2b6b09817d
For Kunpeng930, the NIC engine support 1280 tqps being taken over by a PF. In this case, a maximum of 1281 interrupt resources are also supported in this PF. To support the maximum number of queues, several patches are made. But the interrupt related modification are missing. So, in RX interrupt mode, a large number of queues will be aggregated into one interrupt due to insufficient interrupts. It will lead to waste of interrupt resources and reduces usability. To utilize all these interrupt resources, related IMP command has been extended. And, the I/O address of the extended interrupt resources are different from the existing ones. So, a function used for calculating the address offset has been added. Fixes:76d794566d
("net/hns3: maximize queue number") Fixes:27911a6e62
("net/hns3: add Rx interrupts compatibility") Cc: stable@dpdk.org Signed-off-by: Chengchang Tang <tangchengchang@huawei.com>
3940 lines
102 KiB
C
3940 lines
102 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2018-2019 Hisilicon Limited.
|
|
*/
|
|
|
|
#include <rte_bus_pci.h>
|
|
#include <rte_common.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_vxlan.h>
|
|
#include <ethdev_driver.h>
|
|
#include <rte_io.h>
|
|
#include <rte_net.h>
|
|
#include <rte_malloc.h>
|
|
#if defined(RTE_ARCH_ARM64) && defined(__ARM_FEATURE_SVE)
|
|
#include <rte_cpuflags.h>
|
|
#endif
|
|
|
|
#include "hns3_ethdev.h"
|
|
#include "hns3_rxtx.h"
|
|
#include "hns3_regs.h"
|
|
#include "hns3_logs.h"
|
|
|
|
#define HNS3_CFG_DESC_NUM(num) ((num) / 8 - 1)
|
|
#define HNS3_RX_RING_PREFETCTH_MASK 3
|
|
|
|
static void
|
|
hns3_rx_queue_release_mbufs(struct hns3_rx_queue *rxq)
|
|
{
|
|
uint16_t i;
|
|
|
|
/* Note: Fake rx queue will not enter here */
|
|
if (rxq->sw_ring == NULL)
|
|
return;
|
|
|
|
if (rxq->rx_rearm_nb == 0) {
|
|
for (i = 0; i < rxq->nb_rx_desc; i++) {
|
|
if (rxq->sw_ring[i].mbuf != NULL) {
|
|
rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
|
|
rxq->sw_ring[i].mbuf = NULL;
|
|
}
|
|
}
|
|
} else {
|
|
for (i = rxq->next_to_use;
|
|
i != rxq->rx_rearm_start;
|
|
i = (i + 1) % rxq->nb_rx_desc) {
|
|
if (rxq->sw_ring[i].mbuf != NULL) {
|
|
rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
|
|
rxq->sw_ring[i].mbuf = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < rxq->bulk_mbuf_num; i++)
|
|
rte_pktmbuf_free_seg(rxq->bulk_mbuf[i]);
|
|
rxq->bulk_mbuf_num = 0;
|
|
|
|
if (rxq->pkt_first_seg) {
|
|
rte_pktmbuf_free(rxq->pkt_first_seg);
|
|
rxq->pkt_first_seg = NULL;
|
|
}
|
|
}
|
|
|
|
static void
|
|
hns3_tx_queue_release_mbufs(struct hns3_tx_queue *txq)
|
|
{
|
|
uint16_t i;
|
|
|
|
/* Note: Fake tx queue will not enter here */
|
|
if (txq->sw_ring) {
|
|
for (i = 0; i < txq->nb_tx_desc; i++) {
|
|
if (txq->sw_ring[i].mbuf) {
|
|
rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
|
|
txq->sw_ring[i].mbuf = NULL;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
hns3_rx_queue_release(void *queue)
|
|
{
|
|
struct hns3_rx_queue *rxq = queue;
|
|
if (rxq) {
|
|
hns3_rx_queue_release_mbufs(rxq);
|
|
if (rxq->mz)
|
|
rte_memzone_free(rxq->mz);
|
|
if (rxq->sw_ring)
|
|
rte_free(rxq->sw_ring);
|
|
rte_free(rxq);
|
|
}
|
|
}
|
|
|
|
static void
|
|
hns3_tx_queue_release(void *queue)
|
|
{
|
|
struct hns3_tx_queue *txq = queue;
|
|
if (txq) {
|
|
hns3_tx_queue_release_mbufs(txq);
|
|
if (txq->mz)
|
|
rte_memzone_free(txq->mz);
|
|
if (txq->sw_ring)
|
|
rte_free(txq->sw_ring);
|
|
if (txq->free)
|
|
rte_free(txq->free);
|
|
rte_free(txq);
|
|
}
|
|
}
|
|
|
|
void
|
|
hns3_dev_rx_queue_release(void *queue)
|
|
{
|
|
struct hns3_rx_queue *rxq = queue;
|
|
struct hns3_adapter *hns;
|
|
|
|
if (rxq == NULL)
|
|
return;
|
|
|
|
hns = rxq->hns;
|
|
rte_spinlock_lock(&hns->hw.lock);
|
|
hns3_rx_queue_release(queue);
|
|
rte_spinlock_unlock(&hns->hw.lock);
|
|
}
|
|
|
|
void
|
|
hns3_dev_tx_queue_release(void *queue)
|
|
{
|
|
struct hns3_tx_queue *txq = queue;
|
|
struct hns3_adapter *hns;
|
|
|
|
if (txq == NULL)
|
|
return;
|
|
|
|
hns = txq->hns;
|
|
rte_spinlock_lock(&hns->hw.lock);
|
|
hns3_tx_queue_release(queue);
|
|
rte_spinlock_unlock(&hns->hw.lock);
|
|
}
|
|
|
|
static void
|
|
hns3_fake_rx_queue_release(struct hns3_rx_queue *queue)
|
|
{
|
|
struct hns3_rx_queue *rxq = queue;
|
|
struct hns3_adapter *hns;
|
|
struct hns3_hw *hw;
|
|
uint16_t idx;
|
|
|
|
if (rxq == NULL)
|
|
return;
|
|
|
|
hns = rxq->hns;
|
|
hw = &hns->hw;
|
|
idx = rxq->queue_id;
|
|
if (hw->fkq_data.rx_queues[idx]) {
|
|
hns3_rx_queue_release(hw->fkq_data.rx_queues[idx]);
|
|
hw->fkq_data.rx_queues[idx] = NULL;
|
|
}
|
|
|
|
/* free fake rx queue arrays */
|
|
if (idx == (hw->fkq_data.nb_fake_rx_queues - 1)) {
|
|
hw->fkq_data.nb_fake_rx_queues = 0;
|
|
rte_free(hw->fkq_data.rx_queues);
|
|
hw->fkq_data.rx_queues = NULL;
|
|
}
|
|
}
|
|
|
|
static void
|
|
hns3_fake_tx_queue_release(struct hns3_tx_queue *queue)
|
|
{
|
|
struct hns3_tx_queue *txq = queue;
|
|
struct hns3_adapter *hns;
|
|
struct hns3_hw *hw;
|
|
uint16_t idx;
|
|
|
|
if (txq == NULL)
|
|
return;
|
|
|
|
hns = txq->hns;
|
|
hw = &hns->hw;
|
|
idx = txq->queue_id;
|
|
if (hw->fkq_data.tx_queues[idx]) {
|
|
hns3_tx_queue_release(hw->fkq_data.tx_queues[idx]);
|
|
hw->fkq_data.tx_queues[idx] = NULL;
|
|
}
|
|
|
|
/* free fake tx queue arrays */
|
|
if (idx == (hw->fkq_data.nb_fake_tx_queues - 1)) {
|
|
hw->fkq_data.nb_fake_tx_queues = 0;
|
|
rte_free(hw->fkq_data.tx_queues);
|
|
hw->fkq_data.tx_queues = NULL;
|
|
}
|
|
}
|
|
|
|
static void
|
|
hns3_free_rx_queues(struct rte_eth_dev *dev)
|
|
{
|
|
struct hns3_adapter *hns = dev->data->dev_private;
|
|
struct hns3_fake_queue_data *fkq_data;
|
|
struct hns3_hw *hw = &hns->hw;
|
|
uint16_t nb_rx_q;
|
|
uint16_t i;
|
|
|
|
nb_rx_q = hw->data->nb_rx_queues;
|
|
for (i = 0; i < nb_rx_q; i++) {
|
|
if (dev->data->rx_queues[i]) {
|
|
hns3_rx_queue_release(dev->data->rx_queues[i]);
|
|
dev->data->rx_queues[i] = NULL;
|
|
}
|
|
}
|
|
|
|
/* Free fake Rx queues */
|
|
fkq_data = &hw->fkq_data;
|
|
for (i = 0; i < fkq_data->nb_fake_rx_queues; i++) {
|
|
if (fkq_data->rx_queues[i])
|
|
hns3_fake_rx_queue_release(fkq_data->rx_queues[i]);
|
|
}
|
|
}
|
|
|
|
static void
|
|
hns3_free_tx_queues(struct rte_eth_dev *dev)
|
|
{
|
|
struct hns3_adapter *hns = dev->data->dev_private;
|
|
struct hns3_fake_queue_data *fkq_data;
|
|
struct hns3_hw *hw = &hns->hw;
|
|
uint16_t nb_tx_q;
|
|
uint16_t i;
|
|
|
|
nb_tx_q = hw->data->nb_tx_queues;
|
|
for (i = 0; i < nb_tx_q; i++) {
|
|
if (dev->data->tx_queues[i]) {
|
|
hns3_tx_queue_release(dev->data->tx_queues[i]);
|
|
dev->data->tx_queues[i] = NULL;
|
|
}
|
|
}
|
|
|
|
/* Free fake Tx queues */
|
|
fkq_data = &hw->fkq_data;
|
|
for (i = 0; i < fkq_data->nb_fake_tx_queues; i++) {
|
|
if (fkq_data->tx_queues[i])
|
|
hns3_fake_tx_queue_release(fkq_data->tx_queues[i]);
|
|
}
|
|
}
|
|
|
|
void
|
|
hns3_free_all_queues(struct rte_eth_dev *dev)
|
|
{
|
|
hns3_free_rx_queues(dev);
|
|
hns3_free_tx_queues(dev);
|
|
}
|
|
|
|
static int
|
|
hns3_alloc_rx_queue_mbufs(struct hns3_hw *hw, struct hns3_rx_queue *rxq)
|
|
{
|
|
struct rte_mbuf *mbuf;
|
|
uint64_t dma_addr;
|
|
uint16_t i;
|
|
|
|
for (i = 0; i < rxq->nb_rx_desc; i++) {
|
|
mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);
|
|
if (unlikely(mbuf == NULL)) {
|
|
hns3_err(hw, "Failed to allocate RXD[%u] for rx queue!",
|
|
i);
|
|
hns3_rx_queue_release_mbufs(rxq);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
rte_mbuf_refcnt_set(mbuf, 1);
|
|
mbuf->next = NULL;
|
|
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
|
|
mbuf->nb_segs = 1;
|
|
mbuf->port = rxq->port_id;
|
|
|
|
rxq->sw_ring[i].mbuf = mbuf;
|
|
dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
|
|
rxq->rx_ring[i].addr = dma_addr;
|
|
rxq->rx_ring[i].rx.bd_base_info = 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
hns3_buf_size2type(uint32_t buf_size)
|
|
{
|
|
int bd_size_type;
|
|
|
|
switch (buf_size) {
|
|
case 512:
|
|
bd_size_type = HNS3_BD_SIZE_512_TYPE;
|
|
break;
|
|
case 1024:
|
|
bd_size_type = HNS3_BD_SIZE_1024_TYPE;
|
|
break;
|
|
case 4096:
|
|
bd_size_type = HNS3_BD_SIZE_4096_TYPE;
|
|
break;
|
|
default:
|
|
bd_size_type = HNS3_BD_SIZE_2048_TYPE;
|
|
}
|
|
|
|
return bd_size_type;
|
|
}
|
|
|
|
static void
|
|
hns3_init_rx_queue_hw(struct hns3_rx_queue *rxq)
|
|
{
|
|
uint32_t rx_buf_len = rxq->rx_buf_len;
|
|
uint64_t dma_addr = rxq->rx_ring_phys_addr;
|
|
|
|
hns3_write_dev(rxq, HNS3_RING_RX_BASEADDR_L_REG, (uint32_t)dma_addr);
|
|
hns3_write_dev(rxq, HNS3_RING_RX_BASEADDR_H_REG,
|
|
(uint32_t)((dma_addr >> 31) >> 1));
|
|
|
|
hns3_write_dev(rxq, HNS3_RING_RX_BD_LEN_REG,
|
|
hns3_buf_size2type(rx_buf_len));
|
|
hns3_write_dev(rxq, HNS3_RING_RX_BD_NUM_REG,
|
|
HNS3_CFG_DESC_NUM(rxq->nb_rx_desc));
|
|
}
|
|
|
|
static void
|
|
hns3_init_tx_queue_hw(struct hns3_tx_queue *txq)
|
|
{
|
|
uint64_t dma_addr = txq->tx_ring_phys_addr;
|
|
|
|
hns3_write_dev(txq, HNS3_RING_TX_BASEADDR_L_REG, (uint32_t)dma_addr);
|
|
hns3_write_dev(txq, HNS3_RING_TX_BASEADDR_H_REG,
|
|
(uint32_t)((dma_addr >> 31) >> 1));
|
|
|
|
hns3_write_dev(txq, HNS3_RING_TX_BD_NUM_REG,
|
|
HNS3_CFG_DESC_NUM(txq->nb_tx_desc));
|
|
}
|
|
|
|
void
|
|
hns3_update_all_queues_pvid_proc_en(struct hns3_hw *hw)
|
|
{
|
|
uint16_t nb_rx_q = hw->data->nb_rx_queues;
|
|
uint16_t nb_tx_q = hw->data->nb_tx_queues;
|
|
struct hns3_rx_queue *rxq;
|
|
struct hns3_tx_queue *txq;
|
|
bool pvid_en;
|
|
int i;
|
|
|
|
pvid_en = hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE;
|
|
for (i = 0; i < hw->cfg_max_queues; i++) {
|
|
if (i < nb_rx_q) {
|
|
rxq = hw->data->rx_queues[i];
|
|
if (rxq != NULL)
|
|
rxq->pvid_sw_discard_en = pvid_en;
|
|
}
|
|
if (i < nb_tx_q) {
|
|
txq = hw->data->tx_queues[i];
|
|
if (txq != NULL)
|
|
txq->pvid_sw_shift_en = pvid_en;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
hns3_stop_unused_queue(void *tqp_base, enum hns3_ring_type queue_type)
|
|
{
|
|
uint32_t reg_offset;
|
|
uint32_t reg;
|
|
|
|
reg_offset = queue_type == HNS3_RING_TYPE_TX ?
|
|
HNS3_RING_TX_EN_REG : HNS3_RING_RX_EN_REG;
|
|
reg = hns3_read_reg(tqp_base, reg_offset);
|
|
reg &= ~BIT(HNS3_RING_EN_B);
|
|
hns3_write_reg(tqp_base, reg_offset, reg);
|
|
}
|
|
|
|
void
|
|
hns3_enable_all_queues(struct hns3_hw *hw, bool en)
|
|
{
|
|
uint16_t nb_rx_q = hw->data->nb_rx_queues;
|
|
uint16_t nb_tx_q = hw->data->nb_tx_queues;
|
|
struct hns3_rx_queue *rxq;
|
|
struct hns3_tx_queue *txq;
|
|
uint32_t rcb_reg;
|
|
void *tqp_base;
|
|
int i;
|
|
|
|
for (i = 0; i < hw->cfg_max_queues; i++) {
|
|
if (hns3_dev_indep_txrx_supported(hw)) {
|
|
rxq = i < nb_rx_q ? hw->data->rx_queues[i] : NULL;
|
|
txq = i < nb_tx_q ? hw->data->tx_queues[i] : NULL;
|
|
|
|
tqp_base = (void *)((char *)hw->io_base +
|
|
hns3_get_tqp_reg_offset(i));
|
|
/*
|
|
* If queue struct is not initialized, it means the
|
|
* related HW ring has not been initialized yet.
|
|
* So, these queues should be disabled before enable
|
|
* the tqps to avoid a HW exception since the queues
|
|
* are enabled by default.
|
|
*/
|
|
if (rxq == NULL)
|
|
hns3_stop_unused_queue(tqp_base,
|
|
HNS3_RING_TYPE_RX);
|
|
if (txq == NULL)
|
|
hns3_stop_unused_queue(tqp_base,
|
|
HNS3_RING_TYPE_TX);
|
|
} else {
|
|
rxq = i < nb_rx_q ? hw->data->rx_queues[i] :
|
|
hw->fkq_data.rx_queues[i - nb_rx_q];
|
|
|
|
tqp_base = rxq->io_base;
|
|
}
|
|
/*
|
|
* This is the master switch that used to control the enabling
|
|
* of a pair of Tx and Rx queues. Both the Rx and Tx point to
|
|
* the same register
|
|
*/
|
|
rcb_reg = hns3_read_reg(tqp_base, HNS3_RING_EN_REG);
|
|
if (en)
|
|
rcb_reg |= BIT(HNS3_RING_EN_B);
|
|
else
|
|
rcb_reg &= ~BIT(HNS3_RING_EN_B);
|
|
hns3_write_reg(tqp_base, HNS3_RING_EN_REG, rcb_reg);
|
|
}
|
|
}
|
|
|
|
static void
|
|
hns3_enable_txq(struct hns3_tx_queue *txq, bool en)
|
|
{
|
|
struct hns3_hw *hw = &txq->hns->hw;
|
|
uint32_t reg;
|
|
|
|
if (hns3_dev_indep_txrx_supported(hw)) {
|
|
reg = hns3_read_dev(txq, HNS3_RING_TX_EN_REG);
|
|
if (en)
|
|
reg |= BIT(HNS3_RING_EN_B);
|
|
else
|
|
reg &= ~BIT(HNS3_RING_EN_B);
|
|
hns3_write_dev(txq, HNS3_RING_TX_EN_REG, reg);
|
|
}
|
|
txq->enabled = en;
|
|
}
|
|
|
|
static void
|
|
hns3_enable_rxq(struct hns3_rx_queue *rxq, bool en)
|
|
{
|
|
struct hns3_hw *hw = &rxq->hns->hw;
|
|
uint32_t reg;
|
|
|
|
if (hns3_dev_indep_txrx_supported(hw)) {
|
|
reg = hns3_read_dev(rxq, HNS3_RING_RX_EN_REG);
|
|
if (en)
|
|
reg |= BIT(HNS3_RING_EN_B);
|
|
else
|
|
reg &= ~BIT(HNS3_RING_EN_B);
|
|
hns3_write_dev(rxq, HNS3_RING_RX_EN_REG, reg);
|
|
}
|
|
rxq->enabled = en;
|
|
}
|
|
|
|
int
|
|
hns3_start_all_txqs(struct rte_eth_dev *dev)
|
|
{
|
|
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct hns3_tx_queue *txq;
|
|
uint16_t i, j;
|
|
|
|
for (i = 0; i < dev->data->nb_tx_queues; i++) {
|
|
txq = hw->data->tx_queues[i];
|
|
if (!txq) {
|
|
hns3_err(hw, "Tx queue %u not available or setup.", i);
|
|
goto start_txqs_fail;
|
|
}
|
|
/*
|
|
* Tx queue is enabled by default. Therefore, the Tx queues
|
|
* needs to be disabled when deferred_start is set. There is
|
|
* another master switch used to control the enabling of a pair
|
|
* of Tx and Rx queues. And the master switch is disabled by
|
|
* default.
|
|
*/
|
|
if (txq->tx_deferred_start)
|
|
hns3_enable_txq(txq, false);
|
|
else
|
|
hns3_enable_txq(txq, true);
|
|
}
|
|
return 0;
|
|
|
|
start_txqs_fail:
|
|
for (j = 0; j < i; j++) {
|
|
txq = hw->data->tx_queues[j];
|
|
hns3_enable_txq(txq, false);
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
int
|
|
hns3_start_all_rxqs(struct rte_eth_dev *dev)
|
|
{
|
|
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct hns3_rx_queue *rxq;
|
|
uint16_t i, j;
|
|
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
rxq = hw->data->rx_queues[i];
|
|
if (!rxq) {
|
|
hns3_err(hw, "Rx queue %u not available or setup.", i);
|
|
goto start_rxqs_fail;
|
|
}
|
|
/*
|
|
* Rx queue is enabled by default. Therefore, the Rx queues
|
|
* needs to be disabled when deferred_start is set. There is
|
|
* another master switch used to control the enabling of a pair
|
|
* of Tx and Rx queues. And the master switch is disabled by
|
|
* default.
