numam-dpdk/drivers/net/ice/ice_ethdev.c
Qi Zhang b83d270dff net/ice: refine RSS configure
The ICE_RSS_ANY_HEADERS will try to enable outer RSS for
non-tunnel case and inner RSS for tunnel case. This confuse
user.

As we already have ICE_RSS_INNER_HEADER for tunnel case,
So, replace ICE_RSS_ANY_HEADERS with ICE_RSS_OUTER_HEADERS
for all exist flow which only specified the outer pattern.

To enable inner RSS for any tunnel cases, a separated rule
should be enabled.

The patch also remove some unnecessary condition check for GTPU
in base code, as we already can support outer RSS for GTPU.

Signed-off-by: Qi Zhang <qi.z.zhang@intel.com>
Acked-by: Xuan Ding <xuan.ding@intel.com>
2021-03-30 07:15:01 +02:00

5372 lines
145 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Intel Corporation
*/
#include <rte_string_fns.h>
#include <ethdev_pci.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include "base/ice_sched.h"
#include "base/ice_flow.h"
#include "base/ice_dcb.h"
#include "base/ice_common.h"
#include "rte_pmd_ice.h"
#include "ice_ethdev.h"
#include "ice_rxtx.h"
#include "ice_generic_flow.h"
/* devargs */
#define ICE_SAFE_MODE_SUPPORT_ARG "safe-mode-support"
#define ICE_PIPELINE_MODE_SUPPORT_ARG "pipeline-mode-support"
#define ICE_PROTO_XTR_ARG "proto_xtr"
static const char * const ice_valid_args[] = {
ICE_SAFE_MODE_SUPPORT_ARG,
ICE_PIPELINE_MODE_SUPPORT_ARG,
ICE_PROTO_XTR_ARG,
NULL
};
static const struct rte_mbuf_dynfield ice_proto_xtr_metadata_param = {
.name = "intel_pmd_dynfield_proto_xtr_metadata",
.size = sizeof(uint32_t),
.align = __alignof__(uint32_t),
.flags = 0,
};
struct proto_xtr_ol_flag {
const struct rte_mbuf_dynflag param;
uint64_t *ol_flag;
bool required;
};
static bool ice_proto_xtr_hw_support[PROTO_XTR_MAX];
static struct proto_xtr_ol_flag ice_proto_xtr_ol_flag_params[] = {
[PROTO_XTR_VLAN] = {
.param = { .name = "intel_pmd_dynflag_proto_xtr_vlan" },
.ol_flag = &rte_net_ice_dynflag_proto_xtr_vlan_mask },
[PROTO_XTR_IPV4] = {
.param = { .name = "intel_pmd_dynflag_proto_xtr_ipv4" },
.ol_flag = &rte_net_ice_dynflag_proto_xtr_ipv4_mask },
[PROTO_XTR_IPV6] = {
.param = { .name = "intel_pmd_dynflag_proto_xtr_ipv6" },
.ol_flag = &rte_net_ice_dynflag_proto_xtr_ipv6_mask },
[PROTO_XTR_IPV6_FLOW] = {
.param = { .name = "intel_pmd_dynflag_proto_xtr_ipv6_flow" },
.ol_flag = &rte_net_ice_dynflag_proto_xtr_ipv6_flow_mask },
[PROTO_XTR_TCP] = {
.param = { .name = "intel_pmd_dynflag_proto_xtr_tcp" },
.ol_flag = &rte_net_ice_dynflag_proto_xtr_tcp_mask },
[PROTO_XTR_IP_OFFSET] = {
.param = { .name = "intel_pmd_dynflag_proto_xtr_ip_offset" },
.ol_flag = &rte_net_ice_dynflag_proto_xtr_ip_offset_mask },
};
#define ICE_OS_DEFAULT_PKG_NAME "ICE OS Default Package"
#define ICE_COMMS_PKG_NAME "ICE COMMS Package"
#define ICE_MAX_RES_DESC_NUM 1024
static int ice_dev_configure(struct rte_eth_dev *dev);
static int ice_dev_start(struct rte_eth_dev *dev);
static int ice_dev_stop(struct rte_eth_dev *dev);
static int ice_dev_close(struct rte_eth_dev *dev);
static int ice_dev_reset(struct rte_eth_dev *dev);
static int ice_dev_info_get(struct rte_eth_dev *dev,
struct rte_eth_dev_info *dev_info);
static int ice_link_update(struct rte_eth_dev *dev,
int wait_to_complete);
static int ice_dev_set_link_up(struct rte_eth_dev *dev);
static int ice_dev_set_link_down(struct rte_eth_dev *dev);
static int ice_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
static int ice_vlan_offload_set(struct rte_eth_dev *dev, int mask);
static int ice_rss_reta_update(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size);
