numam-dpdk/app/test-crypto-perf/cperf_options_parsing.c
Pablo de Lara 8a5b494a7f app/test-crypto-perf: add AEAD parameters
Since there is a new operation type (AEAD), add parameters
for this in the application.

Signed-off-by: Pablo de Lara <pablo.de.lara.guarch@intel.com>
Acked-by: Declan Doherty <declan.doherty@intel.com>
Acked-by: Akhil Goyal <akhil.goyal@nxp.com>
Acked-by: Fiona Trahe <fiona.trahe@intel.com>
2017-07-06 22:26:49 +02:00

1015 lines
24 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2016-2017 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <getopt.h>
#include <unistd.h>
#include <rte_cryptodev.h>
#include <rte_malloc.h>
#include "cperf_options.h"
#define AES_BLOCK_SIZE 16
#define DES_BLOCK_SIZE 8
struct name_id_map {
const char *name;
uint32_t id;
};
static int
get_str_key_id_mapping(struct name_id_map *map, unsigned int map_len,
const char *str_key)
{
unsigned int i;
for (i = 0; i < map_len; i++) {
if (strcmp(str_key, map[i].name) == 0)
return map[i].id;
}
return -1;
}
static int
parse_cperf_test_type(struct cperf_options *opts, const char *arg)
{
struct name_id_map cperftest_namemap[] = {
{
cperf_test_type_strs[CPERF_TEST_TYPE_THROUGHPUT],
CPERF_TEST_TYPE_THROUGHPUT
},
{
cperf_test_type_strs[CPERF_TEST_TYPE_VERIFY],
CPERF_TEST_TYPE_VERIFY
},
{
cperf_test_type_strs[CPERF_TEST_TYPE_LATENCY],
CPERF_TEST_TYPE_LATENCY
}
};
int id = get_str_key_id_mapping(
(struct name_id_map *)cperftest_namemap,
RTE_DIM(cperftest_namemap), arg);
if (id < 0) {
RTE_LOG(ERR, USER1, "failed to parse test type");
return -1;
}
opts->test = (enum cperf_perf_test_type)id;
return 0;
}
static int
parse_uint32_t(uint32_t *value, const char *arg)
{
char *end = NULL;
unsigned long n = strtoul(arg, &end, 10);
if ((optarg[0] == '\0') || (end == NULL) || (*end != '\0'))
return -1;
if (n > UINT32_MAX)
return -ERANGE;
*value = (uint32_t) n;
return 0;
}
static int
parse_uint16_t(uint16_t *value, const char *arg)
{
uint32_t val = 0;
int ret = parse_uint32_t(&val, arg);
if (ret < 0)
return ret;
if (val > UINT16_MAX)
return -ERANGE;
*value = (uint16_t) val;
return 0;
}
static int
parse_range(const char *arg, uint32_t *min, uint32_t *max, uint32_t *inc)
{
char *token;
uint32_t number;
char *copy_arg = strdup(arg);
if (copy_arg == NULL)
return -1;
token = strtok(copy_arg, ":");
/* Parse minimum value */
if (token != NULL) {
number = strtoul(token, NULL, 10);
if (errno == EINVAL || errno == ERANGE ||
number == 0)
goto err_range;
*min = number;
} else
goto err_range;
token = strtok(NULL, ":");
/* Parse increment value */
if (token != NULL) {
number = strtoul(token, NULL, 10);
if (errno == EINVAL || errno == ERANGE ||
number == 0)
goto err_range;
*inc = number;
} else
goto err_range;
token = strtok(NULL, ":");
/* Parse maximum value */
if (token != NULL) {
number = strtoul(token, NULL, 10);
if (errno == EINVAL || errno == ERANGE ||
number == 0 ||
number < *min)
goto err_range;
*max = number;
} else
goto err_range;
if (strtok(NULL, ":") != NULL)
goto err_range;
free(copy_arg);
return 0;
err_range:
free(copy_arg);
return -1;
}
static int
parse_list(const char *arg, uint32_t *list, uint32_t *min, uint32_t *max)
