numam-dpdk/drivers/net/mlx5/mlx5_rxtx.h
Nélio Laranjeiro 0f99970b4a net/mlx5: use port id in PMD log
Signed-off-by: Nelio Laranjeiro <nelio.laranjeiro@6wind.com>
Acked-by: Adrien Mazarguil <adrien.mazarguil@6wind.com>
2018-03-30 14:08:44 +02:00

701 lines
22 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2015 6WIND S.A.
* Copyright 2015 Mellanox.
*/
#ifndef RTE_PMD_MLX5_RXTX_H_
#define RTE_PMD_MLX5_RXTX_H_
#include <stddef.h>
#include <stdint.h>
#include <sys/queue.h>
/* Verbs header. */
/* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
#ifdef PEDANTIC
#pragma GCC diagnostic ignored "-Wpedantic"
#endif
#include <infiniband/verbs.h>
#include <infiniband/mlx5dv.h>
#ifdef PEDANTIC
#pragma GCC diagnostic error "-Wpedantic"
#endif
#include <rte_mbuf.h>
#include <rte_mempool.h>
#include <rte_common.h>
#include <rte_hexdump.h>
#include <rte_atomic.h>
#include "mlx5_utils.h"
#include "mlx5.h"
#include "mlx5_autoconf.h"
#include "mlx5_defs.h"
#include "mlx5_prm.h"
struct mlx5_rxq_stats {
unsigned int idx; /**< Mapping index. */
#ifdef MLX5_PMD_SOFT_COUNTERS
uint64_t ipackets; /**< Total of successfully received packets. */
uint64_t ibytes; /**< Total of successfully received bytes. */
#endif
uint64_t idropped; /**< Total of packets dropped when RX ring full. */
uint64_t rx_nombuf; /**< Total of RX mbuf allocation failures. */
};
struct mlx5_txq_stats {
unsigned int idx; /**< Mapping index. */
#ifdef MLX5_PMD_SOFT_COUNTERS
uint64_t opackets; /**< Total of successfully sent packets. */
uint64_t obytes; /**< Total of successfully sent bytes. */
#endif
uint64_t oerrors; /**< Total number of failed transmitted packets. */
};
struct priv;
/* Memory region queue object. */
struct mlx5_mr {
LIST_ENTRY(mlx5_mr) next; /**< Pointer to the next element. */
rte_atomic32_t refcnt; /*<< Reference counter. */
uint32_t lkey; /*<< rte_cpu_to_be_32(mr->lkey) */
uintptr_t start; /* Start address of MR */
uintptr_t end; /* End address of MR */
struct ibv_mr *mr; /*<< Memory Region. */
struct rte_mempool *mp; /*<< Memory Pool. */
};
/* Compressed CQE context. */
struct rxq_zip {
uint16_t ai; /* Array index. */
uint16_t ca; /* Current array index. */
uint16_t na; /* Next array index. */
uint16_t cq_ci; /* The next CQE. */
uint32_t cqe_cnt; /* Number of CQEs. */
};
/* RX queue descriptor. */
struct mlx5_rxq_data {
unsigned int csum:1; /* Enable checksum offloading. */
unsigned int csum_l2tun:1; /* Same for L2 tunnels. */
unsigned int hw_timestamp:1; /* Enable HW timestamp. */
unsigned int vlan_strip:1; /* Enable VLAN stripping. */
unsigned int crc_present:1; /* CRC must be subtracted. */
unsigned int sges_n:2; /* Log 2 of SGEs (max buffers per packet). */
unsigned int cqe_n:4; /* Log 2 of CQ elements. */
unsigned int elts_n:4; /* Log 2 of Mbufs. */
unsigned int rss_hash:1; /* RSS hash result is enabled. */
unsigned int mark:1; /* Marked flow available on the queue. */
unsigned int :15; /* Remaining bits. */
volatile uint32_t *rq_db;
volatile uint32_t *cq_db;
uint16_t port_id;
uint16_t rq_ci;
uint16_t rq_pi;
uint16_t cq_ci;
volatile struct mlx5_wqe_data_seg(*wqes)[];
volatile struct mlx5_cqe(*cqes)[];
struct rxq_zip zip; /* Compressed context. */
struct rte_mbuf *(*elts)[];
