ff708facfc
Only keep inclusion where really needed. Signed-off-by: David Marchand <david.marchand@6wind.com> Acked-by: Neil Horman <nhorman@tuxdriver.com>
382 lines
11 KiB
C
382 lines
11 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdint.h>
|
|
#include <unistd.h>
|
|
#include <sys/queue.h>
|
|
|
|
#include <rte_memory.h>
|
|
#include <rte_memzone.h>
|
|
#include <rte_per_lcore.h>
|
|
#include <rte_launch.h>
|
|
#include <rte_atomic.h>
|
|
#include <rte_eal.h>
|
|
#include <rte_per_lcore.h>
|
|
#include <rte_lcore.h>
|
|
|
|
#include "test.h"
|
|
|
|
/*
|
|
* Atomic Variables
|
|
* ================
|
|
*
|
|
* - The main test function performs three subtests. The first test
|
|
* checks that the usual inc/dec/add/sub functions are working
|
|
* correctly:
|
|
*
|
|
* - Initialize 16-bit, 32-bit and 64-bit atomic variables to specific
|
|
* values.
|
|
*
|
|
* - These variables are incremented and decremented on each core at
|
|
* the same time in ``test_atomic_usual()``.
|
|
*
|
|
* - The function checks that once all lcores finish their function,
|
|
* the value of the atomic variables are still the same.
|
|
*
|
|
* - The second test verifies the behavior of "test and set" functions.
|
|
*
|
|
* - Initialize 16-bit, 32-bit and 64-bit atomic variables to zero.
|
|
*
|
|
* - Invoke ``test_atomic_tas()`` on each lcore: before doing anything
|
|
* else. The cores are waiting a synchro using ``while
|
|
* (rte_atomic32_read(&val) == 0)`` which is triggered by the main test
|
|
* function. Then all cores do a
|
|
* ``rte_atomicXX_test_and_set()`` at the same time. If it is successful,
|
|
* it increments another atomic counter.
|
|
*
|
|
* - The main function checks that the atomic counter was incremented
|
|
* twice only (one for 16-bit, one for 32-bit and one for 64-bit values).
|
|
*
|
|
* - Test "add/sub and return"
|
|
*
|
|
* - Initialize 16-bit, 32-bit and 64-bit atomic variables to zero.
|
|
*
|
|
* - Invoke ``test_atomic_addsub_return()`` on each lcore. Before doing
|
|
* anything else, the cores are waiting a synchro. Each lcore does
|
|
* this operation several times::
|
|
*
|
|
* tmp = rte_atomicXX_add_return(&a, 1);
|
|
* atomic_add(&count, tmp);
|
|
* tmp = rte_atomicXX_sub_return(&a, 1);
|
|
* atomic_sub(&count, tmp+1);
|
|
*
|
|
* - At the end of the test, the *count* value must be 0.
|
|
*/
|
|
|
|
#define NUM_ATOMIC_TYPES 3
|
|
|
|
#define N 10000
|
|
|
|
static rte_atomic16_t a16;
|
|
static rte_atomic32_t a32;
|
|
static rte_atomic64_t a64;
|
|
static rte_atomic64_t count;
|
|
static rte_atomic32_t synchro;
|
|
|
|
static int
|
|
test_atomic_usual(__attribute__((unused)) void *arg)
|
|
{
|
|
unsigned i;
|
|
|
|
while (rte_atomic32_read(&synchro) == 0)
|
|
;
|
|
|
|
for (i = 0; i < N; i++)
|
|
rte_atomic16_inc(&a16);
|
|
for (i = 0; i < N; i++)
|
|
rte_atomic16_dec(&a16);
|
|
for (i = 0; i < (N / 5); i++)
|
|
rte_atomic16_add(&a16, 5);
|
|
for (i = 0; i < (N / 5); i++)
|
|
rte_atomic16_sub(&a16, 5);
|
|
|
|
for (i = 0; i < N; i++)
|
|
rte_atomic32_inc(&a32);
|
|
for (i = 0; i < N; i++)
|
|
rte_atomic32_dec(&a32);
|
|
for (i = 0; i < (N / 5); i++)
|
|
rte_atomic32_add(&a32, 5);
|
|
for (i = 0; i < (N / 5); i++)
|
|
rte_atomic32_sub(&a32, 5);
|
|
|
|
for (i = 0; i < N; i++)
|
|
rte_atomic64_inc(&a64);
|
|
for (i = 0; i < N; i++)
|
|
rte_atomic64_dec(&a64);
|
|
for (i = 0; i < (N / 5); i++)
|
|
rte_atomic64_add(&a64, 5);
|
|
for (i = 0; i < (N / 5); i++)
|
|
rte_atomic64_sub(&a64, 5);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