{
char *token;
uint32_t number;
uint8_t count = 0;
char *copy_arg = strdup(arg);
if (copy_arg == NULL)
return -1;
token = strtok(copy_arg, ",");
/* Parse first value */
if (token != NULL) {
number = strtoul(token, NULL, 10);
if (errno == EINVAL || errno == ERANGE ||
number == 0)
goto err_list;
list[count++] = number;
*min = number;
*max = number;
} else
goto err_list;
token = strtok(NULL, ",");
while (token != NULL) {
if (count == MAX_LIST) {
RTE_LOG(WARNING, USER1, "Using only the first %u sizes\n",
MAX_LIST);
break;
}
number = strtoul(token, NULL, 10);
if (errno == EINVAL || errno == ERANGE ||
number == 0)
goto err_list;
list[count++] = number;
if (number < *min)
*min = number;
if (number > *max)
*max = number;
token = strtok(NULL, ",");
}
free(copy_arg);
return count;
err_list:
free(copy_arg);
return -1;
}
static int
parse_total_ops(struct cperf_options *opts, const char *arg)
{
int ret = parse_uint32_t(&opts->total_ops, arg);
if (ret)
RTE_LOG(ERR, USER1, "failed to parse total operations count\n");
if (opts->total_ops == 0) {
RTE_LOG(ERR, USER1,
"invalid total operations count number specified\n");
return -1;
}
return ret;
}
static int
parse_pool_sz(struct cperf_options *opts, const char *arg)
{
int ret = parse_uint32_t(&opts->pool_sz, arg);
if (ret)
RTE_LOG(ERR, USER1, "failed to parse pool size");
return ret;
}
static int
parse_burst_sz(struct cperf_options *opts, const char *arg)
{
int ret;
/* Try parsing the argument as a range, if it fails, parse it as a list */
if (parse_range(arg, &opts->min_burst_size, &opts->max_burst_size,
&opts->inc_burst_size) < 0) {
ret = parse_list(arg, opts->burst_size_list,
&opts->min_burst_size,
&opts->max_burst_size);
if (ret < 0) {
RTE_LOG(ERR, USER1, "failed to parse burst size/s\n");
return -1;
}
opts->burst_size_count = ret;
}
return 0;
}
static int
parse_buffer_sz(struct cperf_options *opts, const char *arg)
{
int ret;
/* Try parsing the argument as a range, if it fails, parse it as a list */
if (parse_range(arg, &opts->min_buffer_size, &opts->max_buffer_size,
&opts->inc_buffer_size) < 0) {
ret = parse_list(arg, opts->buffer_size_list,
&opts->min_buffer_size,
&opts->max_buffer_size);
if (ret < 0) {
RTE_LOG(ERR, USER1, "failed to parse buffer size/s\n");
return -1;
}
opts->buffer_size_count = ret;
}
return 0;
}
static int
parse_segments_nb(struct cperf_options *opts, const char *arg)
{
int ret = parse_uint32_t(&opts->segments_nb, arg);
if (ret) {
RTE_LOG(ERR, USER1, "failed to parse segments number\n");
return -1;
}
if ((opts->segments_nb == 0) || (opts->segments_nb > 255)) {
RTE_LOG(ERR, USER1, "invalid segments number specified\n");
return -1;
}
return 0;
}
static int
parse_device_type(struct cperf_options *opts, const char *arg)
{
if (strlen(arg) > (sizeof(opts->device_type) - 1))
return -1;
strncpy(opts->device_type, arg, sizeof(opts->device_type) - 1);
*(opts->device_type + sizeof(opts->device_type) - 1) = '\0';
return 0;
}
static int
parse_op_type(struct cperf_options *opts, const char *arg)
{
struct name_id_map optype_namemap[] = {
{
cperf_op_type_strs[CPERF_CIPHER_ONLY],
CPERF_CIPHER_ONLY
},
{
cperf_op_type_strs[CPERF_AUTH_ONLY],
