c665d9a231
To compare enabled features in current device we must use bit mask instead of bit position. Fixes: c843af3aa13e ("vhost: access header only if offloading is supported") Cc: stable@dpdk.org Signed-off-by: Ivan Dyukov <i.dyukov@samsung.com> Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com> Acked-by: Yuanhan Liu <yuanhan.liu@linux.intel.com>
1188 lines
31 KiB
C
1188 lines
31 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
#include <stdbool.h>
|
|
#include <linux/virtio_net.h>
|
|
|
|
#include <rte_mbuf.h>
|
|
#include <rte_memcpy.h>
|
|
#include <rte_ether.h>
|
|
#include <rte_ip.h>
|
|
#include <rte_vhost.h>
|
|
#include <rte_tcp.h>
|
|
#include <rte_udp.h>
|
|
#include <rte_sctp.h>
|
|
#include <rte_arp.h>
|
|
|
|
#include "vhost.h"
|
|
|
|
#define MAX_PKT_BURST 32
|
|
|
|
static bool
|
|
is_valid_virt_queue_idx(uint32_t idx, int is_tx, uint32_t nr_vring)
|
|
{
|
|
return (is_tx ^ (idx & 1)) == 0 && idx < nr_vring;
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
do_flush_shadow_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq,
|
|
uint16_t to, uint16_t from, uint16_t size)
|
|
{
|
|
rte_memcpy(&vq->used->ring[to],
|
|
&vq->shadow_used_ring[from],
|
|
size * sizeof(struct vring_used_elem));
|
|
vhost_log_used_vring(dev, vq,
|
|
offsetof(struct vring_used, ring[to]),
|
|
size * sizeof(struct vring_used_elem));
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
flush_shadow_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq)
|
|
{
|
|
uint16_t used_idx = vq->last_used_idx & (vq->size - 1);
|
|
|
|
if (used_idx + vq->shadow_used_idx <= vq->size) {
|
|
do_flush_shadow_used_ring(dev, vq, used_idx, 0,
|
|
vq->shadow_used_idx);
|
|
} else {
|
|
uint16_t size;
|
|
|
|
/* update used ring interval [used_idx, vq->size] */
|
|
size = vq->size - used_idx;
|
|
do_flush_shadow_used_ring(dev, vq, used_idx, 0, size);
|
|
|
|
/* update the left half used ring interval [0, left_size] */
|
|
do_flush_shadow_used_ring(dev, vq, 0, size,
|
|
vq->shadow_used_idx - size);
|
|
}
|
|
vq->last_used_idx += vq->shadow_used_idx;
|
|
|
|
rte_smp_wmb();
|
|
|
|
*(volatile uint16_t *)&vq->used->idx += vq->shadow_used_idx;
|
|
vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
|
|
sizeof(vq->used->idx));
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
update_shadow_used_ring(struct vhost_virtqueue *vq,
|
|
uint16_t desc_idx, uint16_t len)
|
|
{
|
|
uint16_t i = vq->shadow_used_idx++;
|
|
|
|
vq->shadow_used_ring[i].id = desc_idx;
|
|
vq->shadow_used_ring[i].len = len;
|
|
}
|
|
|
|
/* avoid write operation when necessary, to lessen cache issues */
|
|
#define ASSIGN_UNLESS_EQUAL(var, val) do { \
|
|
if ((var) != (val)) \
|
|
(var) = (val); \
|
|
} while (0)
|
|
|
|
static void
|
|
virtio_enqueue_offload(struct rte_mbuf *m_buf, struct virtio_net_hdr *net_hdr)
|
|
{
|
|
uint64_t csum_l4 = m_buf->ol_flags & PKT_TX_L4_MASK;
|
|
|
|
if (m_buf->ol_flags & PKT_TX_TCP_SEG)
|
|
csum_l4 |= PKT_TX_TCP_CKSUM;
|
|
|
|
if (csum_l4) {
|
|
net_hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
|
|
net_hdr->csum_start = m_buf->l2_len + m_buf->l3_len;
|
|
|
|
switch (csum_l4) {
|
|
case PKT_TX_TCP_CKSUM:
|
|
net_hdr->csum_offset = (offsetof(struct tcp_hdr,
|
|
cksum));
|
|
break;
|
|
case PKT_TX_UDP_CKSUM:
|
|
net_hdr->csum_offset = (offsetof(struct udp_hdr,
|
|
dgram_cksum));
|
|
break;
|
|
case PKT_TX_SCTP_CKSUM:
|
|
net_hdr->csum_offset = (offsetof(struct sctp_hdr,
|
|
cksum));
|
|
break;
|
|
}
|
|
} else {
|
|
ASSIGN_UNLESS_EQUAL(net_hdr->csum_start, 0);
|
|
ASSIGN_UNLESS_EQUAL(net_hdr->csum_offset, 0);
|
|
ASSIGN_UNLESS_EQUAL(net_hdr->flags, 0);
|
|
}
|
|
|
|
/* IP cksum verification cannot be bypassed, then calculate here */
|
|
if (m_buf->ol_flags & PKT_TX_IP_CKSUM) {
|
|
struct ipv4_hdr *ipv4_hdr;
|
|
|
|
ipv4_hdr = rte_pktmbuf_mtod_offset(m_buf, struct ipv4_hdr *,
|
|
m_buf->l2_len);
|
|
ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
|
|
}
|
|
|
|
if (m_buf->ol_flags & PKT_TX_TCP_SEG) {
|
|
if (m_buf->ol_flags & PKT_TX_IPV4)
|
|
net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
|
|
else
|
|
net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
|
|
net_hdr->gso_size = m_buf->tso_segsz;
|
|
net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len
|
|
+ m_buf->l4_len;
|
|
} else {
|
|
ASSIGN_UNLESS_EQUAL(net_hdr->gso_type, 0);
|
|
ASSIGN_UNLESS_EQUAL(net_hdr->gso_size, 0);
|
|
ASSIGN_UNLESS_EQUAL(net_hdr->hdr_len, 0);
|
|
}
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
copy_mbuf_to_desc(struct virtio_net *dev, struct vring_desc *descs,
|
|
struct rte_mbuf *m, uint16_t desc_idx, uint32_t size)
|
|
{
|
|
uint32_t desc_avail, desc_offset;
|
|
uint32_t mbuf_avail, mbuf_offset;
|
|
uint32_t cpy_len;
|
|
struct vring_desc *desc;
|
|
uint64_t desc_addr;
|
|
/* A counter to avoid desc dead loop chain */
|
|
uint16_t nr_desc = 1;
|
|
|
|
desc = &descs[desc_idx];
|
|
desc_addr = rte_vhost_gpa_to_vva(dev->mem, desc->addr);
|
|
/*
|
|
* Checking of 'desc_addr' placed outside of 'unlikely' macro to avoid
|
|
* performance issue with some versions of gcc (4.8.4 and 5.3.0) which
|
|
* otherwise stores offset on the stack instead of in a register.