struct rte_mempool *mp;
struct mlx5_rxq_stats stats;
uint64_t mbuf_initializer; /* Default rearm_data for vectorized Rx. */
struct rte_mbuf fake_mbuf; /* elts padding for vectorized Rx. */
void *cq_uar; /* CQ user access region. */
uint32_t cqn; /* CQ number. */
uint8_t cq_arm_sn; /* CQ arm seq number. */
} __rte_cache_aligned;
/* Verbs Rx queue elements. */
struct mlx5_rxq_ibv {
LIST_ENTRY(mlx5_rxq_ibv) next; /* Pointer to the next element. */
rte_atomic32_t refcnt; /* Reference counter. */
struct mlx5_rxq_ctrl *rxq_ctrl; /* Back pointer to parent. */
struct ibv_cq *cq; /* Completion Queue. */
struct ibv_wq *wq; /* Work Queue. */
struct ibv_comp_channel *channel;
struct mlx5_mr *mr; /* Memory Region (for mp). */
};
/* RX queue control descriptor. */
struct mlx5_rxq_ctrl {
LIST_ENTRY(mlx5_rxq_ctrl) next; /* Pointer to the next element. */
rte_atomic32_t refcnt; /* Reference counter. */
struct priv *priv; /* Back pointer to private data. */
struct mlx5_rxq_ibv *ibv; /* Verbs elements. */
struct mlx5_rxq_data rxq; /* Data path structure. */
unsigned int socket; /* CPU socket ID for allocations. */
unsigned int irq:1; /* Whether IRQ is enabled. */
uint16_t idx; /* Queue index. */
};
/* Indirection table. */
struct mlx5_ind_table_ibv {
LIST_ENTRY(mlx5_ind_table_ibv) next; /* Pointer to the next element. */
rte_atomic32_t refcnt; /* Reference counter. */
struct ibv_rwq_ind_table *ind_table; /**< Indirection table. */
uint16_t queues_n; /**< Number of queues in the list. */
uint16_t queues[]; /**< Queue list. */
};
/* Hash Rx queue. */
struct mlx5_hrxq {
LIST_ENTRY(mlx5_hrxq) next; /* Pointer to the next element. */
rte_atomic32_t refcnt; /* Reference counter. */
struct mlx5_ind_table_ibv *ind_table; /* Indirection table. */
struct ibv_qp *qp; /* Verbs queue pair. */
uint64_t hash_fields; /* Verbs Hash fields. */
uint8_t rss_key_len; /* Hash key length in bytes. */
uint8_t rss_key[]; /* Hash key. */
};
/* TX queue descriptor. */
__extension__
struct mlx5_txq_data {
uint16_t elts_head; /* Current counter in (*elts)[]. */
uint16_t elts_tail; /* Counter of first element awaiting completion. */
uint16_t elts_comp; /* Counter since last completion request. */
uint16_t mpw_comp; /* WQ index since last completion request. */
uint16_t cq_ci; /* Consumer index for completion queue. */
#ifndef NDEBUG
uint16_t cq_pi; /* Producer index for completion queue. */
#endif
uint16_t wqe_ci; /* Consumer index for work queue. */
uint16_t wqe_pi; /* Producer index for work queue. */
uint16_t elts_n:4; /* (*elts)[] length (in log2). */
uint16_t cqe_n:4; /* Number of CQ elements (in log2). */
uint16_t wqe_n:4; /* Number of of WQ elements (in log2). */
uint16_t tso_en:1; /* When set hardware TSO is enabled. */
uint16_t tunnel_en:1;
/* When set TX offload for tunneled packets are supported. */
uint16_t mpw_hdr_dseg:1; /* Enable DSEGs in the title WQEBB. */
uint16_t max_inline; /* Multiple of RTE_CACHE_LINE_SIZE to inline. */
uint16_t inline_max_packet_sz; /* Max packet size for inlining. */
uint16_t mr_cache_idx; /* Index of last hit entry. */
uint32_t qp_num_8s; /* QP number shifted by 8. */
uint64_t offloads; /* Offloads for Tx Queue. */
volatile struct mlx5_cqe (*cqes)[]; /* Completion queue. */