CPERF_AUTH_ONLY
},
{
cperf_op_type_strs[CPERF_CIPHER_THEN_AUTH],
CPERF_CIPHER_THEN_AUTH
},
{
cperf_op_type_strs[CPERF_AUTH_THEN_CIPHER],
CPERF_AUTH_THEN_CIPHER
},
{
cperf_op_type_strs[CPERF_AEAD],
CPERF_AEAD
}
};
int id = get_str_key_id_mapping(optype_namemap,
RTE_DIM(optype_namemap), arg);
if (id < 0) {
RTE_LOG(ERR, USER1, "invalid opt type specified\n");
return -1;
}
opts->op_type = (enum cperf_op_type)id;
return 0;
}
static int
parse_sessionless(struct cperf_options *opts,
const char *arg __rte_unused)
{
opts->sessionless = 1;
return 0;
}
static int
parse_out_of_place(struct cperf_options *opts,
const char *arg __rte_unused)
{
opts->out_of_place = 1;
return 0;
}
static int
parse_test_file(struct cperf_options *opts,
const char *arg)
{
opts->test_file = strdup(arg);
if (access(opts->test_file, F_OK) != -1)
return 0;
RTE_LOG(ERR, USER1, "Test vector file doesn't exist\n");
return -1;
}
static int
parse_test_name(struct cperf_options *opts,
const char *arg)
{
char *test_name = (char *) rte_zmalloc(NULL,
sizeof(char) * (strlen(arg) + 3), 0);
snprintf(test_name, strlen(arg) + 3, "[%s]", arg);
opts->test_name = test_name;
return 0;
}
static int
parse_silent(struct cperf_options *opts,
const char *arg __rte_unused)
{
opts->silent = 1;
return 0;
}
static int
parse_cipher_algo(struct cperf_options *opts, const char *arg)
{
enum rte_crypto_cipher_algorithm cipher_algo;
if (rte_cryptodev_get_cipher_algo_enum(&cipher_algo, arg) < 0) {
RTE_LOG(ERR, USER1, "Invalid cipher algorithm specified\n");
return -1;
}
opts->cipher_algo = cipher_algo;
return 0;
}
static int
parse_cipher_op(struct cperf_options *opts, const char *arg)
{
struct name_id_map cipher_op_namemap[] = {
{
rte_crypto_cipher_operation_strings
[RTE_CRYPTO_CIPHER_OP_ENCRYPT],
RTE_CRYPTO_CIPHER_OP_ENCRYPT },
{
rte_crypto_cipher_operation_strings
[RTE_CRYPTO_CIPHER_OP_DECRYPT],
RTE_CRYPTO_CIPHER_OP_DECRYPT
}
};
int id = get_str_key_id_mapping(cipher_op_namemap,
RTE_DIM(cipher_op_namemap), arg);
if (id < 0) {
RTE_LOG(ERR, USER1, "Invalid cipher operation specified\n");
return -1;
}
opts->cipher_op = (enum rte_crypto_cipher_operation)id;
return 0;
}
static int
parse_cipher_key_sz(struct cperf_options *opts, const char *arg)
{
return parse_uint16_t(&opts->cipher_key_sz, arg);
}
static int
parse_cipher_iv_sz(struct cperf_options *opts, const char *arg)
{
return parse_uint16_t(&opts->cipher_iv_sz, arg);
}
static int
parse_auth_algo(struct cperf_options *opts, const char *arg)
{
enum rte_crypto_auth_algorithm auth_algo;
if (rte_cryptodev_get_auth_algo_enum(&auth_algo, arg) < 0) {
RTE_LOG(ERR, USER1, "Invalid authentication algorithm specified\n");
return -1;
}
opts->auth_algo = auth_algo;
return 0;
}
static int
parse_auth_op(struct cperf_options *opts, const char *arg)
{
struct name_id_map auth_op_namemap[] = {
{
rte_crypto_auth_operation_strings
[RTE_CRYPTO_AUTH_OP_GENERATE],
RTE_CRYPTO_AUTH_OP_GENERATE },
{
rte_crypto_auth_operation_strings
[RTE_CRYPTO_AUTH_OP_VERIFY],
RTE_CRYPTO_AUTH_OP_VERIFY
}
};
int id = get_str_key_id_mapping(auth_op_namemap,
RTE_DIM(auth_op_namemap), arg);
if (id < 0) {