static int ice_rss_reta_query(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size);
static int ice_rss_hash_update(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf);
static int ice_rss_hash_conf_get(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf);
static int ice_promisc_enable(struct rte_eth_dev *dev);
static int ice_promisc_disable(struct rte_eth_dev *dev);
static int ice_allmulti_enable(struct rte_eth_dev *dev);
static int ice_allmulti_disable(struct rte_eth_dev *dev);
static int ice_vlan_filter_set(struct rte_eth_dev *dev,
uint16_t vlan_id,
int on);
static int ice_macaddr_set(struct rte_eth_dev *dev,
struct rte_ether_addr *mac_addr);
static int ice_macaddr_add(struct rte_eth_dev *dev,
struct rte_ether_addr *mac_addr,
__rte_unused uint32_t index,
uint32_t pool);
static void ice_macaddr_remove(struct rte_eth_dev *dev, uint32_t index);
static int ice_rx_queue_intr_enable(struct rte_eth_dev *dev,
uint16_t queue_id);
static int ice_rx_queue_intr_disable(struct rte_eth_dev *dev,
uint16_t queue_id);
static int ice_fw_version_get(struct rte_eth_dev *dev, char *fw_version,
size_t fw_size);
static int ice_vlan_pvid_set(struct rte_eth_dev *dev,
uint16_t pvid, int on);
static int ice_get_eeprom_length(struct rte_eth_dev *dev);
static int ice_get_eeprom(struct rte_eth_dev *dev,
struct rte_dev_eeprom_info *eeprom);
static int ice_stats_get(struct rte_eth_dev *dev,
struct rte_eth_stats *stats);
static int ice_stats_reset(struct rte_eth_dev *dev);
static int ice_xstats_get(struct rte_eth_dev *dev,
struct rte_eth_xstat *xstats, unsigned int n);
static int ice_xstats_get_names(struct rte_eth_dev *dev,
struct rte_eth_xstat_name *xstats_names,
unsigned int limit);
static int ice_dev_flow_ops_get(struct rte_eth_dev *dev,
const struct rte_flow_ops **ops);
static int ice_dev_udp_tunnel_port_add(struct rte_eth_dev *dev,
struct rte_eth_udp_tunnel *udp_tunnel);
static int ice_dev_udp_tunnel_port_del(struct rte_eth_dev *dev,
struct rte_eth_udp_tunnel *udp_tunnel);
static const struct rte_pci_id pci_id_ice_map[] = {
{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E823L_BACKPLANE) },
{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E823L_SFP) },
{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E823L_10G_BASE_T) },
{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E823L_1GBE) },
{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E823L_QSFP) },
{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E810C_BACKPLANE) },
{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E810C_QSFP) },
{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E810C_SFP) },
{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E810_XXV_BACKPLANE) },
{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E810_XXV_QSFP) },
{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E810_XXV_SFP) },
{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E823C_BACKPLANE) },
{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E823C_QSFP) },
{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E823C_SFP) },
{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E823C_10G_BASE_T) },
{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E823C_SGMII) },
{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E822C_BACKPLANE) },
{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E822C_QSFP) },
{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E822C_SFP) },
{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E822C_10G_BASE_T) },
{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E822C_SGMII) },