|
|
*/
|
|
if (rxq->rx_deferred_start)
|
|
hns3_enable_rxq(rxq, false);
|
|
else
|
|
hns3_enable_rxq(rxq, true);
|
|
}
|
|
return 0;
|
|
|
|
start_rxqs_fail:
|
|
for (j = 0; j < i; j++) {
|
|
rxq = hw->data->rx_queues[j];
|
|
hns3_enable_rxq(rxq, false);
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
void
|
|
hns3_restore_tqp_enable_state(struct hns3_hw *hw)
|
|
{
|
|
struct hns3_rx_queue *rxq;
|
|
struct hns3_tx_queue *txq;
|
|
uint16_t i;
|
|
|
|
for (i = 0; i < hw->data->nb_rx_queues; i++) {
|
|
rxq = hw->data->rx_queues[i];
|
|
if (rxq != NULL)
|
|
hns3_enable_rxq(rxq, rxq->enabled);
|
|
}
|
|
|
|
for (i = 0; i < hw->data->nb_tx_queues; i++) {
|
|
txq = hw->data->tx_queues[i];
|
|
if (txq != NULL)
|
|
hns3_enable_txq(txq, txq->enabled);
|
|
}
|
|
}
|
|
|
|
void
|
|
hns3_stop_all_txqs(struct rte_eth_dev *dev)
|
|
{
|
|
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct hns3_tx_queue *txq;
|
|
uint16_t i;
|
|
|
|
for (i = 0; i < dev->data->nb_tx_queues; i++) {
|
|
txq = hw->data->tx_queues[i];
|
|
if (!txq)
|
|
continue;
|
|
hns3_enable_txq(txq, false);
|
|
}
|
|
}
|
|
|
|
static int
|
|
hns3_tqp_enable(struct hns3_hw *hw, uint16_t queue_id, bool enable)
|
|
{
|
|
struct hns3_cfg_com_tqp_queue_cmd *req;
|
|
struct hns3_cmd_desc desc;
|
|
int ret;
|
|
|
|
req = (struct hns3_cfg_com_tqp_queue_cmd *)desc.data;
|
|
|
|
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_COM_TQP_QUEUE, false);
|
|
req->tqp_id = rte_cpu_to_le_16(queue_id);
|
|
req->stream_id = 0;
|
|
hns3_set_bit(req->enable, HNS3_TQP_ENABLE_B, enable ? 1 : 0);
|
|
|
|
ret = hns3_cmd_send(hw, &desc, 1);
|
|
if (ret)
|
|
hns3_err(hw, "TQP enable fail, ret = %d", ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
hns3_send_reset_tqp_cmd(struct hns3_hw *hw, uint16_t queue_id, bool enable)
|
|
{
|
|
struct hns3_reset_tqp_queue_cmd *req;
|
|
struct hns3_cmd_desc desc;
|
|
int ret;
|
|
|
|
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RESET_TQP_QUEUE, false);
|
|
|
|
req = (struct hns3_reset_tqp_queue_cmd *)desc.data;
|
|
req->tqp_id = rte_cpu_to_le_16(queue_id);
|
|
hns3_set_bit(req->reset_req, HNS3_TQP_RESET_B, enable ? 1 : 0);
|
|
ret = hns3_cmd_send(hw, &desc, 1);
|
|
if (ret)
|
|
hns3_err(hw, "send tqp reset cmd error, queue_id = %u, "
|
|
"ret = %d", queue_id, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
hns3_get_tqp_reset_status(struct hns3_hw *hw, uint16_t queue_id,
|
|
uint8_t *reset_status)
|
|
{
|
|
struct hns3_reset_tqp_queue_cmd *req;
|
|
struct hns3_cmd_desc desc;
|
|
int ret;
|
|
|
|
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RESET_TQP_QUEUE, true);
|
|
|
|
req = (struct hns3_reset_tqp_queue_cmd *)desc.data;
|
|
req->tqp_id = rte_cpu_to_le_16(queue_id);
|
|
|
|
ret = hns3_cmd_send(hw, &desc, 1);
|
|
if (ret) {
|
|
hns3_err(hw, "get tqp reset status error, queue_id = %u, "
|
|
"ret = %d.", queue_id, ret);
|
|
return ret;
|
|
}
|
|
*reset_status = hns3_get_bit(req->ready_to_reset, HNS3_TQP_RESET_B);
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
hns3pf_reset_tqp(struct hns3_hw *hw, uint16_t queue_id)
|
|
{
|
|
#define HNS3_TQP_RESET_TRY_MS 200
|
|
uint8_t reset_status;
|
|
uint64_t end;
|
|
int ret;
|
|
|
|
ret = hns3_tqp_enable(hw, queue_id, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* In current version VF is not supported when PF is driven by DPDK
|
|
* driver, all task queue pairs are mapped to PF function, so PF's queue
|
|
* id is equals to the global queue id in PF range.
|
|
*/
|
|
ret = hns3_send_reset_tqp_cmd(hw, queue_id, true);
|
|
if (ret) {
|
|
hns3_err(hw, "Send reset tqp cmd fail, ret = %d", ret);
|
|
return ret;
|
|
}
|
|
end = get_timeofday_ms() + HNS3_TQP_RESET_TRY_MS;
|
|
do {
|
|
/* Wait for tqp hw reset */
|
|
rte_delay_ms(HNS3_POLL_RESPONE_MS);
|
|
ret = hns3_get_tqp_reset_status(hw, queue_id, &reset_status);
|
|
if (ret)
|
|
goto tqp_reset_fail;
|
|
|
|
if (reset_status)
|
|
break;
|
|
} while (get_timeofday_ms() < end);
|
|
|
|
if (!reset_status) {
|
|
ret = -ETIMEDOUT;
|
|
hns3_err(hw, "reset tqp timeout, queue_id = %u, ret = %d",
|
|
queue_id, ret);
|
|
goto tqp_reset_fail;
|
|
}
|
|
|
|
ret = hns3_send_reset_tqp_cmd(hw, queue_id, false);
|
|
if (ret)
|
|
hns3_err(hw, "Deassert the soft reset fail, ret = %d", ret);
|
|
|
|
return ret;
|
|
|
|
tqp_reset_fail:
|
|
hns3_send_reset_tqp_cmd(hw, queue_id, false);
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
hns3vf_reset_tqp(struct hns3_hw *hw, uint16_t queue_id)
|
|
{
|
|
uint8_t msg_data[2];
|
|
int ret;
|
|
|
|
/* Disable VF's queue before send queue reset msg to PF */
|
|
ret = hns3_tqp_enable(hw, queue_id, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
memcpy(msg_data, &queue_id, sizeof(uint16_t));
|
|
|
|
ret = hns3_send_mbx_msg(hw, HNS3_MBX_QUEUE_RESET, 0, msg_data,
|
|
sizeof(msg_data), true, NULL, 0);
|
|
if (ret)
|
|
hns3_err(hw, "fail to reset tqp, queue_id = %u, ret = %d.",
|
|
queue_id, ret);
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
hns3_reset_tqp(struct hns3_adapter *hns, uint16_t queue_id)
|
|
{
|
|
struct hns3_hw *hw = &hns->hw;
|
|
|
|
if (hns->is_vf)
|
|
return hns3vf_reset_tqp(hw, queue_id);
|
|
else
|
|
return hns3pf_reset_tqp(hw, queue_id);
|
|
}
|
|
|
|
int
|
|
hns3_reset_all_tqps(struct hns3_adapter *hns)
|
|
{
|
|
struct hns3_hw *hw = &hns->hw;
|
|
int ret, i;
|
|
|
|
for (i = 0; i < hw->cfg_max_queues; i++) {
|
|
ret = hns3_reset_tqp(hns, i);
|
|
if (ret) {
|
|
hns3_err(hw, "Failed to reset No.%d queue: %d", i, ret);
|
|
return ret;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
hns3_send_reset_queue_cmd(struct hns3_hw *hw, uint16_t queue_id,
|
|
enum hns3_ring_type queue_type, bool enable)
|
|
{
|
|
struct hns3_reset_tqp_queue_cmd *req;
|
|
struct hns3_cmd_desc desc;
|
|
int queue_direction;
|
|
int ret;
|
|
|
|
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RESET_TQP_QUEUE_INDEP, false);
|
|
|
|
req = (struct hns3_reset_tqp_queue_cmd *)desc.data;
|
|
req->tqp_id = rte_cpu_to_le_16(queue_id);
|
|
queue_direction = queue_type == HNS3_RING_TYPE_TX ? 0 : 1;
|
|
req->queue_direction = rte_cpu_to_le_16(queue_direction);
|
|
hns3_set_bit(req->reset_req, HNS3_TQP_RESET_B, enable ? 1 : 0);
|
|
|
|
ret = hns3_cmd_send(hw, &desc, 1);
|
|
if (ret)
|
|
hns3_err(hw, "send queue reset cmd error, queue_id = %u, "
|
|
"queue_type = %s, ret = %d.", queue_id,
|
|
queue_type == HNS3_RING_TYPE_TX ? "Tx" : "Rx", ret);
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
hns3_get_queue_reset_status(struct hns3_hw *hw, uint16_t queue_id,
|
|
enum hns3_ring_type queue_type,
|
|
uint8_t *reset_status)
|
|
{
|
|
struct hns3_reset_tqp_queue_cmd *req;
|
|
struct hns3_cmd_desc desc;
|
|
int queue_direction;
|
|
int ret;
|
|
|
|
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RESET_TQP_QUEUE_INDEP, true);
|
|
|
|
req = (struct hns3_reset_tqp_queue_cmd *)desc.data;
|
|
req->tqp_id = rte_cpu_to_le_16(queue_id);
|
|
queue_direction = queue_type == HNS3_RING_TYPE_TX ? 0 : 1;
|
|
req->queue_direction = rte_cpu_to_le_16(queue_direction);
|
|
|
|
ret = hns3_cmd_send(hw, &desc, 1);
|
|
if (ret) {
|
|
hns3_err(hw, "get queue reset status error, queue_id = %u "
|
|
"queue_type = %s, ret = %d.", queue_id,
|
|
queue_type == HNS3_RING_TYPE_TX ? "Tx" : "Rx", ret);
|
|
return ret;
|
|
}
|
|
|
|
*reset_status = hns3_get_bit(req->ready_to_reset, HNS3_TQP_RESET_B);
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
hns3_reset_queue(struct hns3_hw *hw, uint16_t queue_id,
|
|
enum hns3_ring_type queue_type)
|
|
{
|
|
#define HNS3_QUEUE_RESET_TRY_MS 200
|
|
struct hns3_tx_queue *txq;
|
|
struct hns3_rx_queue *rxq;
|
|
uint32_t reset_wait_times;
|
|
uint32_t max_wait_times;
|
|
uint8_t reset_status;
|
|
int ret;
|
|
|
|
if (queue_type == HNS3_RING_TYPE_TX) {
|
|
txq = hw->data->tx_queues[queue_id];
|
|
hns3_enable_txq(txq, false);
|
|
} else {
|
|
rxq = hw->data->rx_queues[queue_id];
|
|
hns3_enable_rxq(rxq, false);
|
|
}
|
|
|
|
ret = hns3_send_reset_queue_cmd(hw, queue_id, queue_type, true);
|
|
if (ret) {
|
|
hns3_err(hw, "send reset queue cmd fail, ret = %d.", ret);
|
|
return ret;
|
|
}
|
|
|
|
reset_wait_times = 0;
|
|
max_wait_times = HNS3_QUEUE_RESET_TRY_MS / HNS3_POLL_RESPONE_MS;
|
|
while (reset_wait_times < max_wait_times) {
|
|
/* Wait for queue hw reset */
|
|
rte_delay_ms(HNS3_POLL_RESPONE_MS);
|
|
ret = hns3_get_queue_reset_status(hw, queue_id,
|
|
queue_type, &reset_status);
|
|
if (ret)
|
|
goto queue_reset_fail;
|
|
|
|
if (reset_status)
|
|
break;
|
|
reset_wait_times++;
|
|
}
|
|
|
|
if (!reset_status) {
|
|
hns3_err(hw, "reset queue timeout, queue_id = %u, "
|
|
"queue_type = %s", queue_id,
|
|
queue_type == HNS3_RING_TYPE_TX ? "Tx" : "Rx");
|
|
ret = -ETIMEDOUT;
|
|
goto queue_reset_fail;
|
|
}
|
|
|
|
ret = hns3_send_reset_queue_cmd(hw, queue_id, queue_type, false);
|
|
if (ret)
|
|
hns3_err(hw, "deassert queue reset fail, ret = %d.", ret);
|
|
|
|
return ret;
|
|
|
|
queue_reset_fail:
|
|
hns3_send_reset_queue_cmd(hw, queue_id, queue_type, false);
|
|
return ret;
|
|
}
|
|
|
|
uint32_t
|
|
hns3_get_tqp_intr_reg_offset(uint16_t tqp_intr_id)
|
|
{
|
|
uint32_t reg_offset;
|
|
|
|
/* Need an extend offset to config queues > 64 */
|
|
if (tqp_intr_id < HNS3_MIN_EXT_TQP_INTR_ID)
|
|
reg_offset = HNS3_TQP_INTR_REG_BASE +
|
|
tqp_intr_id * HNS3_TQP_INTR_LOW_ORDER_OFFSET;
|
|
else
|
|
reg_offset = HNS3_TQP_INTR_EXT_REG_BASE +
|
|
tqp_intr_id / HNS3_MIN_EXT_TQP_INTR_ID *
|
|
HNS3_TQP_INTR_HIGH_ORDER_OFFSET +
|
|
tqp_intr_id % HNS3_MIN_EXT_TQP_INTR_ID *
|
|
HNS3_TQP_INTR_LOW_ORDER_OFFSET;
|
|
|
|
return reg_offset;
|
|
}
|
|
|
|
void
|
|
hns3_set_queue_intr_gl(struct hns3_hw *hw, uint16_t queue_id,
|
|
uint8_t gl_idx, uint16_t gl_value)
|
|
{
|
|
uint32_t offset[] = {HNS3_TQP_INTR_GL0_REG,
|
|
HNS3_TQP_INTR_GL1_REG,
|
|
HNS3_TQP_INTR_GL2_REG};
|
|
uint32_t addr, value;
|
|
|
|
if (gl_idx >= RTE_DIM(offset) || gl_value > HNS3_TQP_INTR_GL_MAX)
|
|
return;
|
|
|
|
addr = offset[gl_idx] + hns3_get_tqp_intr_reg_offset(queue_id);
|
|
if (hw->intr.gl_unit == HNS3_INTR_COALESCE_GL_UINT_1US)
|
|
value = gl_value | HNS3_TQP_INTR_GL_UNIT_1US;
|
|
else
|
|
value = HNS3_GL_USEC_TO_REG(gl_value);
|
|
|
|
hns3_write_dev(hw, addr, value);
|
|
}
|
|
|
|
void
|
|
hns3_set_queue_intr_rl(struct hns3_hw *hw, uint16_t queue_id, uint16_t rl_value)
|
|
{
|
|
uint32_t addr, value;
|
|
|
|
if (rl_value > HNS3_TQP_INTR_RL_MAX)
|
|
return;
|
|
|
|
addr = HNS3_TQP_INTR_RL_REG + hns3_get_tqp_intr_reg_offset(queue_id);
|
|
value = HNS3_RL_USEC_TO_REG(rl_value);
|
|
if (value > 0)
|
|
value |= HNS3_TQP_INTR_RL_ENABLE_MASK;
|
|
|
|
hns3_write_dev(hw, addr, value);
|
|
}
|
|
|
|
void
|
|
hns3_set_queue_intr_ql(struct hns3_hw *hw, uint16_t queue_id, uint16_t ql_value)
|
|
{
|
|
uint32_t addr;
|
|
|
|
/*
|
|
* int_ql_max == 0 means the hardware does not support QL,
|
|
* QL regs config is not permitted if QL is not supported,
|
|
* here just return.
|
|
*/
|
|
if (hw->intr.int_ql_max == HNS3_INTR_QL_NONE)
|
|
return;
|
|
|
|
addr = HNS3_TQP_INTR_TX_QL_REG + hns3_get_tqp_intr_reg_offset(queue_id);
|
|
hns3_write_dev(hw, addr, ql_value);
|
|
|
|
addr = HNS3_TQP_INTR_RX_QL_REG + hns3_get_tqp_intr_reg_offset(queue_id);
|
|
hns3_write_dev(hw, addr, ql_value);
|
|
}
|
|
|
|
static void
|
|
hns3_queue_intr_enable(struct hns3_hw *hw, uint16_t queue_id, bool en)
|
|
{
|
|
uint32_t addr, value;
|
|
|
|
addr = HNS3_TQP_INTR_CTRL_REG + hns3_get_tqp_intr_reg_offset(queue_id);
|
|
value = en ? 1 : 0;
|
|
|
|
hns3_write_dev(hw, addr, value);
|
|
}
|
|
|
|
/*
|
|
* Enable all rx queue interrupt when in interrupt rx mode.
|
|
* This api was called before enable queue rx&tx (in normal start or reset
|
|
* recover scenes), used to fix hardware rx queue interrupt enable was clear
|
|
* when FLR.
|
|
*/
|
|
void
|
|
hns3_dev_all_rx_queue_intr_enable(struct hns3_hw *hw, bool en)
|
|
{
|
|
struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
|
|
uint16_t nb_rx_q = hw->data->nb_rx_queues;
|
|
int i;
|
|
|
|
if (dev->data->dev_conf.intr_conf.rxq == 0)
|
|
return;
|
|
|
|
for (i = 0; i < nb_rx_q; i++)
|
|
hns3_queue_intr_enable(hw, i, en);
|
|
}
|
|
|
|
int
|
|
hns3_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
|
|
{
|
|
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
|
|
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
|
|
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
if (dev->data->dev_conf.intr_conf.rxq == 0)
|
|
return -ENOTSUP;
|
|
|
|
hns3_queue_intr_enable(hw, queue_id, true);
|
|
|
|
return rte_intr_ack(intr_handle);
|
|
}
|
|
|
|
int
|
|
hns3_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
|
|
{
|
|
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
if (dev->data->dev_conf.intr_conf.rxq == 0)
|
|
return -ENOTSUP;
|
|
|
|
hns3_queue_intr_enable(hw, queue_id, false);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
hns3_init_rxq(struct hns3_adapter *hns, uint16_t idx)
|
|
{
|
|
struct hns3_hw *hw = &hns->hw;
|
|
struct hns3_rx_queue *rxq;
|
|
int ret;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
rxq = (struct hns3_rx_queue *)hw->data->rx_queues[idx];
|
|
ret = hns3_alloc_rx_queue_mbufs(hw, rxq);
|
|
if (ret) {
|
|
hns3_err(hw, "fail to alloc mbuf for Rx queue %u, ret = %d.",
|
|
idx, ret);
|
|
return ret;
|
|
}
|
|
|
|
rxq->next_to_use = 0;
|
|
rxq->rx_rearm_start = 0;
|
|
rxq->rx_free_hold = 0;
|
|
rxq->rx_rearm_nb = 0;
|
|
rxq->pkt_first_seg = NULL;
|
|
rxq->pkt_last_seg = NULL;
|
|
hns3_init_rx_queue_hw(rxq);
|
|
hns3_rxq_vec_setup(rxq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
hns3_init_fake_rxq(struct hns3_adapter *hns, uint16_t idx)
|
|
{
|
|
struct hns3_hw *hw = &hns->hw;
|
|
struct hns3_rx_queue *rxq;
|
|
|
|
rxq = (struct hns3_rx_queue *)hw->fkq_data.rx_queues[idx];
|
|
rxq->next_to_use = 0;
|
|
rxq->rx_free_hold = 0;
|
|
rxq->rx_rearm_start = 0;
|
|
rxq->rx_rearm_nb = 0;
|
|
hns3_init_rx_queue_hw(rxq);
|
|
}
|
|
|
|
static void
|
|
hns3_init_txq(struct hns3_tx_queue *txq)
|
|
{
|
|
struct hns3_desc *desc;
|
|
int i;
|
|
|
|
/* Clear tx bd */
|
|
desc = txq->tx_ring;
|
|
for (i = 0; i < txq->nb_tx_desc; i++) {
|
|
desc->tx.tp_fe_sc_vld_ra_ri = 0;
|
|
desc++;
|
|
}
|
|
|
|
txq->next_to_use = 0;
|
|
txq->next_to_clean = 0;
|
|
txq->tx_bd_ready = txq->nb_tx_desc - 1;
|
|
hns3_init_tx_queue_hw(txq);
|
|
}
|
|
|
|
static void
|
|
hns3_init_tx_ring_tc(struct hns3_adapter *hns)
|
|
{
|
|
struct hns3_hw *hw = &hns->hw;
|
|
struct hns3_tx_queue *txq;
|
|
int i, num;
|
|
|
|
for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
|
|
struct hns3_tc_queue_info *tc_queue = &hw->tc_queue[i];
|
|
int j;
|
|
|
|
if (!tc_queue->enable)
|
|
continue;
|
|
|
|
for (j = 0; j < tc_queue->tqp_count; j++) {
|
|
num = tc_queue->tqp_offset + j;
|
|
txq = (struct hns3_tx_queue *)hw->data->tx_queues[num];
|
|
if (txq == NULL)
|
|
continue;
|
|
|
|
hns3_write_dev(txq, HNS3_RING_TX_TC_REG, tc_queue->tc);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
hns3_init_rx_queues(struct hns3_adapter *hns)
|
|
{
|
|
struct hns3_hw *hw = &hns->hw;
|
|
struct hns3_rx_queue *rxq;
|
|
uint16_t i, j;
|
|
int ret;
|
|
|
|
/* Initialize RSS for queues */
|
|
ret = hns3_config_rss(hns);
|
|
if (ret) {
|
|
hns3_err(hw, "failed to configure rss, ret = %d.", ret);
|
|
return ret;
|
|
}
|
|
|
|
for (i = 0; i < hw->data->nb_rx_queues; i++) {
|
|
rxq = (struct hns3_rx_queue *)hw->data->rx_queues[i];
|
|
if (!rxq) {
|
|
hns3_err(hw, "Rx queue %u not available or setup.", i);
|
|
goto out;
|
|
}
|
|
|
|
if (rxq->rx_deferred_start)
|
|
continue;
|
|
|
|
ret = hns3_init_rxq(hns, i);
|
|
if (ret) {
|
|
hns3_err(hw, "failed to init Rx queue %u, ret = %d.", i,
|
|
ret);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < hw->fkq_data.nb_fake_rx_queues; i++)
|
|
hns3_init_fake_rxq(hns, i);
|
|
|
|
return 0;
|
|
|
|
out:
|
|
for (j = 0; j < i; j++) {
|
|
rxq = (struct hns3_rx_queue *)hw->data->rx_queues[j];
|
|
hns3_rx_queue_release_mbufs(rxq);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
hns3_init_tx_queues(struct hns3_adapter *hns)
|
|
{
|
|
struct hns3_hw *hw = &hns->hw;
|
|
struct hns3_tx_queue *txq;
|
|
uint16_t i;
|
|
|
|
for (i = 0; i < hw->data->nb_tx_queues; i++) {
|
|
txq = (struct hns3_tx_queue *)hw->data->tx_queues[i];
|
|
if (!txq) {
|
|
hns3_err(hw, "Tx queue %u not available or setup.", i);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (txq->tx_deferred_start)
|
|
continue;
|
|
hns3_init_txq(txq);
|
|
}
|
|
|
|
for (i = 0; i < hw->fkq_data.nb_fake_tx_queues; i++) {
|
|
txq = (struct hns3_tx_queue *)hw->fkq_data.tx_queues[i];
|
|
hns3_init_txq(txq);
|
|
}
|
|
hns3_init_tx_ring_tc(hns);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Init all queues.
