e10245a13b
The threshold of buffer replenishment for vectorized Rx burst is a constant value (64). If the size of Rx queue is comparatively small, device could run out of buffers. For example, if the size of Rx queue is 128, buffers are replenished only twice per a wraparound. This can cause jitter in receiving packets and the jitter can cause unnecessary retransmission for TCP connections. Fixes:6cb559d67b
("net/mlx5: add vectorized Rx/Tx burst for x86") Fixes:570acdb1da
("net/mlx5: add vectorized Rx/Tx burst for ARM") Cc: stable@dpdk.org Signed-off-by: Yongseok Koh <yskoh@mellanox.com> Acked-by: Shahaf Shuler <shahafs@mellanox.com>
1024 lines
33 KiB
C
1024 lines
33 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright 2017 6WIND S.A.
|
|
* Copyright 2017 Mellanox Technologies, Ltd
|
|
*/
|
|
|
|
#ifndef RTE_PMD_MLX5_RXTX_VEC_NEON_H_
|
|
#define RTE_PMD_MLX5_RXTX_VEC_NEON_H_
|
|
|
|
#include <assert.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
#include <arm_neon.h>
|
|
|
|
#include <rte_mbuf.h>
|
|
#include <rte_mempool.h>
|
|
#include <rte_prefetch.h>
|
|
|
|
#include "mlx5.h"
|
|
#include "mlx5_utils.h"
|
|
#include "mlx5_rxtx.h"
|
|
#include "mlx5_rxtx_vec.h"
|
|
#include "mlx5_autoconf.h"
|
|
#include "mlx5_defs.h"
|
|
#include "mlx5_prm.h"
|
|
|
|
#pragma GCC diagnostic ignored "-Wcast-qual"
|
|
|
|
/**
|
|
* Fill in buffer descriptors in a multi-packet send descriptor.
|
|
*
|
|
* @param txq
|
|
* Pointer to TX queue structure.
|
|
* @param dseg
|
|
* Pointer to buffer descriptor to be written.
|
|
* @param pkts
|
|
* Pointer to array of packets to be sent.
|
|
* @param n
|
|
* Number of packets to be filled.
|
|
*/
|
|
static inline void
|
|
txq_wr_dseg_v(struct mlx5_txq_data *txq, uint8_t *dseg,
|
|
struct rte_mbuf **pkts, unsigned int n)
|
|
{
|
|
unsigned int pos;
|
|
uintptr_t addr;
|
|
const uint8x16_t dseg_shuf_m = {
|
|
3, 2, 1, 0, /* length, bswap32 */
|
|
4, 5, 6, 7, /* lkey */
|
|
15, 14, 13, 12, /* addr, bswap64 */
|
|
11, 10, 9, 8
|
|
};
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
uint32_t tx_byte = 0;
|
|
#endif
|
|
|
|
for (pos = 0; pos < n; ++pos, dseg += MLX5_WQE_DWORD_SIZE) {
|
|
uint8x16_t desc;
|
|
struct rte_mbuf *pkt = pkts[pos];
|
|
|
|
addr = rte_pktmbuf_mtod(pkt, uintptr_t);
|
|
desc = vreinterpretq_u8_u32((uint32x4_t) {
|
|
DATA_LEN(pkt),
|
|
mlx5_tx_mb2mr(txq, pkt),
|
|
addr,
|
|
addr >> 32 });
|
|
desc = vqtbl1q_u8(desc, dseg_shuf_m);
|
|
vst1q_u8(dseg, desc);
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
tx_byte += DATA_LEN(pkt);
|
|
#endif
|
|
}
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
txq->stats.obytes += tx_byte;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Send multi-segmented packets until it encounters a single segment packet in
|
|
* the pkts list.
|
|
*
|
|
* @param txq
|
|
* Pointer to TX queue structure.
|
|
* @param pkts
|
|
* Pointer to array of packets to be sent.
|
|
* @param pkts_n
|
|
* Number of packets to be sent.
|
|
*
|
|
* @return
|
|
* Number of packets successfully transmitted (<= pkts_n).
|
|
*/
|
|
static uint16_t
|
|
txq_scatter_v(struct mlx5_txq_data *txq, struct rte_mbuf **pkts,
|
|
uint16_t pkts_n)
|
|
{
|
|
uint16_t elts_head = txq->elts_head;
|
|
const uint16_t elts_n = 1 << txq->elts_n;
|
|
const uint16_t elts_m = elts_n - 1;
|
|
const uint16_t wq_n = 1 << txq->wqe_n;
|
|
const uint16_t wq_mask = wq_n - 1;
|
|
const unsigned int nb_dword_per_wqebb =
|
|
MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE;
|
|
const unsigned int nb_dword_in_hdr =
|
|
sizeof(struct mlx5_wqe) / MLX5_WQE_DWORD_SIZE;
|
|
unsigned int n;
|
|
volatile struct mlx5_wqe *wqe = NULL;
|
|
|
|
assert(elts_n > pkts_n);
|
|
mlx5_tx_complete(txq);
|
|
/* A CQE slot must always be available. */
|
|
assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
|
|
if (unlikely(!pkts_n))
|
|
return 0;
|
|
for (n = 0; n < pkts_n; ++n) {
|
|
struct rte_mbuf *buf = pkts[n];
|
|
unsigned int segs_n = buf->nb_segs;
|
|
unsigned int ds = nb_dword_in_hdr;
|
|
unsigned int len = PKT_LEN(buf);
|
|
uint16_t wqe_ci = txq->wqe_ci;
|
|
const uint8x16_t ctrl_shuf_m = {
|
|
3, 2, 1, 0, /* bswap32 */
|
|
7, 6, 5, 4, /* bswap32 */
|
|
11, 10, 9, 8, /* bswap32 */
|
|
12, 13, 14, 15
|
|
};
|
|
uint8_t cs_flags;
|
|
uint16_t max_elts;
|
|
uint16_t max_wqe;
|
|
uint8x16_t *t_wqe;
|
|
uint8_t *dseg;
|
|
uint8x16_t ctrl;
|
|
|
|
assert(segs_n);
|
|
max_elts = elts_n - (elts_head - txq->elts_tail);
|
|
max_wqe = wq_n - (txq->wqe_ci - txq->wqe_pi);
|
|
/*
|
|
* A MPW session consumes 2 WQEs at most to
|
|
* include MLX5_MPW_DSEG_MAX pointers.