volatile void *wqes; /* Work queue (use volatile to write into). */
volatile uint32_t *qp_db; /* Work queue doorbell. */
volatile uint32_t *cq_db; /* Completion queue doorbell. */
volatile void *bf_reg; /* Blueflame register remapped. */
struct mlx5_mr *mp2mr[MLX5_PMD_TX_MP_CACHE]; /* MR translation table. */
struct rte_mbuf *(*elts)[]; /* TX elements. */
struct mlx5_txq_stats stats; /* TX queue counters. */
} __rte_cache_aligned;
/* Verbs Rx queue elements. */
struct mlx5_txq_ibv {
LIST_ENTRY(mlx5_txq_ibv) next; /* Pointer to the next element. */
rte_atomic32_t refcnt; /* Reference counter. */
struct mlx5_txq_ctrl *txq_ctrl; /* Pointer to the control queue. */
struct ibv_cq *cq; /* Completion Queue. */
struct ibv_qp *qp; /* Queue Pair. */
};
/* TX queue control descriptor. */
struct mlx5_txq_ctrl {
LIST_ENTRY(mlx5_txq_ctrl) next; /* Pointer to the next element. */
rte_atomic32_t refcnt; /* Reference counter. */
struct priv *priv; /* Back pointer to private data. */
unsigned int socket; /* CPU socket ID for allocations. */
unsigned int max_inline_data; /* Max inline data. */
unsigned int max_tso_header; /* Max TSO header size. */
struct mlx5_txq_ibv *ibv; /* Verbs queue object. */
struct mlx5_txq_data txq; /* Data path structure. */
off_t uar_mmap_offset; /* UAR mmap offset for non-primary process. */
volatile void *bf_reg_orig; /* Blueflame register from verbs. */
uint16_t idx; /* Queue index. */
};
/* mlx5_rxq.c */
extern uint8_t rss_hash_default_key[];
extern const size_t rss_hash_default_key_len;
void mlx5_rxq_cleanup(struct mlx5_rxq_ctrl *rxq_ctrl);
int mlx5_rx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc,
unsigned int socket, const struct rte_eth_rxconf *conf,
struct rte_mempool *mp);
void mlx5_rx_queue_release(void *dpdk_rxq);
int mlx5_rx_intr_vec_enable(struct rte_eth_dev *dev);
void mlx5_rx_intr_vec_disable(struct rte_eth_dev *dev);
int mlx5_rx_intr_enable(struct rte_eth_dev *dev, uint16_t rx_queue_id);
int mlx5_rx_intr_disable(struct rte_eth_dev *dev, uint16_t rx_queue_id);
struct mlx5_rxq_ibv *mlx5_rxq_ibv_new(struct rte_eth_dev *dev, uint16_t idx);
struct mlx5_rxq_ibv *mlx5_rxq_ibv_get(struct rte_eth_dev *dev, uint16_t idx);
int mlx5_rxq_ibv_release(struct mlx5_rxq_ibv *rxq_ibv);
int mlx5_rxq_ibv_releasable(struct mlx5_rxq_ibv *rxq_ibv);
int mlx5_rxq_ibv_verify(struct rte_eth_dev *dev);
struct mlx5_rxq_ctrl *mlx5_rxq_new(struct rte_eth_dev *dev, uint16_t idx,
uint16_t desc, unsigned int socket,
const struct rte_eth_rxconf *conf,
struct rte_mempool *mp);
struct mlx5_rxq_ctrl *mlx5_rxq_get(struct rte_eth_dev *dev, uint16_t idx);
int mlx5_rxq_release(struct rte_eth_dev *dev, uint16_t idx);
int mlx5_rxq_releasable(struct rte_eth_dev *dev, uint16_t idx);
int mlx5_rxq_verify(struct rte_eth_dev *dev);
int rxq_alloc_elts(struct mlx5_rxq_ctrl *rxq_ctrl);
struct mlx5_ind_table_ibv *mlx5_ind_table_ibv_new(struct rte_eth_dev *dev,
uint16_t queues[],
uint16_t queues_n);
struct mlx5_ind_table_ibv *mlx5_ind_table_ibv_get(struct rte_eth_dev *dev,
uint16_t queues[],
uint16_t queues_n);
int mlx5_ind_table_ibv_release(struct rte_eth_dev *dev,
struct mlx5_ind_table_ibv *ind_tbl);
int mlx5_ind_table_ibv_verify(struct rte_eth_dev *dev);