|
|
* Note: just init and setup queues, and don't enable tqps.
|
|
*/
|
|
int
|
|
hns3_init_queues(struct hns3_adapter *hns, bool reset_queue)
|
|
{
|
|
struct hns3_hw *hw = &hns->hw;
|
|
int ret;
|
|
|
|
if (reset_queue) {
|
|
ret = hns3_reset_all_tqps(hns);
|
|
if (ret) {
|
|
hns3_err(hw, "failed to reset all queues, ret = %d.",
|
|
ret);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
ret = hns3_init_rx_queues(hns);
|
|
if (ret) {
|
|
hns3_err(hw, "failed to init rx queues, ret = %d.", ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = hns3_init_tx_queues(hns);
|
|
if (ret) {
|
|
hns3_dev_release_mbufs(hns);
|
|
hns3_err(hw, "failed to init tx queues, ret = %d.", ret);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void
|
|
hns3_start_tqps(struct hns3_hw *hw)
|
|
{
|
|
struct hns3_tx_queue *txq;
|
|
struct hns3_rx_queue *rxq;
|
|
uint16_t i;
|
|
|
|
hns3_enable_all_queues(hw, true);
|
|
|
|
for (i = 0; i < hw->data->nb_tx_queues; i++) {
|
|
txq = hw->data->tx_queues[i];
|
|
if (txq->enabled)
|
|
hw->data->tx_queue_state[i] =
|
|
RTE_ETH_QUEUE_STATE_STARTED;
|
|
}
|
|
|
|
for (i = 0; i < hw->data->nb_rx_queues; i++) {
|
|
rxq = hw->data->rx_queues[i];
|
|
if (rxq->enabled)
|
|
hw->data->rx_queue_state[i] =
|
|
RTE_ETH_QUEUE_STATE_STARTED;
|
|
}
|
|
}
|
|
|
|
void
|
|
hns3_stop_tqps(struct hns3_hw *hw)
|
|
{
|
|
uint16_t i;
|
|
|
|
hns3_enable_all_queues(hw, false);
|
|
|
|
for (i = 0; i < hw->data->nb_tx_queues; i++)
|
|
hw->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
|
|
|
|
for (i = 0; i < hw->data->nb_rx_queues; i++)
|
|
hw->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
|
|
}
|
|
|
|
/*
|
|
* Iterate over all Rx Queue, and call the callback() function for each Rx
|
|
* queue.
|
|
*
|
|
* @param[in] dev
|
|
* The target eth dev.
|
|
* @param[in] callback
|
|
* The function to call for each queue.
|
|
* if callback function return nonzero will stop iterate and return it's value
|
|
* @param[in] arg
|
|
* The arguments to provide the callback function with.
|
|
*
|
|
* @return
|
|
* 0 on success, otherwise with errno set.
|
|
*/
|
|
int
|
|
hns3_rxq_iterate(struct rte_eth_dev *dev,
|
|
int (*callback)(struct hns3_rx_queue *, void *), void *arg)
|
|
{
|
|
uint32_t i;
|
|
int ret;
|
|
|
|
if (dev->data->rx_queues == NULL)
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
ret = callback(dev->data->rx_queues[i], arg);
|
|
if (ret != 0)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void*
|
|
hns3_alloc_rxq_and_dma_zone(struct rte_eth_dev *dev,
|
|
struct hns3_queue_info *q_info)
|
|
{
|
|
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
const struct rte_memzone *rx_mz;
|
|
struct hns3_rx_queue *rxq;
|
|
unsigned int rx_desc;
|
|
|
|
rxq = rte_zmalloc_socket(q_info->type, sizeof(struct hns3_rx_queue),
|
|
RTE_CACHE_LINE_SIZE, q_info->socket_id);
|
|
if (rxq == NULL) {
|
|
hns3_err(hw, "Failed to allocate memory for No.%u rx ring!",
|
|
q_info->idx);
|
|
return NULL;
|
|
}
|
|
|
|
/* Allocate rx ring hardware descriptors. */
|
|
rxq->queue_id = q_info->idx;
|
|
rxq->nb_rx_desc = q_info->nb_desc;
|
|
|
|
/*
|
|
* Allocate a litter more memory because rx vector functions
|
|
* don't check boundaries each time.
|
|
*/
|
|
rx_desc = (rxq->nb_rx_desc + HNS3_DEFAULT_RX_BURST) *
|
|
sizeof(struct hns3_desc);
|
|
rx_mz = rte_eth_dma_zone_reserve(dev, q_info->ring_name, q_info->idx,
|
|
rx_desc, HNS3_RING_BASE_ALIGN,
|
|
q_info->socket_id);
|
|
if (rx_mz == NULL) {
|
|
hns3_err(hw, "Failed to reserve DMA memory for No.%u rx ring!",
|
|
q_info->idx);
|
|
hns3_rx_queue_release(rxq);
|
|
return NULL;
|
|
}
|
|
rxq->mz = rx_mz;
|
|
rxq->rx_ring = (struct hns3_desc *)rx_mz->addr;
|
|
rxq->rx_ring_phys_addr = rx_mz->iova;
|
|
|
|
hns3_dbg(hw, "No.%u rx descriptors iova 0x%" PRIx64, q_info->idx,
|
|
rxq->rx_ring_phys_addr);
|
|
|
|
return rxq;
|
|
}
|
|
|
|
static int
|
|
hns3_fake_rx_queue_setup(struct rte_eth_dev *dev, uint16_t idx,
|
|
uint16_t nb_desc, unsigned int socket_id)
|
|
{
|
|
struct hns3_adapter *hns = dev->data->dev_private;
|
|
struct hns3_hw *hw = &hns->hw;
|
|
struct hns3_queue_info q_info;
|
|
struct hns3_rx_queue *rxq;
|
|
uint16_t nb_rx_q;
|
|
|
|
if (hw->fkq_data.rx_queues[idx]) {
|
|
hns3_rx_queue_release(hw->fkq_data.rx_queues[idx]);
|
|
hw->fkq_data.rx_queues[idx] = NULL;
|
|
}
|
|
|
|
q_info.idx = idx;
|
|
q_info.socket_id = socket_id;
|
|
q_info.nb_desc = nb_desc;
|
|
q_info.type = "hns3 fake RX queue";
|
|
q_info.ring_name = "rx_fake_ring";
|
|
rxq = hns3_alloc_rxq_and_dma_zone(dev, &q_info);
|
|
if (rxq == NULL) {
|
|
hns3_err(hw, "Failed to setup No.%u fake rx ring.", idx);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Don't need alloc sw_ring, because upper applications don't use it */
|
|
rxq->sw_ring = NULL;
|
|
|
|
rxq->hns = hns;
|
|
rxq->rx_deferred_start = false;
|
|
rxq->port_id = dev->data->port_id;
|
|
rxq->configured = true;
|
|
nb_rx_q = dev->data->nb_rx_queues;
|
|
rxq->io_base = (void *)((char *)hw->io_base + HNS3_TQP_REG_OFFSET +
|
|
(nb_rx_q + idx) * HNS3_TQP_REG_SIZE);
|
|
rxq->rx_buf_len = HNS3_MIN_BD_BUF_SIZE;
|
|
|
|
rte_spinlock_lock(&hw->lock);
|
|
hw->fkq_data.rx_queues[idx] = rxq;
|
|
rte_spinlock_unlock(&hw->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void*
|
|
hns3_alloc_txq_and_dma_zone(struct rte_eth_dev *dev,
|
|
struct hns3_queue_info *q_info)
|
|
{
|
|
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
const struct rte_memzone *tx_mz;
|
|
struct hns3_tx_queue *txq;
|
|
struct hns3_desc *desc;
|
|
unsigned int tx_desc;
|
|
int i;
|
|
|
|
txq = rte_zmalloc_socket(q_info->type, sizeof(struct hns3_tx_queue),
|
|
RTE_CACHE_LINE_SIZE, q_info->socket_id);
|
|
if (txq == NULL) {
|
|
hns3_err(hw, "Failed to allocate memory for No.%u tx ring!",
|
|
q_info->idx);
|
|
return NULL;
|
|
}
|
|
|
|
/* Allocate tx ring hardware descriptors. */
|
|
txq->queue_id = q_info->idx;
|
|
txq->nb_tx_desc = q_info->nb_desc;
|
|
tx_desc = txq->nb_tx_desc * sizeof(struct hns3_desc);
|
|
tx_mz = rte_eth_dma_zone_reserve(dev, q_info->ring_name, q_info->idx,
|
|
tx_desc, HNS3_RING_BASE_ALIGN,
|
|
q_info->socket_id);
|
|
if (tx_mz == NULL) {
|
|
hns3_err(hw, "Failed to reserve DMA memory for No.%u tx ring!",
|
|
q_info->idx);
|
|
hns3_tx_queue_release(txq);
|
|
return NULL;
|
|
}
|
|
txq->mz = tx_mz;
|
|
txq->tx_ring = (struct hns3_desc *)tx_mz->addr;
|
|
txq->tx_ring_phys_addr = tx_mz->iova;
|
|
|
|
hns3_dbg(hw, "No.%u tx descriptors iova 0x%" PRIx64, q_info->idx,
|
|
txq->tx_ring_phys_addr);
|
|
|
|
/* Clear tx bd */
|
|
desc = txq->tx_ring;
|
|
for (i = 0; i < txq->nb_tx_desc; i++) {
|
|
desc->tx.tp_fe_sc_vld_ra_ri = 0;
|
|
desc++;
|
|
}
|
|
|
|
return txq;
|
|
}
|
|
|
|
static int
|
|
hns3_fake_tx_queue_setup(struct rte_eth_dev *dev, uint16_t idx,
|
|
uint16_t nb_desc, unsigned int socket_id)
|
|
{
|
|
struct hns3_adapter *hns = dev->data->dev_private;
|
|
struct hns3_hw *hw = &hns->hw;
|
|
struct hns3_queue_info q_info;
|
|
struct hns3_tx_queue *txq;
|
|
uint16_t nb_tx_q;
|
|
|
|
if (hw->fkq_data.tx_queues[idx] != NULL) {
|
|
hns3_tx_queue_release(hw->fkq_data.tx_queues[idx]);
|
|
hw->fkq_data.tx_queues[idx] = NULL;
|
|
}
|
|
|
|
q_info.idx = idx;
|
|
q_info.socket_id = socket_id;
|
|
q_info.nb_desc = nb_desc;
|
|
q_info.type = "hns3 fake TX queue";
|
|
q_info.ring_name = "tx_fake_ring";
|
|
txq = hns3_alloc_txq_and_dma_zone(dev, &q_info);
|
|
if (txq == NULL) {
|
|
hns3_err(hw, "Failed to setup No.%u fake tx ring.", idx);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Don't need alloc sw_ring, because upper applications don't use it */
|
|
txq->sw_ring = NULL;
|
|
txq->free = NULL;
|
|
|
|
txq->hns = hns;
|
|
txq->tx_deferred_start = false;
|
|
txq->port_id = dev->data->port_id;
|
|
txq->configured = true;
|
|
nb_tx_q = dev->data->nb_tx_queues;
|
|
txq->io_base = (void *)((char *)hw->io_base + HNS3_TQP_REG_OFFSET +
|
|
(nb_tx_q + idx) * HNS3_TQP_REG_SIZE);
|
|
|
|
rte_spinlock_lock(&hw->lock);
|
|
hw->fkq_data.tx_queues[idx] = txq;
|
|
rte_spinlock_unlock(&hw->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
hns3_fake_rx_queue_config(struct hns3_hw *hw, uint16_t nb_queues)
|
|
{
|
|
uint16_t old_nb_queues = hw->fkq_data.nb_fake_rx_queues;
|
|
void **rxq;
|
|
uint16_t i;
|
|
|
|
if (hw->fkq_data.rx_queues == NULL && nb_queues != 0) {
|
|
/* first time configuration */
|
|
uint32_t size;
|
|
size = sizeof(hw->fkq_data.rx_queues[0]) * nb_queues;
|
|
hw->fkq_data.rx_queues = rte_zmalloc("fake_rx_queues", size,
|
|
RTE_CACHE_LINE_SIZE);
|
|
if (hw->fkq_data.rx_queues == NULL) {
|
|
hw->fkq_data.nb_fake_rx_queues = 0;
|
|
return -ENOMEM;
|
|
}
|
|
} else if (hw->fkq_data.rx_queues != NULL && nb_queues != 0) {
|
|
/* re-configure */
|
|
rxq = hw->fkq_data.rx_queues;
|
|
for (i = nb_queues; i < old_nb_queues; i++)
|
|
hns3_dev_rx_queue_release(rxq[i]);
|
|
|
|
rxq = rte_realloc(rxq, sizeof(rxq[0]) * nb_queues,
|
|
RTE_CACHE_LINE_SIZE);
|
|
if (rxq == NULL)
|
|
return -ENOMEM;
|
|
if (nb_queues > old_nb_queues) {
|
|
uint16_t new_qs = nb_queues - old_nb_queues;
|
|
memset(rxq + old_nb_queues, 0, sizeof(rxq[0]) * new_qs);
|
|
}
|
|
|
|
hw->fkq_data.rx_queues = rxq;
|
|
} else if (hw->fkq_data.rx_queues != NULL && nb_queues == 0) {
|
|
rxq = hw->fkq_data.rx_queues;
|
|
for (i = nb_queues; i < old_nb_queues; i++)
|
|
hns3_dev_rx_queue_release(rxq[i]);
|
|
|
|
rte_free(hw->fkq_data.rx_queues);
|
|
hw->fkq_data.rx_queues = NULL;
|
|
}
|
|
|
|
hw->fkq_data.nb_fake_rx_queues = nb_queues;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
hns3_fake_tx_queue_config(struct hns3_hw *hw, uint16_t nb_queues)
|
|
{
|
|
uint16_t old_nb_queues = hw->fkq_data.nb_fake_tx_queues;
|
|
void **txq;
|
|
uint16_t i;
|
|
|
|
if (hw->fkq_data.tx_queues == NULL && nb_queues != 0) {
|
|
/* first time configuration */
|
|
uint32_t size;
|
|
size = sizeof(hw->fkq_data.tx_queues[0]) * nb_queues;
|
|
hw->fkq_data.tx_queues = rte_zmalloc("fake_tx_queues", size,
|
|
RTE_CACHE_LINE_SIZE);
|
|
if (hw->fkq_data.tx_queues == NULL) {
|
|
hw->fkq_data.nb_fake_tx_queues = 0;
|
|
return -ENOMEM;
|
|
}
|
|
} else if (hw->fkq_data.tx_queues != NULL && nb_queues != 0) {
|
|
/* re-configure */
|
|
txq = hw->fkq_data.tx_queues;
|
|
for (i = nb_queues; i < old_nb_queues; i++)
|
|
hns3_dev_tx_queue_release(txq[i]);
|
|
txq = rte_realloc(txq, sizeof(txq[0]) * nb_queues,
|
|
RTE_CACHE_LINE_SIZE);
|
|
if (txq == NULL)
|
|
return -ENOMEM;
|
|
if (nb_queues > old_nb_queues) {
|
|
uint16_t new_qs = nb_queues - old_nb_queues;
|
|
memset(txq + old_nb_queues, 0, sizeof(txq[0]) * new_qs);
|
|
}
|
|
|
|
hw->fkq_data.tx_queues = txq;
|
|
} else if (hw->fkq_data.tx_queues != NULL && nb_queues == 0) {
|
|
txq = hw->fkq_data.tx_queues;
|
|
for (i = nb_queues; i < old_nb_queues; i++)
|
|
hns3_dev_tx_queue_release(txq[i]);
|
|
|
|
rte_free(hw->fkq_data.tx_queues);
|
|
hw->fkq_data.tx_queues = NULL;
|
|
}
|
|
hw->fkq_data.nb_fake_tx_queues = nb_queues;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
hns3_set_fake_rx_or_tx_queues(struct rte_eth_dev *dev, uint16_t nb_rx_q,
|
|
uint16_t nb_tx_q)
|
|
{
|
|
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint16_t rx_need_add_nb_q;
|
|
uint16_t tx_need_add_nb_q;
|
|
uint16_t port_id;
|
|
uint16_t q;
|
|
int ret;
|
|
|
|
/* Setup new number of fake RX/TX queues and reconfigure device. */
|
|
rx_need_add_nb_q = hw->cfg_max_queues - nb_rx_q;
|
|
tx_need_add_nb_q = hw->cfg_max_queues - nb_tx_q;
|
|
ret = hns3_fake_rx_queue_config(hw, rx_need_add_nb_q);
|
|
if (ret) {
|
|
hns3_err(hw, "Fail to configure fake rx queues: %d", ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = hns3_fake_tx_queue_config(hw, tx_need_add_nb_q);
|
|
if (ret) {
|
|
hns3_err(hw, "Fail to configure fake rx queues: %d", ret);
|
|
goto cfg_fake_tx_q_fail;
|
|
}
|
|
|
|
/* Allocate and set up fake RX queue per Ethernet port. */
|
|
port_id = hw->data->port_id;
|
|
for (q = 0; q < rx_need_add_nb_q; q++) {
|
|
ret = hns3_fake_rx_queue_setup(dev, q, HNS3_MIN_RING_DESC,
|
|
rte_eth_dev_socket_id(port_id));
|
|
if (ret)
|
|
goto setup_fake_rx_q_fail;
|
|
}
|
|
|
|
/* Allocate and set up fake TX queue per Ethernet port. */
|
|
for (q = 0; q < tx_need_add_nb_q; q++) {
|
|
ret = hns3_fake_tx_queue_setup(dev, q, HNS3_MIN_RING_DESC,
|
|
rte_eth_dev_socket_id(port_id));
|
|
if (ret)
|
|
goto setup_fake_tx_q_fail;
|
|
}
|
|
|
|
return 0;
|
|
|
|
setup_fake_tx_q_fail:
|
|
setup_fake_rx_q_fail:
|
|
(void)hns3_fake_tx_queue_config(hw, 0);
|
|
cfg_fake_tx_q_fail:
|
|
(void)hns3_fake_rx_queue_config(hw, 0);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void
|
|
hns3_dev_release_mbufs(struct hns3_adapter *hns)
|
|
{
|
|
struct rte_eth_dev_data *dev_data = hns->hw.data;
|
|
struct hns3_rx_queue *rxq;
|
|
struct hns3_tx_queue *txq;
|
|
int i;
|
|
|
|
if (dev_data->rx_queues)
|
|
for (i = 0; i < dev_data->nb_rx_queues; i++) {
|
|
rxq = dev_data->rx_queues[i];
|
|
if (rxq == NULL)
|
|
continue;
|
|
hns3_rx_queue_release_mbufs(rxq);
|
|
}
|
|
|
|
if (dev_data->tx_queues)
|
|
for (i = 0; i < dev_data->nb_tx_queues; i++) {
|
|
txq = dev_data->tx_queues[i];
|
|
if (txq == NULL)
|
|
continue;
|
|
hns3_tx_queue_release_mbufs(txq);
|
|
}
|
|
}
|
|
|
|
static int
|
|
hns3_rx_buf_len_calc(struct rte_mempool *mp, uint16_t *rx_buf_len)
|
|
{
|
|
uint16_t vld_buf_size;
|
|
uint16_t num_hw_specs;
|
|
uint16_t i;
|
|
|
|
/*
|
|
* hns3 network engine only support to set 4 typical specification, and
|
|
* different buffer size will affect the max packet_len and the max
|
|
* number of segmentation when hw gro is turned on in receive side. The
|
|
* relationship between them is as follows:
|
|
* rx_buf_size | max_gro_pkt_len | max_gro_nb_seg
|
|
* ---------------------|-------------------|----------------
|
|
* HNS3_4K_BD_BUF_SIZE | 60KB | 15
|
|
* HNS3_2K_BD_BUF_SIZE | 62KB | 31
|
|
* HNS3_1K_BD_BUF_SIZE | 63KB | 63
|
|
* HNS3_512_BD_BUF_SIZE | 31.5KB | 63
|
|
*/
|
|
static const uint16_t hw_rx_buf_size[] = {
|
|
HNS3_4K_BD_BUF_SIZE,
|
|
HNS3_2K_BD_BUF_SIZE,
|
|
HNS3_1K_BD_BUF_SIZE,
|
|
HNS3_512_BD_BUF_SIZE
|
|
};
|
|
|
|
vld_buf_size = (uint16_t)(rte_pktmbuf_data_room_size(mp) -
|
|
RTE_PKTMBUF_HEADROOM);
|
|
if (vld_buf_size < HNS3_MIN_BD_BUF_SIZE)
|
|
return -EINVAL;
|
|
|
|
num_hw_specs = RTE_DIM(hw_rx_buf_size);
|
|
for (i = 0; i < num_hw_specs; i++) {
|
|
if (vld_buf_size >= hw_rx_buf_size[i]) {
|
|
*rx_buf_len = hw_rx_buf_size[i];
|
|
break;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
hns3_rxq_conf_runtime_check(struct hns3_hw *hw, uint16_t buf_size,
|
|
uint16_t nb_desc)
|
|
{
|
|
struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
|
|
struct rte_eth_rxmode *rxmode = &hw->data->dev_conf.rxmode;
|
|
eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
|
|
uint16_t min_vec_bds;
|
|
|
|
/*
|
|
* HNS3 hardware network engine set scattered as default. If the driver
|
|
* is not work in scattered mode and the pkts greater than buf_size
|
|
* but smaller than max_rx_pkt_len will be distributed to multiple BDs.