|
|
*/
|
|
if (segs_n == 1 ||
|
|
max_elts < segs_n || max_wqe < 2)
|
|
break;
|
|
wqe = &((volatile struct mlx5_wqe64 *)
|
|
txq->wqes)[wqe_ci & wq_mask].hdr;
|
|
cs_flags = txq_ol_cksum_to_cs(buf);
|
|
/* Title WQEBB pointer. */
|
|
t_wqe = (uint8x16_t *)wqe;
|
|
dseg = (uint8_t *)(wqe + 1);
|
|
do {
|
|
if (!(ds++ % nb_dword_per_wqebb)) {
|
|
dseg = (uint8_t *)
|
|
&((volatile struct mlx5_wqe64 *)
|
|
txq->wqes)[++wqe_ci & wq_mask];
|
|
}
|
|
txq_wr_dseg_v(txq, dseg, &buf, 1);
|
|
dseg += MLX5_WQE_DWORD_SIZE;
|
|
(*txq->elts)[elts_head++ & elts_m] = buf;
|
|
buf = buf->next;
|
|
} while (--segs_n);
|
|
++wqe_ci;
|
|
/* Fill CTRL in the header. */
|
|
ctrl = vreinterpretq_u8_u32((uint32x4_t) {
|
|
MLX5_OPC_MOD_MPW << 24 |
|
|
txq->wqe_ci << 8 | MLX5_OPCODE_TSO,
|
|
txq->qp_num_8s | ds, 0, 0});
|
|
ctrl = vqtbl1q_u8(ctrl, ctrl_shuf_m);
|
|
vst1q_u8((void *)t_wqe, ctrl);
|
|
/* Fill ESEG in the header. */
|
|
vst1q_u16((void *)(t_wqe + 1),
|
|
((uint16x8_t) { 0, 0, cs_flags, rte_cpu_to_be_16(len),
|
|
0, 0, 0, 0 }));
|
|
txq->wqe_ci = wqe_ci;
|
|
}
|
|
if (!n)
|
|
return 0;
|
|
txq->elts_comp += (uint16_t)(elts_head - txq->elts_head);
|
|
txq->elts_head = elts_head;
|
|
if (txq->elts_comp >= MLX5_TX_COMP_THRESH) {
|
|
wqe->ctrl[2] = rte_cpu_to_be_32(8);
|
|
wqe->ctrl[3] = txq->elts_head;
|
|
txq->elts_comp = 0;
|
|
#ifndef NDEBUG
|
|
++txq->cq_pi;
|
|
#endif
|
|
}
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
txq->stats.opackets += n;
|
|
#endif
|
|
mlx5_tx_dbrec(txq, wqe);
|
|
return n;
|
|
}
|
|
|
|
/**
|
|
* Send burst of packets with Enhanced MPW. If it encounters a multi-seg packet,
|
|
* it returns to make it processed by txq_scatter_v(). All the packets in
|
|
* the pkts list should be single segment packets having same offload flags.
|
|
* This must be checked by txq_count_contig_single_seg() and txq_calc_offload().
|
|
*
|
|
* @param txq
|
|
* Pointer to TX queue structure.
|
|
* @param pkts
|
|
* Pointer to array of packets to be sent.
|
|
* @param pkts_n
|
|
* Number of packets to be sent (<= MLX5_VPMD_TX_MAX_BURST).
|
|
* @param cs_flags
|
|
* Checksum offload flags to be written in the descriptor.
|
|
*
|
|
* @return
|
|
* Number of packets successfully transmitted (<= pkts_n).
|
|
*/
|
|
static inline uint16_t
|
|
txq_burst_v(struct mlx5_txq_data *txq, struct rte_mbuf **pkts, uint16_t pkts_n,
|
|
uint8_t cs_flags)
|
|
{
|
|
struct rte_mbuf **elts;
|
|
uint16_t elts_head = txq->elts_head;
|
|
const uint16_t elts_n = 1 << txq->elts_n;
|
|
const uint16_t elts_m = elts_n - 1;
|
|
const unsigned int nb_dword_per_wqebb =
|
|
MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE;
|
|
const unsigned int nb_dword_in_hdr =
|
|
sizeof(struct mlx5_wqe) / MLX5_WQE_DWORD_SIZE;
|
|
unsigned int n = 0;
|
|
unsigned int pos;
|
|
uint16_t max_elts;
|
|
uint16_t max_wqe;
|
|
uint32_t comp_req = 0;
|
|
const uint16_t wq_n = 1 << txq->wqe_n;
|
|
const uint16_t wq_mask = wq_n - 1;
|
|
uint16_t wq_idx = txq->wqe_ci & wq_mask;
|
|
volatile struct mlx5_wqe64 *wq =
|
|
&((volatile struct mlx5_wqe64 *)txq->wqes)[wq_idx];
|
|
volatile struct mlx5_wqe *wqe = (volatile struct mlx5_wqe *)wq;
|
|
const uint8x16_t ctrl_shuf_m = {
|
|
3, 2, 1, 0, /* bswap32 */
|
|
7, 6, 5, 4, /* bswap32 */
|
|
11, 10, 9, 8, /* bswap32 */
|
|
12, 13, 14, 15
|
|
};
|
|
uint8x16_t *t_wqe;
|
|
uint8_t *dseg;
|
|
uint8x16_t ctrl;
|
|
|
|
/* Make sure all packets can fit into a single WQE. */
|
|
assert(elts_n > pkts_n);
|
|
mlx5_tx_complete(txq);
|
|
max_elts = (elts_n - (elts_head - txq->elts_tail));
|
|
/* A CQE slot must always be available. */
|
|
assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
|
|
max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
|
|
pkts_n = RTE_MIN((unsigned int)RTE_MIN(pkts_n, max_wqe), max_elts);
|
|
if (unlikely(!pkts_n))
|
|
return 0;
|
|
elts = &(*txq->elts)[elts_head & elts_m];
|
|
/* Loop for available tailroom first. */
|
|
n = RTE_MIN(elts_n - (elts_head & elts_m), pkts_n);
|
|
for (pos = 0; pos < (n & -2); pos += 2)
|
|
vst1q_u64((void *)&elts[pos], vld1q_u64((void *)&pkts[pos]));
|
|
if (n & 1)
|
|
elts[pos] = pkts[pos];
|
|
/* Check if it crosses the end of the queue. */
|
|
if (unlikely(n < pkts_n)) {
|
|
elts = &(*txq->elts)[0];
|
|
for (pos = 0; pos < pkts_n - n; ++pos)
|
|
elts[pos] = pkts[n + pos];
|
|
}
|
|
txq->elts_head += pkts_n;
|
|
/* Save title WQEBB pointer. */
|
|
t_wqe = (uint8x16_t *)wqe;
|
|
dseg = (uint8_t *)(wqe + 1);
|
|
/* Calculate the number of entries to the end. */
|
|
n = RTE_MIN(
|
|
(wq_n - wq_idx) * nb_dword_per_wqebb - nb_dword_in_hdr,
|
|
pkts_n);
|
|
/* Fill DSEGs. */
|
|
txq_wr_dseg_v(txq, dseg, pkts, n);
|
|
/* Check if it crosses the end of the queue. */
|
|
if (n < pkts_n) {
|
|
dseg = (uint8_t *)txq->wqes;
|
|
txq_wr_dseg_v(txq, dseg, &pkts[n], pkts_n - n);
|
|
}
|
|
if (txq->elts_comp + pkts_n < MLX5_TX_COMP_THRESH) {
|
|
txq->elts_comp += pkts_n;
|
|
} else {
|
|
/* Request a completion. */
|
|
txq->elts_comp = 0;
|
|
#ifndef NDEBUG
|
|
++txq->cq_pi;
|
|
#endif
|
|
comp_req = 8;
|
|
}
|
|
/* Fill CTRL in the header. */
|
|
ctrl = vreinterpretq_u8_u32((uint32x4_t) {
|
|
MLX5_OPC_MOD_ENHANCED_MPSW << 24 |
|
|
txq->wqe_ci << 8 | MLX5_OPCODE_ENHANCED_MPSW,
|
|
txq->qp_num_8s | (pkts_n + 2),
|
|
comp_req,
|
|
txq->elts_head });
|
|
ctrl = vqtbl1q_u8(ctrl, ctrl_shuf_m);
|
|
vst1q_u8((void *)t_wqe, ctrl);
|
|
/* Fill ESEG in the header. */
|
|
vst1q_u8((void *)(t_wqe + 1),
|
|
((uint8x16_t) { 0, 0, 0, 0,
|
|
cs_flags, 0, 0, 0,
|
|
0, 0, 0, 0,
|
|
0, 0, 0, 0 }));
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
txq->stats.opackets += pkts_n;
|
|
#endif
|
|
txq->wqe_ci += (nb_dword_in_hdr + pkts_n + (nb_dword_per_wqebb - 1)) /
|
|
nb_dword_per_wqebb;
|
|
/* Ring QP doorbell. */
|
|
mlx5_tx_dbrec_cond_wmb(txq, wqe, pkts_n < MLX5_VPMD_TX_MAX_BURST);
|
|
return pkts_n;
|
|
}
|
|
|
|
/**
|
|
* Store free buffers to RX SW ring.