test_atomic_tas(__attribute__((unused)) void *arg)
|
|
{
|
|
while (rte_atomic32_read(&synchro) == 0)
|
|
;
|
|
|
|
if (rte_atomic16_test_and_set(&a16))
|
|
rte_atomic64_inc(&count);
|
|
if (rte_atomic32_test_and_set(&a32))
|
|
rte_atomic64_inc(&count);
|
|
if (rte_atomic64_test_and_set(&a64))
|
|
rte_atomic64_inc(&count);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
test_atomic_addsub_and_return(__attribute__((unused)) void *arg)
|
|
{
|
|
uint32_t tmp16;
|
|
uint32_t tmp32;
|
|
uint64_t tmp64;
|
|
unsigned i;
|
|
|
|
while (rte_atomic32_read(&synchro) == 0)
|
|
;
|
|
|
|
for (i = 0; i < N; i++) {
|
|
tmp16 = rte_atomic16_add_return(&a16, 1);
|
|
rte_atomic64_add(&count, tmp16);
|
|
|
|
tmp16 = rte_atomic16_sub_return(&a16, 1);
|
|
rte_atomic64_sub(&count, tmp16+1);
|
|
|
|
tmp32 = rte_atomic32_add_return(&a32, 1);
|
|
rte_atomic64_add(&count, tmp32);
|
|
|
|
tmp32 = rte_atomic32_sub_return(&a32, 1);
|
|
rte_atomic64_sub(&count, tmp32+1);
|
|
|
|
tmp64 = rte_atomic64_add_return(&a64, 1);
|
|
rte_atomic64_add(&count, tmp64);
|
|
|
|
tmp64 = rte_atomic64_sub_return(&a64, 1);
|
|
rte_atomic64_sub(&count, tmp64+1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* rte_atomic32_inc_and_test() would increase a 32 bits counter by one and then
|
|
* test if that counter is equal to 0. It would return true if the counter is 0
|
|
* and false if the counter is not 0. rte_atomic64_inc_and_test() could do the
|
|
* same thing but for a 64 bits counter.
|
|
* Here checks that if the 32/64 bits counter is equal to 0 after being atomically
|
|
* increased by one. If it is, increase the variable of "count" by one which would
|
|
* be checked as the result later.
|
|
*
|
|
*/
|
|
static int
|
|
test_atomic_inc_and_test(__attribute__((unused)) void *arg)
|
|
{
|
|
while (rte_atomic32_read(&synchro) == 0)
|
|
;
|
|
|
|
if (rte_atomic16_inc_and_test(&a16)) {
|
|
rte_atomic64_inc(&count);
|
|
}
|
|
if (rte_atomic32_inc_and_test(&a32)) {
|
|
rte_atomic64_inc(&count);
|
|
}
|
|
if (rte_atomic64_inc_and_test(&a64)) {
|
|
rte_atomic64_inc(&count);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* rte_atomicXX_dec_and_test() should decrease a 32 bits counter by one and then
|
|
* test if that counter is equal to 0. It should return true if the counter is 0
|
|
* and false if the counter is not 0.
|
|
* This test checks if the counter is equal to 0 after being atomically
|
|
* decreased by one. If it is, increase the value of "count" by one which is to
|
|
* be checked as the result later.
|
|
*/
|
|
static int
|
|
test_atomic_dec_and_test(__attribute__((unused)) void *arg)
|
|
{
|
|
while (rte_atomic32_read(&synchro) == 0)
|
|
;
|
|
|
|
if (rte_atomic16_dec_and_test(&a16))
|
|
rte_atomic64_inc(&count);
|
|
|
|
if (rte_atomic32_dec_and_test(&a32))
|
|
rte_atomic64_inc(&count);
|
|
|
|
if (rte_atomic64_dec_and_test(&a64))
|
|
rte_atomic64_inc(&count);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
test_atomic(void)
|
|
{
|
|
rte_atomic16_init(&a16);
|
|
rte_atomic32_init(&a32);
|
|
rte_atomic64_init(&a64);
|
|
rte_atomic64_init(&count);
|
|
rte_atomic32_init(&synchro);
|
|
|
|
rte_atomic16_set(&a16, 1UL << 10);
|
|
rte_atomic32_set(&a32, 1UL << 10);
|
|
rte_atomic64_set(&a64, 1ULL << 33);
|
|
|
|
printf("usual inc/dec/add/sub functions\n");
|
|
|
|
rte_eal_mp_remote_launch(test_atomic_usual, NULL, SKIP_MASTER);
|
|
rte_atomic32_set(&synchro, 1);
|
|
rte_eal_mp_wait_lcore();
|
|
rte_atomic32_set(&synchro, 0);
|
|
|
|
if (rte_atomic16_read(&a16) != 1UL << 10) {
|
|
printf("Atomic16 usual functions failed\n");