|
|
* Driver cannot handle this situation.
|
|
*/
|
|
if (!hw->data->scattered_rx && rxmode->max_rx_pkt_len > buf_size) {
|
|
hns3_err(hw, "max_rx_pkt_len is not allowed to be set greater "
|
|
"than rx_buf_len if scattered is off.");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (pkt_burst == hns3_recv_pkts_vec) {
|
|
min_vec_bds = HNS3_DEFAULT_RXQ_REARM_THRESH +
|
|
HNS3_DEFAULT_RX_BURST;
|
|
if (nb_desc < min_vec_bds ||
|
|
nb_desc % HNS3_DEFAULT_RXQ_REARM_THRESH) {
|
|
hns3_err(hw, "if Rx burst mode is vector, "
|
|
"number of descriptor is required to be "
|
|
"bigger than min vector bds:%u, and could be "
|
|
"divided by rxq rearm thresh:%u.",
|
|
min_vec_bds, HNS3_DEFAULT_RXQ_REARM_THRESH);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
hns3_rx_queue_conf_check(struct hns3_hw *hw, const struct rte_eth_rxconf *conf,
|
|
struct rte_mempool *mp, uint16_t nb_desc,
|
|
uint16_t *buf_size)
|
|
{
|
|
int ret;
|
|
|
|
if (nb_desc > HNS3_MAX_RING_DESC || nb_desc < HNS3_MIN_RING_DESC ||
|
|
nb_desc % HNS3_ALIGN_RING_DESC) {
|
|
hns3_err(hw, "Number (%u) of rx descriptors is invalid",
|
|
nb_desc);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (conf->rx_drop_en == 0)
|
|
hns3_warn(hw, "if no descriptors available, packets are always "
|
|
"dropped and rx_drop_en (1) is fixed on");
|
|
|
|
if (hns3_rx_buf_len_calc(mp, buf_size)) {
|
|
hns3_err(hw, "rxq mbufs' data room size (%u) is not enough! "
|
|
"minimal data room size (%u).",
|
|
rte_pktmbuf_data_room_size(mp),
|
|
HNS3_MIN_BD_BUF_SIZE + RTE_PKTMBUF_HEADROOM);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (hw->data->dev_started) {
|
|
ret = hns3_rxq_conf_runtime_check(hw, *buf_size, nb_desc);
|
|
if (ret) {
|
|
hns3_err(hw, "Rx queue runtime setup fail.");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
uint32_t
|
|
hns3_get_tqp_reg_offset(uint16_t queue_id)
|
|
{
|
|
uint32_t reg_offset;
|
|
|
|
/* Need an extend offset to config queue > 1024 */
|
|
if (queue_id < HNS3_MIN_EXTEND_QUEUE_ID)
|
|
reg_offset = HNS3_TQP_REG_OFFSET + queue_id * HNS3_TQP_REG_SIZE;
|
|
else
|
|
reg_offset = HNS3_TQP_REG_OFFSET + HNS3_TQP_EXT_REG_OFFSET +
|
|
(queue_id - HNS3_MIN_EXTEND_QUEUE_ID) *
|
|
HNS3_TQP_REG_SIZE;
|
|
|
|
return reg_offset;
|
|
}
|
|
|
|
int
|
|
hns3_rx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t nb_desc,
|
|
unsigned int socket_id, const struct rte_eth_rxconf *conf,
|
|
struct rte_mempool *mp)
|
|
{
|
|
struct hns3_adapter *hns = dev->data->dev_private;
|
|
struct hns3_hw *hw = &hns->hw;
|
|
struct hns3_queue_info q_info;
|
|
struct hns3_rx_queue *rxq;
|
|
uint16_t rx_buf_size;
|
|
int rx_entry_len;
|
|
int ret;
|
|
|
|
ret = hns3_rx_queue_conf_check(hw, conf, mp, nb_desc, &rx_buf_size);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (dev->data->rx_queues[idx]) {
|
|
hns3_rx_queue_release(dev->data->rx_queues[idx]);
|
|
dev->data->rx_queues[idx] = NULL;
|
|
}
|
|
|
|
q_info.idx = idx;
|
|
q_info.socket_id = socket_id;
|
|
q_info.nb_desc = nb_desc;
|
|
q_info.type = "hns3 RX queue";
|
|
q_info.ring_name = "rx_ring";
|
|
|
|
rxq = hns3_alloc_rxq_and_dma_zone(dev, &q_info);
|
|
if (rxq == NULL) {
|
|
hns3_err(hw,
|
|
"Failed to alloc mem and reserve DMA mem for rx ring!");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
rxq->hns = hns;
|
|
rxq->ptype_tbl = &hns->ptype_tbl;
|
|
rxq->mb_pool = mp;
|
|
rxq->rx_free_thresh = (conf->rx_free_thresh > 0) ?
|
|
conf->rx_free_thresh : HNS3_DEFAULT_RX_FREE_THRESH;
|
|
|
|
rxq->rx_deferred_start = conf->rx_deferred_start;
|
|
if (rxq->rx_deferred_start && !hns3_dev_indep_txrx_supported(hw)) {
|
|
hns3_warn(hw, "deferred start is not supported.");
|
|
rxq->rx_deferred_start = false;
|
|
}
|
|
|
|
rx_entry_len = (rxq->nb_rx_desc + HNS3_DEFAULT_RX_BURST) *
|
|
sizeof(struct hns3_entry);
|
|
rxq->sw_ring = rte_zmalloc_socket("hns3 RX sw ring", rx_entry_len,
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (rxq->sw_ring == NULL) {
|
|
hns3_err(hw, "Failed to allocate memory for rx sw ring!");
|
|
hns3_rx_queue_release(rxq);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
rxq->next_to_use = 0;
|
|
rxq->rx_free_hold = 0;
|
|
rxq->rx_rearm_start = 0;
|
|
rxq->rx_rearm_nb = 0;
|
|
rxq->pkt_first_seg = NULL;
|
|
rxq->pkt_last_seg = NULL;
|
|
rxq->port_id = dev->data->port_id;
|
|
/*
|
|
* For hns3 PF device, if the VLAN mode is HW_SHIFT_AND_DISCARD_MODE,
|
|
* the pvid_sw_discard_en in the queue struct should not be changed,
|
|
* because PVID-related operations do not need to be processed by PMD
|
|
* driver. For hns3 VF device, whether it needs to process PVID depends
|
|
* on the configuration of PF kernel mode netdevice driver. And the
|
|
* related PF configuration is delivered through the mailbox and finally
|
|
* reflectd in port_base_vlan_cfg.
|
|
*/
|
|
if (hns->is_vf || hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE)
|
|
rxq->pvid_sw_discard_en = hw->port_base_vlan_cfg.state ==
|
|
HNS3_PORT_BASE_VLAN_ENABLE;
|
|
else
|
|
rxq->pvid_sw_discard_en = false;
|
|
rxq->configured = true;
|
|
rxq->io_base = (void *)((char *)hw->io_base + HNS3_TQP_REG_OFFSET +
|
|
idx * HNS3_TQP_REG_SIZE);
|
|
rxq->io_base = (void *)((char *)hw->io_base +
|
|
hns3_get_tqp_reg_offset(idx));
|
|
rxq->io_head_reg = (volatile void *)((char *)rxq->io_base +
|
|
HNS3_RING_RX_HEAD_REG);
|
|
rxq->rx_buf_len = rx_buf_size;
|
|
memset(&rxq->basic_stats, 0, sizeof(struct hns3_rx_basic_stats));
|
|
memset(&rxq->err_stats, 0, sizeof(struct hns3_rx_bd_errors_stats));
|
|
memset(&rxq->dfx_stats, 0, sizeof(struct hns3_rx_dfx_stats));
|
|
|
|
/* CRC len set here is used for amending packet length */
|
|
if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
|
|
rxq->crc_len = RTE_ETHER_CRC_LEN;
|
|
else
|
|
rxq->crc_len = 0;
|
|
|
|
rxq->bulk_mbuf_num = 0;
|
|
|
|
rte_spinlock_lock(&hw->lock);
|
|
dev->data->rx_queues[idx] = rxq;
|
|
rte_spinlock_unlock(&hw->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
hns3_rx_scattered_reset(struct rte_eth_dev *dev)
|
|
{
|
|
struct hns3_adapter *hns = dev->data->dev_private;
|
|
struct hns3_hw *hw = &hns->hw;
|
|
|
|
hw->rx_buf_len = 0;
|
|
dev->data->scattered_rx = false;
|
|
}
|
|
|
|
void
|
|
hns3_rx_scattered_calc(struct rte_eth_dev *dev)
|
|
{
|
|
struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
|
|
struct hns3_adapter *hns = dev->data->dev_private;
|
|
struct hns3_hw *hw = &hns->hw;
|
|
struct hns3_rx_queue *rxq;
|
|
uint32_t queue_id;
|
|
|
|
if (dev->data->rx_queues == NULL)
|
|
return;
|
|
|
|
for (queue_id = 0; queue_id < dev->data->nb_rx_queues; queue_id++) {
|
|
rxq = dev->data->rx_queues[queue_id];
|
|
if (hw->rx_buf_len == 0)
|
|
hw->rx_buf_len = rxq->rx_buf_len;
|
|
else
|
|
hw->rx_buf_len = RTE_MIN(hw->rx_buf_len,
|
|
rxq->rx_buf_len);
|
|
}
|
|
|
|
if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_SCATTER ||
|
|
dev_conf->rxmode.max_rx_pkt_len > hw->rx_buf_len)
|
|
dev->data->scattered_rx = true;
|
|
}
|
|
|
|
const uint32_t *
|
|
hns3_dev_supported_ptypes_get(struct rte_eth_dev *dev)
|
|
{
|
|
static const uint32_t ptypes[] = {
|
|
RTE_PTYPE_L2_ETHER,
|
|
RTE_PTYPE_L2_ETHER_VLAN,
|
|
RTE_PTYPE_L2_ETHER_QINQ,
|
|
RTE_PTYPE_L2_ETHER_LLDP,
|
|
RTE_PTYPE_L2_ETHER_ARP,
|
|
RTE_PTYPE_L3_IPV4,
|
|
RTE_PTYPE_L3_IPV4_EXT,
|
|
RTE_PTYPE_L3_IPV6,
|
|
RTE_PTYPE_L3_IPV6_EXT,
|
|
RTE_PTYPE_L4_IGMP,
|
|
RTE_PTYPE_L4_ICMP,
|
|
RTE_PTYPE_L4_SCTP,
|
|
RTE_PTYPE_L4_TCP,
|
|
RTE_PTYPE_L4_UDP,
|
|
RTE_PTYPE_TUNNEL_GRE,
|
|
RTE_PTYPE_INNER_L2_ETHER,
|
|
RTE_PTYPE_INNER_L2_ETHER_VLAN,
|
|
RTE_PTYPE_INNER_L2_ETHER_QINQ,
|
|
RTE_PTYPE_INNER_L3_IPV4,
|
|
RTE_PTYPE_INNER_L3_IPV6,
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT,
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT,
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
RTE_PTYPE_INNER_L4_ICMP,
|
|
RTE_PTYPE_TUNNEL_VXLAN,
|
|
RTE_PTYPE_TUNNEL_NVGRE,
|
|
RTE_PTYPE_UNKNOWN
|
|
};
|
|
|
|
if (dev->rx_pkt_burst == hns3_recv_pkts ||
|
|
dev->rx_pkt_burst == hns3_recv_scattered_pkts ||
|
|
dev->rx_pkt_burst == hns3_recv_pkts_vec ||
|
|
dev->rx_pkt_burst == hns3_recv_pkts_vec_sve)
|
|
return ptypes;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
hns3_init_non_tunnel_ptype_tbl(struct hns3_ptype_table *tbl)
|
|
{
|
|
tbl->l2l3table[0][0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4;
|
|
tbl->l2l3table[0][1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6;
|
|
tbl->l2l3table[0][2] = RTE_PTYPE_L2_ETHER_ARP;
|
|
tbl->l2l3table[0][3] = RTE_PTYPE_L2_ETHER;
|
|
tbl->l2l3table[0][4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT;
|
|
tbl->l2l3table[0][5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT;
|
|
tbl->l2l3table[0][6] = RTE_PTYPE_L2_ETHER_LLDP;
|
|
tbl->l2l3table[0][15] = RTE_PTYPE_L2_ETHER;
|
|
|
|
tbl->l2l3table[1][0] = RTE_PTYPE_L2_ETHER_VLAN | RTE_PTYPE_L3_IPV4;
|
|
tbl->l2l3table[1][1] = RTE_PTYPE_L2_ETHER_VLAN | RTE_PTYPE_L3_IPV6;
|
|
tbl->l2l3table[1][2] = RTE_PTYPE_L2_ETHER_ARP;
|
|
tbl->l2l3table[1][3] = RTE_PTYPE_L2_ETHER_VLAN;
|
|
tbl->l2l3table[1][4] = RTE_PTYPE_L2_ETHER_VLAN | RTE_PTYPE_L3_IPV4_EXT;
|
|
tbl->l2l3table[1][5] = RTE_PTYPE_L2_ETHER_VLAN | RTE_PTYPE_L3_IPV6_EXT;
|
|
tbl->l2l3table[1][6] = RTE_PTYPE_L2_ETHER_LLDP;
|
|
tbl->l2l3table[1][15] = RTE_PTYPE_L2_ETHER_VLAN;
|
|
|
|
tbl->l2l3table[2][0] = RTE_PTYPE_L2_ETHER_QINQ | RTE_PTYPE_L3_IPV4;
|
|
tbl->l2l3table[2][1] = RTE_PTYPE_L2_ETHER_QINQ | RTE_PTYPE_L3_IPV6;
|
|
tbl->l2l3table[2][2] = RTE_PTYPE_L2_ETHER_ARP;
|
|
tbl->l2l3table[2][3] = RTE_PTYPE_L2_ETHER_QINQ;
|
|
tbl->l2l3table[2][4] = RTE_PTYPE_L2_ETHER_QINQ | RTE_PTYPE_L3_IPV4_EXT;
|
|
tbl->l2l3table[2][5] = RTE_PTYPE_L2_ETHER_QINQ | RTE_PTYPE_L3_IPV6_EXT;
|
|
tbl->l2l3table[2][6] = RTE_PTYPE_L2_ETHER_LLDP;
|
|
tbl->l2l3table[2][15] = RTE_PTYPE_L2_ETHER_QINQ;
|
|
|
|
tbl->l4table[0] = RTE_PTYPE_L4_UDP;
|
|
tbl->l4table[1] = RTE_PTYPE_L4_TCP;
|
|
tbl->l4table[2] = RTE_PTYPE_TUNNEL_GRE;
|
|
tbl->l4table[3] = RTE_PTYPE_L4_SCTP;
|
|
tbl->l4table[4] = RTE_PTYPE_L4_IGMP;
|
|
tbl->l4table[5] = RTE_PTYPE_L4_ICMP;
|
|
}
|
|
|
|
static void
|
|
hns3_init_tunnel_ptype_tbl(struct hns3_ptype_table *tbl)
|
|
{
|
|
tbl->inner_l2table[0] = RTE_PTYPE_INNER_L2_ETHER;
|
|
tbl->inner_l2table[1] = RTE_PTYPE_INNER_L2_ETHER_VLAN;
|
|
tbl->inner_l2table[2] = RTE_PTYPE_INNER_L2_ETHER_QINQ;
|
|
|
|
tbl->inner_l3table[0] = RTE_PTYPE_INNER_L3_IPV4;
|
|
tbl->inner_l3table[1] = RTE_PTYPE_INNER_L3_IPV6;
|
|
/* There is not a ptype for inner ARP/RARP */
|
|
tbl->inner_l3table[2] = RTE_PTYPE_UNKNOWN;
|
|
tbl->inner_l3table[3] = RTE_PTYPE_UNKNOWN;
|
|
tbl->inner_l3table[4] = RTE_PTYPE_INNER_L3_IPV4_EXT;
|
|
tbl->inner_l3table[5] = RTE_PTYPE_INNER_L3_IPV6_EXT;
|
|
|
|
tbl->inner_l4table[0] = RTE_PTYPE_INNER_L4_UDP;
|
|
tbl->inner_l4table[1] = RTE_PTYPE_INNER_L4_TCP;
|
|
/* There is not a ptype for inner GRE */
|
|
tbl->inner_l4table[2] = RTE_PTYPE_UNKNOWN;
|
|
tbl->inner_l4table[3] = RTE_PTYPE_INNER_L4_SCTP;
|
|
/* There is not a ptype for inner IGMP */
|
|
tbl->inner_l4table[4] = RTE_PTYPE_UNKNOWN;
|
|
tbl->inner_l4table[5] = RTE_PTYPE_INNER_L4_ICMP;
|
|
|
|
tbl->ol2table[0] = RTE_PTYPE_L2_ETHER;
|
|
tbl->ol2table[1] = RTE_PTYPE_L2_ETHER_VLAN;
|
|
tbl->ol2table[2] = RTE_PTYPE_L2_ETHER_QINQ;
|
|
|
|
tbl->ol3table[0] = RTE_PTYPE_L3_IPV4;
|
|
tbl->ol3table[1] = RTE_PTYPE_L3_IPV6;
|
|
tbl->ol3table[2] = RTE_PTYPE_UNKNOWN;
|
|
tbl->ol3table[3] = RTE_PTYPE_UNKNOWN;
|
|
tbl->ol3table[4] = RTE_PTYPE_L3_IPV4_EXT;
|
|
tbl->ol3table[5] = RTE_PTYPE_L3_IPV6_EXT;
|
|
|
|
tbl->ol4table[0] = RTE_PTYPE_UNKNOWN;
|
|
tbl->ol4table[1] = RTE_PTYPE_TUNNEL_VXLAN;
|
|
tbl->ol4table[2] = RTE_PTYPE_TUNNEL_NVGRE;
|
|
}
|
|
|
|
void
|
|
hns3_init_rx_ptype_tble(struct rte_eth_dev *dev)
|
|
{
|
|
struct hns3_adapter *hns = dev->data->dev_private;
|
|
struct hns3_ptype_table *tbl = &hns->ptype_tbl;
|
|
|
|
memset(tbl, 0, sizeof(*tbl));
|
|
|
|
hns3_init_non_tunnel_ptype_tbl(tbl);
|
|
hns3_init_tunnel_ptype_tbl(tbl);
|
|
}
|
|
|
|
static inline void
|
|
hns3_rxd_to_vlan_tci(struct hns3_rx_queue *rxq, struct rte_mbuf *mb,
|
|
uint32_t l234_info, const struct hns3_desc *rxd)
|
|
{
|
|
#define HNS3_STRP_STATUS_NUM 0x4
|
|
|
|
#define HNS3_NO_STRP_VLAN_VLD 0x0
|
|
#define HNS3_INNER_STRP_VLAN_VLD 0x1
|
|
#define HNS3_OUTER_STRP_VLAN_VLD 0x2
|
|
uint32_t strip_status;
|
|
uint32_t report_mode;
|
|
|
|
/*
|
|
* Since HW limitation, the vlan tag will always be inserted into RX
|
|
* descriptor when strip the tag from packet, driver needs to determine
|
|
* reporting which tag to mbuf according to the PVID configuration
|
|
* and vlan striped status.