|
|
*
|
|
* @param rxq
|
|
* Pointer to RX queue structure.
|
|
* @param pkts
|
|
* Pointer to array of packets to be stored.
|
|
* @param pkts_n
|
|
* Number of packets to be stored.
|
|
*/
|
|
static inline void
|
|
rxq_copy_mbuf_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t n)
|
|
{
|
|
const uint16_t q_mask = (1 << rxq->elts_n) - 1;
|
|
struct rte_mbuf **elts = &(*rxq->elts)[rxq->rq_pi & q_mask];
|
|
unsigned int pos;
|
|
uint16_t p = n & -2;
|
|
|
|
for (pos = 0; pos < p; pos += 2) {
|
|
uint64x2_t mbp;
|
|
|
|
mbp = vld1q_u64((void *)&elts[pos]);
|
|
vst1q_u64((void *)&pkts[pos], mbp);
|
|
}
|
|
if (n & 1)
|
|
pkts[pos] = elts[pos];
|
|
}
|
|
|
|
/**
|
|
* Decompress a compressed completion and fill in mbufs in RX SW ring with data
|
|
* extracted from the title completion descriptor.
|
|
*
|
|
* @param rxq
|
|
* Pointer to RX queue structure.
|
|
* @param cq
|
|
* Pointer to completion array having a compressed completion at first.
|
|
* @param elts
|
|
* Pointer to SW ring to be filled. The first mbuf has to be pre-built from
|
|
* the title completion descriptor to be copied to the rest of mbufs.
|
|
*/
|
|
static inline void
|
|
rxq_cq_decompress_v(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cq,
|
|
struct rte_mbuf **elts)
|
|
{
|
|
volatile struct mlx5_mini_cqe8 *mcq = (void *)&(cq + 1)->pkt_info;
|
|
struct rte_mbuf *t_pkt = elts[0]; /* Title packet is pre-built. */
|
|
unsigned int pos;
|
|
unsigned int i;
|
|
unsigned int inv = 0;
|
|
/* Mask to shuffle from extracted mini CQE to mbuf. */
|
|
const uint8x16_t mcqe_shuf_m1 = {
|
|
-1, -1, -1, -1, /* skip packet_type */
|
|
7, 6, -1, -1, /* pkt_len, bswap16 */
|
|
7, 6, /* data_len, bswap16 */
|
|
-1, -1, /* skip vlan_tci */
|
|
3, 2, 1, 0 /* hash.rss, bswap32 */
|
|
};
|
|
const uint8x16_t mcqe_shuf_m2 = {
|
|
-1, -1, -1, -1, /* skip packet_type */
|
|
15, 14, -1, -1, /* pkt_len, bswap16 */
|
|
15, 14, /* data_len, bswap16 */
|
|
-1, -1, /* skip vlan_tci */
|
|
11, 10, 9, 8 /* hash.rss, bswap32 */
|
|
};
|
|
/* Restore the compressed count. Must be 16 bits. */
|
|
const uint16_t mcqe_n = t_pkt->data_len +
|
|
(rxq->crc_present * ETHER_CRC_LEN);
|
|
const uint64x2_t rearm =
|
|
vld1q_u64((void *)&t_pkt->rearm_data);
|
|
const uint32x4_t rxdf_mask = {
|
|
0xffffffff, /* packet_type */
|
|
0, /* skip pkt_len */
|
|
0xffff0000, /* vlan_tci, skip data_len */
|
|
0, /* skip hash.rss */
|
|
};
|
|
const uint8x16_t rxdf =
|
|
vandq_u8(vld1q_u8((void *)&t_pkt->rx_descriptor_fields1),
|
|
vreinterpretq_u8_u32(rxdf_mask));
|
|
const uint16x8_t crc_adj = {
|
|
0, 0,
|
|
rxq->crc_present * ETHER_CRC_LEN, 0,
|
|
rxq->crc_present * ETHER_CRC_LEN, 0,
|
|
0, 0
|
|
};
|
|
const uint32_t flow_tag = t_pkt->hash.fdir.hi;
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
uint32_t rcvd_byte = 0;
|
|
#endif
|
|
/* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
|
|
const uint8x8_t len_shuf_m = {
|
|
7, 6, /* 1st mCQE */
|
|
15, 14, /* 2nd mCQE */
|
|
23, 22, /* 3rd mCQE */
|
|
31, 30 /* 4th mCQE */
|
|
};
|
|
|
|
/*
|
|
* A. load mCQEs into a 128bit register.
|
|
* B. store rearm data to mbuf.
|
|
* C. combine data from mCQEs with rx_descriptor_fields1.
|
|
* D. store rx_descriptor_fields1.
|
|
* E. store flow tag (rte_flow mark).
|
|
*/
|
|
for (pos = 0; pos < mcqe_n; ) {
|
|
uint8_t *p = (void *)&mcq[pos % 8];
|
|
uint8_t *e0 = (void *)&elts[pos]->rearm_data;
|
|
uint8_t *e1 = (void *)&elts[pos + 1]->rearm_data;
|
|
uint8_t *e2 = (void *)&elts[pos + 2]->rearm_data;
|
|
uint8_t *e3 = (void *)&elts[pos + 3]->rearm_data;
|
|
uint16x4_t byte_cnt;
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
uint16x4_t invalid_mask =
|
|
vcreate_u16(mcqe_n - pos < MLX5_VPMD_DESCS_PER_LOOP ?