{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E822L_BACKPLANE) },
{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E822L_SFP) },
{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E822L_10G_BASE_T) },
{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E822L_SGMII) },
{ .vendor_id = 0, /* sentinel */ },
};
static const struct eth_dev_ops ice_eth_dev_ops = {
.dev_configure = ice_dev_configure,
.dev_start = ice_dev_start,
.dev_stop = ice_dev_stop,
.dev_close = ice_dev_close,
.dev_reset = ice_dev_reset,
.dev_set_link_up = ice_dev_set_link_up,
.dev_set_link_down = ice_dev_set_link_down,
.rx_queue_start = ice_rx_queue_start,
.rx_queue_stop = ice_rx_queue_stop,
.tx_queue_start = ice_tx_queue_start,
.tx_queue_stop = ice_tx_queue_stop,
.rx_queue_setup = ice_rx_queue_setup,
.rx_queue_release = ice_rx_queue_release,
.tx_queue_setup = ice_tx_queue_setup,
.tx_queue_release = ice_tx_queue_release,
.dev_infos_get = ice_dev_info_get,
.dev_supported_ptypes_get = ice_dev_supported_ptypes_get,
.link_update = ice_link_update,
.mtu_set = ice_mtu_set,
.mac_addr_set = ice_macaddr_set,
.mac_addr_add = ice_macaddr_add,
.mac_addr_remove = ice_macaddr_remove,
.vlan_filter_set = ice_vlan_filter_set,
.vlan_offload_set = ice_vlan_offload_set,
.reta_update = ice_rss_reta_update,
.reta_query = ice_rss_reta_query,
.rss_hash_update = ice_rss_hash_update,
.rss_hash_conf_get = ice_rss_hash_conf_get,
.promiscuous_enable = ice_promisc_enable,
.promiscuous_disable = ice_promisc_disable,
.allmulticast_enable = ice_allmulti_enable,
.allmulticast_disable = ice_allmulti_disable,
.rx_queue_intr_enable = ice_rx_queue_intr_enable,
.rx_queue_intr_disable = ice_rx_queue_intr_disable,
.fw_version_get = ice_fw_version_get,
.vlan_pvid_set = ice_vlan_pvid_set,
.rxq_info_get = ice_rxq_info_get,
.txq_info_get = ice_txq_info_get,
.rx_burst_mode_get = ice_rx_burst_mode_get,
.tx_burst_mode_get = ice_tx_burst_mode_get,
.get_eeprom_length = ice_get_eeprom_length,
.get_eeprom = ice_get_eeprom,
.stats_get = ice_stats_get,
.stats_reset = ice_stats_reset,
.xstats_get = ice_xstats_get,
.xstats_get_names = ice_xstats_get_names,
.xstats_reset = ice_stats_reset,
.flow_ops_get = ice_dev_flow_ops_get,
.udp_tunnel_port_add = ice_dev_udp_tunnel_port_add,
.udp_tunnel_port_del = ice_dev_udp_tunnel_port_del,
.tx_done_cleanup = ice_tx_done_cleanup,
.get_monitor_addr = ice_get_monitor_addr,
};
/* store statistics names and its offset in stats structure */
struct ice_xstats_name_off {
char name[RTE_ETH_XSTATS_NAME_SIZE];
unsigned int offset;
};
static const struct ice_xstats_name_off ice_stats_strings[] = {
{"rx_unicast_packets", offsetof(struct ice_eth_stats, rx_unicast)},
{"rx_multicast_packets", offsetof(struct ice_eth_stats, rx_multicast)},
{"rx_broadcast_packets", offsetof(struct ice_eth_stats, rx_broadcast)},
{"rx_dropped_packets", offsetof(struct ice_eth_stats, rx_discards)},
{"rx_unknown_protocol_packets", offsetof(struct ice_eth_stats,
rx_unknown_protocol)},
{"tx_unicast_packets", offsetof(struct ice_eth_stats, tx_unicast)},
{"tx_multicast_packets", offsetof(struct ice_eth_stats, tx_multicast)},
{"tx_broadcast_packets", offsetof(struct ice_eth_stats, tx_broadcast)},
{"tx_dropped_packets", offsetof(struct ice_eth_stats, tx_discards)},
};
#define ICE_NB_ETH_XSTATS (sizeof(ice_stats_strings) / \
sizeof(ice_stats_strings[0]))
static const struct ice_xstats_name_off ice_hw_port_strings[] = {
{"tx_link_down_dropped", offsetof(struct ice_hw_port_stats,
tx_dropped_link_down)},
{"rx_crc_errors", offsetof(struct ice_hw_port_stats, crc_errors)},
{"rx_illegal_byte_errors", offsetof(struct ice_hw_port_stats,