|
|
*/
|
|
static const uint32_t report_type[][HNS3_STRP_STATUS_NUM] = {
|
|
{
|
|
HNS3_NO_STRP_VLAN_VLD,
|
|
HNS3_OUTER_STRP_VLAN_VLD,
|
|
HNS3_INNER_STRP_VLAN_VLD,
|
|
HNS3_OUTER_STRP_VLAN_VLD
|
|
},
|
|
{
|
|
HNS3_NO_STRP_VLAN_VLD,
|
|
HNS3_NO_STRP_VLAN_VLD,
|
|
HNS3_NO_STRP_VLAN_VLD,
|
|
HNS3_INNER_STRP_VLAN_VLD
|
|
}
|
|
};
|
|
strip_status = hns3_get_field(l234_info, HNS3_RXD_STRP_TAGP_M,
|
|
HNS3_RXD_STRP_TAGP_S);
|
|
report_mode = report_type[rxq->pvid_sw_discard_en][strip_status];
|
|
switch (report_mode) {
|
|
case HNS3_NO_STRP_VLAN_VLD:
|
|
mb->vlan_tci = 0;
|
|
return;
|
|
case HNS3_INNER_STRP_VLAN_VLD:
|
|
mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
|
|
mb->vlan_tci = rte_le_to_cpu_16(rxd->rx.vlan_tag);
|
|
return;
|
|
case HNS3_OUTER_STRP_VLAN_VLD:
|
|
mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
|
|
mb->vlan_tci = rte_le_to_cpu_16(rxd->rx.ot_vlan_tag);
|
|
return;
|
|
default:
|
|
mb->vlan_tci = 0;
|
|
return;
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
recalculate_data_len(struct rte_mbuf *first_seg, struct rte_mbuf *last_seg,
|
|
struct rte_mbuf *rxm, struct hns3_rx_queue *rxq,
|
|
uint16_t data_len)
|
|
{
|
|
uint8_t crc_len = rxq->crc_len;
|
|
|
|
if (data_len <= crc_len) {
|
|
rte_pktmbuf_free_seg(rxm);
|
|
first_seg->nb_segs--;
|
|
last_seg->data_len = (uint16_t)(last_seg->data_len -
|
|
(crc_len - data_len));
|
|
last_seg->next = NULL;
|
|
} else
|
|
rxm->data_len = (uint16_t)(data_len - crc_len);
|
|
}
|
|
|
|
static inline struct rte_mbuf *
|
|
hns3_rx_alloc_buffer(struct hns3_rx_queue *rxq)
|
|
{
|
|
int ret;
|
|
|
|
if (likely(rxq->bulk_mbuf_num > 0))
|
|
return rxq->bulk_mbuf[--rxq->bulk_mbuf_num];
|
|
|
|
ret = rte_mempool_get_bulk(rxq->mb_pool, (void **)rxq->bulk_mbuf,
|
|
HNS3_BULK_ALLOC_MBUF_NUM);
|
|
if (likely(ret == 0)) {
|
|
rxq->bulk_mbuf_num = HNS3_BULK_ALLOC_MBUF_NUM;
|
|
return rxq->bulk_mbuf[--rxq->bulk_mbuf_num];
|
|
} else
|
|
return rte_mbuf_raw_alloc(rxq->mb_pool);
|
|
}
|
|
|
|
uint16_t
|
|
hns3_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
|
|
{
|
|
volatile struct hns3_desc *rx_ring; /* RX ring (desc) */
|
|
volatile struct hns3_desc *rxdp; /* pointer of the current desc */
|
|
struct hns3_rx_queue *rxq; /* RX queue */
|
|
struct hns3_entry *sw_ring;
|
|
struct hns3_entry *rxe;
|
|
struct hns3_desc rxd;
|
|
struct rte_mbuf *nmb; /* pointer of the new mbuf */
|
|
struct rte_mbuf *rxm;
|
|
uint32_t bd_base_info;
|
|
uint32_t cksum_err;
|
|
uint32_t l234_info;
|
|
uint32_t ol_info;
|
|
uint64_t dma_addr;
|
|
uint16_t nb_rx_bd;
|
|
uint16_t nb_rx;
|
|
uint16_t rx_id;
|
|
int ret;
|
|
|
|
nb_rx = 0;
|
|
nb_rx_bd = 0;
|
|
rxq = rx_queue;
|
|
rx_ring = rxq->rx_ring;
|
|
sw_ring = rxq->sw_ring;
|
|
rx_id = rxq->next_to_use;
|
|
|
|
while (nb_rx < nb_pkts) {
|
|
rxdp = &rx_ring[rx_id];
|
|
bd_base_info = rte_le_to_cpu_32(rxdp->rx.bd_base_info);
|
|
if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
|
|
break;
|
|
|
|
rxd = rxdp[(bd_base_info & (1u << HNS3_RXD_VLD_B)) -
|
|
(1u << HNS3_RXD_VLD_B)];
|
|
|
|
nmb = hns3_rx_alloc_buffer(rxq);
|
|
if (unlikely(nmb == NULL)) {
|
|
uint16_t port_id;
|
|
|
|
port_id = rxq->port_id;
|
|
rte_eth_devices[port_id].data->rx_mbuf_alloc_failed++;
|
|
break;
|
|
}
|
|
|
|
nb_rx_bd++;
|
|
rxe = &sw_ring[rx_id];
|
|
rx_id++;
|
|
if (unlikely(rx_id == rxq->nb_rx_desc))
|
|
rx_id = 0;
|
|
|
|
rte_prefetch0(sw_ring[rx_id].mbuf);
|
|
if ((rx_id & HNS3_RX_RING_PREFETCTH_MASK) == 0) {
|
|
rte_prefetch0(&rx_ring[rx_id]);
|
|
rte_prefetch0(&sw_ring[rx_id]);
|
|
}
|
|
|
|
rxm = rxe->mbuf;
|
|
rxe->mbuf = nmb;
|
|
|
|
dma_addr = rte_mbuf_data_iova_default(nmb);
|
|
rxdp->addr = rte_cpu_to_le_64(dma_addr);
|
|
rxdp->rx.bd_base_info = 0;
|
|
|
|
rxm->data_off = RTE_PKTMBUF_HEADROOM;
|
|
rxm->pkt_len = (uint16_t)(rte_le_to_cpu_16(rxd.rx.pkt_len)) -
|
|
rxq->crc_len;
|
|
rxm->data_len = rxm->pkt_len;
|
|
rxm->port = rxq->port_id;
|
|
rxm->hash.rss = rte_le_to_cpu_32(rxd.rx.rss_hash);
|
|
rxm->ol_flags = PKT_RX_RSS_HASH;
|
|
if (unlikely(bd_base_info & BIT(HNS3_RXD_LUM_B))) {
|
|
rxm->hash.fdir.hi =
|
|
rte_le_to_cpu_16(rxd.rx.fd_id);
|
|
rxm->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
|
|
}
|
|
rxm->nb_segs = 1;
|
|
rxm->next = NULL;
|
|
|
|
/* Load remained descriptor data and extract necessary fields */
|
|
l234_info = rte_le_to_cpu_32(rxd.rx.l234_info);
|
|
ol_info = rte_le_to_cpu_32(rxd.rx.ol_info);
|
|
ret = hns3_handle_bdinfo(rxq, rxm, bd_base_info,
|
|
l234_info, &cksum_err);
|
|
if (unlikely(ret))
|
|
goto pkt_err;
|
|
|
|
rxm->packet_type = hns3_rx_calc_ptype(rxq, l234_info, ol_info);
|
|
|
|
if (likely(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
|
|
hns3_rx_set_cksum_flag(rxm, rxm->packet_type,
|
|
cksum_err);
|
|
hns3_rxd_to_vlan_tci(rxq, rxm, l234_info, &rxd);
|
|
|
|
rx_pkts[nb_rx++] = rxm;
|
|
continue;
|
|
pkt_err:
|
|
rte_pktmbuf_free(rxm);
|
|
}
|
|
|
|
rxq->next_to_use = rx_id;
|
|
rxq->rx_free_hold += nb_rx_bd;
|
|
if (rxq->rx_free_hold > rxq->rx_free_thresh) {
|
|
hns3_write_reg_opt(rxq->io_head_reg, rxq->rx_free_hold);
|
|
rxq->rx_free_hold = 0;
|
|
}
|
|
|
|
return nb_rx;
|
|
}
|
|
|
|
uint16_t
|
|
hns3_recv_scattered_pkts(void *rx_queue,
|
|
struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
volatile struct hns3_desc *rx_ring; /* RX ring (desc) */
|
|
volatile struct hns3_desc *rxdp; /* pointer of the current desc */
|
|
struct hns3_rx_queue *rxq; /* RX queue */
|
|
struct hns3_entry *sw_ring;
|
|
struct hns3_entry *rxe;
|
|
struct rte_mbuf *first_seg;
|
|
struct rte_mbuf *last_seg;
|
|
struct hns3_desc rxd;
|
|
struct rte_mbuf *nmb; /* pointer of the new mbuf */
|
|
struct rte_mbuf *rxm;
|
|
struct rte_eth_dev *dev;
|
|
uint32_t bd_base_info;
|
|
uint32_t cksum_err;
|
|
uint32_t l234_info;
|
|
uint32_t gro_size;
|
|
uint32_t ol_info;
|
|
uint64_t dma_addr;
|
|
uint16_t nb_rx_bd;
|
|
uint16_t nb_rx;
|
|
uint16_t rx_id;
|
|
int ret;
|
|
|
|
nb_rx = 0;
|
|
nb_rx_bd = 0;
|
|
rxq = rx_queue;
|
|
|
|
rx_id = rxq->next_to_use;
|
|
rx_ring = rxq->rx_ring;
|
|
sw_ring = rxq->sw_ring;
|
|
first_seg = rxq->pkt_first_seg;
|
|
last_seg = rxq->pkt_last_seg;
|
|
|
|
while (nb_rx < nb_pkts) {
|
|
rxdp = &rx_ring[rx_id];
|
|
bd_base_info = rte_le_to_cpu_32(rxdp->rx.bd_base_info);
|
|
if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
|
|
break;
|
|
|
|
/*
|
|
* The interactive process between software and hardware of
|
|
* receiving a new packet in hns3 network engine:
|
|
* 1. Hardware network engine firstly writes the packet content
|
|
* to the memory pointed by the 'addr' field of the Rx Buffer
|
|
* Descriptor, secondly fills the result of parsing the
|
|
* packet include the valid field into the Rx Buffer
|
|
* Descriptor in one write operation.
|
|
* 2. Driver reads the Rx BD's valid field in the loop to check
|
|
* whether it's valid, if valid then assign a new address to
|
|
* the addr field, clear the valid field, get the other
|
|
* information of the packet by parsing Rx BD's other fields,
|
|
* finally write back the number of Rx BDs processed by the
|
|
* driver to the HNS3_RING_RX_HEAD_REG register to inform
|
|
* hardware.
|
|
* In the above process, the ordering is very important. We must
|
|
* make sure that CPU read Rx BD's other fields only after the
|
|
* Rx BD is valid.
|
|
*
|
|
* There are two type of re-ordering: compiler re-ordering and
|
|
* CPU re-ordering under the ARMv8 architecture.
|
|
* 1. we use volatile to deal with compiler re-ordering, so you
|
|
* can see that rx_ring/rxdp defined with volatile.
|
|
* 2. we commonly use memory barrier to deal with CPU
|
|
* re-ordering, but the cost is high.
|
|
*
|
|
* In order to solve the high cost of using memory barrier, we
|
|
* use the data dependency order under the ARMv8 architecture,
|
|
* for example:
|
|
* instr01: load A
|
|
* instr02: load B <- A
|
|
* the instr02 will always execute after instr01.
|
|
*
|
|
* To construct the data dependency ordering, we use the
|
|
* following assignment:
|
|
* rxd = rxdp[(bd_base_info & (1u << HNS3_RXD_VLD_B)) -
|
|
* (1u<<HNS3_RXD_VLD_B)]
|
|
* Using gcc compiler under the ARMv8 architecture, the related
|
|
* assembly code example as follows:
|
|
* note: (1u << HNS3_RXD_VLD_B) equal 0x10
|
|
* instr01: ldr w26, [x22, #28] --read bd_base_info
|
|
* instr02: and w0, w26, #0x10 --calc bd_base_info & 0x10
|
|
* instr03: sub w0, w0, #0x10 --calc (bd_base_info &
|
|
* 0x10) - 0x10
|
|
* instr04: add x0, x22, x0, lsl #5 --calc copy source addr
|
|
* instr05: ldp x2, x3, [x0]
|
|
* instr06: stp x2, x3, [x29, #256] --copy BD's [0 ~ 15]B
|
|
* instr07: ldp x4, x5, [x0, #16]
|
|
* instr08: stp x4, x5, [x29, #272] --copy BD's [16 ~ 31]B
|
|
* the instr05~08 depend on x0's value, x0 depent on w26's
|
|
* value, the w26 is the bd_base_info, this form the data
|
|
* dependency ordering.
|
|
* note: if BD is valid, (bd_base_info & (1u<<HNS3_RXD_VLD_B)) -
|
|
* (1u<<HNS3_RXD_VLD_B) will always zero, so the
|
|
* assignment is correct.
|
|
*
|
|
* So we use the data dependency ordering instead of memory
|
|
* barrier to improve receive performance.
|
|
*/
|
|
rxd = rxdp[(bd_base_info & (1u << HNS3_RXD_VLD_B)) -
|
|
(1u << HNS3_RXD_VLD_B)];
|
|
|
|
nmb = hns3_rx_alloc_buffer(rxq);
|
|
if (unlikely(nmb == NULL)) {
|
|
dev = &rte_eth_devices[rxq->port_id];
|
|
dev->data->rx_mbuf_alloc_failed++;
|
|
break;
|
|
}
|
|
|
|
nb_rx_bd++;
|
|
rxe = &sw_ring[rx_id];
|
|
rx_id++;
|
|
if (unlikely(rx_id == rxq->nb_rx_desc))
|
|
rx_id = 0;
|
|
|
|
rte_prefetch0(sw_ring[rx_id].mbuf);
|
|
if ((rx_id & HNS3_RX_RING_PREFETCTH_MASK) == 0) {
|
|
rte_prefetch0(&rx_ring[rx_id]);
|
|
rte_prefetch0(&sw_ring[rx_id]);
|
|
}
|
|
|
|
rxm = rxe->mbuf;
|
|
rxe->mbuf = nmb;
|
|
|
|
dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
|
|
rxdp->rx.bd_base_info = 0;
|
|
rxdp->addr = dma_addr;
|
|
|
|
if (first_seg == NULL) {
|
|
first_seg = rxm;
|
|
first_seg->nb_segs = 1;
|
|
} else {
|
|
first_seg->nb_segs++;
|
|
last_seg->next = rxm;
|
|
}
|
|
|
|
rxm->data_off = RTE_PKTMBUF_HEADROOM;
|
|
rxm->data_len = rte_le_to_cpu_16(rxd.rx.size);
|
|
|
|
if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) {
|
|
last_seg = rxm;
|
|
rxm->next = NULL;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* The last buffer of the received packet. packet len from
|
|
* buffer description may contains CRC len, packet len should
|
|
* subtract it, same as data len.
|
|
*/
|
|
first_seg->pkt_len = rte_le_to_cpu_16(rxd.rx.pkt_len);
|
|
|
|
/*
|
|
* This is the last buffer of the received packet. If the CRC
|
|
* is not stripped by the hardware:
|
|
* - Subtract the CRC length from the total packet length.
|
|
* - If the last buffer only contains the whole CRC or a part
|
|
* of it, free the mbuf associated to the last buffer. If part
|
|
* of the CRC is also contained in the previous mbuf, subtract
|
|
* the length of that CRC part from the data length of the
|
|
* previous mbuf.
|
|
*/
|
|
rxm->next = NULL;
|
|
if (unlikely(rxq->crc_len > 0)) {
|
|
first_seg->pkt_len -= rxq->crc_len;
|
|
recalculate_data_len(first_seg, last_seg, rxm, rxq,
|
|
rxm->data_len);
|
|
}
|
|
|
|
first_seg->port = rxq->port_id;
|
|
first_seg->hash.rss = rte_le_to_cpu_32(rxd.rx.rss_hash);
|
|
first_seg->ol_flags = PKT_RX_RSS_HASH;
|
|
if (unlikely(bd_base_info & BIT(HNS3_RXD_LUM_B))) {
|
|
first_seg->hash.fdir.hi =
|
|
rte_le_to_cpu_16(rxd.rx.fd_id);
|
|
first_seg->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
|
|
}
|
|
|
|
gro_size = hns3_get_field(bd_base_info, HNS3_RXD_GRO_SIZE_M,
|
|
HNS3_RXD_GRO_SIZE_S);
|
|
if (gro_size != 0) {
|
|
first_seg->ol_flags |= PKT_RX_LRO;
|
|
first_seg->tso_segsz = gro_size;
|
|
}
|
|
|
|
l234_info = rte_le_to_cpu_32(rxd.rx.l234_info);
|
|
ol_info = rte_le_to_cpu_32(rxd.rx.ol_info);
|
|
ret = hns3_handle_bdinfo(rxq, first_seg, bd_base_info,
|
|
l234_info, &cksum_err);
|
|
if (unlikely(ret))
|
|
goto pkt_err;
|
|
|
|
first_seg->packet_type = hns3_rx_calc_ptype(rxq,
|
|
l234_info, ol_info);
|
|
|
|
if (bd_base_info & BIT(HNS3_RXD_L3L4P_B))
|
|
hns3_rx_set_cksum_flag(first_seg,
|
|
first_seg->packet_type,
|
|
cksum_err);
|
|
hns3_rxd_to_vlan_tci(rxq, first_seg, l234_info, &rxd);
|
|
|
|
rx_pkts[nb_rx++] = first_seg;
|
|
first_seg = NULL;
|
|
continue;
|
|
pkt_err:
|
|
rte_pktmbuf_free(first_seg);
|
|
first_seg = NULL;
|
|
}
|
|
|
|
rxq->next_to_use = rx_id;
|
|
rxq->pkt_first_seg = first_seg;
|
|
rxq->pkt_last_seg = last_seg;
|
|
|
|
rxq->rx_free_hold += nb_rx_bd;
|
|
if (rxq->rx_free_hold > rxq->rx_free_thresh) {
|
|
hns3_write_reg_opt(rxq->io_head_reg, rxq->rx_free_hold);
|
|
rxq->rx_free_hold = 0;
|
|
}
|
|
|
|
return nb_rx;
|
|
}
|
|
|
|
void __rte_weak
|
|
hns3_rxq_vec_setup(__rte_unused struct hns3_rx_queue *rxq)
|
|
{
|
|
}
|
|
|
|
int __rte_weak
|
|
hns3_rx_check_vec_support(__rte_unused struct rte_eth_dev *dev)
|
|
{
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
uint16_t __rte_weak
|
|
hns3_recv_pkts_vec(__rte_unused void *tx_queue,
|
|
__rte_unused struct rte_mbuf **rx_pkts,
|
|
__rte_unused uint16_t nb_pkts)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
uint16_t __rte_weak
|
|
hns3_recv_pkts_vec_sve(__rte_unused void *tx_queue,
|
|
__rte_unused struct rte_mbuf **rx_pkts,
|
|
__rte_unused uint16_t nb_pkts)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
hns3_rx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
|
|
struct rte_eth_burst_mode *mode)
|
|
{
|
|
static const struct {
|
|
eth_rx_burst_t pkt_burst;
|
|
const char *info;
|
|
} burst_infos[] = {
|
|
{ hns3_recv_pkts, "Scalar" },
|
|
{ hns3_recv_scattered_pkts, "Scalar Scattered" },
|
|
{ hns3_recv_pkts_vec, "Vector Neon" },
|
|
{ hns3_recv_pkts_vec_sve, "Vector Sve" },
|
|
};
|
|
|
|
eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
|
|
int ret = -EINVAL;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < RTE_DIM(burst_infos); i++) {
|
|
if (pkt_burst == burst_infos[i].pkt_burst) {
|
|
snprintf(mode->info, sizeof(mode->info), "%s",
|
|
burst_infos[i].info);
|
|
ret = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool
|
|
hns3_check_sve_support(void)
|
|
{
|
|
#if defined(RTE_ARCH_ARM64) && defined(__ARM_FEATURE_SVE)
|
|
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_SVE))
|
|
return true;
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
static eth_rx_burst_t
|
|
hns3_get_rx_function(struct rte_eth_dev *dev)
|
|
{
|
|
struct hns3_adapter *hns = dev->data->dev_private;
|
|
uint64_t offloads = dev->data->dev_conf.rxmode.offloads;
|
|
|
|
if (hns->rx_vec_allowed && hns3_rx_check_vec_support(dev) == 0)
|
|
return hns3_check_sve_support() ? hns3_recv_pkts_vec_sve :
|
|
hns3_recv_pkts_vec;
|
|
|
|
if (hns->rx_simple_allowed && !dev->data->scattered_rx &&
|
|
(offloads & DEV_RX_OFFLOAD_TCP_LRO) == 0)
|
|
return hns3_recv_pkts;
|
|
|
|
return hns3_recv_scattered_pkts;
|
|
}
|
|
|
|
static int
|
|
hns3_tx_queue_conf_check(struct hns3_hw *hw, const struct rte_eth_txconf *conf,
|
|
uint16_t nb_desc, uint16_t *tx_rs_thresh,
|
|
uint16_t *tx_free_thresh, uint16_t idx)
|
|
{
|
|
#define HNS3_TX_RS_FREE_THRESH_GAP 8
|
|
uint16_t rs_thresh, free_thresh, fast_free_thresh;
|
|
|
|
if (nb_desc > HNS3_MAX_RING_DESC || nb_desc < HNS3_MIN_RING_DESC ||
|
|
nb_desc % HNS3_ALIGN_RING_DESC) {
|
|
hns3_err(hw, "number (%u) of tx descriptors is invalid",
|
|
nb_desc);
|
|
return -EINVAL;
|
|
}
|
|
|
|
rs_thresh = (conf->tx_rs_thresh > 0) ?