|
|
-1UL << ((mcqe_n - pos) *
|
|
sizeof(uint16_t) * 8) : 0);
|
|
#endif
|
|
|
|
if (!(pos & 0x7) && pos + 8 < mcqe_n)
|
|
rte_prefetch0((void *)(cq + pos + 8));
|
|
__asm__ volatile (
|
|
/* A.1 load mCQEs into a 128bit register. */
|
|
"ld1 {v16.16b - v17.16b}, [%[mcq]] \n\t"
|
|
/* B.1 store rearm data to mbuf. */
|
|
"st1 {%[rearm].2d}, [%[e0]] \n\t"
|
|
"add %[e0], %[e0], #16 \n\t"
|
|
"st1 {%[rearm].2d}, [%[e1]] \n\t"
|
|
"add %[e1], %[e1], #16 \n\t"
|
|
/* C.1 combine data from mCQEs with rx_descriptor_fields1. */
|
|
"tbl v18.16b, {v16.16b}, %[mcqe_shuf_m1].16b \n\t"
|
|
"tbl v19.16b, {v16.16b}, %[mcqe_shuf_m2].16b \n\t"
|
|
"sub v18.8h, v18.8h, %[crc_adj].8h \n\t"
|
|
"sub v19.8h, v19.8h, %[crc_adj].8h \n\t"
|
|
"orr v18.16b, v18.16b, %[rxdf].16b \n\t"
|
|
"orr v19.16b, v19.16b, %[rxdf].16b \n\t"
|
|
/* D.1 store rx_descriptor_fields1. */
|
|
"st1 {v18.2d}, [%[e0]] \n\t"
|
|
"st1 {v19.2d}, [%[e1]] \n\t"
|
|
/* B.1 store rearm data to mbuf. */
|
|
"st1 {%[rearm].2d}, [%[e2]] \n\t"
|
|
"add %[e2], %[e2], #16 \n\t"
|
|
"st1 {%[rearm].2d}, [%[e3]] \n\t"
|
|
"add %[e3], %[e3], #16 \n\t"
|
|
/* C.1 combine data from mCQEs with rx_descriptor_fields1. */
|
|
"tbl v18.16b, {v17.16b}, %[mcqe_shuf_m1].16b \n\t"
|
|
"tbl v19.16b, {v17.16b}, %[mcqe_shuf_m2].16b \n\t"
|
|
"sub v18.8h, v18.8h, %[crc_adj].8h \n\t"
|
|
"sub v19.8h, v19.8h, %[crc_adj].8h \n\t"
|
|
"orr v18.16b, v18.16b, %[rxdf].16b \n\t"
|
|
"orr v19.16b, v19.16b, %[rxdf].16b \n\t"
|
|
/* D.1 store rx_descriptor_fields1. */
|
|
"st1 {v18.2d}, [%[e2]] \n\t"
|
|
"st1 {v19.2d}, [%[e3]] \n\t"
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
"tbl %[byte_cnt].8b, {v16.16b - v17.16b}, %[len_shuf_m].8b \n\t"
|
|
#endif
|
|
:[byte_cnt]"=&w"(byte_cnt)
|
|
:[mcq]"r"(p),
|
|
[rxdf]"w"(rxdf),
|
|
[rearm]"w"(rearm),
|
|
[e3]"r"(e3), [e2]"r"(e2), [e1]"r"(e1), [e0]"r"(e0),
|
|
[mcqe_shuf_m1]"w"(mcqe_shuf_m1),
|
|
[mcqe_shuf_m2]"w"(mcqe_shuf_m2),
|
|
[crc_adj]"w"(crc_adj),
|
|
[len_shuf_m]"w"(len_shuf_m)
|
|
:"memory", "v16", "v17", "v18", "v19");
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
byte_cnt = vbic_u16(byte_cnt, invalid_mask);
|
|
rcvd_byte += vget_lane_u64(vpaddl_u32(vpaddl_u16(byte_cnt)), 0);
|
|
#endif
|
|
if (rxq->mark) {
|
|
/* E.1 store flow tag (rte_flow mark). */
|
|
elts[pos]->hash.fdir.hi = flow_tag;
|
|
elts[pos + 1]->hash.fdir.hi = flow_tag;
|
|
elts[pos + 2]->hash.fdir.hi = flow_tag;
|
|
elts[pos + 3]->hash.fdir.hi = flow_tag;
|
|
}
|
|
pos += MLX5_VPMD_DESCS_PER_LOOP;
|
|
/* Move to next CQE and invalidate consumed CQEs. */
|
|
if (!(pos & 0x7) && pos < mcqe_n) {
|
|
mcq = (void *)&(cq + pos)->pkt_info;
|
|
for (i = 0; i < 8; ++i)
|
|
cq[inv++].op_own = MLX5_CQE_INVALIDATE;
|
|
}
|
|
}
|
|
/* Invalidate the rest of CQEs. */
|
|
for (; inv < mcqe_n; ++inv)
|
|
cq[inv].op_own = MLX5_CQE_INVALIDATE;
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
rxq->stats.ipackets += mcqe_n;
|
|
rxq->stats.ibytes += rcvd_byte;
|
|
#endif
|
|
rxq->cq_ci += mcqe_n;
|
|
}
|
|
|
|
/**
|
|
* Calculate packet type and offload flag for mbuf and store it.
|
|
*
|
|
* @param rxq
|
|
* Pointer to RX queue structure.
|
|
* @param ptype_info
|
|
* Array of four 4bytes packet type info extracted from the original
|
|
* completion descriptor.
|
|
* @param flow_tag
|
|
* Array of four 4bytes flow ID extracted from the original completion
|
|
* descriptor.
|
|
* @param op_err
|
|
* Opcode vector having responder error status. Each field is 4B.
|
|
* @param pkts
|
|
* Pointer to array of packets to be filled.