|
|
*/
|
|
if (unlikely(desc->len < dev->vhost_hlen) || !desc_addr)
|
|
return -1;
|
|
|
|
rte_prefetch0((void *)(uintptr_t)desc_addr);
|
|
|
|
virtio_enqueue_offload(m, (struct virtio_net_hdr *)(uintptr_t)desc_addr);
|
|
vhost_log_write(dev, desc->addr, dev->vhost_hlen);
|
|
PRINT_PACKET(dev, (uintptr_t)desc_addr, dev->vhost_hlen, 0);
|
|
|
|
desc_offset = dev->vhost_hlen;
|
|
desc_avail = desc->len - dev->vhost_hlen;
|
|
|
|
mbuf_avail = rte_pktmbuf_data_len(m);
|
|
mbuf_offset = 0;
|
|
while (mbuf_avail != 0 || m->next != NULL) {
|
|
/* done with current mbuf, fetch next */
|
|
if (mbuf_avail == 0) {
|
|
m = m->next;
|
|
|
|
mbuf_offset = 0;
|
|
mbuf_avail = rte_pktmbuf_data_len(m);
|
|
}
|
|
|
|
/* done with current desc buf, fetch next */
|
|
if (desc_avail == 0) {
|
|
if ((desc->flags & VRING_DESC_F_NEXT) == 0) {
|
|
/* Room in vring buffer is not enough */
|
|
return -1;
|
|
}
|
|
if (unlikely(desc->next >= size || ++nr_desc > size))
|
|
return -1;
|
|
|
|
desc = &descs[desc->next];
|
|
desc_addr = rte_vhost_gpa_to_vva(dev->mem, desc->addr);
|
|
if (unlikely(!desc_addr))
|
|
return -1;
|
|
|
|
desc_offset = 0;
|
|
desc_avail = desc->len;
|
|
}
|
|
|
|
cpy_len = RTE_MIN(desc_avail, mbuf_avail);
|
|
rte_memcpy((void *)((uintptr_t)(desc_addr + desc_offset)),
|
|
rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
|
|
cpy_len);
|
|
vhost_log_write(dev, desc->addr + desc_offset, cpy_len);
|
|
PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
|
|
cpy_len, 0);
|
|
|
|
mbuf_avail -= cpy_len;
|
|
mbuf_offset += cpy_len;
|
|
desc_avail -= cpy_len;
|
|
desc_offset += cpy_len;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* This function adds buffers to the virtio devices RX virtqueue. Buffers can
|
|
* be received from the physical port or from another virtio device. A packet
|
|
* count is returned to indicate the number of packets that are successfully
|
|
* added to the RX queue. This function works when the mbuf is scattered, but
|
|
* it doesn't support the mergeable feature.
|
|
*/
|
|
static __rte_always_inline uint32_t
|
|
virtio_dev_rx(struct virtio_net *dev, uint16_t queue_id,
|
|
struct rte_mbuf **pkts, uint32_t count)
|
|
{
|
|
struct vhost_virtqueue *vq;
|
|
uint16_t avail_idx, free_entries, start_idx;
|
|
uint16_t desc_indexes[MAX_PKT_BURST];
|
|
struct vring_desc *descs;
|
|
uint16_t used_idx;
|
|
uint32_t i, sz;
|
|
|
|
LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
|
|
if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) {
|
|
RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
|
|
dev->vid, __func__, queue_id);
|
|
return 0;
|
|
}
|
|
|
|
vq = dev->virtqueue[queue_id];
|
|
if (unlikely(vq->enabled == 0))
|
|
return 0;
|
|
|
|
avail_idx = *((volatile uint16_t *)&vq->avail->idx);
|
|
start_idx = vq->last_used_idx;
|
|
free_entries = avail_idx - start_idx;
|
|
count = RTE_MIN(count, free_entries);
|
|
count = RTE_MIN(count, (uint32_t)MAX_PKT_BURST);
|
|
if (count == 0)
|
|
return 0;
|
|
|
|
LOG_DEBUG(VHOST_DATA, "(%d) start_idx %d | end_idx %d\n",
|
|
dev->vid, start_idx, start_idx + count);
|
|
|
|
/* Retrieve all of the desc indexes first to avoid caching issues. */
|
|
rte_prefetch0(&vq->avail->ring[start_idx & (vq->size - 1)]);
|
|
for (i = 0; i < count; i++) {
|
|
used_idx = (start_idx + i) & (vq->size - 1);
|
|
desc_indexes[i] = vq->avail->ring[used_idx];
|
|
vq->used->ring[used_idx].id = desc_indexes[i];
|
|
vq->used->ring[used_idx].len = pkts[i]->pkt_len +
|
|
dev->vhost_hlen;
|
|
vhost_log_used_vring(dev, vq,
|
|