|
|
conf->tx_rs_thresh : HNS3_DEFAULT_TX_RS_THRESH;
|
|
free_thresh = (conf->tx_free_thresh > 0) ?
|
|
conf->tx_free_thresh : HNS3_DEFAULT_TX_FREE_THRESH;
|
|
if (rs_thresh + free_thresh > nb_desc || nb_desc % rs_thresh ||
|
|
rs_thresh >= nb_desc - HNS3_TX_RS_FREE_THRESH_GAP ||
|
|
free_thresh >= nb_desc - HNS3_TX_RS_FREE_THRESH_GAP) {
|
|
hns3_err(hw, "tx_rs_thresh (%u) tx_free_thresh (%u) nb_desc "
|
|
"(%u) of tx descriptors for port=%u queue=%u check "
|
|
"fail!",
|
|
rs_thresh, free_thresh, nb_desc, hw->data->port_id,
|
|
idx);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (conf->tx_free_thresh == 0) {
|
|
/* Fast free Tx memory buffer to improve cache hit rate */
|
|
fast_free_thresh = nb_desc - rs_thresh;
|
|
if (fast_free_thresh >=
|
|
HNS3_TX_FAST_FREE_AHEAD + HNS3_DEFAULT_TX_FREE_THRESH)
|
|
free_thresh = fast_free_thresh -
|
|
HNS3_TX_FAST_FREE_AHEAD;
|
|
}
|
|
|
|
*tx_rs_thresh = rs_thresh;
|
|
*tx_free_thresh = free_thresh;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
hns3_tx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t nb_desc,
|
|
unsigned int socket_id, const struct rte_eth_txconf *conf)
|
|
{
|
|
struct hns3_adapter *hns = dev->data->dev_private;
|
|
uint16_t tx_rs_thresh, tx_free_thresh;
|
|
struct hns3_hw *hw = &hns->hw;
|
|
struct hns3_queue_info q_info;
|
|
struct hns3_tx_queue *txq;
|
|
int tx_entry_len;
|
|
int ret;
|
|
|
|
ret = hns3_tx_queue_conf_check(hw, conf, nb_desc,
|
|
&tx_rs_thresh, &tx_free_thresh, idx);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (dev->data->tx_queues[idx] != NULL) {
|
|
hns3_tx_queue_release(dev->data->tx_queues[idx]);
|
|
dev->data->tx_queues[idx] = NULL;
|
|
}
|
|
|
|
q_info.idx = idx;
|
|
q_info.socket_id = socket_id;
|
|
q_info.nb_desc = nb_desc;
|
|
q_info.type = "hns3 TX queue";
|
|
q_info.ring_name = "tx_ring";
|
|
txq = hns3_alloc_txq_and_dma_zone(dev, &q_info);
|
|
if (txq == NULL) {
|
|
hns3_err(hw,
|
|
"Failed to alloc mem and reserve DMA mem for tx ring!");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
txq->tx_deferred_start = conf->tx_deferred_start;
|
|
if (txq->tx_deferred_start && !hns3_dev_indep_txrx_supported(hw)) {
|
|
hns3_warn(hw, "deferred start is not supported.");
|
|
txq->tx_deferred_start = false;
|
|
}
|
|
|
|
tx_entry_len = sizeof(struct hns3_entry) * txq->nb_tx_desc;
|
|
txq->sw_ring = rte_zmalloc_socket("hns3 TX sw ring", tx_entry_len,
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (txq->sw_ring == NULL) {
|
|
hns3_err(hw, "Failed to allocate memory for tx sw ring!");
|
|
hns3_tx_queue_release(txq);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
txq->hns = hns;
|
|
txq->next_to_use = 0;
|
|
txq->next_to_clean = 0;
|
|
txq->tx_bd_ready = txq->nb_tx_desc - 1;
|
|
txq->tx_free_thresh = tx_free_thresh;
|
|
txq->tx_rs_thresh = tx_rs_thresh;
|
|
txq->free = rte_zmalloc_socket("hns3 TX mbuf free array",
|
|
sizeof(struct rte_mbuf *) * txq->tx_rs_thresh,
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (!txq->free) {
|
|
hns3_err(hw, "failed to allocate tx mbuf free array!");
|
|
hns3_tx_queue_release(txq);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
txq->port_id = dev->data->port_id;
|
|
/*
|
|
* For hns3 PF device, if the VLAN mode is HW_SHIFT_AND_DISCARD_MODE,
|
|
* the pvid_sw_shift_en in the queue struct should not be changed,
|
|
* because PVID-related operations do not need to be processed by PMD
|
|
* driver. For hns3 VF device, whether it needs to process PVID depends
|
|
* on the configuration of PF kernel mode netdev driver. And the
|
|
* related PF configuration is delivered through the mailbox and finally
|
|
* reflectd in port_base_vlan_cfg.
|
|
*/
|
|
if (hns->is_vf || hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE)
|
|
txq->pvid_sw_shift_en = hw->port_base_vlan_cfg.state ==
|
|
HNS3_PORT_BASE_VLAN_ENABLE;
|
|
else
|
|
txq->pvid_sw_shift_en = false;
|
|
txq->max_non_tso_bd_num = hw->max_non_tso_bd_num;
|
|
txq->configured = true;
|
|
txq->io_base = (void *)((char *)hw->io_base +
|
|
hns3_get_tqp_reg_offset(idx));
|
|
txq->io_tail_reg = (volatile void *)((char *)txq->io_base +
|
|
HNS3_RING_TX_TAIL_REG);
|
|
txq->min_tx_pkt_len = hw->min_tx_pkt_len;
|
|
txq->tso_mode = hw->tso_mode;
|
|
memset(&txq->basic_stats, 0, sizeof(struct hns3_tx_basic_stats));
|
|
memset(&txq->dfx_stats, 0, sizeof(struct hns3_tx_dfx_stats));
|
|
|
|
rte_spinlock_lock(&hw->lock);
|
|
dev->data->tx_queues[idx] = txq;
|
|
rte_spinlock_unlock(&hw->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
hns3_tx_free_useless_buffer(struct hns3_tx_queue *txq)
|
|
{
|
|
uint16_t tx_next_clean = txq->next_to_clean;
|
|
uint16_t tx_next_use = txq->next_to_use;
|
|
uint16_t tx_bd_ready = txq->tx_bd_ready;
|
|
uint16_t tx_bd_max = txq->nb_tx_desc;
|
|
struct hns3_entry *tx_bak_pkt = &txq->sw_ring[tx_next_clean];
|
|
struct hns3_desc *desc = &txq->tx_ring[tx_next_clean];
|
|
struct rte_mbuf *mbuf;
|
|
|
|
while ((!(desc->tx.tp_fe_sc_vld_ra_ri &
|
|
rte_cpu_to_le_16(BIT(HNS3_TXD_VLD_B)))) &&
|
|
tx_next_use != tx_next_clean) {
|
|
mbuf = tx_bak_pkt->mbuf;
|
|
if (mbuf) {
|
|
rte_pktmbuf_free_seg(mbuf);
|
|
tx_bak_pkt->mbuf = NULL;
|
|
}
|
|
|
|
desc++;
|
|
tx_bak_pkt++;
|
|
tx_next_clean++;
|
|
tx_bd_ready++;
|
|
|
|
if (tx_next_clean >= tx_bd_max) {
|
|
tx_next_clean = 0;
|
|
desc = txq->tx_ring;
|
|
tx_bak_pkt = txq->sw_ring;
|
|
}
|
|
}
|
|
|
|
txq->next_to_clean = tx_next_clean;
|
|
txq->tx_bd_ready = tx_bd_ready;
|
|
}
|
|
|
|
int
|
|
hns3_config_gro(struct hns3_hw *hw, bool en)
|
|
{
|
|
struct hns3_cfg_gro_status_cmd *req;
|
|
struct hns3_cmd_desc desc;
|
|
int ret;
|
|
|
|
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GRO_GENERIC_CONFIG, false);
|
|
req = (struct hns3_cfg_gro_status_cmd *)desc.data;
|
|
|
|
req->gro_en = rte_cpu_to_le_16(en ? 1 : 0);
|
|
|
|
ret = hns3_cmd_send(hw, &desc, 1);
|
|
if (ret)
|
|
hns3_err(hw, "%s hardware GRO failed, ret = %d",
|
|
en ? "enable" : "disable", ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
hns3_restore_gro_conf(struct hns3_hw *hw)
|
|
{
|
|
uint64_t offloads;
|
|
bool gro_en;
|
|
int ret;
|
|
|
|
offloads = hw->data->dev_conf.rxmode.offloads;
|
|
gro_en = offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
|
|
ret = hns3_config_gro(hw, gro_en);
|
|
if (ret)
|
|
hns3_err(hw, "restore hardware GRO to %s failed, ret = %d",
|
|
gro_en ? "enabled" : "disabled", ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline bool
|
|
hns3_pkt_is_tso(struct rte_mbuf *m)
|
|
{
|
|
return (m->tso_segsz != 0 && m->ol_flags & PKT_TX_TCP_SEG);
|
|
}
|
|
|
|
static void
|
|
hns3_set_tso(struct hns3_desc *desc, uint32_t paylen, struct rte_mbuf *rxm)
|
|
{
|
|
if (!hns3_pkt_is_tso(rxm))
|
|
return;
|
|
|
|
if (paylen <= rxm->tso_segsz)
|
|
return;
|
|
|
|
desc->tx.type_cs_vlan_tso_len |= rte_cpu_to_le_32(BIT(HNS3_TXD_TSO_B));
|
|
desc->tx.mss = rte_cpu_to_le_16(rxm->tso_segsz);
|
|
}
|
|
|
|
static inline void
|
|
hns3_fill_per_desc(struct hns3_desc *desc, struct rte_mbuf *rxm)
|
|
{
|
|
desc->addr = rte_mbuf_data_iova(rxm);
|
|
desc->tx.send_size = rte_cpu_to_le_16(rte_pktmbuf_data_len(rxm));
|
|
desc->tx.tp_fe_sc_vld_ra_ri = rte_cpu_to_le_16(BIT(HNS3_TXD_VLD_B));
|
|
}
|
|
|
|
static void
|
|
hns3_fill_first_desc(struct hns3_tx_queue *txq, struct hns3_desc *desc,
|
|
struct rte_mbuf *rxm)
|
|
{
|
|
uint64_t ol_flags = rxm->ol_flags;
|
|
uint32_t hdr_len;
|
|
uint32_t paylen;
|
|
|
|
hdr_len = rxm->l2_len + rxm->l3_len + rxm->l4_len;
|
|
hdr_len += (ol_flags & PKT_TX_TUNNEL_MASK) ?
|
|
rxm->outer_l2_len + rxm->outer_l3_len : 0;
|
|
paylen = rxm->pkt_len - hdr_len;
|
|
desc->tx.paylen = rte_cpu_to_le_32(paylen);
|
|
hns3_set_tso(desc, paylen, rxm);
|
|
|
|
/*
|
|
* Currently, hardware doesn't support more than two layers VLAN offload
|
|
* in Tx direction based on hns3 network engine. So when the number of
|
|
* VLANs in the packets represented by rxm plus the number of VLAN
|
|
* offload by hardware such as PVID etc, exceeds two, the packets will
|
|
* be discarded or the original VLAN of the packets will be overwitted
|
|
* by hardware. When the PF PVID is enabled by calling the API function
|
|
* named rte_eth_dev_set_vlan_pvid or the VF PVID is enabled by the hns3
|
|
* PF kernel ether driver, the outer VLAN tag will always be the PVID.
|
|
* To avoid the VLAN of Tx descriptor is overwritten by PVID, it should
|
|
* be added to the position close to the IP header when PVID is enabled.
|
|
*/
|
|
if (!txq->pvid_sw_shift_en && ol_flags & (PKT_TX_VLAN_PKT |
|
|
PKT_TX_QINQ_PKT)) {
|
|
desc->tx.ol_type_vlan_len_msec |=
|
|
rte_cpu_to_le_32(BIT(HNS3_TXD_OVLAN_B));
|
|
if (ol_flags & PKT_TX_QINQ_PKT)
|
|
desc->tx.outer_vlan_tag =
|
|
rte_cpu_to_le_16(rxm->vlan_tci_outer);
|
|
else
|
|
desc->tx.outer_vlan_tag =
|
|
rte_cpu_to_le_16(rxm->vlan_tci);
|
|
}
|
|
|
|
if (ol_flags & PKT_TX_QINQ_PKT ||
|
|
((ol_flags & PKT_TX_VLAN_PKT) && txq->pvid_sw_shift_en)) {
|
|
desc->tx.type_cs_vlan_tso_len |=
|
|
rte_cpu_to_le_32(BIT(HNS3_TXD_VLAN_B));
|
|
desc->tx.vlan_tag = rte_cpu_to_le_16(rxm->vlan_tci);
|
|
}
|
|
}
|
|
|
|
static inline int
|
|
hns3_tx_alloc_mbufs(struct rte_mempool *mb_pool, uint16_t nb_new_buf,
|
|
struct rte_mbuf **alloc_mbuf)
|
|
{
|
|
#define MAX_NON_TSO_BD_PER_PKT 18
|
|
struct rte_mbuf *pkt_segs[MAX_NON_TSO_BD_PER_PKT];
|
|
uint16_t i;
|
|
|
|
/* Allocate enough mbufs */
|
|
if (rte_mempool_get_bulk(mb_pool, (void **)pkt_segs, nb_new_buf))
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < nb_new_buf - 1; i++)
|
|
pkt_segs[i]->next = pkt_segs[i + 1];
|
|
|
|
pkt_segs[nb_new_buf - 1]->next = NULL;
|
|
pkt_segs[0]->nb_segs = nb_new_buf;
|
|
*alloc_mbuf = pkt_segs[0];
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void
|
|
hns3_pktmbuf_copy_hdr(struct rte_mbuf *new_pkt, struct rte_mbuf *old_pkt)
|
|
{
|
|
new_pkt->ol_flags = old_pkt->ol_flags;
|
|
new_pkt->pkt_len = rte_pktmbuf_pkt_len(old_pkt);
|
|
new_pkt->outer_l2_len = old_pkt->outer_l2_len;
|
|
new_pkt->outer_l3_len = old_pkt->outer_l3_len;
|
|
new_pkt->l2_len = old_pkt->l2_len;
|
|
new_pkt->l3_len = old_pkt->l3_len;
|
|
new_pkt->l4_len = old_pkt->l4_len;
|
|
new_pkt->vlan_tci_outer = old_pkt->vlan_tci_outer;
|
|
new_pkt->vlan_tci = old_pkt->vlan_tci;
|
|
}
|
|
|
|
static int
|
|
hns3_reassemble_tx_pkts(struct rte_mbuf *tx_pkt, struct rte_mbuf **new_pkt,
|
|
uint8_t max_non_tso_bd_num)
|
|
{
|
|
struct rte_mempool *mb_pool;
|
|
struct rte_mbuf *new_mbuf;
|
|
struct rte_mbuf *temp_new;
|
|
struct rte_mbuf *temp;
|
|
uint16_t last_buf_len;
|
|
uint16_t nb_new_buf;
|
|
uint16_t buf_size;
|
|
uint16_t buf_len;
|
|
uint16_t len_s;
|
|
uint16_t len_d;
|
|
uint16_t len;
|
|
int ret;
|
|
char *s;
|
|
char *d;
|
|
|
|
mb_pool = tx_pkt->pool;
|
|
buf_size = tx_pkt->buf_len - RTE_PKTMBUF_HEADROOM;
|
|
nb_new_buf = (rte_pktmbuf_pkt_len(tx_pkt) - 1) / buf_size + 1;
|
|
if (nb_new_buf > max_non_tso_bd_num)
|
|
return -EINVAL;
|
|
|
|
last_buf_len = rte_pktmbuf_pkt_len(tx_pkt) % buf_size;
|
|
if (last_buf_len == 0)
|
|
last_buf_len = buf_size;
|
|
|
|
/* Allocate enough mbufs */
|
|
ret = hns3_tx_alloc_mbufs(mb_pool, nb_new_buf, &new_mbuf);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Copy the original packet content to the new mbufs */
|
|
temp = tx_pkt;
|
|
s = rte_pktmbuf_mtod(temp, char *);
|
|
len_s = rte_pktmbuf_data_len(temp);
|
|
temp_new = new_mbuf;
|
|
while (temp != NULL && temp_new != NULL) {
|
|
d = rte_pktmbuf_mtod(temp_new, char *);
|
|
buf_len = temp_new->next == NULL ? last_buf_len : buf_size;
|
|
len_d = buf_len;
|
|
|
|
while (len_d) {
|
|
len = RTE_MIN(len_s, len_d);
|
|
memcpy(d, s, len);
|
|
s = s + len;
|
|
d = d + len;
|
|
len_d = len_d - len;
|
|
len_s = len_s - len;
|
|
|
|
if (len_s == 0) {
|
|
temp = temp->next;
|
|
if (temp == NULL)
|
|
break;
|
|
s = rte_pktmbuf_mtod(temp, char *);
|
|
len_s = rte_pktmbuf_data_len(temp);
|
|
}
|
|
}
|
|
|
|
temp_new->data_len = buf_len;
|
|
temp_new = temp_new->next;
|
|
}
|
|
hns3_pktmbuf_copy_hdr(new_mbuf, tx_pkt);
|
|
|
|
/* free original mbufs */
|
|
rte_pktmbuf_free(tx_pkt);
|
|
|
|
*new_pkt = new_mbuf;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
hns3_parse_outer_params(struct rte_mbuf *m, uint32_t *ol_type_vlan_len_msec)
|
|
{
|
|
uint32_t tmp = *ol_type_vlan_len_msec;
|
|
uint64_t ol_flags = m->ol_flags;
|
|
|
|
/* (outer) IP header type */
|
|
if (ol_flags & PKT_TX_OUTER_IPV4) {
|
|
if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
|
|
tmp |= hns3_gen_field_val(HNS3_TXD_OL3T_M,
|
|
HNS3_TXD_OL3T_S, HNS3_OL3T_IPV4_CSUM);
|
|
else
|
|
tmp |= hns3_gen_field_val(HNS3_TXD_OL3T_M,
|
|
HNS3_TXD_OL3T_S, HNS3_OL3T_IPV4_NO_CSUM);
|
|
} else if (ol_flags & PKT_TX_OUTER_IPV6) {
|
|
tmp |= hns3_gen_field_val(HNS3_TXD_OL3T_M, HNS3_TXD_OL3T_S,
|
|
HNS3_OL3T_IPV6);
|
|
}
|
|
/* OL3 header size, defined in 4 bytes */
|
|
tmp |= hns3_gen_field_val(HNS3_TXD_L3LEN_M, HNS3_TXD_L3LEN_S,
|
|
m->outer_l3_len >> HNS3_L3_LEN_UNIT);
|
|
*ol_type_vlan_len_msec = tmp;
|
|
}
|
|
|
|
static int
|
|
hns3_parse_inner_params(struct rte_mbuf *m, uint32_t *ol_type_vlan_len_msec,
|
|
uint32_t *type_cs_vlan_tso_len)
|
|
{
|
|
#define HNS3_NVGRE_HLEN 8
|
|
uint32_t tmp_outer = *ol_type_vlan_len_msec;
|
|
uint32_t tmp_inner = *type_cs_vlan_tso_len;
|
|
uint64_t ol_flags = m->ol_flags;
|
|
uint16_t inner_l2_len;
|
|
|
|
switch (ol_flags & PKT_TX_TUNNEL_MASK) {
|
|
case PKT_TX_TUNNEL_VXLAN_GPE:
|
|
case PKT_TX_TUNNEL_GENEVE:
|
|
case PKT_TX_TUNNEL_VXLAN:
|
|
/* MAC in UDP tunnelling packet, include VxLAN and GENEVE */
|
|
tmp_outer |= hns3_gen_field_val(HNS3_TXD_TUNTYPE_M,
|
|
HNS3_TXD_TUNTYPE_S, HNS3_TUN_MAC_IN_UDP);
|
|
/*
|
|
* The inner l2 length of mbuf is the sum of outer l4 length,
|
|
* tunneling header length and inner l2 length for a tunnel
|
|
* packect. But in hns3 tx descriptor, the tunneling header
|
|
* length is contained in the field of outer L4 length.