|
|
*/
|
|
static inline void
|
|
rxq_cq_to_ptype_oflags_v(struct mlx5_rxq_data *rxq,
|
|
uint32x4_t ptype_info, uint32x4_t flow_tag,
|
|
uint16x4_t op_err, struct rte_mbuf **pkts)
|
|
{
|
|
uint16x4_t ptype;
|
|
uint32x4_t pinfo, cv_flags;
|
|
uint32x4_t ol_flags =
|
|
vdupq_n_u32(rxq->rss_hash * PKT_RX_RSS_HASH |
|
|
rxq->hw_timestamp * PKT_RX_TIMESTAMP);
|
|
const uint32x4_t ptype_ol_mask = { 0x106, 0x106, 0x106, 0x106 };
|
|
const uint8x16_t cv_flag_sel = {
|
|
0,
|
|
(uint8_t)(PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED),
|
|
(uint8_t)(PKT_RX_IP_CKSUM_GOOD >> 1),
|
|
0,
|
|
(uint8_t)(PKT_RX_L4_CKSUM_GOOD >> 1),
|
|
0,
|
|
(uint8_t)((PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1),
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0
|
|
};
|
|
const uint32x4_t cv_mask =
|
|
vdupq_n_u32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
|
|
PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED);
|
|
const uint64x1_t mbuf_init = vld1_u64(&rxq->mbuf_initializer);
|
|
const uint64x1_t r32_mask = vcreate_u64(0xffffffff);
|
|
uint64x2_t rearm0, rearm1, rearm2, rearm3;
|
|
uint8_t pt_idx0, pt_idx1, pt_idx2, pt_idx3;
|
|
|
|
if (rxq->mark) {
|
|
const uint32x4_t ft_def = vdupq_n_u32(MLX5_FLOW_MARK_DEFAULT);
|
|
const uint32x4_t fdir_flags = vdupq_n_u32(PKT_RX_FDIR);
|
|
uint32x4_t fdir_id_flags = vdupq_n_u32(PKT_RX_FDIR_ID);
|
|
uint32x4_t invalid_mask;
|
|
|
|
/* Check if flow tag is non-zero then set PKT_RX_FDIR. */
|
|
invalid_mask = vceqzq_u32(flow_tag);
|
|
ol_flags = vorrq_u32(ol_flags,
|
|
vbicq_u32(fdir_flags, invalid_mask));
|
|
/* Mask out invalid entries. */
|
|
fdir_id_flags = vbicq_u32(fdir_id_flags, invalid_mask);
|
|
/* Check if flow tag MLX5_FLOW_MARK_DEFAULT. */
|
|
ol_flags = vorrq_u32(ol_flags,
|
|
vbicq_u32(fdir_id_flags,
|
|
vceqq_u32(flow_tag, ft_def)));
|
|
}
|
|
/*
|
|
* ptype_info has the following:
|
|
* bit[1] = l3_ok
|
|
* bit[2] = l4_ok
|
|
* bit[8] = cv
|
|
* bit[11:10] = l3_hdr_type
|
|
* bit[14:12] = l4_hdr_type
|
|
* bit[15] = ip_frag
|
|
* bit[16] = tunneled
|
|
* bit[17] = outer_l3_type
|
|
*/
|
|
ptype = vshrn_n_u32(ptype_info, 10);
|
|
/* Errored packets will have RTE_PTYPE_ALL_MASK. */
|
|
ptype = vorr_u16(ptype, op_err);
|
|
pt_idx0 = vget_lane_u8(vreinterpret_u8_u16(ptype), 6);
|
|
pt_idx1 = vget_lane_u8(vreinterpret_u8_u16(ptype), 4);
|
|
pt_idx2 = vget_lane_u8(vreinterpret_u8_u16(ptype), 2);
|
|
pt_idx3 = vget_lane_u8(vreinterpret_u8_u16(ptype), 0);
|
|
pkts[0]->packet_type = mlx5_ptype_table[pt_idx0] |
|
|
!!(pt_idx0 & (1 << 6)) * rxq->tunnel;
|
|
pkts[1]->packet_type = mlx5_ptype_table[pt_idx1] |
|
|
!!(pt_idx1 & (1 << 6)) * rxq->tunnel;
|
|
pkts[2]->packet_type = mlx5_ptype_table[pt_idx2] |
|
|
!!(pt_idx2 & (1 << 6)) * rxq->tunnel;
|
|
pkts[3]->packet_type = mlx5_ptype_table[pt_idx3] |
|
|
!!(pt_idx3 & (1 << 6)) * rxq->tunnel;
|
|
/* Fill flags for checksum and VLAN. */
|
|
pinfo = vandq_u32(ptype_info, ptype_ol_mask);
|
|
pinfo = vreinterpretq_u32_u8(
|
|
vqtbl1q_u8(cv_flag_sel, vreinterpretq_u8_u32(pinfo)));
|
|
/* Locate checksum flags at byte[2:1] and merge with VLAN flags. */
|
|
cv_flags = vshlq_n_u32(pinfo, 9);
|
|
cv_flags = vorrq_u32(pinfo, cv_flags);
|
|
/* Move back flags to start from byte[0]. */
|
|
cv_flags = vshrq_n_u32(cv_flags, 8);
|
|
/* Mask out garbage bits. */
|
|
cv_flags = vandq_u32(cv_flags, cv_mask);
|
|
/* Merge to ol_flags. */
|
|
ol_flags = vorrq_u32(ol_flags, cv_flags);
|
|
/* Merge mbuf_init and ol_flags, and store. */
|
|
rearm0 = vcombine_u64(mbuf_init,
|
|
vshr_n_u64(vget_high_u64(vreinterpretq_u64_u32(
|
|
ol_flags)), 32));
|
|
rearm1 = vcombine_u64(mbuf_init,
|
|
vand_u64(vget_high_u64(vreinterpretq_u64_u32(
|
|
ol_flags)), r32_mask));
|
|
rearm2 = vcombine_u64(mbuf_init,
|
|
vshr_n_u64(vget_low_u64(vreinterpretq_u64_u32(
|
|
ol_flags)), 32));
|
|
rearm3 = vcombine_u64(mbuf_init,
|
|
vand_u64(vget_low_u64(vreinterpretq_u64_u32(
|
|
ol_flags)), r32_mask));
|
|
vst1q_u64((void *)&pkts[0]->rearm_data, rearm0);
|
|
vst1q_u64((void *)&pkts[1]->rearm_data, rearm1);
|
|
vst1q_u64((void *)&pkts[2]->rearm_data, rearm2);
|
|
vst1q_u64((void *)&pkts[3]->rearm_data, rearm3);
|
|
}
|
|
|
|
/**
|
|
* Receive burst of packets. An errored completion also consumes a mbuf, but the
|
|
* packet_type is set to be RTE_PTYPE_ALL_MASK. Marked mbufs should be freed
|
|
* before returning to application.
|
|
*
|
|
* @param rxq
|
|
* Pointer to RX queue structure.
|
|
* @param[out] pkts
|
|
* Array to store received packets.
|
|
* @param pkts_n
|
|
* Maximum number of packets in array.
|
|
* @param[out] err
|
|
* Pointer to a flag. Set non-zero value if pkts array has at least one error
|
|
* packet to handle.
|
|
*
|
|
* @return
|
|
* Number of packets received including errors (<= pkts_n).
