numam-dpdk/app/test/test_timer.c
Intel dada9ef6ed remove version in all files
Signed-off-by: Intel
2013-07-05 11:59:50 +02:00

363 lines
10 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2012 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/*
* Timer
* =====
*
* #. Stress tests.
*
* The objective of the timer stress tests is to check that there are no
* race conditions in list and status management. This test launches,
* resets and stops the timer very often on many cores at the same
* time.
*
* - Only one timer is used for this test.
* - On each core, the rte_timer_manage() function is called from the main
* loop every 3 microseconds.
* - In the main loop, the timer may be reset (randomly, with a
* probability of 0.5 %) 100 microseconds later on a random core, or
* stopped (with a probability of 0.5 % also).
* - In callback, the timer is can be reset (randomly, with a
* probability of 0.5 %) 100 microseconds later on the same core or
* on another core (same probability), or stopped (same
* probability).
*
*
* #. Basic test.
*
* This test performs basic functional checks of the timers. The test
* uses four different timers that are loaded and stopped under
* specific conditions in specific contexts.
*
* - Four timers are used for this test.
* - On each core, the rte_timer_manage() function is called from main loop
* every 3 microseconds.
*
* The autotest python script checks that the behavior is correct:
*
* - timer0
*
* - At initialization, timer0 is loaded by the master core, on master core
* in "single" mode (time = 1 second).
* - In the first 19 callbacks, timer0 is reloaded on the same core,
* then, it is explicitly stopped at the 20th call.
* - At t=25s, timer0 is reloaded once by timer2.
*
* - timer1
*
* - At initialization, timer1 is loaded by the master core, on the
* master core in "single" mode (time = 2 seconds).
* - In the first 9 callbacks, timer1 is reloaded on another
* core. After the 10th callback, timer1 is not reloaded anymore.
*
* - timer2
*
* - At initialization, timer2 is loaded by the master core, on the
* master core in "periodical" mode (time = 1 second).
* - In the callback, when t=25s, it stops timer3 and reloads timer0
* on the current core.
*
* - timer3
*
* - At initialization, timer3 is loaded by the master core, on
* another core in "periodical" mode (time = 1 second).
* - It is stopped at t=25s by timer2.
*/
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/queue.h>
#include <cmdline_parse.h>
#include <rte_common.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_launch.h>
#include <rte_cycles.h>
#include <rte_tailq.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_atomic.h>
#include <rte_timer.h>
#include <rte_random.h>
#include "test.h"
#define TEST_DURATION_S 30 /* in seconds */
#define NB_TIMER 4
#define RTE_LOGTYPE_TESTTIMER RTE_LOGTYPE_USER3
static volatile uint64_t end_time;
struct mytimerinfo {
struct rte_timer tim;
unsigned id;
unsigned count;
};
static struct mytimerinfo mytiminfo[NB_TIMER];
static void timer_basic_cb(struct rte_timer *tim, void *arg);
static void
mytimer_reset(struct mytimerinfo *timinfo, unsigned ticks,
enum rte_timer_type type, unsigned tim_lcore,
rte_timer_cb_t fct)
{
rte_timer_reset_sync(&timinfo->tim, ticks, type, tim_lcore,
fct, timinfo);
}
/* timer callback for stress tests */
static void
timer_stress_cb(__attribute__((unused)) struct rte_timer *tim,
__attribute__((unused)) void *arg)
{
long r;
unsigned lcore_id = rte_lcore_id();
uint64_t hz = rte_get_hpet_hz();
if (rte_timer_pending(tim))
return;
r = rte_rand();
if ((r & 0xff) == 0) {
mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
timer_stress_cb);
}
else if ((r & 0xff) == 1) {
mytimer_reset(&mytiminfo[0], hz, SINGLE,
rte_get_next_lcore(lcore_id, 0, 1),
timer_stress_cb);
}
else if ((r & 0xff) == 2) {
rte_timer_stop(&mytiminfo[0].tim);
}
}
static int
timer_stress_main_loop(__attribute__((unused)) void *arg)
{
uint64_t hz = rte_get_hpet_hz();
unsigned lcore_id = rte_lcore_id();
uint64_t cur_time;
int64_t diff = 0;
long r;
while (diff >= 0) {
/* call the timer handler on each core */
rte_timer_manage();