illegal_bytes)},
{"rx_error_bytes", offsetof(struct ice_hw_port_stats, error_bytes)},
{"mac_local_errors", offsetof(struct ice_hw_port_stats,
mac_local_faults)},
{"mac_remote_errors", offsetof(struct ice_hw_port_stats,
mac_remote_faults)},
{"rx_len_errors", offsetof(struct ice_hw_port_stats,
rx_len_errors)},
{"tx_xon_packets", offsetof(struct ice_hw_port_stats, link_xon_tx)},
{"rx_xon_packets", offsetof(struct ice_hw_port_stats, link_xon_rx)},
{"tx_xoff_packets", offsetof(struct ice_hw_port_stats, link_xoff_tx)},
{"rx_xoff_packets", offsetof(struct ice_hw_port_stats, link_xoff_rx)},
{"rx_size_64_packets", offsetof(struct ice_hw_port_stats, rx_size_64)},
{"rx_size_65_to_127_packets", offsetof(struct ice_hw_port_stats,
rx_size_127)},
{"rx_size_128_to_255_packets", offsetof(struct ice_hw_port_stats,
rx_size_255)},
{"rx_size_256_to_511_packets", offsetof(struct ice_hw_port_stats,
rx_size_511)},
{"rx_size_512_to_1023_packets", offsetof(struct ice_hw_port_stats,
rx_size_1023)},
{"rx_size_1024_to_1522_packets", offsetof(struct ice_hw_port_stats,
rx_size_1522)},
{"rx_size_1523_to_max_packets", offsetof(struct ice_hw_port_stats,
rx_size_big)},
{"rx_undersized_errors", offsetof(struct ice_hw_port_stats,
rx_undersize)},
{"rx_oversize_errors", offsetof(struct ice_hw_port_stats,
rx_oversize)},
{"rx_mac_short_pkt_dropped", offsetof(struct ice_hw_port_stats,
mac_short_pkt_dropped)},
{"rx_fragmented_errors", offsetof(struct ice_hw_port_stats,
rx_fragments)},
{"rx_jabber_errors", offsetof(struct ice_hw_port_stats, rx_jabber)},
{"tx_size_64_packets", offsetof(struct ice_hw_port_stats, tx_size_64)},
{"tx_size_65_to_127_packets", offsetof(struct ice_hw_port_stats,
tx_size_127)},
{"tx_size_128_to_255_packets", offsetof(struct ice_hw_port_stats,
tx_size_255)},
{"tx_size_256_to_511_packets", offsetof(struct ice_hw_port_stats,
tx_size_511)},
{"tx_size_512_to_1023_packets", offsetof(struct ice_hw_port_stats,
tx_size_1023)},
{"tx_size_1024_to_1522_packets", offsetof(struct ice_hw_port_stats,
tx_size_1522)},
{"tx_size_1523_to_max_packets", offsetof(struct ice_hw_port_stats,
tx_size_big)},
};
#define ICE_NB_HW_PORT_XSTATS (sizeof(ice_hw_port_strings) / \
sizeof(ice_hw_port_strings[0]))
static void
ice_init_controlq_parameter(struct ice_hw *hw)
{
/* fields for adminq */
hw->adminq.num_rq_entries = ICE_ADMINQ_LEN;
hw->adminq.num_sq_entries = ICE_ADMINQ_LEN;
hw->adminq.rq_buf_size = ICE_ADMINQ_BUF_SZ;
hw->adminq.sq_buf_size = ICE_ADMINQ_BUF_SZ;
/* fields for mailboxq, DPDK used as PF host */
hw->mailboxq.num_rq_entries = ICE_MAILBOXQ_LEN;
hw->mailboxq.num_sq_entries = ICE_MAILBOXQ_LEN;
hw->mailboxq.rq_buf_size = ICE_MAILBOXQ_BUF_SZ;
hw->mailboxq.sq_buf_size = ICE_MAILBOXQ_BUF_SZ;
}
static int
lookup_proto_xtr_type(const char *xtr_name)
{
static struct {
const char *name;
enum proto_xtr_type type;
} xtr_type_map[] = {
{ "vlan", PROTO_XTR_VLAN },
{ "ipv4", PROTO_XTR_IPV4 },
{ "ipv6", PROTO_XTR_IPV6 },
{ "ipv6_flow", PROTO_XTR_IPV6_FLOW },
{ "tcp", PROTO_XTR_TCP },
{ "ip_offset", PROTO_XTR_IP_OFFSET },
};
uint32_t i;
for (i = 0; i < RTE_DIM(xtr_type_map); i++) {
if (strcmp(xtr_name, xtr_type_map[i].name) == 0)
return xtr_type_map[i].type;
}
return -1;
}
/*
* Parse elem, the elem could be single number/range or '(' ')' group
* 1) A single number elem, it's just a simple digit. e.g. 9
* 2) A single range elem, two digits with a '-' between. e.g. 2-6
* 3) A group elem, combines multiple 1) or 2) with '( )'. e.g (0,2-4,6)
* Within group elem, '-' used for a range separator;
* ',' used for a single number.