RTE_LOG(ERR, USER1, "invalid authentication operation specified"
"\n");
return -1;
}
opts->auth_op = (enum rte_crypto_auth_operation)id;
return 0;
}
static int
parse_auth_key_sz(struct cperf_options *opts, const char *arg)
{
return parse_uint16_t(&opts->auth_key_sz, arg);
}
static int
parse_digest_sz(struct cperf_options *opts, const char *arg)
{
return parse_uint16_t(&opts->digest_sz, arg);
}
static int
parse_auth_iv_sz(struct cperf_options *opts, const char *arg)
{
return parse_uint16_t(&opts->auth_iv_sz, arg);
}
static int
parse_aead_algo(struct cperf_options *opts, const char *arg)
{
enum rte_crypto_aead_algorithm aead_algo;
if (rte_cryptodev_get_aead_algo_enum(&aead_algo, arg) < 0) {
RTE_LOG(ERR, USER1, "Invalid AEAD algorithm specified\n");
return -1;
}
opts->aead_algo = aead_algo;
return 0;
}
static int
parse_aead_op(struct cperf_options *opts, const char *arg)
{
struct name_id_map aead_op_namemap[] = {
{
rte_crypto_aead_operation_strings
[RTE_CRYPTO_AEAD_OP_ENCRYPT],
RTE_CRYPTO_AEAD_OP_ENCRYPT },
{
rte_crypto_aead_operation_strings
[RTE_CRYPTO_AEAD_OP_DECRYPT],
RTE_CRYPTO_AEAD_OP_DECRYPT
}
};
int id = get_str_key_id_mapping(aead_op_namemap,
RTE_DIM(aead_op_namemap), arg);
if (id < 0) {
RTE_LOG(ERR, USER1, "invalid AEAD operation specified"
"\n");
return -1;
}
opts->aead_op = (enum rte_crypto_aead_operation)id;
return 0;
}
static int
parse_aead_key_sz(struct cperf_options *opts, const char *arg)
{
return parse_uint16_t(&opts->aead_key_sz, arg);
}
static int
parse_aead_iv_sz(struct cperf_options *opts, const char *arg)
{
return parse_uint16_t(&opts->aead_iv_sz, arg);
}
static int
parse_aead_aad_sz(struct cperf_options *opts, const char *arg)
{
return parse_uint16_t(&opts->aead_aad_sz, arg);
}
static int
parse_csv_friendly(struct cperf_options *opts, const char *arg __rte_unused)
{
opts->csv = 1;
opts->silent = 1;
return 0;
}
typedef int (*option_parser_t)(struct cperf_options *opts,
const char *arg);
struct long_opt_parser {
const char *lgopt_name;
option_parser_t parser_fn;
};
static struct option lgopts[] = {
{ CPERF_PTEST_TYPE, required_argument, 0, 0 },
{ CPERF_POOL_SIZE, required_argument, 0, 0 },
{ CPERF_TOTAL_OPS, required_argument, 0, 0 },
{ CPERF_BURST_SIZE, required_argument, 0, 0 },
{ CPERF_BUFFER_SIZE, required_argument, 0, 0 },
{ CPERF_SEGMENTS_NB, required_argument, 0, 0 },
{ CPERF_DEVTYPE, required_argument, 0, 0 },
{ CPERF_OPTYPE, required_argument, 0, 0 },
{ CPERF_SILENT, no_argument, 0, 0 },
{ CPERF_SESSIONLESS, no_argument, 0, 0 },
{ CPERF_OUT_OF_PLACE, no_argument, 0, 0 },
{ CPERF_TEST_FILE, required_argument, 0, 0 },
{ CPERF_TEST_NAME, required_argument, 0, 0 },
{ CPERF_CIPHER_ALGO, required_argument, 0, 0 },
{ CPERF_CIPHER_OP, required_argument, 0, 0 },
{ CPERF_CIPHER_KEY_SZ, required_argument, 0, 0 },
{ CPERF_CIPHER_IV_SZ, required_argument, 0, 0 },
{ CPERF_AUTH_ALGO, required_argument, 0, 0 },
{ CPERF_AUTH_OP, required_argument, 0, 0 },
{ CPERF_AUTH_KEY_SZ, required_argument, 0, 0 },
{ CPERF_AUTH_IV_SZ, required_argument, 0, 0 },
{ CPERF_AEAD_ALGO, required_argument, 0, 0 },
{ CPERF_AEAD_OP, required_argument, 0, 0 },
{ CPERF_AEAD_KEY_SZ, required_argument, 0, 0 },