offsetof(struct vring_used, ring[used_idx]),
|
|
sizeof(vq->used->ring[used_idx]));
|
|
}
|
|
|
|
rte_prefetch0(&vq->desc[desc_indexes[0]]);
|
|
for (i = 0; i < count; i++) {
|
|
uint16_t desc_idx = desc_indexes[i];
|
|
int err;
|
|
|
|
if (vq->desc[desc_idx].flags & VRING_DESC_F_INDIRECT) {
|
|
descs = (struct vring_desc *)(uintptr_t)
|
|
rte_vhost_gpa_to_vva(dev->mem,
|
|
vq->desc[desc_idx].addr);
|
|
if (unlikely(!descs)) {
|
|
count = i;
|
|
break;
|
|
}
|
|
|
|
desc_idx = 0;
|
|
sz = vq->desc[desc_idx].len / sizeof(*descs);
|
|
} else {
|
|
descs = vq->desc;
|
|
sz = vq->size;
|
|
}
|
|
|
|
err = copy_mbuf_to_desc(dev, descs, pkts[i], desc_idx, sz);
|
|
if (unlikely(err)) {
|
|
used_idx = (start_idx + i) & (vq->size - 1);
|
|
vq->used->ring[used_idx].len = dev->vhost_hlen;
|
|
vhost_log_used_vring(dev, vq,
|
|
offsetof(struct vring_used, ring[used_idx]),
|
|
sizeof(vq->used->ring[used_idx]));
|
|
}
|
|
|
|
if (i + 1 < count)
|
|
rte_prefetch0(&vq->desc[desc_indexes[i+1]]);
|
|
}
|
|
|
|
rte_smp_wmb();
|
|
|
|
*(volatile uint16_t *)&vq->used->idx += count;
|
|
vq->last_used_idx += count;
|
|
vhost_log_used_vring(dev, vq,
|
|
offsetof(struct vring_used, idx),
|
|
sizeof(vq->used->idx));
|
|
|
|
/* flush used->idx update before we read avail->flags. */
|
|
rte_mb();
|
|
|
|
/* Kick the guest if necessary. */
|
|
if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
|
|
&& (vq->callfd >= 0))
|
|
eventfd_write(vq->callfd, (eventfd_t)1);
|
|
return count;
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
fill_vec_buf(struct virtio_net *dev, struct vhost_virtqueue *vq,
|
|
uint32_t avail_idx, uint32_t *vec_idx,
|
|
struct buf_vector *buf_vec, uint16_t *desc_chain_head,
|
|
uint16_t *desc_chain_len)
|
|
{
|
|
uint16_t idx = vq->avail->ring[avail_idx & (vq->size - 1)];
|
|
uint32_t vec_id = *vec_idx;
|
|
uint32_t len = 0;
|
|
struct vring_desc *descs = vq->desc;
|
|
|
|
*desc_chain_head = idx;
|
|
|
|
if (vq->desc[idx].flags & VRING_DESC_F_INDIRECT) {
|
|
descs = (struct vring_desc *)(uintptr_t)
|
|
rte_vhost_gpa_to_vva(dev->mem, vq->desc[idx].addr);
|
|
if (unlikely(!descs))
|
|
return -1;
|
|
|
|
idx = 0;
|
|
}
|
|
|
|
while (1) {
|
|
if (unlikely(vec_id >= BUF_VECTOR_MAX || idx >= vq->size))
|
|
return -1;
|
|
|
|
len += descs[idx].len;
|
|
buf_vec[vec_id].buf_addr = descs[idx].addr;
|
|
buf_vec[vec_id].buf_len = descs[idx].len;
|
|
buf_vec[vec_id].desc_idx = idx;
|
|
vec_id++;
|
|
|
|
if ((descs[idx].flags & VRING_DESC_F_NEXT) == 0)
|
|
break;
|
|
|
|
idx = descs[idx].next;
|
|
}
|
|
|
|
*desc_chain_len = len;
|
|
*vec_idx = vec_id;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Returns -1 on fail, 0 on success
|
|
*/
|
|
static inline int
|
|
reserve_avail_buf_mergeable(struct virtio_net *dev, struct vhost_virtqueue *vq,
|
|
uint32_t size, struct buf_vector *buf_vec,
|
|
uint16_t *num_buffers, uint16_t avail_head)
|
|
{
|
|
uint16_t cur_idx;
|
|
uint32_t vec_idx = 0;
|
|
uint16_t tries = 0;
|
|
|
|
uint16_t head_idx = 0;
|
|
uint16_t len = 0;
|
|
|
|
*num_buffers = 0;
|
|
cur_idx = vq->last_avail_idx;
|
|
|
|
while (size > 0) {
|
|
if (unlikely(cur_idx == avail_head))
|
|
return -1;
|
|
|
|
if (unlikely(fill_vec_buf(dev, vq, cur_idx, &vec_idx, buf_vec,
|
|
&head_idx, &len) < 0))
|
|
return -1;
|
|
len = RTE_MIN(len, size);
|
|
update_shadow_used_ring(vq, head_idx, len);
|
|
size -= len;
|
|
|
|
cur_idx++;
|
|
tries++;
|
|
*num_buffers += 1;
|
|
|
|
/*
|
|
* if we tried all available ring items, and still
|
|
* can't get enough buf, it means something abnormal
|
|
* happened.