struct mlx5_hrxq *mlx5_hrxq_new(struct rte_eth_dev *dev, uint8_t *rss_key,
uint8_t rss_key_len, uint64_t hash_fields,
uint16_t queues[], uint16_t queues_n);
struct mlx5_hrxq *mlx5_hrxq_get(struct rte_eth_dev *dev, uint8_t *rss_key,
uint8_t rss_key_len, uint64_t hash_fields,
uint16_t queues[], uint16_t queues_n);
int mlx5_hrxq_release(struct rte_eth_dev *dev, struct mlx5_hrxq *hxrq);
int mlx5_hrxq_ibv_verify(struct rte_eth_dev *dev);
uint64_t mlx5_get_rx_port_offloads(void);
uint64_t mlx5_get_rx_queue_offloads(struct rte_eth_dev *dev);
/* mlx5_txq.c */
int mlx5_tx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc,
unsigned int socket, const struct rte_eth_txconf *conf);
void mlx5_tx_queue_release(void *dpdk_txq);
int mlx5_tx_uar_remap(struct rte_eth_dev *dev, int fd);
struct mlx5_txq_ibv *mlx5_txq_ibv_new(struct rte_eth_dev *dev, uint16_t idx);
struct mlx5_txq_ibv *mlx5_txq_ibv_get(struct rte_eth_dev *dev, uint16_t idx);
int mlx5_txq_ibv_release(struct mlx5_txq_ibv *txq_ibv);
int mlx5_txq_ibv_releasable(struct mlx5_txq_ibv *txq_ibv);
int mlx5_txq_ibv_verify(struct rte_eth_dev *dev);
struct mlx5_txq_ctrl *mlx5_txq_new(struct rte_eth_dev *dev, uint16_t idx,
uint16_t desc, unsigned int socket,
const struct rte_eth_txconf *conf);
struct mlx5_txq_ctrl *mlx5_txq_get(struct rte_eth_dev *dev, uint16_t idx);
int mlx5_txq_release(struct rte_eth_dev *dev, uint16_t idx);
int mlx5_txq_releasable(struct rte_eth_dev *dev, uint16_t idx);
int mlx5_txq_verify(struct rte_eth_dev *dev);
void txq_alloc_elts(struct mlx5_txq_ctrl *txq_ctrl);
uint64_t mlx5_get_tx_port_offloads(struct rte_eth_dev *dev);
/* mlx5_rxtx.c */
extern uint32_t mlx5_ptype_table[];
void mlx5_set_ptype_table(void);
uint16_t mlx5_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts,
uint16_t pkts_n);
uint16_t mlx5_tx_burst_mpw(void *dpdk_txq, struct rte_mbuf **pkts,
uint16_t pkts_n);
uint16_t mlx5_tx_burst_mpw_inline(void *dpdk_txq, struct rte_mbuf **pkts,
uint16_t pkts_n);
uint16_t mlx5_tx_burst_empw(void *dpdk_txq, struct rte_mbuf **pkts,
uint16_t pkts_n);
uint16_t mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n);
uint16_t removed_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts,
uint16_t pkts_n);
uint16_t removed_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts,
uint16_t pkts_n);
int mlx5_rx_descriptor_status(void *rx_queue, uint16_t offset);
int mlx5_tx_descriptor_status(void *tx_queue, uint16_t offset);
/* Vectorized version of mlx5_rxtx.c */
int mlx5_check_raw_vec_tx_support(struct rte_eth_dev *dev);
int mlx5_check_vec_tx_support(struct rte_eth_dev *dev);
int mlx5_rxq_check_vec_support(struct mlx5_rxq_data *rxq_data);
int mlx5_check_vec_rx_support(struct rte_eth_dev *dev);
uint16_t mlx5_tx_burst_raw_vec(void *dpdk_txq, struct rte_mbuf **pkts,
uint16_t pkts_n);
uint16_t mlx5_tx_burst_vec(void *dpdk_txq, struct rte_mbuf **pkts,
uint16_t pkts_n);
uint16_t mlx5_rx_burst_vec(void *dpdk_txq, struct rte_mbuf **pkts,
uint16_t pkts_n);
/* mlx5_mr.c */
void mlx5_mp2mr_iter(struct rte_mempool *mp, void *arg);
struct mlx5_mr *mlx5_txq_mp2mr_reg(struct mlx5_txq_data *txq,
struct rte_mempool *mp, unsigned int idx);
#ifndef NDEBUG
/**
* Verify or set magic value in CQE.