|
|
*/
|
|
static inline uint16_t
|
|
rxq_burst_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t pkts_n,
|
|
uint64_t *err)
|
|
{
|
|
const uint16_t q_n = 1 << rxq->cqe_n;
|
|
const uint16_t q_mask = q_n - 1;
|
|
volatile struct mlx5_cqe *cq;
|
|
struct rte_mbuf **elts;
|
|
unsigned int pos;
|
|
uint64_t n;
|
|
uint16_t repl_n;
|
|
uint64_t comp_idx = MLX5_VPMD_DESCS_PER_LOOP;
|
|
uint16_t nocmp_n = 0;
|
|
uint16_t rcvd_pkt = 0;
|
|
unsigned int cq_idx = rxq->cq_ci & q_mask;
|
|
unsigned int elts_idx;
|
|
const uint16x4_t ownership = vdup_n_u16(!(rxq->cq_ci & (q_mask + 1)));
|
|
const uint16x4_t owner_check = vcreate_u16(0x0001000100010001);
|
|
const uint16x4_t opcode_check = vcreate_u16(0x00f000f000f000f0);
|
|
const uint16x4_t format_check = vcreate_u16(0x000c000c000c000c);
|
|
const uint16x4_t resp_err_check = vcreate_u16(0x00e000e000e000e0);
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
uint32_t rcvd_byte = 0;
|
|
#endif
|
|
/* Mask to generate 16B length vector. */
|
|
const uint8x8_t len_shuf_m = {
|
|
52, 53, /* 4th CQE */
|
|
36, 37, /* 3rd CQE */
|
|
20, 21, /* 2nd CQE */
|
|
4, 5 /* 1st CQE */
|
|
};
|
|
/* Mask to extract 16B data from a 64B CQE. */
|
|
const uint8x16_t cqe_shuf_m = {
|
|
28, 29, /* hdr_type_etc */
|
|
0, /* pkt_info */
|
|
-1, /* null */
|
|
47, 46, /* byte_cnt, bswap16 */
|
|
31, 30, /* vlan_info, bswap16 */
|
|
15, 14, 13, 12, /* rx_hash_res, bswap32 */
|
|
57, 58, 59, /* flow_tag */
|
|
63 /* op_own */
|
|
};
|
|
/* Mask to generate 16B data for mbuf. */
|
|
const uint8x16_t mb_shuf_m = {
|
|
4, 5, -1, -1, /* pkt_len */
|
|
4, 5, /* data_len */
|
|
6, 7, /* vlan_tci */
|
|
8, 9, 10, 11, /* hash.rss */
|
|
12, 13, 14, -1 /* hash.fdir.hi */
|
|
};
|
|
/* Mask to generate 16B owner vector. */
|
|
const uint8x8_t owner_shuf_m = {
|
|
63, -1, /* 4th CQE */
|
|
47, -1, /* 3rd CQE */
|
|
31, -1, /* 2nd CQE */
|
|
15, -1 /* 1st CQE */
|
|
};
|
|
/* Mask to generate a vector having packet_type/ol_flags. */
|
|
const uint8x16_t ptype_shuf_m = {
|
|
48, 49, 50, -1, /* 4th CQE */
|
|
32, 33, 34, -1, /* 3rd CQE */
|
|
16, 17, 18, -1, /* 2nd CQE */
|
|
0, 1, 2, -1 /* 1st CQE */
|
|
};
|
|
/* Mask to generate a vector having flow tags. */
|
|
const uint8x16_t ftag_shuf_m = {
|
|
60, 61, 62, -1, /* 4th CQE */
|
|
44, 45, 46, -1, /* 3rd CQE */
|
|
28, 29, 30, -1, /* 2nd CQE */
|
|
12, 13, 14, -1 /* 1st CQE */
|
|
};
|
|
const uint16x8_t crc_adj = {
|
|
0, 0, rxq->crc_present * ETHER_CRC_LEN, 0, 0, 0, 0, 0
|
|
};
|
|
const uint32x4_t flow_mark_adj = { 0, 0, 0, rxq->mark * (-1) };
|
|
|
|
assert(rxq->sges_n == 0);
|
|
assert(rxq->cqe_n == rxq->elts_n);
|
|
cq = &(*rxq->cqes)[cq_idx];
|
|
rte_prefetch_non_temporal(cq);
|
|
rte_prefetch_non_temporal(cq + 1);
|
|
rte_prefetch_non_temporal(cq + 2);
|
|
rte_prefetch_non_temporal(cq + 3);
|
|
pkts_n = RTE_MIN(pkts_n, MLX5_VPMD_RX_MAX_BURST);
|
|
/*
|
|
* Order of indexes:
|
|
* rq_ci >= cq_ci >= rq_pi
|
|
* Definition of indexes:
|
|
* rq_ci - cq_ci := # of buffers owned by HW (posted).
|
|
* cq_ci - rq_pi := # of buffers not returned to app (decompressed).
|
|
* N - (rq_ci - rq_pi) := # of buffers consumed (to be replenished).
|
|
*/
|
|
repl_n = q_n - (rxq->rq_ci - rxq->rq_pi);
|
|
if (repl_n >= MLX5_VPMD_RXQ_RPLNSH_THRESH(q_n))
|
|
mlx5_rx_replenish_bulk_mbuf(rxq, repl_n);
|
|
/* See if there're unreturned mbufs from compressed CQE. */
|
|
rcvd_pkt = rxq->cq_ci - rxq->rq_pi;
|
|
if (rcvd_pkt > 0) {
|
|
rcvd_pkt = RTE_MIN(rcvd_pkt, pkts_n);
|
|
rxq_copy_mbuf_v(rxq, pkts, rcvd_pkt);
|
|
rxq->rq_pi += rcvd_pkt;
|
|
pkts += rcvd_pkt;
|
|
}
|
|
elts_idx = rxq->rq_pi & q_mask;
|
|
elts = &(*rxq->elts)[elts_idx];
|
|
/* Not to overflow pkts array. */
|
|
pkts_n = RTE_ALIGN_FLOOR(pkts_n - rcvd_pkt, MLX5_VPMD_DESCS_PER_LOOP);
|
|
/* Not to cross queue end. */
|
|
pkts_n = RTE_MIN(pkts_n, q_n - elts_idx);
|
|
if (!pkts_n)
|
|
return rcvd_pkt;
|
|
/* At this point, there shouldn't be any remained packets. */
|
|
assert(rxq->rq_pi == rxq->cq_ci);
|
|
/*
|
|
* Note that vectors have reverse order - {v3, v2, v1, v0}, because
|
|
* there's no instruction to count trailing zeros. __builtin_clzl() is
|
|
* used instead.
|
|
*
|
|
* A. copy 4 mbuf pointers from elts ring to returing pkts.
|
|
* B. load 64B CQE and extract necessary fields
|
|
* Final 16bytes cqes[] extracted from original 64bytes CQE has the
|
|
* following structure:
|
|
* struct {
|
|
* uint16_t hdr_type_etc;
|
|
* uint8_t pkt_info;
|
|
* uint8_t rsvd;
|
|
* uint16_t byte_cnt;
|
|
* uint16_t vlan_info;
|
|
* uint32_t rx_has_res;
|
|
* uint8_t flow_tag[3];
|
|
* uint8_t op_own;
|
|
* } c;
|
|
* C. fill in mbuf.
|
|
* D. get valid CQEs.
|
|
* E. find compressed CQE.
|
|
*/
|
|
for (pos = 0;
|
|
pos < pkts_n;
|
|
pos += MLX5_VPMD_DESCS_PER_LOOP) {
|
|
uint16x4_t op_own;
|
|
uint16x4_t opcode, owner_mask, invalid_mask;
|
|
uint16x4_t comp_mask;
|
|
uint16x4_t mask;
|
|
uint16x4_t byte_cnt;
|
|
uint32x4_t ptype_info, flow_tag;
|
|
register uint64x2_t c0, c1, c2, c3;
|
|
uint8_t *p0, *p1, *p2, *p3;
|
|
uint8_t *e0 = (void *)&elts[pos]->pkt_len;
|
|
uint8_t *e1 = (void *)&elts[pos + 1]->pkt_len;
|
|
uint8_t *e2 = (void *)&elts[pos + 2]->pkt_len;
|
|
uint8_t *e3 = (void *)&elts[pos + 3]->pkt_len;
|
|
void *elts_p = (void *)&elts[pos];
|
|
void *pkts_p = (void *)&pkts[pos];
|
|
|
|
/* A.0 do not cross the end of CQ. */
|
|
mask = vcreate_u16(pkts_n - pos < MLX5_VPMD_DESCS_PER_LOOP ?