|
|
*/
|
|
if (unlikely(tries >= vq->size))
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
copy_mbuf_to_desc_mergeable(struct virtio_net *dev, struct rte_mbuf *m,
|
|
struct buf_vector *buf_vec, uint16_t num_buffers)
|
|
{
|
|
uint32_t vec_idx = 0;
|
|
uint64_t desc_addr;
|
|
uint32_t mbuf_offset, mbuf_avail;
|
|
uint32_t desc_offset, desc_avail;
|
|
uint32_t cpy_len;
|
|
uint64_t hdr_addr, hdr_phys_addr;
|
|
struct rte_mbuf *hdr_mbuf;
|
|
|
|
if (unlikely(m == NULL))
|
|
return -1;
|
|
|
|
desc_addr = rte_vhost_gpa_to_vva(dev->mem, buf_vec[vec_idx].buf_addr);
|
|
if (buf_vec[vec_idx].buf_len < dev->vhost_hlen || !desc_addr)
|
|
return -1;
|
|
|
|
hdr_mbuf = m;
|
|
hdr_addr = desc_addr;
|
|
hdr_phys_addr = buf_vec[vec_idx].buf_addr;
|
|
rte_prefetch0((void *)(uintptr_t)hdr_addr);
|
|
|
|
LOG_DEBUG(VHOST_DATA, "(%d) RX: num merge buffers %d\n",
|
|
dev->vid, num_buffers);
|
|
|
|
desc_avail = buf_vec[vec_idx].buf_len - dev->vhost_hlen;
|
|
desc_offset = dev->vhost_hlen;
|
|
|
|
mbuf_avail = rte_pktmbuf_data_len(m);
|
|
mbuf_offset = 0;
|
|
while (mbuf_avail != 0 || m->next != NULL) {
|
|
/* done with current desc buf, get the next one */
|
|
if (desc_avail == 0) {
|
|
vec_idx++;
|
|
desc_addr = rte_vhost_gpa_to_vva(dev->mem,
|
|
buf_vec[vec_idx].buf_addr);
|
|
if (unlikely(!desc_addr))
|
|
return -1;
|
|
|
|
/* Prefetch buffer address. */
|
|
rte_prefetch0((void *)(uintptr_t)desc_addr);
|
|
desc_offset = 0;
|
|
desc_avail = buf_vec[vec_idx].buf_len;
|
|
}
|
|
|
|
/* done with current mbuf, get the next one */
|
|
if (mbuf_avail == 0) {
|
|
m = m->next;
|
|
|
|
mbuf_offset = 0;
|
|
mbuf_avail = rte_pktmbuf_data_len(m);
|
|
}
|
|
|
|
if (hdr_addr) {
|
|
struct virtio_net_hdr_mrg_rxbuf *hdr;
|
|
|
|
hdr = (struct virtio_net_hdr_mrg_rxbuf *)(uintptr_t)
|
|
hdr_addr;
|
|
virtio_enqueue_offload(hdr_mbuf, &hdr->hdr);
|
|
ASSIGN_UNLESS_EQUAL(hdr->num_buffers, num_buffers);
|
|
|
|
vhost_log_write(dev, hdr_phys_addr, dev->vhost_hlen);
|
|
PRINT_PACKET(dev, (uintptr_t)hdr_addr,
|
|
dev->vhost_hlen, 0);
|
|
|
|
hdr_addr = 0;
|
|
}
|
|
|
|
cpy_len = RTE_MIN(desc_avail, mbuf_avail);
|
|
rte_memcpy((void *)((uintptr_t)(desc_addr + desc_offset)),
|
|
rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
|
|
cpy_len);
|
|
vhost_log_write(dev, buf_vec[vec_idx].buf_addr + desc_offset,
|
|
cpy_len);
|
|
PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
|
|
cpy_len, 0);
|
|
|
|
mbuf_avail -= cpy_len;
|
|
mbuf_offset += cpy_len;
|
|
desc_avail -= cpy_len;
|
|
desc_offset += cpy_len;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __rte_always_inline uint32_t
|
|
virtio_dev_merge_rx(struct virtio_net *dev, uint16_t queue_id,
|
|
struct rte_mbuf **pkts, uint32_t count)
|
|
{
|
|
struct vhost_virtqueue *vq;
|
|
uint32_t pkt_idx = 0;
|
|
uint16_t num_buffers;
|
|
struct buf_vector buf_vec[BUF_VECTOR_MAX];
|
|
uint16_t avail_head;
|
|
|
|
LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
|
|
if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) {
|
|
RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
|
|
dev->vid, __func__, queue_id);
|
|
return 0;
|
|
}
|
|
|
|
vq = dev->virtqueue[queue_id];
|
|
if (unlikely(vq->enabled == 0))
|
|
return 0;
|
|
|
|
count = RTE_MIN((uint32_t)MAX_PKT_BURST, count);
|
|
if (count == 0)
|
|
return 0;
|
|
|
|
rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]);
|
|
|
|
vq->shadow_used_idx = 0;
|
|
avail_head = *((volatile uint16_t *)&vq->avail->idx);
|
|
for (pkt_idx = 0; pkt_idx < count; pkt_idx++) {
|
|
uint32_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen;
|
|
|
|
if (unlikely(reserve_avail_buf_mergeable(dev, vq,
|
|
pkt_len, buf_vec, &num_buffers,
|
|
avail_head) < 0)) {
|
|
LOG_DEBUG(VHOST_DATA,
|
|
"(%d) failed to get enough desc from vring\n",
|
|
dev->vid);
|
|
vq->shadow_used_idx -= num_buffers;
|
|
break;
|
|
}
|
|
|
|
LOG_DEBUG(VHOST_DATA, "(%d) current index %d | end index %d\n",
|
|
dev->vid, vq->last_avail_idx,
|
|
vq->last_avail_idx + num_buffers);
|
|
|
|
if (copy_mbuf_to_desc_mergeable(dev, pkts[pkt_idx],
|
|
buf_vec, num_buffers) < 0) {
|
|
vq->shadow_used_idx -= num_buffers;
|
|
break;
|
|
}
|
|
|
|
vq->last_avail_idx += num_buffers;
|
|
}
|
|
|
|
if (likely(vq->shadow_used_idx)) {