*
* @param cqe
* Pointer to CQE.
*
* @return
* 0 the first time.
*/
static inline int
check_cqe_seen(volatile struct mlx5_cqe *cqe)
{
static const uint8_t magic[] = "seen";
volatile uint8_t (*buf)[sizeof(cqe->rsvd0)] = &cqe->rsvd0;
int ret = 1;
unsigned int i;
for (i = 0; i < sizeof(magic) && i < sizeof(*buf); ++i)
if (!ret || (*buf)[i] != magic[i]) {
ret = 0;
(*buf)[i] = magic[i];
}
return ret;
}
#endif /* NDEBUG */
/**
* Check whether CQE is valid.
*
* @param cqe
* Pointer to CQE.
* @param cqes_n
* Size of completion queue.
* @param ci
* Consumer index.
*
* @return
* 0 on success, 1 on failure.
*/
static __rte_always_inline int
check_cqe(volatile struct mlx5_cqe *cqe,
unsigned int cqes_n, const uint16_t ci)
{
uint16_t idx = ci & cqes_n;
uint8_t op_own = cqe->op_own;
uint8_t op_owner = MLX5_CQE_OWNER(op_own);
uint8_t op_code = MLX5_CQE_OPCODE(op_own);
if (unlikely((op_owner != (!!(idx))) || (op_code == MLX5_CQE_INVALID)))
return 1; /* No CQE. */
#ifndef NDEBUG
if ((op_code == MLX5_CQE_RESP_ERR) ||
(op_code == MLX5_CQE_REQ_ERR)) {
volatile struct mlx5_err_cqe *err_cqe = (volatile void *)cqe;
uint8_t syndrome = err_cqe->syndrome;
if ((syndrome == MLX5_CQE_SYNDROME_LOCAL_LENGTH_ERR) ||
(syndrome == MLX5_CQE_SYNDROME_REMOTE_ABORTED_ERR))
return 0;
if (!check_cqe_seen(cqe)) {
ERROR("unexpected CQE error %u (0x%02x)"
" syndrome 0x%02x",
op_code, op_code, syndrome);
rte_hexdump(stderr, "MLX5 Error CQE:",
(const void *)((uintptr_t)err_cqe),
sizeof(*err_cqe));
}
return 1;
} else if ((op_code != MLX5_CQE_RESP_SEND) &&
(op_code != MLX5_CQE_REQ)) {
if (!check_cqe_seen(cqe)) {
ERROR("unexpected CQE opcode %u (0x%02x)",
op_code, op_code);
rte_hexdump(stderr, "MLX5 CQE:",
(const void *)((uintptr_t)cqe),
sizeof(*cqe));
}
return 1;
}
#endif /* NDEBUG */
return 0;
}
/**
* Return the address of the WQE.
*
* @param txq
* Pointer to TX queue structure.
* @param wqe_ci
* WQE consumer index.
*
* @return
* WQE address.
*/
static inline uintptr_t *
tx_mlx5_wqe(struct mlx5_txq_data *txq, uint16_t ci)
{
ci &= ((1 << txq->wqe_n) - 1);
return (uintptr_t *)((uintptr_t)txq->wqes + ci * MLX5_WQE_SIZE);
}
/**
* Manage TX completions.
*
* When sending a burst, mlx5_tx_burst() posts several WRs.
*
* @param txq
* Pointer to TX queue structure.