|
|
-1UL >> ((pkts_n - pos) *
|
|
sizeof(uint16_t) * 8) : 0);
|
|
p0 = (void *)&cq[pos].pkt_info;
|
|
p1 = p0 + (pkts_n - pos > 1) * sizeof(struct mlx5_cqe);
|
|
p2 = p1 + (pkts_n - pos > 2) * sizeof(struct mlx5_cqe);
|
|
p3 = p2 + (pkts_n - pos > 3) * sizeof(struct mlx5_cqe);
|
|
/* B.0 (CQE 3) load a block having op_own. */
|
|
c3 = vld1q_u64((uint64_t *)(p3 + 48));
|
|
/* B.0 (CQE 2) load a block having op_own. */
|
|
c2 = vld1q_u64((uint64_t *)(p2 + 48));
|
|
/* B.0 (CQE 1) load a block having op_own. */
|
|
c1 = vld1q_u64((uint64_t *)(p1 + 48));
|
|
/* B.0 (CQE 0) load a block having op_own. */
|
|
c0 = vld1q_u64((uint64_t *)(p0 + 48));
|
|
/* Synchronize for loading the rest of blocks. */
|
|
rte_cio_rmb();
|
|
/* Prefetch next 4 CQEs. */
|
|
if (pkts_n - pos >= 2 * MLX5_VPMD_DESCS_PER_LOOP) {
|
|
unsigned int next = pos + MLX5_VPMD_DESCS_PER_LOOP;
|
|
rte_prefetch_non_temporal(&cq[next]);
|
|
rte_prefetch_non_temporal(&cq[next + 1]);
|
|
rte_prefetch_non_temporal(&cq[next + 2]);
|
|
rte_prefetch_non_temporal(&cq[next + 3]);
|
|
}
|
|
__asm__ volatile (
|
|
/* B.1 (CQE 3) load the rest of blocks. */
|
|
"ld1 {v16.16b - v18.16b}, [%[p3]] \n\t"
|
|
/* B.2 (CQE 3) move the block having op_own. */
|
|
"mov v19.16b, %[c3].16b \n\t"
|
|
/* B.3 (CQE 3) extract 16B fields. */
|
|
"tbl v23.16b, {v16.16b - v19.16b}, %[cqe_shuf_m].16b \n\t"
|
|
/* B.1 (CQE 2) load the rest of blocks. */
|
|
"ld1 {v16.16b - v18.16b}, [%[p2]] \n\t"
|
|
/* B.4 (CQE 3) adjust CRC length. */
|
|
"sub v23.8h, v23.8h, %[crc_adj].8h \n\t"
|
|
/* C.1 (CQE 3) generate final structure for mbuf. */
|
|
"tbl v15.16b, {v23.16b}, %[mb_shuf_m].16b \n\t"
|
|
/* B.2 (CQE 2) move the block having op_own. */
|
|
"mov v19.16b, %[c2].16b \n\t"
|
|
/* B.3 (CQE 2) extract 16B fields. */
|
|
"tbl v22.16b, {v16.16b - v19.16b}, %[cqe_shuf_m].16b \n\t"
|
|
/* B.1 (CQE 1) load the rest of blocks. */
|
|
"ld1 {v16.16b - v18.16b}, [%[p1]] \n\t"
|
|
/* B.4 (CQE 2) adjust CRC length. */
|
|
"sub v22.8h, v22.8h, %[crc_adj].8h \n\t"
|
|
/* C.1 (CQE 2) generate final structure for mbuf. */
|
|
"tbl v14.16b, {v22.16b}, %[mb_shuf_m].16b \n\t"
|
|
/* B.2 (CQE 1) move the block having op_own. */
|
|
"mov v19.16b, %[c1].16b \n\t"
|
|
/* B.3 (CQE 1) extract 16B fields. */
|
|
"tbl v21.16b, {v16.16b - v19.16b}, %[cqe_shuf_m].16b \n\t"
|
|
/* B.1 (CQE 0) load the rest of blocks. */
|
|
"ld1 {v16.16b - v18.16b}, [%[p0]] \n\t"
|
|
/* B.4 (CQE 1) adjust CRC length. */
|
|
"sub v21.8h, v21.8h, %[crc_adj].8h \n\t"
|
|
/* C.1 (CQE 1) generate final structure for mbuf. */
|
|
"tbl v13.16b, {v21.16b}, %[mb_shuf_m].16b \n\t"
|
|
/* B.2 (CQE 0) move the block having op_own. */
|
|
"mov v19.16b, %[c0].16b \n\t"
|
|
/* A.1 load mbuf pointers. */
|
|
"ld1 {v24.2d - v25.2d}, [%[elts_p]] \n\t"
|
|
/* B.3 (CQE 0) extract 16B fields. */
|
|
"tbl v20.16b, {v16.16b - v19.16b}, %[cqe_shuf_m].16b \n\t"
|
|
/* B.4 (CQE 0) adjust CRC length. */
|
|
"sub v20.8h, v20.8h, %[crc_adj].8h \n\t"
|
|
/* D.1 extract op_own byte. */
|
|
"tbl %[op_own].8b, {v20.16b - v23.16b}, %[owner_shuf_m].8b \n\t"
|
|
/* C.2 (CQE 3) adjust flow mark. */
|
|
"add v15.4s, v15.4s, %[flow_mark_adj].4s \n\t"
|
|
/* C.3 (CQE 3) fill in mbuf - rx_descriptor_fields1. */
|
|
"st1 {v15.2d}, [%[e3]] \n\t"
|
|
/* C.2 (CQE 2) adjust flow mark. */
|
|
"add v14.4s, v14.4s, %[flow_mark_adj].4s \n\t"
|
|
/* C.3 (CQE 2) fill in mbuf - rx_descriptor_fields1. */
|
|
"st1 {v14.2d}, [%[e2]] \n\t"
|
|
/* C.1 (CQE 0) generate final structure for mbuf. */
|
|
"tbl v12.16b, {v20.16b}, %[mb_shuf_m].16b \n\t"
|
|
/* C.2 (CQE 1) adjust flow mark. */
|
|
"add v13.4s, v13.4s, %[flow_mark_adj].4s \n\t"
|
|
/* C.3 (CQE 1) fill in mbuf - rx_descriptor_fields1. */
|
|
"st1 {v13.2d}, [%[e1]] \n\t"
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
/* Extract byte_cnt. */
|
|
"tbl %[byte_cnt].8b, {v20.16b - v23.16b}, %[len_shuf_m].8b \n\t"
|
|
#endif
|
|
/* Extract ptype_info. */
|
|
"tbl %[ptype_info].16b, {v20.16b - v23.16b}, %[ptype_shuf_m].16b \n\t"
|
|
/* Extract flow_tag. */
|
|
"tbl %[flow_tag].16b, {v20.16b - v23.16b}, %[ftag_shuf_m].16b \n\t"
|
|
/* A.2 copy mbuf pointers. */
|
|
"st1 {v24.2d - v25.2d}, [%[pkts_p]] \n\t"
|
|
/* C.2 (CQE 0) adjust flow mark. */
|
|
"add v12.4s, v12.4s, %[flow_mark_adj].4s \n\t"
|
|
/* C.3 (CQE 1) fill in mbuf - rx_descriptor_fields1. */
|
|
"st1 {v12.2d}, [%[e0]] \n\t"
|
|
:[op_own]"=&w"(op_own),
|
|
[byte_cnt]"=&w"(byte_cnt),
|
|
[ptype_info]"=&w"(ptype_info),
|
|
[flow_tag]"=&w"(flow_tag)