{ CPERF_AEAD_AAD_SZ, required_argument, 0, 0 },
{ CPERF_AEAD_IV_SZ, required_argument, 0, 0 },
{ CPERF_DIGEST_SZ, required_argument, 0, 0 },
{ CPERF_CSV, no_argument, 0, 0},
{ NULL, 0, 0, 0 }
};
void
cperf_options_default(struct cperf_options *opts)
{
opts->test = CPERF_TEST_TYPE_THROUGHPUT;
opts->pool_sz = 8192;
opts->total_ops = 10000000;
opts->buffer_size_list[0] = 64;
opts->buffer_size_count = 1;
opts->max_buffer_size = 64;
opts->min_buffer_size = 64;
opts->inc_buffer_size = 0;
opts->burst_size_list[0] = 32;
opts->burst_size_count = 1;
opts->max_burst_size = 32;
opts->min_burst_size = 32;
opts->inc_burst_size = 0;
opts->segments_nb = 1;
strncpy(opts->device_type, "crypto_aesni_mb",
sizeof(opts->device_type));
opts->op_type = CPERF_CIPHER_THEN_AUTH;
opts->silent = 0;
opts->test_file = NULL;
opts->test_name = NULL;
opts->sessionless = 0;
opts->out_of_place = 0;
opts->csv = 0;
opts->cipher_algo = RTE_CRYPTO_CIPHER_AES_CBC;
opts->cipher_op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
opts->cipher_key_sz = 16;
opts->cipher_iv_sz = 16;
opts->auth_algo = RTE_CRYPTO_AUTH_SHA1_HMAC;
opts->auth_op = RTE_CRYPTO_AUTH_OP_GENERATE;
opts->auth_key_sz = 64;
opts->auth_iv_sz = 0;
opts->aead_key_sz = 0;
opts->aead_iv_sz = 0;
opts->aead_aad_sz = 0;
opts->digest_sz = 12;
}
static int
cperf_opts_parse_long(int opt_idx, struct cperf_options *opts)
{
struct long_opt_parser parsermap[] = {
{ CPERF_PTEST_TYPE, parse_cperf_test_type },
{ CPERF_SILENT, parse_silent },
{ CPERF_POOL_SIZE, parse_pool_sz },
{ CPERF_TOTAL_OPS, parse_total_ops },
{ CPERF_BURST_SIZE, parse_burst_sz },
{ CPERF_BUFFER_SIZE, parse_buffer_sz },
{ CPERF_SEGMENTS_NB, parse_segments_nb },
{ CPERF_DEVTYPE, parse_device_type },
{ CPERF_OPTYPE, parse_op_type },
{ CPERF_SESSIONLESS, parse_sessionless },
{ CPERF_OUT_OF_PLACE, parse_out_of_place },
{ CPERF_TEST_FILE, parse_test_file },
{ CPERF_TEST_NAME, parse_test_name },
{ CPERF_CIPHER_ALGO, parse_cipher_algo },
{ CPERF_CIPHER_OP, parse_cipher_op },
{ CPERF_CIPHER_KEY_SZ, parse_cipher_key_sz },
{ CPERF_CIPHER_IV_SZ, parse_cipher_iv_sz },
{ CPERF_AUTH_ALGO, parse_auth_algo },
{ CPERF_AUTH_OP, parse_auth_op },
{ CPERF_AUTH_KEY_SZ, parse_auth_key_sz },
{ CPERF_AUTH_IV_SZ, parse_auth_iv_sz },
{ CPERF_AEAD_ALGO, parse_aead_algo },
{ CPERF_AEAD_OP, parse_aead_op },
{ CPERF_AEAD_KEY_SZ, parse_aead_key_sz },
{ CPERF_AEAD_IV_SZ, parse_aead_iv_sz },
{ CPERF_AEAD_AAD_SZ, parse_aead_aad_sz },
{ CPERF_DIGEST_SZ, parse_digest_sz },
{ CPERF_CSV, parse_csv_friendly},
};
unsigned int i;
for (i = 0; i < RTE_DIM(parsermap); i++) {
if (strncmp(lgopts[opt_idx].name, parsermap[i].lgopt_name,
strlen(lgopts[opt_idx].name)) == 0)
return parsermap[i].parser_fn(opts, optarg);
}
return -EINVAL;
}
int
cperf_options_parse(struct cperf_options *options, int argc, char **argv)
{
int opt, retval, opt_idx;
while ((opt = getopt_long(argc, argv, "", lgopts, &opt_idx)) != EOF) {
switch (opt) {
/* long options */
case 0:
retval = cperf_opts_parse_long(opt_idx, options);
if (retval != 0)
return retval;
break;
default:
return -EINVAL;
}
}
return 0;
}
static int
check_cipher_buffer_length(struct cperf_options *options)