|
|
* Therefore, driver need to calculate the outer L4 length and
|
|
* inner L2 length.
|
|
*/
|
|
tmp_outer |= hns3_gen_field_val(HNS3_TXD_L4LEN_M,
|
|
HNS3_TXD_L4LEN_S,
|
|
(uint8_t)RTE_ETHER_VXLAN_HLEN >>
|
|
HNS3_L4_LEN_UNIT);
|
|
|
|
inner_l2_len = m->l2_len - RTE_ETHER_VXLAN_HLEN;
|
|
break;
|
|
case PKT_TX_TUNNEL_GRE:
|
|
tmp_outer |= hns3_gen_field_val(HNS3_TXD_TUNTYPE_M,
|
|
HNS3_TXD_TUNTYPE_S, HNS3_TUN_NVGRE);
|
|
/*
|
|
* For NVGRE tunnel packect, the outer L4 is empty. So only
|
|
* fill the NVGRE header length to the outer L4 field.
|
|
*/
|
|
tmp_outer |= hns3_gen_field_val(HNS3_TXD_L4LEN_M,
|
|
HNS3_TXD_L4LEN_S,
|
|
(uint8_t)HNS3_NVGRE_HLEN >> HNS3_L4_LEN_UNIT);
|
|
|
|
inner_l2_len = m->l2_len - HNS3_NVGRE_HLEN;
|
|
break;
|
|
default:
|
|
/* For non UDP / GRE tunneling, drop the tunnel packet */
|
|
return -EINVAL;
|
|
}
|
|
|
|
tmp_inner |= hns3_gen_field_val(HNS3_TXD_L2LEN_M, HNS3_TXD_L2LEN_S,
|
|
inner_l2_len >> HNS3_L2_LEN_UNIT);
|
|
/* OL2 header size, defined in 2 bytes */
|
|
tmp_outer |= hns3_gen_field_val(HNS3_TXD_L2LEN_M, HNS3_TXD_L2LEN_S,
|
|
m->outer_l2_len >> HNS3_L2_LEN_UNIT);
|
|
|
|
*type_cs_vlan_tso_len = tmp_inner;
|
|
*ol_type_vlan_len_msec = tmp_outer;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
hns3_parse_tunneling_params(struct hns3_tx_queue *txq, struct rte_mbuf *m,
|
|
uint16_t tx_desc_id)
|
|
{
|
|
struct hns3_desc *tx_ring = txq->tx_ring;
|
|
struct hns3_desc *desc = &tx_ring[tx_desc_id];
|
|
uint32_t tmp_outer = 0;
|
|
uint32_t tmp_inner = 0;
|
|
int ret;
|
|
|
|
/*
|
|
* The tunnel header is contained in the inner L2 header field of the
|
|
* mbuf, but for hns3 descriptor, it is contained in the outer L4. So,
|
|
* there is a need that switching between them. To avoid multiple
|
|
* calculations, the length of the L2 header include the outer and
|
|
* inner, will be filled during the parsing of tunnel packects.
|
|
*/
|
|
if (!(m->ol_flags & PKT_TX_TUNNEL_MASK)) {
|
|
/*
|
|
* For non tunnel type the tunnel type id is 0, so no need to
|
|
* assign a value to it. Only the inner(normal) L2 header length
|
|
* is assigned.
|
|
*/
|
|
tmp_inner |= hns3_gen_field_val(HNS3_TXD_L2LEN_M,
|
|
HNS3_TXD_L2LEN_S, m->l2_len >> HNS3_L2_LEN_UNIT);
|
|
} else {
|
|
/*
|
|
* If outer csum is not offload, the outer length may be filled
|
|
* with 0. And the length of the outer header is added to the
|
|
* inner l2_len. It would lead a cksum error. So driver has to
|
|
* calculate the header length.
|
|
*/
|
|
if (unlikely(!(m->ol_flags & PKT_TX_OUTER_IP_CKSUM) &&
|
|
m->outer_l2_len == 0)) {
|
|
struct rte_net_hdr_lens hdr_len;
|
|
(void)rte_net_get_ptype(m, &hdr_len,
|
|
RTE_PTYPE_L2_MASK | RTE_PTYPE_L3_MASK);
|
|
m->outer_l3_len = hdr_len.l3_len;
|
|
m->outer_l2_len = hdr_len.l2_len;
|
|
m->l2_len = m->l2_len - hdr_len.l2_len - hdr_len.l3_len;
|
|
}
|
|
hns3_parse_outer_params(m, &tmp_outer);
|
|
ret = hns3_parse_inner_params(m, &tmp_outer, &tmp_inner);
|
|
if (ret)
|
|
return -EINVAL;
|
|
}
|
|
|
|
desc->tx.ol_type_vlan_len_msec = rte_cpu_to_le_32(tmp_outer);
|
|
desc->tx.type_cs_vlan_tso_len = rte_cpu_to_le_32(tmp_inner);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
hns3_parse_l3_cksum_params(struct rte_mbuf *m, uint32_t *type_cs_vlan_tso_len)
|
|
{
|
|
uint64_t ol_flags = m->ol_flags;
|
|
uint32_t l3_type;
|
|
uint32_t tmp;
|
|
|
|
tmp = *type_cs_vlan_tso_len;
|
|
if (ol_flags & PKT_TX_IPV4)
|
|
l3_type = HNS3_L3T_IPV4;
|
|
else if (ol_flags & PKT_TX_IPV6)
|
|
l3_type = HNS3_L3T_IPV6;
|
|
else
|
|
l3_type = HNS3_L3T_NONE;
|
|
|
|
/* inner(/normal) L3 header size, defined in 4 bytes */
|
|
tmp |= hns3_gen_field_val(HNS3_TXD_L3LEN_M, HNS3_TXD_L3LEN_S,
|
|
m->l3_len >> HNS3_L3_LEN_UNIT);
|
|
|
|
tmp |= hns3_gen_field_val(HNS3_TXD_L3T_M, HNS3_TXD_L3T_S, l3_type);
|
|
|
|
/* Enable L3 checksum offloads */
|
|
if (ol_flags & PKT_TX_IP_CKSUM)
|
|
tmp |= BIT(HNS3_TXD_L3CS_B);
|
|
*type_cs_vlan_tso_len = tmp;
|
|
}
|
|
|
|
static void
|
|
hns3_parse_l4_cksum_params(struct rte_mbuf *m, uint32_t *type_cs_vlan_tso_len)
|
|
{
|
|
uint64_t ol_flags = m->ol_flags;
|
|
uint32_t tmp;
|
|
/* Enable L4 checksum offloads */
|
|
switch (ol_flags & (PKT_TX_L4_MASK | PKT_TX_TCP_SEG)) {
|
|
case PKT_TX_TCP_CKSUM:
|
|
case PKT_TX_TCP_SEG:
|
|
tmp = *type_cs_vlan_tso_len;
|
|
tmp |= hns3_gen_field_val(HNS3_TXD_L4T_M, HNS3_TXD_L4T_S,
|
|
HNS3_L4T_TCP);
|
|
break;
|
|
case PKT_TX_UDP_CKSUM:
|
|
tmp = *type_cs_vlan_tso_len;
|
|
tmp |= hns3_gen_field_val(HNS3_TXD_L4T_M, HNS3_TXD_L4T_S,
|
|
HNS3_L4T_UDP);
|
|
break;
|
|
case PKT_TX_SCTP_CKSUM:
|
|
tmp = *type_cs_vlan_tso_len;
|
|
tmp |= hns3_gen_field_val(HNS3_TXD_L4T_M, HNS3_TXD_L4T_S,
|
|
HNS3_L4T_SCTP);
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
tmp |= BIT(HNS3_TXD_L4CS_B);
|
|
tmp |= hns3_gen_field_val(HNS3_TXD_L4LEN_M, HNS3_TXD_L4LEN_S,
|
|
m->l4_len >> HNS3_L4_LEN_UNIT);
|
|
*type_cs_vlan_tso_len = tmp;
|
|
}
|
|
|
|
static void
|
|
hns3_txd_enable_checksum(struct hns3_tx_queue *txq, struct rte_mbuf *m,
|
|
uint16_t tx_desc_id)
|
|
{
|
|
struct hns3_desc *tx_ring = txq->tx_ring;
|
|
struct hns3_desc *desc = &tx_ring[tx_desc_id];
|
|
uint32_t value = 0;
|
|
|
|
hns3_parse_l3_cksum_params(m, &value);
|
|
hns3_parse_l4_cksum_params(m, &value);
|
|
|
|
desc->tx.type_cs_vlan_tso_len |= rte_cpu_to_le_32(value);
|
|
}
|
|
|
|
static bool
|
|
hns3_pkt_need_linearized(struct rte_mbuf *tx_pkts, uint32_t bd_num,
|
|
uint32_t max_non_tso_bd_num)
|
|
{
|
|
struct rte_mbuf *m_first = tx_pkts;
|
|
struct rte_mbuf *m_last = tx_pkts;
|
|
uint32_t tot_len = 0;
|
|
uint32_t hdr_len;
|
|
uint32_t i;
|
|
|
|
/*
|
|
* Hardware requires that the sum of the data length of every 8
|
|
* consecutive buffers is greater than MSS in hns3 network engine.
|
|
* We simplify it by ensuring pkt_headlen + the first 8 consecutive
|
|
* frags greater than gso header len + mss, and the remaining 7
|
|
* consecutive frags greater than MSS except the last 7 frags.
|
|
*/
|
|
if (bd_num <= max_non_tso_bd_num)
|
|
return false;
|
|
|
|
for (i = 0; m_last && i < max_non_tso_bd_num - 1;
|
|
i++, m_last = m_last->next)
|
|
tot_len += m_last->data_len;
|
|
|
|
if (!m_last)
|
|
return true;
|
|
|
|
/* ensure the first 8 frags is greater than mss + header */
|
|
hdr_len = tx_pkts->l2_len + tx_pkts->l3_len + tx_pkts->l4_len;
|
|
hdr_len += (tx_pkts->ol_flags & PKT_TX_TUNNEL_MASK) ?
|
|
tx_pkts->outer_l2_len + tx_pkts->outer_l3_len : 0;
|
|
if (tot_len + m_last->data_len < tx_pkts->tso_segsz + hdr_len)
|
|
return true;
|
|
|
|
/*
|
|
* ensure the sum of the data length of every 7 consecutive buffer
|
|
* is greater than mss except the last one.
|
|
*/
|
|
for (i = 0; m_last && i < bd_num - max_non_tso_bd_num; i++) {
|
|
tot_len -= m_first->data_len;
|
|
tot_len += m_last->data_len;
|
|
|
|
if (tot_len < tx_pkts->tso_segsz)
|
|
return true;
|
|
|
|
m_first = m_first->next;
|
|
m_last = m_last->next;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void
|
|
hns3_outer_header_cksum_prepare(struct rte_mbuf *m)
|
|
{
|
|
uint64_t ol_flags = m->ol_flags;
|
|
uint32_t paylen, hdr_len, l4_proto;
|
|
|
|
if (!(ol_flags & (PKT_TX_OUTER_IPV4 | PKT_TX_OUTER_IPV6)))
|
|
return;
|
|
|
|
if (ol_flags & PKT_TX_OUTER_IPV4) {
|
|
struct rte_ipv4_hdr *ipv4_hdr;
|
|
ipv4_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
|
|
m->outer_l2_len);
|
|
l4_proto = ipv4_hdr->next_proto_id;
|
|
if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
|
|
ipv4_hdr->hdr_checksum = 0;
|
|
} else {
|
|
struct rte_ipv6_hdr *ipv6_hdr;
|
|
ipv6_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv6_hdr *,
|
|
m->outer_l2_len);
|
|
l4_proto = ipv6_hdr->proto;
|
|
}
|
|
/* driver should ensure the outer udp cksum is 0 for TUNNEL TSO */
|
|
if (l4_proto == IPPROTO_UDP && (ol_flags & PKT_TX_TCP_SEG)) {
|
|
struct rte_udp_hdr *udp_hdr;
|
|
hdr_len = m->l2_len + m->l3_len + m->l4_len;
|
|
hdr_len += m->outer_l2_len + m->outer_l3_len;
|
|
paylen = m->pkt_len - hdr_len;
|
|
if (paylen <= m->tso_segsz)
|
|
return;
|
|
udp_hdr = rte_pktmbuf_mtod_offset(m, struct rte_udp_hdr *,
|
|
m->outer_l2_len +
|
|
m->outer_l3_len);
|
|
udp_hdr->dgram_cksum = 0;
|
|
}
|
|
}
|
|
|
|
static int
|
|
hns3_check_tso_pkt_valid(struct rte_mbuf *m)
|
|
{
|
|
uint32_t tmp_data_len_sum = 0;
|
|
uint16_t nb_buf = m->nb_segs;
|
|
uint32_t paylen, hdr_len;
|
|
struct rte_mbuf *m_seg;
|
|
int i;
|
|
|
|
if (nb_buf > HNS3_MAX_TSO_BD_PER_PKT)
|
|
return -EINVAL;
|
|
|
|
hdr_len = m->l2_len + m->l3_len + m->l4_len;
|
|
hdr_len += (m->ol_flags & PKT_TX_TUNNEL_MASK) ?
|
|
m->outer_l2_len + m->outer_l3_len : 0;
|
|
if (hdr_len > HNS3_MAX_TSO_HDR_SIZE)
|
|
return -EINVAL;
|
|
|
|
paylen = m->pkt_len - hdr_len;
|
|
if (paylen > HNS3_MAX_BD_PAYLEN)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* The TSO header (include outer and inner L2, L3 and L4 header)
|
|
* should be provided by three descriptors in maximum in hns3 network
|
|
* engine.
|
|
*/
|
|
m_seg = m;
|
|
for (i = 0; m_seg != NULL && i < HNS3_MAX_TSO_HDR_BD_NUM && i < nb_buf;
|
|
i++, m_seg = m_seg->next) {
|
|
tmp_data_len_sum += m_seg->data_len;
|
|
}
|
|
|
|
if (hdr_len > tmp_data_len_sum)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef RTE_LIBRTE_ETHDEV_DEBUG
|
|
static inline int
|
|
hns3_vld_vlan_chk(struct hns3_tx_queue *txq, struct rte_mbuf *m)
|
|
{
|
|
struct rte_ether_hdr *eh;
|
|
struct rte_vlan_hdr *vh;
|
|
|
|
if (!txq->pvid_sw_shift_en)
|
|
return 0;
|
|
|
|
/*
|
|
* Due to hardware limitations, we only support two-layer VLAN hardware
|
|
* offload in Tx direction based on hns3 network engine, so when PVID is
|
|
* enabled, QinQ insert is no longer supported.
|
|
* And when PVID is enabled, in the following two cases:
|
|
* i) packets with more than two VLAN tags.
|
|
* ii) packets with one VLAN tag while the hardware VLAN insert is
|
|
* enabled.
|
|
* The packets will be regarded as abnormal packets and discarded by
|
|
* hardware in Tx direction. For debugging purposes, a validation check
|
|
* for these types of packets is added to the '.tx_pkt_prepare' ops
|
|
* implementation function named hns3_prep_pkts to inform users that
|
|
* these packets will be discarded.
|
|
*/
|
|
if (m->ol_flags & PKT_TX_QINQ_PKT)
|
|
return -EINVAL;
|
|
|
|
eh = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
|
|
if (eh->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN)) {
|
|
if (m->ol_flags & PKT_TX_VLAN_PKT)
|
|
return -EINVAL;
|
|
|
|
/* Ensure the incoming packet is not a QinQ packet */
|
|
vh = (struct rte_vlan_hdr *)(eh + 1);
|
|
if (vh->eth_proto == rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN))
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
hns3_prep_pkt_proc(struct hns3_tx_queue *tx_queue, struct rte_mbuf *m)
|
|
{
|
|
int ret;
|
|
|
|
#ifdef RTE_LIBRTE_ETHDEV_DEBUG
|
|
ret = rte_validate_tx_offload(m);
|
|
if (ret != 0) {
|
|
rte_errno = -ret;
|
|
return ret;
|
|
}
|
|
|
|
ret = hns3_vld_vlan_chk(tx_queue, m);
|
|
if (ret != 0) {
|
|
rte_errno = EINVAL;
|
|
return ret;
|
|
}
|
|
#endif
|
|
if (hns3_pkt_is_tso(m)) {
|
|
if (hns3_pkt_need_linearized(m, m->nb_segs,
|
|
tx_queue->max_non_tso_bd_num) ||
|
|
hns3_check_tso_pkt_valid(m)) {
|
|
rte_errno = EINVAL;
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (tx_queue->tso_mode != HNS3_TSO_SW_CAL_PSEUDO_H_CSUM) {
|
|
/*
|
|
* (tso mode != HNS3_TSO_SW_CAL_PSEUDO_H_CSUM) means
|
|
* hardware support recalculate the TCP pseudo header
|
|
* checksum of packets that need TSO, so network driver
|
|
* software not need to recalculate it.
|
|
*/
|
|
hns3_outer_header_cksum_prepare(m);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
ret = rte_net_intel_cksum_prepare(m);
|
|
if (ret != 0) {
|
|
rte_errno = -ret;
|
|
return ret;
|
|
}
|
|
|
|
hns3_outer_header_cksum_prepare(m);
|
|
|
|
return 0;
|
|
}
|
|
|
|
uint16_t
|
|
hns3_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct rte_mbuf *m;
|
|
uint16_t i;
|
|
|
|
for (i = 0; i < nb_pkts; i++) {
|
|
m = tx_pkts[i];
|
|
if (hns3_prep_pkt_proc(tx_queue, m))
|
|
return i;
|
|
}
|
|
|
|
return i;
|
|
}
|
|
|
|
static int
|
|
hns3_parse_cksum(struct hns3_tx_queue *txq, uint16_t tx_desc_id,
|
|
struct rte_mbuf *m)
|
|
{
|
|
struct hns3_desc *tx_ring = txq->tx_ring;
|
|
struct hns3_desc *desc = &tx_ring[tx_desc_id];
|
|
|
|
/* Enable checksum offloading */
|
|
if (m->ol_flags & HNS3_TX_CKSUM_OFFLOAD_MASK) {
|
|
/* Fill in tunneling parameters if necessary */
|
|
if (hns3_parse_tunneling_params(txq, m, tx_desc_id)) {
|
|
txq->dfx_stats.unsupported_tunnel_pkt_cnt++;
|
|
return -EINVAL;
|
|
}
|
|
|
|
hns3_txd_enable_checksum(txq, m, tx_desc_id);
|
|
} else {
|
|
/* clear the control bit */
|
|
desc->tx.type_cs_vlan_tso_len = 0;
|
|
desc->tx.ol_type_vlan_len_msec = 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
hns3_check_non_tso_pkt(uint16_t nb_buf, struct rte_mbuf **m_seg,
|
|
struct rte_mbuf *tx_pkt, struct hns3_tx_queue *txq)
|
|
{
|
|
uint8_t max_non_tso_bd_num;
|
|
struct rte_mbuf *new_pkt;
|
|
int ret;
|
|
|
|
if (hns3_pkt_is_tso(*m_seg))
|
|
return 0;
|
|
|
|
/*
|
|
* If packet length is greater than HNS3_MAX_FRAME_LEN
|
|
* driver support, the packet will be ignored.