*/
static __rte_always_inline void
mlx5_tx_complete(struct mlx5_txq_data *txq)
{
const uint16_t elts_n = 1 << txq->elts_n;
const uint16_t elts_m = elts_n - 1;
const unsigned int cqe_n = 1 << txq->cqe_n;
const unsigned int cqe_cnt = cqe_n - 1;
uint16_t elts_free = txq->elts_tail;
uint16_t elts_tail;
uint16_t cq_ci = txq->cq_ci;
volatile struct mlx5_cqe *cqe = NULL;
volatile struct mlx5_wqe_ctrl *ctrl;
struct rte_mbuf *m, *free[elts_n];
struct rte_mempool *pool = NULL;
unsigned int blk_n = 0;
cqe = &(*txq->cqes)[cq_ci & cqe_cnt];
if (unlikely(check_cqe(cqe, cqe_n, cq_ci)))
return;
#ifndef NDEBUG
if ((MLX5_CQE_OPCODE(cqe->op_own) == MLX5_CQE_RESP_ERR) ||
(MLX5_CQE_OPCODE(cqe->op_own) == MLX5_CQE_REQ_ERR)) {
if (!check_cqe_seen(cqe)) {
ERROR("unexpected error CQE, Tx stopped");
rte_hexdump(stderr, "MLX5 TXQ:",
(const void *)((uintptr_t)txq->wqes),
((1 << txq->wqe_n) *
MLX5_WQE_SIZE));
}
return;
}
#endif /* NDEBUG */
++cq_ci;
txq->wqe_pi = rte_be_to_cpu_16(cqe->wqe_counter);
ctrl = (volatile struct mlx5_wqe_ctrl *)
tx_mlx5_wqe(txq, txq->wqe_pi);
elts_tail = ctrl->ctrl3;
assert((elts_tail & elts_m) < (1 << txq->wqe_n));
/* Free buffers. */
while (elts_free != elts_tail) {
m = rte_pktmbuf_prefree_seg((*txq->elts)[elts_free++ & elts_m]);
if (likely(m != NULL)) {
if (likely(m->pool == pool)) {
free[blk_n++] = m;
} else {
if (likely(pool != NULL))
rte_mempool_put_bulk(pool,
(void *)free,
blk_n);
free[0] = m;
pool = m->pool;
blk_n = 1;
}
}
}
if (blk_n)
rte_mempool_put_bulk(pool, (void *)free, blk_n);
#ifndef NDEBUG
elts_free = txq->elts_tail;
/* Poisoning. */
while (elts_free != elts_tail) {
memset(&(*txq->elts)[elts_free & elts_m],
0x66,
sizeof((*txq->elts)[elts_free & elts_m]));
++elts_free;
}
#endif
txq->cq_ci = cq_ci;
txq->elts_tail = elts_tail;
/* Update the consumer index. */
rte_compiler_barrier();
*txq->cq_db = rte_cpu_to_be_32(cq_ci);
}
/**
* Get Memory Pool (MP) from mbuf. If mbuf is indirect, the pool from which
* the cloned mbuf is allocated is returned instead.
*
* @param buf
* Pointer to mbuf.
*
* @return
* Memory pool where data is located for given mbuf.
*/
static struct rte_mempool *
mlx5_tx_mb2mp(struct rte_mbuf *buf)
{
if (unlikely(RTE_MBUF_INDIRECT(buf)))
return rte_mbuf_from_indirect(buf)->pool;
return buf->pool;
}
/**
* Get Memory Region (MR) <-> rte_mbuf association from txq->mp2mr[].
* Add MP to txq->mp2mr[] if it's not registered yet. If mp2mr[] is full,
* remove an entry first.
*
* @param txq
* Pointer to TX queue structure.
* @param[in] mp
* Memory Pool for which a Memory Region lkey must be returned.
*
* @return
* mr->lkey on success, (uint32_t)-1 on failure.
*/
static __rte_always_inline uint32_t
mlx5_tx_mb2mr(struct mlx5_txq_data *txq, struct rte_mbuf *mb)
{
uint16_t i = txq->mr_cache_idx;
uintptr_t addr = rte_pktmbuf_mtod(mb, uintptr_t);
struct mlx5_mr *mr;
assert(i < RTE_DIM(txq->mp2mr));
if (likely(txq->mp2mr[i]->start <= addr && txq->mp2mr[i]->end > addr))
return txq->mp2mr[i]->lkey;
for (i = 0; (i != RTE_DIM(txq->mp2mr)); ++i) {
if (unlikely(txq->mp2mr[i] == NULL ||
txq->mp2mr[i]->mr == NULL)) {
/* Unknown MP, add a new MR for it. */
break;
}
if (txq->mp2mr[i]->start <= addr &&
txq->mp2mr[i]->end > addr) {
assert(txq->mp2mr[i]->lkey != (uint32_t)-1);
txq->mr_cache_idx = i;
return txq->mp2mr[i]->lkey;
}
}
mr = mlx5_txq_mp2mr_reg(txq, mlx5_tx_mb2mp(mb), i);
/*
* Request the reference to use in this queue, the original one is
* kept by the control plane.