|
|
flush_shadow_used_ring(dev, vq);
|
|
|
|
/* flush used->idx update before we read avail->flags. */
|
|
rte_mb();
|
|
|
|
/* Kick the guest if necessary. */
|
|
if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
|
|
&& (vq->callfd >= 0))
|
|
eventfd_write(vq->callfd, (eventfd_t)1);
|
|
}
|
|
|
|
return pkt_idx;
|
|
}
|
|
|
|
uint16_t
|
|
rte_vhost_enqueue_burst(int vid, uint16_t queue_id,
|
|
struct rte_mbuf **pkts, uint16_t count)
|
|
{
|
|
struct virtio_net *dev = get_device(vid);
|
|
|
|
if (!dev)
|
|
return 0;
|
|
|
|
if (dev->features & (1 << VIRTIO_NET_F_MRG_RXBUF))
|
|
return virtio_dev_merge_rx(dev, queue_id, pkts, count);
|
|
else
|
|
return virtio_dev_rx(dev, queue_id, pkts, count);
|
|
}
|
|
|
|
static inline bool
|
|
virtio_net_with_host_offload(struct virtio_net *dev)
|
|
{
|
|
if (dev->features &
|
|
((1ULL << VIRTIO_NET_F_CSUM) |
|
|
(1ULL << VIRTIO_NET_F_HOST_ECN) |
|
|
(1ULL << VIRTIO_NET_F_HOST_TSO4) |
|
|
(1ULL << VIRTIO_NET_F_HOST_TSO6) |
|
|
(1ULL << VIRTIO_NET_F_HOST_UFO)))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static void
|
|
parse_ethernet(struct rte_mbuf *m, uint16_t *l4_proto, void **l4_hdr)
|
|
{
|
|
struct ipv4_hdr *ipv4_hdr;
|
|
struct ipv6_hdr *ipv6_hdr;
|
|
void *l3_hdr = NULL;
|
|
struct ether_hdr *eth_hdr;
|
|
uint16_t ethertype;
|
|
|
|
eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
|
|
|
|
m->l2_len = sizeof(struct ether_hdr);
|
|
ethertype = rte_be_to_cpu_16(eth_hdr->ether_type);
|
|
|
|
if (ethertype == ETHER_TYPE_VLAN) {
|
|
struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
|
|
|
|
m->l2_len += sizeof(struct vlan_hdr);
|
|
ethertype = rte_be_to_cpu_16(vlan_hdr->eth_proto);
|
|
}
|
|
|
|
l3_hdr = (char *)eth_hdr + m->l2_len;
|
|
|
|
switch (ethertype) {
|
|
case ETHER_TYPE_IPv4:
|
|
ipv4_hdr = l3_hdr;
|
|
*l4_proto = ipv4_hdr->next_proto_id;
|
|
m->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
|
|
*l4_hdr = (char *)l3_hdr + m->l3_len;
|
|
m->ol_flags |= PKT_TX_IPV4;
|
|
break;
|
|
case ETHER_TYPE_IPv6:
|
|
ipv6_hdr = l3_hdr;
|
|
*l4_proto = ipv6_hdr->proto;
|
|
m->l3_len = sizeof(struct ipv6_hdr);
|
|
*l4_hdr = (char *)l3_hdr + m->l3_len;
|
|
m->ol_flags |= PKT_TX_IPV6;
|
|
break;
|
|
default:
|
|
m->l3_len = 0;
|
|
*l4_proto = 0;
|
|
*l4_hdr = NULL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
vhost_dequeue_offload(struct virtio_net_hdr *hdr, struct rte_mbuf *m)
|
|
{
|
|
uint16_t l4_proto = 0;
|
|
void *l4_hdr = NULL;
|
|
struct tcp_hdr *tcp_hdr = NULL;
|
|
|
|
if (hdr->flags == 0 && hdr->gso_type == VIRTIO_NET_HDR_GSO_NONE)
|
|
return;
|
|
|
|
parse_ethernet(m, &l4_proto, &l4_hdr);
|
|
if (hdr->flags == VIRTIO_NET_HDR_F_NEEDS_CSUM) {
|
|
if (hdr->csum_start == (m->l2_len + m->l3_len)) {
|
|
switch (hdr->csum_offset) {
|
|
case (offsetof(struct tcp_hdr, cksum)):
|
|
if (l4_proto == IPPROTO_TCP)
|
|
m->ol_flags |= PKT_TX_TCP_CKSUM;
|
|
break;
|
|
case (offsetof(struct udp_hdr, dgram_cksum)):
|
|
if (l4_proto == IPPROTO_UDP)
|
|
m->ol_flags |= PKT_TX_UDP_CKSUM;
|
|
break;
|
|
case (offsetof(struct sctp_hdr, cksum)):
|
|
if (l4_proto == IPPROTO_SCTP)
|
|
m->ol_flags |= PKT_TX_SCTP_CKSUM;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (l4_hdr && hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) {
|
|
switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
|
|
case VIRTIO_NET_HDR_GSO_TCPV4:
|
|
case VIRTIO_NET_HDR_GSO_TCPV6:
|
|
tcp_hdr = l4_hdr;
|
|
m->ol_flags |= PKT_TX_TCP_SEG;
|
|
m->tso_segsz = hdr->gso_size;
|
|
m->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
|
|
break;
|
|
default:
|
|
RTE_LOG(WARNING, VHOST_DATA,
|
|
"unsupported gso type %u.\n", hdr->gso_type);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
#define RARP_PKT_SIZE 64
|
|
|
|
static int
|
|
make_rarp_packet(struct rte_mbuf *rarp_mbuf, const struct ether_addr *mac)
|
|
{
|
|
struct ether_hdr *eth_hdr;
|
|
struct arp_hdr *rarp;
|
|
|
|
if (rarp_mbuf->buf_len < 64) {
|
|
RTE_LOG(WARNING, VHOST_DATA,
|
|
"failed to make RARP; mbuf size too small %u (< %d)\n",
|
|
rarp_mbuf->buf_len, RARP_PKT_SIZE);
|
|
return -1;
|
|
}
|
|
|
|
/* Ethernet header. */
|
|
eth_hdr = rte_pktmbuf_mtod_offset(rarp_mbuf, struct ether_hdr *, 0);
|
|