|
|
*/
|
|
if (unlikely(rte_pktmbuf_pkt_len(tx_pkt) > HNS3_MAX_FRAME_LEN)) {
|
|
txq->dfx_stats.over_length_pkt_cnt++;
|
|
return -EINVAL;
|
|
}
|
|
|
|
max_non_tso_bd_num = txq->max_non_tso_bd_num;
|
|
if (unlikely(nb_buf > max_non_tso_bd_num)) {
|
|
txq->dfx_stats.exceed_limit_bd_pkt_cnt++;
|
|
ret = hns3_reassemble_tx_pkts(tx_pkt, &new_pkt,
|
|
max_non_tso_bd_num);
|
|
if (ret) {
|
|
txq->dfx_stats.exceed_limit_bd_reassem_fail++;
|
|
return ret;
|
|
}
|
|
*m_seg = new_pkt;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void
|
|
hns3_tx_free_buffer_simple(struct hns3_tx_queue *txq)
|
|
{
|
|
struct hns3_entry *tx_entry;
|
|
struct hns3_desc *desc;
|
|
uint16_t tx_next_clean;
|
|
int i;
|
|
|
|
while (1) {
|
|
if (HNS3_GET_TX_QUEUE_PEND_BD_NUM(txq) < txq->tx_rs_thresh)
|
|
break;
|
|
|
|
/*
|
|
* All mbufs can be released only when the VLD bits of all
|
|
* descriptors in a batch are cleared.
|
|
*/
|
|
tx_next_clean = (txq->next_to_clean + txq->tx_rs_thresh - 1) %
|
|
txq->nb_tx_desc;
|
|
desc = &txq->tx_ring[tx_next_clean];
|
|
for (i = 0; i < txq->tx_rs_thresh; i++) {
|
|
if (rte_le_to_cpu_16(desc->tx.tp_fe_sc_vld_ra_ri) &
|
|
BIT(HNS3_TXD_VLD_B))
|
|
return;
|
|
desc--;
|
|
}
|
|
|
|
tx_entry = &txq->sw_ring[txq->next_to_clean];
|
|
|
|
for (i = 0; i < txq->tx_rs_thresh; i++)
|
|
rte_prefetch0((tx_entry + i)->mbuf);
|
|
for (i = 0; i < txq->tx_rs_thresh; i++, tx_entry++) {
|
|
rte_mempool_put(tx_entry->mbuf->pool, tx_entry->mbuf);
|
|
tx_entry->mbuf = NULL;
|
|
}
|
|
|
|
txq->next_to_clean = (tx_next_clean + 1) % txq->nb_tx_desc;
|
|
txq->tx_bd_ready += txq->tx_rs_thresh;
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
hns3_tx_backup_1mbuf(struct hns3_entry *tx_entry, struct rte_mbuf **pkts)
|
|
{
|
|
tx_entry->mbuf = pkts[0];
|
|
}
|
|
|
|
static inline void
|
|
hns3_tx_backup_4mbuf(struct hns3_entry *tx_entry, struct rte_mbuf **pkts)
|
|
{
|
|
hns3_tx_backup_1mbuf(&tx_entry[0], &pkts[0]);
|
|
hns3_tx_backup_1mbuf(&tx_entry[1], &pkts[1]);
|
|
hns3_tx_backup_1mbuf(&tx_entry[2], &pkts[2]);
|
|
hns3_tx_backup_1mbuf(&tx_entry[3], &pkts[3]);
|
|
}
|
|
|
|
static inline void
|
|
hns3_tx_setup_4bd(struct hns3_desc *txdp, struct rte_mbuf **pkts)
|
|
{
|
|
#define PER_LOOP_NUM 4
|
|
const uint16_t bd_flag = BIT(HNS3_TXD_VLD_B) | BIT(HNS3_TXD_FE_B);
|
|
uint64_t dma_addr;
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < PER_LOOP_NUM; i++, txdp++, pkts++) {
|
|
dma_addr = rte_mbuf_data_iova(*pkts);
|
|
txdp->addr = rte_cpu_to_le_64(dma_addr);
|
|
txdp->tx.send_size = rte_cpu_to_le_16((*pkts)->data_len);
|
|
txdp->tx.paylen = 0;
|
|
txdp->tx.type_cs_vlan_tso_len = 0;
|
|
txdp->tx.ol_type_vlan_len_msec = 0;
|
|
txdp->tx.tp_fe_sc_vld_ra_ri = rte_cpu_to_le_16(bd_flag);
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
hns3_tx_setup_1bd(struct hns3_desc *txdp, struct rte_mbuf **pkts)
|
|
{
|
|
const uint16_t bd_flag = BIT(HNS3_TXD_VLD_B) | BIT(HNS3_TXD_FE_B);
|
|
uint64_t dma_addr;
|
|
|
|
dma_addr = rte_mbuf_data_iova(*pkts);
|
|
txdp->addr = rte_cpu_to_le_64(dma_addr);
|
|
txdp->tx.send_size = rte_cpu_to_le_16((*pkts)->data_len);
|
|
txdp->tx.paylen = 0;
|
|
txdp->tx.type_cs_vlan_tso_len = 0;
|
|
txdp->tx.ol_type_vlan_len_msec = 0;
|
|
txdp->tx.tp_fe_sc_vld_ra_ri = rte_cpu_to_le_16(bd_flag);
|
|
}
|
|
|
|
static inline void
|
|
hns3_tx_fill_hw_ring(struct hns3_tx_queue *txq,
|
|
struct rte_mbuf **pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
#define PER_LOOP_NUM 4
|
|
#define PER_LOOP_MASK (PER_LOOP_NUM - 1)
|
|
struct hns3_desc *txdp = &txq->tx_ring[txq->next_to_use];
|
|
struct hns3_entry *tx_entry = &txq->sw_ring[txq->next_to_use];
|
|
const uint32_t mainpart = (nb_pkts & ((uint32_t)~PER_LOOP_MASK));
|
|
const uint32_t leftover = (nb_pkts & ((uint32_t)PER_LOOP_MASK));
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < mainpart; i += PER_LOOP_NUM) {
|
|
hns3_tx_backup_4mbuf(tx_entry + i, pkts + i);
|
|
hns3_tx_setup_4bd(txdp + i, pkts + i);
|
|
}
|
|
if (unlikely(leftover > 0)) {
|
|
for (i = 0; i < leftover; i++) {
|
|
hns3_tx_backup_1mbuf(tx_entry + mainpart + i,
|
|
pkts + mainpart + i);
|
|
hns3_tx_setup_1bd(txdp + mainpart + i,
|
|
pkts + mainpart + i);
|
|
}
|
|
}
|
|
}
|
|
|
|
uint16_t
|
|
hns3_xmit_pkts_simple(void *tx_queue,
|
|
struct rte_mbuf **tx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct hns3_tx_queue *txq = tx_queue;
|
|
uint16_t nb_tx = 0;
|
|
|
|
hns3_tx_free_buffer_simple(txq);
|
|
|
|
nb_pkts = RTE_MIN(txq->tx_bd_ready, nb_pkts);
|
|
if (unlikely(nb_pkts == 0)) {
|
|
if (txq->tx_bd_ready == 0)
|
|
txq->dfx_stats.queue_full_cnt++;
|
|
return 0;
|
|
}
|
|
|
|
txq->tx_bd_ready -= nb_pkts;
|
|
if (txq->next_to_use + nb_pkts > txq->nb_tx_desc) {
|
|
nb_tx = txq->nb_tx_desc - txq->next_to_use;
|
|
hns3_tx_fill_hw_ring(txq, tx_pkts, nb_tx);
|
|
txq->next_to_use = 0;
|
|
}
|
|
|
|
hns3_tx_fill_hw_ring(txq, tx_pkts + nb_tx, nb_pkts - nb_tx);
|
|
txq->next_to_use += nb_pkts - nb_tx;
|
|
|
|
hns3_write_reg_opt(txq->io_tail_reg, nb_pkts);
|
|
|
|
return nb_pkts;
|
|
}
|
|
|
|
uint16_t
|
|
hns3_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
|
|
{
|
|
struct hns3_tx_queue *txq = tx_queue;
|
|
struct hns3_entry *tx_bak_pkt;
|
|
struct hns3_desc *tx_ring;
|
|
struct rte_mbuf *tx_pkt;
|
|
struct rte_mbuf *m_seg;
|
|
struct hns3_desc *desc;
|
|
uint32_t nb_hold = 0;
|
|
uint16_t tx_next_use;
|
|
uint16_t tx_pkt_num;
|
|
uint16_t tx_bd_max;
|
|
uint16_t nb_buf;
|
|
uint16_t nb_tx;
|
|
uint16_t i;
|
|
|
|
/* free useless buffer */
|
|
hns3_tx_free_useless_buffer(txq);
|
|
|
|
tx_next_use = txq->next_to_use;
|
|
tx_bd_max = txq->nb_tx_desc;
|
|
tx_pkt_num = nb_pkts;
|
|
tx_ring = txq->tx_ring;
|
|
|
|
/* send packets */
|
|
tx_bak_pkt = &txq->sw_ring[tx_next_use];
|
|
for (nb_tx = 0; nb_tx < tx_pkt_num; nb_tx++) {
|
|
tx_pkt = *tx_pkts++;
|
|
|
|
nb_buf = tx_pkt->nb_segs;
|
|
|
|
if (nb_buf > txq->tx_bd_ready) {
|
|
txq->dfx_stats.queue_full_cnt++;
|
|
if (nb_tx == 0)
|
|
return 0;
|
|
|
|
goto end_of_tx;
|
|
}
|
|
|
|
/*
|
|
* If packet length is less than minimum packet length supported
|
|
* by hardware in Tx direction, driver need to pad it to avoid
|
|
* error.
|
|
*/
|
|
if (unlikely(rte_pktmbuf_pkt_len(tx_pkt) <
|
|
txq->min_tx_pkt_len)) {
|
|
uint16_t add_len;
|
|
char *appended;
|
|
|
|
add_len = txq->min_tx_pkt_len -
|
|
rte_pktmbuf_pkt_len(tx_pkt);
|
|
appended = rte_pktmbuf_append(tx_pkt, add_len);
|
|
if (appended == NULL) {
|
|
txq->dfx_stats.pkt_padding_fail_cnt++;
|
|
break;
|
|
}
|
|
|
|
memset(appended, 0, add_len);
|
|
}
|
|
|
|
m_seg = tx_pkt;
|
|
|
|
if (hns3_check_non_tso_pkt(nb_buf, &m_seg, tx_pkt, txq))
|
|
goto end_of_tx;
|
|
|
|
if (hns3_parse_cksum(txq, tx_next_use, m_seg))
|
|
goto end_of_tx;
|
|
|
|
i = 0;
|
|
desc = &tx_ring[tx_next_use];
|
|
|
|
/*
|
|
* If the packet is divided into multiple Tx Buffer Descriptors,
|
|
* only need to fill vlan, paylen and tso into the first Tx
|
|
* Buffer Descriptor.
|
|
*/
|
|
hns3_fill_first_desc(txq, desc, m_seg);
|
|
|
|
do {
|
|
desc = &tx_ring[tx_next_use];
|
|
/*
|
|
* Fill valid bits, DMA address and data length for each
|
|
* Tx Buffer Descriptor.
|
|
*/
|
|
hns3_fill_per_desc(desc, m_seg);
|
|
tx_bak_pkt->mbuf = m_seg;
|
|
m_seg = m_seg->next;
|
|
tx_next_use++;
|
|
tx_bak_pkt++;
|
|
if (tx_next_use >= tx_bd_max) {
|
|
tx_next_use = 0;
|
|
tx_bak_pkt = txq->sw_ring;
|
|
}
|
|
|
|
i++;
|
|
} while (m_seg != NULL);
|
|
|
|
/* Add end flag for the last Tx Buffer Descriptor */
|
|
desc->tx.tp_fe_sc_vld_ra_ri |=
|
|
rte_cpu_to_le_16(BIT(HNS3_TXD_FE_B));
|
|
|
|
nb_hold += i;
|
|
txq->next_to_use = tx_next_use;
|
|
txq->tx_bd_ready -= i;
|
|
}
|
|
|
|
end_of_tx:
|
|
|
|
if (likely(nb_tx))
|
|
hns3_write_reg_opt(txq->io_tail_reg, nb_hold);
|
|
|
|
return nb_tx;
|
|
}
|
|
|
|
int __rte_weak
|
|
hns3_tx_check_vec_support(__rte_unused struct rte_eth_dev *dev)
|
|
{
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
uint16_t __rte_weak
|
|
hns3_xmit_pkts_vec(__rte_unused void *tx_queue,
|
|
__rte_unused struct rte_mbuf **tx_pkts,
|
|
__rte_unused uint16_t nb_pkts)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
uint16_t __rte_weak
|
|
hns3_xmit_pkts_vec_sve(void __rte_unused * tx_queue,
|
|
struct rte_mbuf __rte_unused **tx_pkts,
|
|
uint16_t __rte_unused nb_pkts)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
hns3_tx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
|
|
struct rte_eth_burst_mode *mode)
|
|
{
|
|
eth_tx_burst_t pkt_burst = dev->tx_pkt_burst;
|
|
const char *info = NULL;
|
|
|
|
if (pkt_burst == hns3_xmit_pkts_simple)
|
|
info = "Scalar Simple";
|
|
else if (pkt_burst == hns3_xmit_pkts)
|
|
info = "Scalar";
|
|
else if (pkt_burst == hns3_xmit_pkts_vec)
|
|
info = "Vector Neon";
|
|
else if (pkt_burst == hns3_xmit_pkts_vec_sve)
|
|
info = "Vector Sve";
|
|
|
|
if (info == NULL)
|
|
return -EINVAL;
|
|
|
|
snprintf(mode->info, sizeof(mode->info), "%s", info);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static eth_tx_burst_t
|
|
hns3_get_tx_function(struct rte_eth_dev *dev, eth_tx_prep_t *prep)
|
|
{
|
|
uint64_t offloads = dev->data->dev_conf.txmode.offloads;
|
|
struct hns3_adapter *hns = dev->data->dev_private;
|
|
|
|
if (hns->tx_vec_allowed && hns3_tx_check_vec_support(dev) == 0) {
|
|
*prep = NULL;
|
|
return hns3_check_sve_support() ? hns3_xmit_pkts_vec_sve :
|
|
hns3_xmit_pkts_vec;
|
|
}
|
|
|
|
if (hns->tx_simple_allowed &&
|
|
offloads == (offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE)) {
|
|
*prep = NULL;
|
|
return hns3_xmit_pkts_simple;
|
|
}
|
|
|
|
*prep = hns3_prep_pkts;
|
|
return hns3_xmit_pkts;
|
|
}
|
|
|
|
static uint16_t
|
|
hns3_dummy_rxtx_burst(void *dpdk_txq __rte_unused,
|
|
struct rte_mbuf **pkts __rte_unused,
|
|
uint16_t pkts_n __rte_unused)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
void hns3_set_rxtx_function(struct rte_eth_dev *eth_dev)
|
|
{
|
|
struct hns3_adapter *hns = eth_dev->data->dev_private;
|
|
eth_tx_prep_t prep = NULL;
|
|
|
|
if (hns->hw.adapter_state == HNS3_NIC_STARTED &&
|
|
__atomic_load_n(&hns->hw.reset.resetting, __ATOMIC_RELAXED) == 0) {
|
|
eth_dev->rx_pkt_burst = hns3_get_rx_function(eth_dev);
|
|
eth_dev->tx_pkt_burst = hns3_get_tx_function(eth_dev, &prep);
|
|
eth_dev->tx_pkt_prepare = prep;
|
|
} else {
|
|
eth_dev->rx_pkt_burst = hns3_dummy_rxtx_burst;
|
|
eth_dev->tx_pkt_burst = hns3_dummy_rxtx_burst;
|
|
eth_dev->tx_pkt_prepare = hns3_dummy_rxtx_burst;
|
|
}
|
|
}
|
|
|
|
void
|
|
hns3_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
|
|
struct rte_eth_rxq_info *qinfo)
|
|
{
|
|
struct hns3_rx_queue *rxq = dev->data->rx_queues[queue_id];
|
|
|
|
qinfo->mp = rxq->mb_pool;
|
|
qinfo->nb_desc = rxq->nb_rx_desc;
|
|
qinfo->scattered_rx = dev->data->scattered_rx;
|
|
/* Report the HW Rx buffer length to user */
|
|
qinfo->rx_buf_size = rxq->rx_buf_len;
|
|
|
|
/*
|
|
* If there are no available Rx buffer descriptors, incoming packets
|
|
* are always dropped by hardware based on hns3 network engine.
|
|
*/
|
|
qinfo->conf.rx_drop_en = 1;
|
|
qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
|
|
qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
|
|
qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
|
|
}
|
|
|
|
void
|
|
hns3_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
|
|
struct rte_eth_txq_info *qinfo)
|
|
{
|
|
struct hns3_tx_queue *txq = dev->data->tx_queues[queue_id];
|
|
|
|
qinfo->nb_desc = txq->nb_tx_desc;
|
|
qinfo->conf.offloads = dev->data->dev_conf.txmode.offloads;
|
|
qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
|
|
qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
|
|
qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
|
|
}
|
|
|
|
int
|
|
hns3_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
|
|
{
|
|
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct hns3_rx_queue *rxq = dev->data->rx_queues[rx_queue_id];
|
|
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
|
|
int ret;
|
|
|
|
if (!hns3_dev_indep_txrx_supported(hw))
|
|
return -ENOTSUP;
|
|
|
|
ret = hns3_reset_queue(hw, rx_queue_id, HNS3_RING_TYPE_RX);
|
|
if (ret) {
|
|
hns3_err(hw, "fail to reset Rx queue %u, ret = %d.",
|
|
rx_queue_id, ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = hns3_init_rxq(hns, rx_queue_id);
|
|
if (ret) {
|
|
hns3_err(hw, "fail to init Rx queue %u, ret = %d.",
|
|
rx_queue_id, ret);
|
|
return ret;
|
|
}
|
|
|
|
hns3_enable_rxq(rxq, true);
|
|
dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
hns3_reset_sw_rxq(struct hns3_rx_queue *rxq)
|
|
{
|
|
rxq->next_to_use = 0;
|
|
rxq->rx_rearm_start = 0;
|
|
rxq->rx_free_hold = 0;
|
|
rxq->rx_rearm_nb = 0;
|
|
rxq->pkt_first_seg = NULL;
|
|
rxq->pkt_last_seg = NULL;
|
|
memset(&rxq->rx_ring[0], 0, rxq->nb_rx_desc * sizeof(struct hns3_desc));
|
|
hns3_rxq_vec_setup(rxq);
|
|
}
|
|
|
|
int
|
|
hns3_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
|
|
{
|
|
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct hns3_rx_queue *rxq = dev->data->rx_queues[rx_queue_id];
|
|
|
|
if (!hns3_dev_indep_txrx_supported(hw))
|
|
return -ENOTSUP;
|
|
|
|
hns3_enable_rxq(rxq, false);
|
|
|
|
hns3_rx_queue_release_mbufs(rxq);
|
|
|
|
hns3_reset_sw_rxq(rxq);
|
|
dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
hns3_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
|
|
{
|
|
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct hns3_tx_queue *txq = dev->data->tx_queues[tx_queue_id];
|
|
int ret;
|
|
|
|
if (!hns3_dev_indep_txrx_supported(hw))
|
|
return -ENOTSUP;
|
|
|
|
ret = hns3_reset_queue(hw, tx_queue_id, HNS3_RING_TYPE_TX);
|
|
if (ret) {
|
|
hns3_err(hw, "fail to reset Tx queue %u, ret = %d.",
|
|
tx_queue_id, ret);
|
|
return ret;
|
|
}
|
|
|
|
hns3_init_txq(txq);
|
|
hns3_enable_txq(txq, true);
|
|
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
|
|
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
hns3_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
|
|
{
|
|
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct hns3_tx_queue *txq = dev->data->tx_queues[tx_queue_id];
|
|
|
|
if (!hns3_dev_indep_txrx_supported(hw))
|
|
return -ENOTSUP;
|
|
|
|
hns3_enable_txq(txq, false);
|
|
hns3_tx_queue_release_mbufs(txq);
|
|
/*
|
|
* All the mbufs in sw_ring are released and all the pointers in sw_ring
|
|
* are set to NULL. If this queue is still called by upper layer,
|
|
* residual SW status of this txq may cause these pointers in sw_ring
|
|
* which have been set to NULL to be released again. To avoid it,
|
|
* reinit the txq.
|
|
*/
|
|
hns3_init_txq(txq);
|
|
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
|
|
|
|
return 0;
|
|
}
|
|
|
|
uint32_t
|
|
hns3_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
|
|
{
|
|
/*
|
|
* Number of BDs that have been processed by the driver
|
|
* but have not been notified to the hardware.
|
|
*/
|
|
uint32_t driver_hold_bd_num;
|
|
struct hns3_rx_queue *rxq;
|
|
uint32_t fbd_num;
|
|
|
|
rxq = dev->data->rx_queues[rx_queue_id];
|
|
fbd_num = hns3_read_dev(rxq, HNS3_RING_RX_FBDNUM_REG);
|
|
if (dev->rx_pkt_burst == hns3_recv_pkts_vec ||
|
|
dev->rx_pkt_burst == hns3_recv_pkts_vec_sve)
|
|
driver_hold_bd_num = rxq->rx_rearm_nb;
|
|
else
|
|
driver_hold_bd_num = rxq->rx_free_hold;
|
|
|
|
if (fbd_num <= driver_hold_bd_num)
|
|
return 0;
|
|
else
|
|
return fbd_num - driver_hold_bd_num;
|
|
}
|