*/
static int
parse_queue_set(const char *input, int xtr_type, struct ice_devargs *devargs)
{
const char *str = input;
char *end = NULL;
uint32_t min, max;
uint32_t idx;
while (isblank(*str))
str++;
if (!isdigit(*str) && *str != '(')
return -1;
/* process single number or single range of number */
if (*str != '(') {
errno = 0;
idx = strtoul(str, &end, 10);
if (errno || end == NULL || idx >= ICE_MAX_QUEUE_NUM)
return -1;
while (isblank(*end))
end++;
min = idx;
max = idx;
/* process single <number>-<number> */
if (*end == '-') {
end++;
while (isblank(*end))
end++;
if (!isdigit(*end))
return -1;
errno = 0;
idx = strtoul(end, &end, 10);
if (errno || end == NULL || idx >= ICE_MAX_QUEUE_NUM)
return -1;
max = idx;
while (isblank(*end))
end++;
}
if (*end != ':')
return -1;
for (idx = RTE_MIN(min, max);
idx <= RTE_MAX(min, max); idx++)
devargs->proto_xtr[idx] = xtr_type;
return 0;
}
/* process set within bracket */
str++;
while (isblank(*str))
str++;
if (*str == '\0')
return -1;
min = ICE_MAX_QUEUE_NUM;
do {
/* go ahead to the first digit */
while (isblank(*str))
str++;
if (!isdigit(*str))
return -1;
/* get the digit value */
errno = 0;
idx = strtoul(str, &end, 10);
if (errno || end == NULL || idx >= ICE_MAX_QUEUE_NUM)
return -1;
/* go ahead to separator '-',',' and ')' */
while (isblank(*end))
end++;
if (*end == '-') {
if (min == ICE_MAX_QUEUE_NUM)
min = idx;
else /* avoid continuous '-' */
return -1;
} else if (*end == ',' || *end == ')') {
max = idx;
if (min == ICE_MAX_QUEUE_NUM)
min = idx;
for (idx = RTE_MIN(min, max);
idx <= RTE_MAX(min, max); idx++)
devargs->proto_xtr[idx] = xtr_type;
min = ICE_MAX_QUEUE_NUM;
} else {
return -1;
}
str = end + 1;
} while (*end != ')' && *end != '\0');
return 0;
}
static int
parse_queue_proto_xtr(const char *queues, struct ice_devargs *devargs)
{
const char *queue_start;
uint32_t idx;
int xtr_type;
char xtr_name[32];
while (isblank(*queues))
queues++;
if (*queues != '[') {
xtr_type = lookup_proto_xtr_type(queues);
if (xtr_type < 0)
return -1;
devargs->proto_xtr_dflt = xtr_type;
return 0;
}
queues++;
do {
while (isblank(*queues))
queues++;
if (*queues == '\0')
return -1;
queue_start = queues;
/* go across a complete bracket */
if (*queue_start == '(') {
queues += strcspn(queues, ")");
if (*queues != ')')
return -1;
}
/* scan the separator ':' */
queues += strcspn(queues, ":");
if (*queues++ != ':')
return -1;
while (isblank(*queues))
queues++;
for (idx = 0; ; idx++) {
if (isblank(queues[idx]) ||
queues[idx] == ',' ||
queues[idx] == ']' ||
queues[idx] == '\0')
break;
if (idx > sizeof(xtr_name) - 2)
return -1;
xtr_name[idx] = queues[idx];
}
xtr_name[idx] = '\0';
xtr_type = lookup_proto_xtr_type(xtr_name);
if (xtr_type < 0)
return -1;
queues += idx;
while (isblank(*queues) || *queues == ',' || *queues == ']')
queues++;
if (parse_queue_set(queue_start, xtr_type, devargs) < 0)
return -1;
} while (*queues != '\0');
return 0;
}
static int
handle_proto_xtr_arg(__rte_unused const char *key, const char *value,
void *extra_args)
{
struct ice_devargs *devargs = extra_args;
if (value == NULL || extra_args == NULL)
return -EINVAL;