memset(eth_hdr->d_addr.addr_bytes, 0xff, ETHER_ADDR_LEN);
|
|
ether_addr_copy(mac, ð_hdr->s_addr);
|
|
eth_hdr->ether_type = htons(ETHER_TYPE_RARP);
|
|
|
|
/* RARP header. */
|
|
rarp = (struct arp_hdr *)(eth_hdr + 1);
|
|
rarp->arp_hrd = htons(ARP_HRD_ETHER);
|
|
rarp->arp_pro = htons(ETHER_TYPE_IPv4);
|
|
rarp->arp_hln = ETHER_ADDR_LEN;
|
|
rarp->arp_pln = 4;
|
|
rarp->arp_op = htons(ARP_OP_REVREQUEST);
|
|
|
|
ether_addr_copy(mac, &rarp->arp_data.arp_sha);
|
|
ether_addr_copy(mac, &rarp->arp_data.arp_tha);
|
|
memset(&rarp->arp_data.arp_sip, 0x00, 4);
|
|
memset(&rarp->arp_data.arp_tip, 0x00, 4);
|
|
|
|
rarp_mbuf->pkt_len = rarp_mbuf->data_len = RARP_PKT_SIZE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
put_zmbuf(struct zcopy_mbuf *zmbuf)
|
|
{
|
|
zmbuf->in_use = 0;
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
copy_desc_to_mbuf(struct virtio_net *dev, struct vring_desc *descs,
|
|
uint16_t max_desc, struct rte_mbuf *m, uint16_t desc_idx,
|
|
struct rte_mempool *mbuf_pool)
|
|
{
|
|
struct vring_desc *desc;
|
|
uint64_t desc_addr;
|
|
uint32_t desc_avail, desc_offset;
|
|
uint32_t mbuf_avail, mbuf_offset;
|
|
uint32_t cpy_len;
|
|
struct rte_mbuf *cur = m, *prev = m;
|
|
struct virtio_net_hdr *hdr = NULL;
|
|
/* A counter to avoid desc dead loop chain */
|
|
uint32_t nr_desc = 1;
|
|
|
|
desc = &descs[desc_idx];
|
|
if (unlikely((desc->len < dev->vhost_hlen)) ||
|
|
(desc->flags & VRING_DESC_F_INDIRECT))
|
|
return -1;
|
|
|
|
desc_addr = rte_vhost_gpa_to_vva(dev->mem, desc->addr);
|
|
if (unlikely(!desc_addr))
|
|
return -1;
|
|
|
|
if (virtio_net_with_host_offload(dev)) {
|
|
hdr = (struct virtio_net_hdr *)((uintptr_t)desc_addr);
|
|
rte_prefetch0(hdr);
|
|
}
|
|
|
|
/*
|
|
* A virtio driver normally uses at least 2 desc buffers
|
|
* for Tx: the first for storing the header, and others
|
|
* for storing the data.
|
|
*/
|
|
if (likely((desc->len == dev->vhost_hlen) &&
|
|
(desc->flags & VRING_DESC_F_NEXT) != 0)) {
|
|
desc = &descs[desc->next];
|
|
if (unlikely(desc->flags & VRING_DESC_F_INDIRECT))
|
|
return -1;
|
|
|
|
desc_addr = rte_vhost_gpa_to_vva(dev->mem, desc->addr);
|
|
if (unlikely(!desc_addr))
|
|
return -1;
|
|
|
|
desc_offset = 0;
|
|
desc_avail = desc->len;
|
|
nr_desc += 1;
|
|
} else {
|
|
desc_avail = desc->len - dev->vhost_hlen;
|
|
desc_offset = dev->vhost_hlen;
|
|
}
|
|
|
|
rte_prefetch0((void *)(uintptr_t)(desc_addr + desc_offset));
|
|
|
|
PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset), desc_avail, 0);
|
|
|
|
mbuf_offset = 0;
|
|
mbuf_avail = m->buf_len - RTE_PKTMBUF_HEADROOM;
|
|
while (1) {
|
|
uint64_t hpa;
|
|
|
|
cpy_len = RTE_MIN(desc_avail, mbuf_avail);
|
|
|
|
/*
|
|
* A desc buf might across two host physical pages that are
|
|
* not continuous. In such case (gpa_to_hpa returns 0), data
|
|
* will be copied even though zero copy is enabled.
|
|
*/
|
|
if (unlikely(dev->dequeue_zero_copy && (hpa = gpa_to_hpa(dev,
|
|
desc->addr + desc_offset, cpy_len)))) {
|
|
cur->data_len = cpy_len;
|
|
cur->data_off = 0;
|
|
cur->buf_addr = (void *)(uintptr_t)desc_addr;
|
|
cur->buf_physaddr = hpa;
|
|
|
|
/*
|
|
* In zero copy mode, one mbuf can only reference data
|
|
* for one or partial of one desc buff.
|
|
*/
|
|
mbuf_avail = cpy_len;
|
|
} else {
|
|
rte_memcpy(rte_pktmbuf_mtod_offset(cur, void *,
|
|
mbuf_offset),
|
|
(void *)((uintptr_t)(desc_addr + desc_offset)),
|
|
cpy_len);
|
|
}
|
|
|
|
mbuf_avail -= cpy_len;
|
|
mbuf_offset += cpy_len;
|
|
desc_avail -= cpy_len;
|
|
desc_offset += cpy_len;
|
|
|
|
/* This desc reaches to its end, get the next one */
|
|
if (desc_avail == 0) {
|
|
if ((desc->flags & VRING_DESC_F_NEXT) == 0)
|
|
break;
|
|
|
|
if (unlikely(desc->next >= max_desc ||
|
|
++nr_desc > max_desc))
|
|
return -1;
|
|
desc = &descs[desc->next];
|
|
if (unlikely(desc->flags & VRING_DESC_F_INDIRECT))
|
|
return -1;
|
|
|
|
desc_addr = rte_vhost_gpa_to_vva(dev->mem, desc->addr);
|
|
if (unlikely(!desc_addr))
|
|
return -1;
|
|
|
|
rte_prefetch0((void *)(uintptr_t)desc_addr);
|
|
|
|
desc_offset = 0;
|
|
desc_avail = desc->len;
|
|
|
|
PRINT_PACKET(dev, (uintptr_t)desc_addr, desc->len, 0);
|
|
}
|
|
|
|
/*
|
|
* This mbuf reaches to its end, get a new one
|
|
* to hold more data.
