg_idx = 0;
while (i40e_regs_others[reg_idx].name) {
reg_info = &i40e_regs_others[reg_idx++];
for (arr_idx = 0; arr_idx <= reg_info->count1; arr_idx++)
for (arr_idx2 = 0;
arr_idx2 <= reg_info->count2;
arr_idx2++) {
reg_offset = arr_idx * reg_info->stride1 +
arr_idx2 * reg_info->stride2;
reg_offset += reg_info->base_addr;
ptr_data[reg_offset >> 2] =
I40E_READ_REG(hw, reg_offset);
}
}
return 0;
}
static int i40e_get_eeprom_length(struct rte_eth_dev *dev)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* Convert word count to byte count */
return hw->nvm.sr_size << 1;
}
static int i40e_get_eeprom(struct rte_eth_dev *dev,
struct rte_dev_eeprom_info *eeprom)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint16_t *data = eeprom->data;
uint16_t offset, length, cnt_words;
int ret_code;
offset = eeprom->offset >> 1;
length = eeprom->length >> 1;
cnt_words = length;
if (offset > hw->nvm.sr_size ||
offset + length > hw->nvm.sr_size) {
PMD_DRV_LOG(ERR, "Requested EEPROM bytes out of range.");
return -EINVAL;
}
eeprom->magic = hw->vendor_id | (hw->device_id << 16);
ret_code = i40e_read_nvm_buffer(hw, offset, &cnt_words, data);
if (ret_code != I40E_SUCCESS || cnt_words != length) {
PMD_DRV_LOG(ERR, "EEPROM read failed.");
return -EIO;
}
return 0;
}
static void i40e_set_default_mac_addr(struct rte_eth_dev *dev,
struct ether_addr *mac_addr)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (!is_valid_assigned_ether_addr(mac_addr)) {
PMD_DRV_LOG(ERR, "Tried to set invalid MAC address.");
return;
}
/* Flags: 0x3 updates port address */
i40e_aq_mac_address_write(hw, 0x3, mac_addr->addr_bytes, NULL);
}
static int
i40e_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct rte_eth_dev_data *dev_data = pf->dev_data;
uint32_t frame_size = mtu + ETHER_HDR_LEN
+ ETHER_CRC_LEN + I40E_VLAN_TAG_SIZE;
int ret = 0;
/* check if mtu is within the allowed range */
if ((mtu < ETHER_MIN_MTU) || (frame_size > I40E_FRAME_SIZE_MAX))
return -EINVAL;
/* mtu setting is forbidden if port is start */
if (dev_data->dev_started) {
PMD_DRV_LOG(ERR,
"port %d must be stopped before configuration\n",
dev_data->port_id);
return -EBUSY;
}
if (frame_size > ETHER_MAX_LEN)
dev_data->dev_conf.rxmode.jumbo_frame = 1;
else
dev_data->dev_conf.rxmode.jumbo_frame = 0;
dev_data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
return ret;
}
/* Restore ethertype filter */
static void
i40e_ethertype_filter_restore(struct i40e_pf *pf)
{
struct i40e_hw *hw = I40E_PF_TO_HW(pf);
struct i40e_ethertype_filter_list
*ethertype_list = &pf->ethertype.ethertype_list;
struct i40e_ethertype_filter *f;
struct i40e_control_filter_stats stats;
uint16_t flags;
TAILQ_FOREACH(f, ethertype_list, rules) {
flags = 0;
if (!(f->flags & RTE_ETHTYPE_FLAGS_MAC))
flags |= I40E_AQC_ADD_CONTROL_PACKET_FLAGS_IGNORE_MAC;
if (f->flags & RTE_ETHTYPE_FLAGS_DROP)
flags |= I40E_AQC_ADD_CONTROL_PACKET_FLAGS_DROP;
flags |= I40E_AQC_ADD_CONTROL_PACKET_FLAGS_TO_QUEUE;
memset(&stats, 0, sizeof(stats));
i40e_aq_add_rem_control_packet_filter(hw,
f->input.mac_addr.addr_bytes,
f->input.ether_type,
flags, pf->main_vsi->seid,
f->queue, 1, &stats, NULL);
}
PMD_DRV_LOG(INFO, "Ethertype filter:"
" mac_etype_used = %u, etype_used = %u,"
" mac_etype_free = %u, etype_free = %u\n",
stats.mac_etype_used, stats.etype_used,
stats.mac_etype_free, stats.etype_free);
}
/* Restore tunnel filter */
static void
i40e_tunnel_filter_restore(struct i40e_pf *pf)
{
struct i40e_hw *hw = I40E_PF_TO_HW(pf);
struct i40e_vsi *vsi = pf->main_vsi;
struct i40e_tunnel_filter_list
*tunnel_list = &pf->tunnel.tunnel_list;
struct i40e_tunnel_filter *f;
struct i40e_aqc_add_remove_cloud_filters_element_data cld_filter;
TAILQ_FOREACH(f, tunnel_list, rules) {
memset(&cld_filter, 0, sizeof(cld_filter));
rte_memcpy(&cld_filter, &f->input, sizeof(f->input));
cld_filter.queue_number = f->queue;
i40e_aq_add_cloud_filters(hw, vsi->seid, &cld_filter, 1);
}
}
static void
i40e_filter_restore(struct i40e_pf *pf)
{
i40e_ethertype_filter_restore(pf);
i40e_tunnel_filter_restore(pf);
i40e_fdir_filter_restore(pf);
}