|
|
return -1;
|
|
}
|
|
|
|
if (rte_atomic32_read(&a32) != 1UL << 10) {
|
|
printf("Atomic32 usual functions failed\n");
|
|
return -1;
|
|
}
|
|
|
|
if (rte_atomic64_read(&a64) != 1ULL << 33) {
|
|
printf("Atomic64 usual functions failed\n");
|
|
return -1;
|
|
}
|
|
|
|
printf("test and set\n");
|
|
|
|
rte_atomic64_set(&a64, 0);
|
|
rte_atomic32_set(&a32, 0);
|
|
rte_atomic16_set(&a16, 0);
|
|
rte_atomic64_set(&count, 0);
|
|
rte_eal_mp_remote_launch(test_atomic_tas, NULL, SKIP_MASTER);
|
|
rte_atomic32_set(&synchro, 1);
|
|
rte_eal_mp_wait_lcore();
|
|
rte_atomic32_set(&synchro, 0);
|
|
|
|
if (rte_atomic64_read(&count) != NUM_ATOMIC_TYPES) {
|
|
printf("Atomic test and set failed\n");
|
|
return -1;
|
|
}
|
|
|
|
printf("add/sub and return\n");
|
|
|
|
rte_atomic64_set(&a64, 0);
|
|
rte_atomic32_set(&a32, 0);
|
|
rte_atomic16_set(&a16, 0);
|
|
rte_atomic64_set(&count, 0);
|
|
rte_eal_mp_remote_launch(test_atomic_addsub_and_return, NULL,
|
|
SKIP_MASTER);
|
|
rte_atomic32_set(&synchro, 1);
|
|
rte_eal_mp_wait_lcore();
|
|
rte_atomic32_set(&synchro, 0);
|
|
|
|
if (rte_atomic64_read(&count) != 0) {
|
|
printf("Atomic add/sub+return failed\n");
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Set a64, a32 and a16 with the same value of minus "number of slave
|
|
* lcores", launch all slave lcores to atomically increase by one and
|
|
* test them respectively.
|
|
* Each lcore should have only one chance to increase a64 by one and
|
|
* then check if it is equal to 0, but there should be only one lcore
|
|
* that finds that it is 0. It is similar for a32 and a16.
|
|
* Then a variable of "count", initialized to zero, is increased by
|
|
* one if a64, a32 or a16 is 0 after being increased and tested
|
|
* atomically.
|
|
* We can check if "count" is finally equal to 3 to see if all slave
|
|
* lcores performed "atomic inc and test" right.
|
|
*/
|
|
printf("inc and test\n");
|
|
|
|
rte_atomic64_clear(&a64);
|
|
rte_atomic32_clear(&a32);
|
|
rte_atomic16_clear(&a16);
|
|
rte_atomic32_clear(&synchro);
|
|
rte_atomic64_clear(&count);
|
|
|
|
rte_atomic64_set(&a64, (int64_t)(1 - (int64_t)rte_lcore_count()));
|
|
rte_atomic32_set(&a32, (int32_t)(1 - (int32_t)rte_lcore_count()));
|
|
rte_atomic16_set(&a16, (int16_t)(1 - (int16_t)rte_lcore_count()));
|
|
rte_eal_mp_remote_launch(test_atomic_inc_and_test, NULL, SKIP_MASTER);
|
|
rte_atomic32_set(&synchro, 1);
|
|
rte_eal_mp_wait_lcore();
|
|
rte_atomic32_clear(&synchro);
|
|
|
|
if (rte_atomic64_read(&count) != NUM_ATOMIC_TYPES) {
|
|
printf("Atomic inc and test failed %d\n", (int)count.cnt);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Same as above, but this time we set the values to "number of slave
|
|
* lcores", and decrement instead of increment.
|
|
*/
|
|
printf("dec and test\n");
|
|
|
|
rte_atomic32_clear(&synchro);
|
|
rte_atomic64_clear(&count);
|
|
|
|
rte_atomic64_set(&a64, (int64_t)(rte_lcore_count() - 1));
|
|
rte_atomic32_set(&a32, (int32_t)(rte_lcore_count() - 1));
|
|
rte_atomic16_set(&a16, (int16_t)(rte_lcore_count() - 1));
|
|
rte_eal_mp_remote_launch(test_atomic_dec_and_test, NULL, SKIP_MASTER);
|
|
rte_atomic32_set(&synchro, 1);
|
|
rte_eal_mp_wait_lcore();
|
|
rte_atomic32_clear(&synchro);
|
|
|
|
if (rte_atomic64_read(&count) != NUM_ATOMIC_TYPES) {
|
|
printf("Atomic dec and test failed\n");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct test_command atomic_cmd = {
|
|
.command = "atomic_autotest",
|
|
.callback = test_atomic,
|
|
};
|
|
REGISTER_TEST_COMMAND(atomic_cmd);
|