if (parse_queue_proto_xtr(value, devargs) < 0) {
PMD_DRV_LOG(ERR,
"The protocol extraction parameter is wrong : '%s'",
value);
return -1;
}
return 0;
}
static void
ice_check_proto_xtr_support(struct ice_hw *hw)
{
#define FLX_REG(val, fld, idx) \
(((val) & GLFLXP_RXDID_FLX_WRD_##idx##_##fld##_M) >> \
GLFLXP_RXDID_FLX_WRD_##idx##_##fld##_S)
static struct {
uint32_t rxdid;
uint8_t opcode;
uint8_t protid_0;
uint8_t protid_1;
} xtr_sets[] = {
[PROTO_XTR_VLAN] = { ICE_RXDID_COMMS_AUX_VLAN,
ICE_RX_OPC_EXTRACT,
ICE_PROT_EVLAN_O, ICE_PROT_VLAN_O},
[PROTO_XTR_IPV4] = { ICE_RXDID_COMMS_AUX_IPV4,
ICE_RX_OPC_EXTRACT,
ICE_PROT_IPV4_OF_OR_S,
ICE_PROT_IPV4_OF_OR_S },
[PROTO_XTR_IPV6] = { ICE_RXDID_COMMS_AUX_IPV6,
ICE_RX_OPC_EXTRACT,
ICE_PROT_IPV6_OF_OR_S,
ICE_PROT_IPV6_OF_OR_S },
[PROTO_XTR_IPV6_FLOW] = { ICE_RXDID_COMMS_AUX_IPV6_FLOW,
ICE_RX_OPC_EXTRACT,
ICE_PROT_IPV6_OF_OR_S,
ICE_PROT_IPV6_OF_OR_S },
[PROTO_XTR_TCP] = { ICE_RXDID_COMMS_AUX_TCP,
ICE_RX_OPC_EXTRACT,
ICE_PROT_TCP_IL, ICE_PROT_ID_INVAL },
[PROTO_XTR_IP_OFFSET] = { ICE_RXDID_COMMS_AUX_IP_OFFSET,
ICE_RX_OPC_PROTID,
ICE_PROT_IPV4_OF_OR_S,
ICE_PROT_IPV6_OF_OR_S },
};
uint32_t i;
for (i = 0; i < RTE_DIM(xtr_sets); i++) {
uint32_t rxdid = xtr_sets[i].rxdid;
uint32_t v;
if (xtr_sets[i].protid_0 != ICE_PROT_ID_INVAL) {
v = ICE_READ_REG(hw, GLFLXP_RXDID_FLX_WRD_4(rxdid));
if (FLX_REG(v, PROT_MDID, 4) == xtr_sets[i].protid_0 &&
FLX_REG(v, RXDID_OPCODE, 4) == xtr_sets[i].opcode)
ice_proto_xtr_hw_support[i] = true;
}
if (xtr_sets[i].protid_1 != ICE_PROT_ID_INVAL) {
v = ICE_READ_REG(hw, GLFLXP_RXDID_FLX_WRD_5(rxdid));
if (FLX_REG(v, PROT_MDID, 5) == xtr_sets[i].protid_1 &&
FLX_REG(v, RXDID_OPCODE, 5) == xtr_sets[i].opcode)
ice_proto_xtr_hw_support[i] = true;
}
}
}
static int
ice_res_pool_init(struct ice_res_pool_info *pool, uint32_t base,
uint32_t num)
{
struct pool_entry *entry;
if (!pool || !num)
return -EINVAL;
entry = rte_zmalloc(NULL, sizeof(*entry), 0);
if (!entry) {
PMD_INIT_LOG(ERR,
"Failed to allocate memory for resource pool");
return -ENOMEM;
}
/* queue heap initialize */
pool->num_free = num;
pool->num_alloc = 0;
pool->base = base;
LIST_INIT(&pool->alloc_list);
LIST_INIT(&pool->free_list);
/* Initialize element */
entry->base = 0;
entry->len = num;
LIST_INSERT_HEAD(&pool->free_list, entry, next);
return 0;
}
static int
ice_res_pool_alloc(struct ice_res_pool_info *pool,
uint16_t num)
{
struct pool_entry *entry, *valid_entry;
if (!pool || !num) {
PMD_INIT_LOG(ERR, "Invalid parameter");
return -EINVAL;
}
if (pool->num_free < num) {
PMD_INIT_LOG(ERR, "No resource. ask:%u, available:%u",
num, pool->num_free);
return -ENOMEM;
}
valid_entry = NULL;
/* Lookup in free list and find most fit one */
LIST_FOREACH(entry, &pool->free_list, next) {
if (entry->len >= num) {
/* Find best one */
if (entry->len == num) {
valid_entry = entry;
break;
}
if (!valid_entry ||
valid_entry->len > entry->len)
valid_entry = entry;
}
}
/* Not find one to satisfy the request, return */
if (!valid_entry) {
PMD_INIT_LOG(ERR, "No valid entry found");
return -ENOMEM;
}
/**
* The entry have equal queue number as requested,
* remove it from alloc_list.