{
uint32_t buffer_size, buffer_size_idx = 0;
if (options->cipher_algo == RTE_CRYPTO_CIPHER_AES_CBC ||
options->cipher_algo == RTE_CRYPTO_CIPHER_AES_ECB) {
if (options->inc_buffer_size != 0)
buffer_size = options->min_buffer_size;
else
buffer_size = options->buffer_size_list[0];
while (buffer_size <= options->max_buffer_size) {
if ((buffer_size % AES_BLOCK_SIZE) != 0) {
RTE_LOG(ERR, USER1, "Some of the buffer sizes are "
"not suitable for the algorithm selected\n");
return -EINVAL;
}
if (options->inc_buffer_size != 0)
buffer_size += options->inc_buffer_size;
else {
if (++buffer_size_idx == options->buffer_size_count)
break;
buffer_size = options->buffer_size_list[buffer_size_idx];
}
}
}
if (options->cipher_algo == RTE_CRYPTO_CIPHER_DES_CBC ||
options->cipher_algo == RTE_CRYPTO_CIPHER_3DES_CBC ||
options->cipher_algo == RTE_CRYPTO_CIPHER_3DES_ECB) {
for (buffer_size = options->min_buffer_size;
buffer_size < options->max_buffer_size;
buffer_size += options->inc_buffer_size) {
if ((buffer_size % DES_BLOCK_SIZE) != 0) {
RTE_LOG(ERR, USER1, "Some of the buffer sizes are "
"not suitable for the algorithm selected\n");
return -EINVAL;
}
}
}
return 0;
}
int
cperf_options_check(struct cperf_options *options)
{
if (options->segments_nb > options->min_buffer_size) {
RTE_LOG(ERR, USER1,
"Segments number greater than buffer size.\n");
return -EINVAL;
}
if (options->test == CPERF_TEST_TYPE_VERIFY &&
options->test_file == NULL) {
RTE_LOG(ERR, USER1, "Define path to the file with test"
" vectors.\n");
return -EINVAL;
}
if (options->test == CPERF_TEST_TYPE_VERIFY &&
options->op_type != CPERF_CIPHER_ONLY &&
options->test_name == NULL) {
RTE_LOG(ERR, USER1, "Define test name to get the correct digest"
" from the test vectors.\n");
return -EINVAL;
}
if (options->test_name != NULL && options->test_file == NULL) {
RTE_LOG(ERR, USER1, "Define path to the file with test"
" vectors.\n");
return -EINVAL;
}
if (options->auth_op == RTE_CRYPTO_AUTH_OP_VERIFY &&
options->test_file == NULL) {
RTE_LOG(ERR, USER1, "Define path to the file with test"
" vectors.\n");
return -EINVAL;
}
if (options->test == CPERF_TEST_TYPE_VERIFY &&
options->total_ops > options->pool_sz) {
RTE_LOG(ERR, USER1, "Total number of ops must be less than or"
" equal to the pool size.\n");
return -EINVAL;
}
if (options->test == CPERF_TEST_TYPE_VERIFY &&
(options->inc_buffer_size != 0 ||
options->buffer_size_count > 1)) {
RTE_LOG(ERR, USER1, "Only one buffer size is allowed when "
"using the verify test.\n");
return -EINVAL;
}
if (options->test == CPERF_TEST_TYPE_VERIFY &&
(options->inc_burst_size != 0 ||
options->burst_size_count > 1)) {
RTE_LOG(ERR, USER1, "Only one burst size is allowed when "
"using the verify test.\n");
return -EINVAL;
}
if (options->op_type == CPERF_CIPHER_THEN_AUTH) {
if (options->cipher_op != RTE_CRYPTO_CIPHER_OP_ENCRYPT &&
options->auth_op !=
RTE_CRYPTO_AUTH_OP_GENERATE) {
RTE_LOG(ERR, USER1, "Option cipher then auth must use"
" options: encrypt and generate.\n");
return -EINVAL;
}
} else if (options->op_type == CPERF_AUTH_THEN_CIPHER) {
if (options->cipher_op != RTE_CRYPTO_CIPHER_OP_DECRYPT &&
options->auth_op !=