|
|
:[p3]"r"(p3), [p2]"r"(p2), [p1]"r"(p1), [p0]"r"(p0),
|
|
[e3]"r"(e3), [e2]"r"(e2), [e1]"r"(e1), [e0]"r"(e0),
|
|
[c3]"w"(c3), [c2]"w"(c2), [c1]"w"(c1), [c0]"w"(c0),
|
|
[elts_p]"r"(elts_p),
|
|
[pkts_p]"r"(pkts_p),
|
|
[cqe_shuf_m]"w"(cqe_shuf_m),
|
|
[mb_shuf_m]"w"(mb_shuf_m),
|
|
[owner_shuf_m]"w"(owner_shuf_m),
|
|
[len_shuf_m]"w"(len_shuf_m),
|
|
[ptype_shuf_m]"w"(ptype_shuf_m),
|
|
[ftag_shuf_m]"w"(ftag_shuf_m),
|
|
[crc_adj]"w"(crc_adj),
|
|
[flow_mark_adj]"w"(flow_mark_adj)
|
|
:"memory",
|
|
"v12", "v13", "v14", "v15",
|
|
"v16", "v17", "v18", "v19",
|
|
"v20", "v21", "v22", "v23",
|
|
"v24", "v25");
|
|
/* D.2 flip owner bit to mark CQEs from last round. */
|
|
owner_mask = vand_u16(op_own, owner_check);
|
|
owner_mask = vceq_u16(owner_mask, ownership);
|
|
/* D.3 get mask for invalidated CQEs. */
|
|
opcode = vand_u16(op_own, opcode_check);
|
|
invalid_mask = vceq_u16(opcode_check, opcode);
|
|
/* E.1 find compressed CQE format. */
|
|
comp_mask = vand_u16(op_own, format_check);
|
|
comp_mask = vceq_u16(comp_mask, format_check);
|
|
/* D.4 mask out beyond boundary. */
|
|
invalid_mask = vorr_u16(invalid_mask, mask);
|
|
/* D.5 merge invalid_mask with invalid owner. */
|
|
invalid_mask = vorr_u16(invalid_mask, owner_mask);
|
|
/* E.2 mask out invalid entries. */
|
|
comp_mask = vbic_u16(comp_mask, invalid_mask);
|
|
/* E.3 get the first compressed CQE. */
|
|
comp_idx = __builtin_clzl(vget_lane_u64(vreinterpret_u64_u16(
|
|
comp_mask), 0)) /
|
|
(sizeof(uint16_t) * 8);
|
|
/* D.6 mask out entries after the compressed CQE. */
|
|
mask = vcreate_u16(comp_idx < MLX5_VPMD_DESCS_PER_LOOP ?
|
|
-1UL >> (comp_idx * sizeof(uint16_t) * 8) :
|
|
0);
|
|
invalid_mask = vorr_u16(invalid_mask, mask);
|
|
/* D.7 count non-compressed valid CQEs. */
|
|
n = __builtin_clzl(vget_lane_u64(vreinterpret_u64_u16(
|
|
invalid_mask), 0)) / (sizeof(uint16_t) * 8);
|
|
nocmp_n += n;
|
|
/* D.2 get the final invalid mask. */
|
|
mask = vcreate_u16(n < MLX5_VPMD_DESCS_PER_LOOP ?
|
|
-1UL >> (n * sizeof(uint16_t) * 8) : 0);
|
|
invalid_mask = vorr_u16(invalid_mask, mask);
|
|
/* D.3 check error in opcode. */
|
|
opcode = vceq_u16(resp_err_check, opcode);
|
|
opcode = vbic_u16(opcode, invalid_mask);
|
|
/* D.4 mark if any error is set */
|
|
*err |= vget_lane_u64(vreinterpret_u64_u16(opcode), 0);
|
|
/* C.4 fill in mbuf - rearm_data and packet_type. */
|
|
rxq_cq_to_ptype_oflags_v(rxq, ptype_info, flow_tag,
|
|
opcode, &elts[pos]);
|
|
if (rxq->hw_timestamp) {
|
|
elts[pos]->timestamp =
|
|
rte_be_to_cpu_64(
|
|
container_of(p0, struct mlx5_cqe,
|
|
pkt_info)->timestamp);
|
|
elts[pos + 1]->timestamp =
|
|
rte_be_to_cpu_64(
|
|
container_of(p1, struct mlx5_cqe,
|
|
pkt_info)->timestamp);
|
|
elts[pos + 2]->timestamp =
|
|
rte_be_to_cpu_64(
|
|
container_of(p2, struct mlx5_cqe,
|
|
pkt_info)->timestamp);
|
|
elts[pos + 3]->timestamp =
|
|
rte_be_to_cpu_64(
|
|
container_of(p3, struct mlx5_cqe,
|
|
pkt_info)->timestamp);
|
|
}
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
/* Add up received bytes count. */
|
|
byte_cnt = vbic_u16(byte_cnt, invalid_mask);
|
|
rcvd_byte += vget_lane_u64(vpaddl_u32(vpaddl_u16(byte_cnt)), 0);
|
|
#endif
|
|
/*
|
|
* Break the loop unless more valid CQE is expected, or if
|
|
* there's a compressed CQE.
|
|
*/
|
|
if (n != MLX5_VPMD_DESCS_PER_LOOP)
|
|
break;
|
|
}
|
|
/* If no new CQE seen, return without updating cq_db. */
|
|
if (unlikely(!nocmp_n && comp_idx == MLX5_VPMD_DESCS_PER_LOOP))
|
|
return rcvd_pkt;
|
|
/* Update the consumer indexes for non-compressed CQEs. */
|
|
assert(nocmp_n <= pkts_n);
|
|
rxq->cq_ci += nocmp_n;
|
|
rxq->rq_pi += nocmp_n;
|
|
rcvd_pkt += nocmp_n;
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
rxq->stats.ipackets += nocmp_n;
|
|
rxq->stats.ibytes += rcvd_byte;
|
|
#endif
|
|
/* Decompress the last CQE if compressed. */
|
|
if (comp_idx < MLX5_VPMD_DESCS_PER_LOOP && comp_idx == n) {
|
|
assert(comp_idx == (nocmp_n % MLX5_VPMD_DESCS_PER_LOOP));
|
|
rxq_cq_decompress_v(rxq, &cq[nocmp_n], &elts[nocmp_n]);
|
|
/* Return more packets if needed. */
|
|
if (nocmp_n < pkts_n) {
|
|
uint16_t n = rxq->cq_ci - rxq->rq_pi;
|
|
|
|
n = RTE_MIN(n, pkts_n - nocmp_n);
|
|
rxq_copy_mbuf_v(rxq, &pkts[nocmp_n], n);
|
|
rxq->rq_pi += n;
|
|
rcvd_pkt += n;
|
|
}
|
|
}
|
|
rte_compiler_barrier();
|
|
*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
|
|
return rcvd_pkt;
|
|
}
|
|
|
|
#endif /* RTE_PMD_MLX5_RXTX_VEC_NEON_H_ */
|