/* simulate the processing of a packet
* (3 us = 6000 cycles at 2 Ghz) */
rte_delay_us(3);
/* randomly stop or reset timer */
r = rte_rand();
lcore_id = rte_get_next_lcore(lcore_id, 0, 1);
if ((r & 0xff) == 0) {
/* 100 us */
mytimer_reset(&mytiminfo[0], hz/10000, SINGLE, lcore_id,
timer_stress_cb);
}
else if ((r & 0xff) == 1) {
rte_timer_stop_sync(&mytiminfo[0].tim);
}
cur_time = rte_get_hpet_cycles();
diff = end_time - cur_time;
}
lcore_id = rte_lcore_id();
RTE_LOG(INFO, TESTTIMER, "core %u finished\n", lcore_id);
return 0;
}
/* timer callback for basic tests */
static void
timer_basic_cb(struct rte_timer *tim, void *arg)
{
struct mytimerinfo *timinfo = arg;
uint64_t hz = rte_get_hpet_hz();
unsigned lcore_id = rte_lcore_id();
uint64_t cur_time = rte_get_hpet_cycles();
if (rte_timer_pending(tim))
return;
timinfo->count ++;
RTE_LOG(INFO, TESTTIMER,
"%"PRIu64": callback id=%u count=%u on core %u\n",
cur_time, timinfo->id, timinfo->count, lcore_id);
/* reload timer 0 on same core */
if (timinfo->id == 0 && timinfo->count < 20) {
mytimer_reset(timinfo, hz, SINGLE, lcore_id, timer_basic_cb);
return;
}
/* reload timer 1 on next core */
if (timinfo->id == 1 && timinfo->count < 10) {
mytimer_reset(timinfo, hz*2, SINGLE,
rte_get_next_lcore(lcore_id, 0, 1),
timer_basic_cb);
return;
}
/* Explicitelly stop timer 0. Once stop() called, we can even
* erase the content of the structure: it is not referenced
* anymore by any code (in case of dynamic structure, it can
* be freed) */
if (timinfo->id == 0 && timinfo->count == 20) {
/* stop_sync() is not needed, because we know that the
* status of timer is only modified by this core */
rte_timer_stop(tim);
memset(tim, 0xAA, sizeof(struct rte_timer));
return;
}
/* stop timer3, and restart a new timer0 (it was removed 5
* seconds ago) for a single shot */
if (timinfo->id == 2 && timinfo->count == 25) {
rte_timer_stop_sync(&mytiminfo[3].tim);
/* need to reinit because structure was erased with 0xAA */
rte_timer_init(&mytiminfo[0].tim);
mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
timer_basic_cb);
}
}
static int
timer_basic_main_loop(__attribute__((unused)) void *arg)
{
uint64_t hz = rte_get_hpet_hz();
unsigned lcore_id = rte_lcore_id();
uint64_t cur_time;
int64_t diff = 0;
/* launch all timers on core 0 */
if (lcore_id == rte_get_master_lcore()) {
mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
timer_basic_cb);
mytimer_reset(&mytiminfo[1], hz*2, SINGLE, lcore_id,
timer_basic_cb);
mytimer_reset(&mytiminfo[2], hz, PERIODICAL, lcore_id,
timer_basic_cb);
mytimer_reset(&mytiminfo[3], hz, PERIODICAL,
rte_get_next_lcore(lcore_id, 0, 1),
timer_basic_cb);
}
while (diff >= 0) {
/* call the timer handler on each core */
rte_timer_manage();
/* simulate the processing of a packet
* (3 us = 6000 cycles at 2 Ghz) */
rte_delay_us(3);
cur_time = rte_get_hpet_cycles();
diff = end_time - cur_time;
}
RTE_LOG(INFO, TESTTIMER, "core %u finished\n", lcore_id);
return 0;
}
int
test_timer(void)
{
unsigned i;
uint64_t cur_time;
uint64_t hz;
if (rte_lcore_count() < 2) {
printf("not enough lcores for this test\n");
return -1;
}
/* init timer */
for (i=0; i<NB_TIMER; i++) {
memset(&mytiminfo[i], 0, sizeof(struct mytimerinfo));
mytiminfo[i].id = i;
rte_timer_init(&mytiminfo[i].tim);
}
/* calculate the "end of test" time */
cur_time = rte_get_hpet_cycles();
hz = rte_get_hpet_hz();
end_time = cur_time + (hz * TEST_DURATION_S);
/* start other cores */
printf("Start timer stress tests (%d seconds)\n", TEST_DURATION_S);
rte_eal_mp_remote_launch(timer_stress_main_loop, NULL, CALL_MASTER);
rte_eal_mp_wait_lcore();
/* stop timer 0 used for stress test */
rte_timer_stop_sync(&mytiminfo[0].tim);
/* calculate the "end of test" time */
cur_time = rte_get_hpet_cycles();
hz = rte_get_hpet_hz();
end_time = cur_time + (hz * TEST_DURATION_S);
/* start other cores */
printf("Start timer basic tests (%d seconds)\n", TEST_DURATION_S);
rte_eal_mp_remote_launch(timer_basic_main_loop, NULL, CALL_MASTER);
rte_eal_mp_wait_lcore();
/* stop all timers */
for (i=0; i<NB_TIMER; i++) {
rte_timer_stop_sync(&mytiminfo[i].tim);
}
rte_timer_dump_stats();
return 0;
}