|
|
*/
|
|
if (mbuf_avail == 0) {
|
|
cur = rte_pktmbuf_alloc(mbuf_pool);
|
|
if (unlikely(cur == NULL)) {
|
|
RTE_LOG(ERR, VHOST_DATA, "Failed to "
|
|
"allocate memory for mbuf.\n");
|
|
return -1;
|
|
}
|
|
if (unlikely(dev->dequeue_zero_copy))
|
|
rte_mbuf_refcnt_update(cur, 1);
|
|
|
|
prev->next = cur;
|
|
prev->data_len = mbuf_offset;
|
|
m->nb_segs += 1;
|
|
m->pkt_len += mbuf_offset;
|
|
prev = cur;
|
|
|
|
mbuf_offset = 0;
|
|
mbuf_avail = cur->buf_len - RTE_PKTMBUF_HEADROOM;
|
|
}
|
|
}
|
|
|
|
prev->data_len = mbuf_offset;
|
|
m->pkt_len += mbuf_offset;
|
|
|
|
if (hdr)
|
|
vhost_dequeue_offload(hdr, m);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
update_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq,
|
|
uint32_t used_idx, uint32_t desc_idx)
|
|
{
|
|
vq->used->ring[used_idx].id = desc_idx;
|
|
vq->used->ring[used_idx].len = 0;
|
|
vhost_log_used_vring(dev, vq,
|
|
offsetof(struct vring_used, ring[used_idx]),
|
|
sizeof(vq->used->ring[used_idx]));
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
update_used_idx(struct virtio_net *dev, struct vhost_virtqueue *vq,
|
|
uint32_t count)
|
|
{
|
|
if (unlikely(count == 0))
|
|
return;
|
|
|
|
rte_smp_wmb();
|
|
rte_smp_rmb();
|
|
|
|
vq->used->idx += count;
|
|
vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
|
|
sizeof(vq->used->idx));
|
|
|
|
/* Kick guest if required. */
|
|
if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
|
|
&& (vq->callfd >= 0))
|
|
eventfd_write(vq->callfd, (eventfd_t)1);
|
|
}
|
|
|
|
static __rte_always_inline struct zcopy_mbuf *
|
|
get_zmbuf(struct vhost_virtqueue *vq)
|
|
{
|
|
uint16_t i;
|
|
uint16_t last;
|
|
int tries = 0;
|
|
|
|
/* search [last_zmbuf_idx, zmbuf_size) */
|
|
i = vq->last_zmbuf_idx;
|
|
last = vq->zmbuf_size;
|
|
|
|
again:
|
|
for (; i < last; i++) {
|
|
if (vq->zmbufs[i].in_use == 0) {
|
|
vq->last_zmbuf_idx = i + 1;
|
|
vq->zmbufs[i].in_use = 1;
|
|
return &vq->zmbufs[i];
|
|
}
|
|
}
|
|
|
|
tries++;
|
|
if (tries == 1) {
|
|
/* search [0, last_zmbuf_idx) */
|
|
i = 0;
|
|
last = vq->last_zmbuf_idx;
|
|
goto again;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static __rte_always_inline bool
|
|
mbuf_is_consumed(struct rte_mbuf *m)
|
|
{
|
|
while (m) {
|
|
if (rte_mbuf_refcnt_read(m) > 1)
|
|
return false;
|
|
m = m->next;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
uint16_t
|
|
rte_vhost_dequeue_burst(int vid, uint16_t queue_id,
|
|
struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
|
|
{
|
|
struct virtio_net *dev;
|
|
struct rte_mbuf *rarp_mbuf = NULL;
|
|
struct vhost_virtqueue *vq;
|
|
uint32_t desc_indexes[MAX_PKT_BURST];
|
|
uint32_t used_idx;
|
|
uint32_t i = 0;
|
|
uint16_t free_entries;
|
|
uint16_t avail_idx;
|
|
|
|
dev = get_device(vid);
|
|
if (!dev)
|
|
return 0;
|
|
|
|
if (unlikely(!is_valid_virt_queue_idx(queue_id, 1, dev->nr_vring))) {
|
|
RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
|
|
dev->vid, __func__, queue_id);
|
|
return 0;
|
|
}
|
|
|
|
vq = dev->virtqueue[queue_id];
|
|
if (unlikely(vq->enabled == 0))
|
|
return 0;
|
|
|
|
if (unlikely(dev->dequeue_zero_copy)) {
|
|
struct zcopy_mbuf *zmbuf, *next;
|
|
int nr_updated = 0;
|
|
|
|
for (zmbuf = TAILQ_FIRST(&vq->zmbuf_list);
|
|
zmbuf != NULL; zmbuf = next) {
|
|
next = TAILQ_NEXT(zmbuf, next);
|
|
|
|
if (mbuf_is_consumed(zmbuf->mbuf)) {
|
|
used_idx = vq->last_used_idx++ & (vq->size - 1);
|
|
update_used_ring(dev, vq, used_idx,
|
|
zmbuf->desc_idx);
|
|
nr_updated += 1;
|
|
|
|
TAILQ_REMOVE(&vq->zmbuf_list, zmbuf, next);
|
|
rte_pktmbuf_free(zmbuf->mbuf);
|
|
put_zmbuf(zmbuf);
|
|
vq->nr_zmbuf -= 1;
|
|
}
|
|
}
|
|
|
|
update_used_idx(dev, vq, nr_updated);
|
|
}
|
|
|
|
/*
|
|
* Construct a RARP broadcast packet, and inject it to the "pkts"
|
|
* array, to looks like that guest actually send such packet.
|
|
*
|
|
* Check user_send_rarp() for more information.