RTE_CRYPTO_AUTH_OP_VERIFY) {
RTE_LOG(ERR, USER1, "Option auth then cipher must use"
" options: decrypt and verify.\n");
return -EINVAL;
}
}
if (options->op_type == CPERF_CIPHER_ONLY ||
options->op_type == CPERF_CIPHER_THEN_AUTH ||
options->op_type == CPERF_AUTH_THEN_CIPHER) {
if (check_cipher_buffer_length(options) < 0)
return -EINVAL;
}
return 0;
}
void
cperf_options_dump(struct cperf_options *opts)
{
uint8_t size_idx;
printf("# Crypto Performance Application Options:\n");
printf("#\n");
printf("# cperf test: %s\n", cperf_test_type_strs[opts->test]);
printf("#\n");
printf("# size of crypto op / mbuf pool: %u\n", opts->pool_sz);
printf("# total number of ops: %u\n", opts->total_ops);
if (opts->inc_buffer_size != 0) {
printf("# buffer size:\n");
printf("#\t min: %u\n", opts->min_buffer_size);
printf("#\t max: %u\n", opts->max_buffer_size);
printf("#\t inc: %u\n", opts->inc_buffer_size);
} else {
printf("# buffer sizes: ");
for (size_idx = 0; size_idx < opts->buffer_size_count; size_idx++)
printf("%u ", opts->buffer_size_list[size_idx]);
printf("\n");
}
if (opts->inc_burst_size != 0) {
printf("# burst size:\n");
printf("#\t min: %u\n", opts->min_burst_size);
printf("#\t max: %u\n", opts->max_burst_size);
printf("#\t inc: %u\n", opts->inc_burst_size);
} else {
printf("# burst sizes: ");
for (size_idx = 0; size_idx < opts->burst_size_count; size_idx++)
printf("%u ", opts->burst_size_list[size_idx]);
printf("\n");
}
printf("\n# segments per buffer: %u\n", opts->segments_nb);
printf("#\n");
printf("# cryptodev type: %s\n", opts->device_type);
printf("#\n");
printf("# crypto operation: %s\n", cperf_op_type_strs[opts->op_type]);
printf("# sessionless: %s\n", opts->sessionless ? "yes" : "no");
printf("# out of place: %s\n", opts->out_of_place ? "yes" : "no");
printf("#\n");
if (opts->op_type == CPERF_AUTH_ONLY ||
opts->op_type == CPERF_CIPHER_THEN_AUTH ||
opts->op_type == CPERF_AUTH_THEN_CIPHER) {
printf("# auth algorithm: %s\n",
rte_crypto_auth_algorithm_strings[opts->auth_algo]);
printf("# auth operation: %s\n",
rte_crypto_auth_operation_strings[opts->auth_op]);
printf("# auth key size: %u\n", opts->auth_key_sz);
printf("# auth iv size: %u\n", opts->auth_iv_sz);
printf("# auth digest size: %u\n", opts->digest_sz);
printf("#\n");
}
if (opts->op_type == CPERF_CIPHER_ONLY ||
opts->op_type == CPERF_CIPHER_THEN_AUTH ||
opts->op_type == CPERF_AUTH_THEN_CIPHER) {
printf("# cipher algorithm: %s\n",
rte_crypto_cipher_algorithm_strings[opts->cipher_algo]);
printf("# cipher operation: %s\n",
rte_crypto_cipher_operation_strings[opts->cipher_op]);
printf("# cipher key size: %u\n", opts->cipher_key_sz);
printf("# cipher iv size: %u\n", opts->cipher_iv_sz);
printf("#\n");
}
if (opts->op_type == CPERF_AEAD) {
printf("# aead algorithm: %s\n",
rte_crypto_aead_algorithm_strings[opts->aead_algo]);
printf("# aead operation: %s\n",
rte_crypto_aead_operation_strings[opts->aead_op]);
printf("# aead key size: %u\n", opts->aead_key_sz);
printf("# aead iv size: %u\n", opts->aead_iv_sz);
printf("# aead digest size: %u\n", opts->digest_sz);
printf("# aead aad size: %u\n", opts->aead_aad_sz);
printf("#\n");
}
}