*/
if (mr) {
rte_atomic32_inc(&mr->refcnt);
txq->mr_cache_idx = i >= RTE_DIM(txq->mp2mr) ? i - 1 : i;
return mr->lkey;
} else {
struct rte_mempool *mp = mlx5_tx_mb2mp(mb);
WARN("failed to register mempool 0x%p(%s)",
(void *)mp, mp->name);
}
return (uint32_t)-1;
}
/**
* Ring TX queue doorbell and flush the update if requested.
*
* @param txq
* Pointer to TX queue structure.
* @param wqe
* Pointer to the last WQE posted in the NIC.
* @param cond
* Request for write memory barrier after BlueFlame update.
*/
static __rte_always_inline void
mlx5_tx_dbrec_cond_wmb(struct mlx5_txq_data *txq, volatile struct mlx5_wqe *wqe,
int cond)
{
uint64_t *dst = (uint64_t *)((uintptr_t)txq->bf_reg);
volatile uint64_t *src = ((volatile uint64_t *)wqe);
rte_cio_wmb();
*txq->qp_db = rte_cpu_to_be_32(txq->wqe_ci);
/* Ensure ordering between DB record and BF copy. */
rte_wmb();
*dst = *src;
if (cond)
rte_wmb();
}
/**
* Ring TX queue doorbell and flush the update by write memory barrier.
*
* @param txq
* Pointer to TX queue structure.
* @param wqe
* Pointer to the last WQE posted in the NIC.
*/
static __rte_always_inline void
mlx5_tx_dbrec(struct mlx5_txq_data *txq, volatile struct mlx5_wqe *wqe)
{
mlx5_tx_dbrec_cond_wmb(txq, wqe, 1);
}
/**
* Convert the Checksum offloads to Verbs.
*
* @param txq_data
* Pointer to the Tx queue.
* @param buf
* Pointer to the mbuf.
*
* @return
* the converted cs_flags.
*/
static __rte_always_inline uint8_t
txq_ol_cksum_to_cs(struct mlx5_txq_data *txq_data, struct rte_mbuf *buf)
{
uint8_t cs_flags = 0;
/* Should we enable HW CKSUM offload */
if (buf->ol_flags &
(PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM |
PKT_TX_OUTER_IP_CKSUM)) {
if (txq_data->tunnel_en &&
(buf->ol_flags &
(PKT_TX_TUNNEL_GRE | PKT_TX_TUNNEL_VXLAN))) {
cs_flags = MLX5_ETH_WQE_L3_INNER_CSUM |
MLX5_ETH_WQE_L4_INNER_CSUM;
if (buf->ol_flags & PKT_TX_OUTER_IP_CKSUM)
cs_flags |= MLX5_ETH_WQE_L3_CSUM;
} else {
cs_flags = MLX5_ETH_WQE_L3_CSUM |
MLX5_ETH_WQE_L4_CSUM;
}
}
return cs_flags;
}
/**
* Count the number of contiguous single segment packets.
*
* @param pkts
* Pointer to array of packets.
* @param pkts_n
* Number of packets.
*
* @return
* Number of contiguous single segment packets.
*/
static __rte_always_inline unsigned int
txq_count_contig_single_seg(struct rte_mbuf **pkts, uint16_t pkts_n)
{
unsigned int pos;
if (!pkts_n)
return 0;
/* Count the number of contiguous single segment packets. */
for (pos = 0; pos < pkts_n; ++pos)
if (NB_SEGS(pkts[pos]) > 1)
break;
return pos;
}
/**
* Count the number of contiguous multi-segment packets.
*
* @param pkts
* Pointer to array of packets.
* @param pkts_n
* Number of packets.
*
* @return
* Number of contiguous multi-segment packets.
*/
static __rte_always_inline unsigned int
txq_count_contig_multi_seg(struct rte_mbuf **pkts, uint16_t pkts_n)
{
unsigned int pos;
if (!pkts_n)
return 0;
/* Count the number of contiguous multi-segment packets. */
for (pos = 0; pos < pkts_n; ++pos)
if (NB_SEGS(pkts[pos]) == 1)
break;
return pos;
}
#endif /* RTE_PMD_MLX5_RXTX_H_ */