|
|
*
|
|
* broadcast_rarp shares a cacheline in the virtio_net structure
|
|
* with some fields that are accessed during enqueue and
|
|
* rte_atomic16_cmpset() causes a write if using cmpxchg. This could
|
|
* result in false sharing between enqueue and dequeue.
|
|
*
|
|
* Prevent unnecessary false sharing by reading broadcast_rarp first
|
|
* and only performing cmpset if the read indicates it is likely to
|
|
* be set.
|
|
*/
|
|
|
|
if (unlikely(rte_atomic16_read(&dev->broadcast_rarp) &&
|
|
rte_atomic16_cmpset((volatile uint16_t *)
|
|
&dev->broadcast_rarp.cnt, 1, 0))) {
|
|
|
|
rarp_mbuf = rte_pktmbuf_alloc(mbuf_pool);
|
|
if (rarp_mbuf == NULL) {
|
|
RTE_LOG(ERR, VHOST_DATA,
|
|
"Failed to allocate memory for mbuf.\n");
|
|
return 0;
|
|
}
|
|
|
|
if (make_rarp_packet(rarp_mbuf, &dev->mac)) {
|
|
rte_pktmbuf_free(rarp_mbuf);
|
|
rarp_mbuf = NULL;
|
|
} else {
|
|
count -= 1;
|
|
}
|
|
}
|
|
|
|
free_entries = *((volatile uint16_t *)&vq->avail->idx) -
|
|
vq->last_avail_idx;
|
|
if (free_entries == 0)
|
|
goto out;
|
|
|
|
LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
|
|
|
|
/* Prefetch available and used ring */
|
|
avail_idx = vq->last_avail_idx & (vq->size - 1);
|
|
used_idx = vq->last_used_idx & (vq->size - 1);
|
|
rte_prefetch0(&vq->avail->ring[avail_idx]);
|
|
rte_prefetch0(&vq->used->ring[used_idx]);
|
|
|
|
count = RTE_MIN(count, MAX_PKT_BURST);
|
|
count = RTE_MIN(count, free_entries);
|
|
LOG_DEBUG(VHOST_DATA, "(%d) about to dequeue %u buffers\n",
|
|
dev->vid, count);
|
|
|
|
/* Retrieve all of the head indexes first to avoid caching issues. */
|
|
for (i = 0; i < count; i++) {
|
|
avail_idx = (vq->last_avail_idx + i) & (vq->size - 1);
|
|
used_idx = (vq->last_used_idx + i) & (vq->size - 1);
|
|
desc_indexes[i] = vq->avail->ring[avail_idx];
|
|
|
|
if (likely(dev->dequeue_zero_copy == 0))
|
|
update_used_ring(dev, vq, used_idx, desc_indexes[i]);
|
|
}
|
|
|
|
/* Prefetch descriptor index. */
|
|
rte_prefetch0(&vq->desc[desc_indexes[0]]);
|
|
for (i = 0; i < count; i++) {
|
|
struct vring_desc *desc;
|
|
uint16_t sz, idx;
|
|
int err;
|
|
|
|
if (likely(i + 1 < count))
|
|
rte_prefetch0(&vq->desc[desc_indexes[i + 1]]);
|
|
|
|
if (vq->desc[desc_indexes[i]].flags & VRING_DESC_F_INDIRECT) {
|
|
desc = (struct vring_desc *)(uintptr_t)
|
|
rte_vhost_gpa_to_vva(dev->mem,
|
|
vq->desc[desc_indexes[i]].addr);
|
|
if (unlikely(!desc))
|
|
break;
|
|
|
|
rte_prefetch0(desc);
|
|
sz = vq->desc[desc_indexes[i]].len / sizeof(*desc);
|
|
idx = 0;
|
|
} else {
|
|
desc = vq->desc;
|
|
sz = vq->size;
|
|
idx = desc_indexes[i];
|
|
}
|
|
|
|
pkts[i] = rte_pktmbuf_alloc(mbuf_pool);
|
|
if (unlikely(pkts[i] == NULL)) {
|
|
RTE_LOG(ERR, VHOST_DATA,
|
|
"Failed to allocate memory for mbuf.\n");
|
|
break;
|
|
}
|
|
|
|
err = copy_desc_to_mbuf(dev, desc, sz, pkts[i], idx, mbuf_pool);
|
|
if (unlikely(err)) {
|
|
rte_pktmbuf_free(pkts[i]);
|
|
break;
|
|
}
|
|
|
|
if (unlikely(dev->dequeue_zero_copy)) {
|
|
struct zcopy_mbuf *zmbuf;
|
|
|
|
zmbuf = get_zmbuf(vq);
|
|
if (!zmbuf) {
|
|
rte_pktmbuf_free(pkts[i]);
|
|
break;
|
|
}
|
|
zmbuf->mbuf = pkts[i];
|
|
zmbuf->desc_idx = desc_indexes[i];
|
|
|
|
/*
|
|
* Pin lock the mbuf; we will check later to see
|
|
* whether the mbuf is freed (when we are the last
|
|
* user) or not. If that's the case, we then could
|
|
* update the used ring safely.
|
|
*/
|
|
rte_mbuf_refcnt_update(pkts[i], 1);
|
|
|
|
vq->nr_zmbuf += 1;
|
|
TAILQ_INSERT_TAIL(&vq->zmbuf_list, zmbuf, next);
|
|
}
|
|
}
|
|
vq->last_avail_idx += i;
|
|
|
|
if (likely(dev->dequeue_zero_copy == 0)) {
|
|
vq->last_used_idx += i;
|
|
update_used_idx(dev, vq, i);
|
|
}
|
|
|
|
out:
|
|
if (unlikely(rarp_mbuf != NULL)) {
|
|
/*
|
|
* Inject it to the head of "pkts" array, so that switch's mac
|
|
* learning table will get updated first.
|
|
*/
|
|
memmove(&pkts[1], pkts, i * sizeof(struct rte_mbuf *));
|
|
pkts[0] = rarp_mbuf;
|
|
i += 1;
|
|
}
|
|
|
|
return i;
|
|
}
|