*/
if (valid_entry->len == num) {
LIST_REMOVE(valid_entry, next);
} else {
/**
* The entry have more numbers than requested,
* create a new entry for alloc_list and minus its
* queue base and number in free_list.
*/
entry = rte_zmalloc(NULL, sizeof(*entry), 0);
if (!entry) {
PMD_INIT_LOG(ERR,
"Failed to allocate memory for "
"resource pool");
return -ENOMEM;
}
entry->base = valid_entry->base;
entry->len = num;
valid_entry->base += num;
valid_entry->len -= num;
valid_entry = entry;
}
/* Insert it into alloc list, not sorted */
LIST_INSERT_HEAD(&pool->alloc_list, valid_entry, next);
pool->num_free -= valid_entry->len;
pool->num_alloc += valid_entry->len;
return valid_entry->base + pool->base;
}
static void
ice_res_pool_destroy(struct ice_res_pool_info *pool)
{
struct pool_entry *entry, *next_entry;
if (!pool)
return;
for (entry = LIST_FIRST(&pool->alloc_list);
entry && (next_entry = LIST_NEXT(entry, next), 1);
entry = next_entry) {
LIST_REMOVE(entry, next);
rte_free(entry);
}
for (entry = LIST_FIRST(&pool->free_list);
entry && (next_entry = LIST_NEXT(entry, next), 1);
entry = next_entry) {
LIST_REMOVE(entry, next);
rte_free(entry);
}
pool->num_free = 0;
pool->num_alloc = 0;
pool->base = 0;
LIST_INIT(&pool->alloc_list);
LIST_INIT(&pool->free_list);
}
static void
ice_vsi_config_default_rss(struct ice_aqc_vsi_props *info)
{
/* Set VSI LUT selection */
info->q_opt_rss = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI &
ICE_AQ_VSI_Q_OPT_RSS_LUT_M;
/* Set Hash scheme */
info->q_opt_rss |= ICE_AQ_VSI_Q_OPT_RSS_TPLZ &
ICE_AQ_VSI_Q_OPT_RSS_HASH_M;
/* enable TC */
info->q_opt_tc = ICE_AQ_VSI_Q_OPT_TC_OVR_M;
}
static enum ice_status
ice_vsi_config_tc_queue_mapping(struct ice_vsi *vsi,
struct ice_aqc_vsi_props *info,
uint8_t enabled_tcmap)
{
uint16_t bsf, qp_idx;
/* default tc 0 now. Multi-TC supporting need to be done later.
* Configure TC and queue mapping parameters, for enabled TC,
* allocate qpnum_per_tc queues to this traffic.
*/
if (enabled_tcmap != 0x01) {
PMD_INIT_LOG(ERR, "only TC0 is supported");
return -ENOTSUP;
}
vsi->nb_qps = RTE_MIN(vsi->nb_qps, ICE_MAX_Q_PER_TC);
bsf = rte_bsf32(vsi->nb_qps);
/* Adjust the queue number to actual queues that can be applied */
vsi->nb_qps = 0x1 << bsf;
qp_idx = 0;
/* Set tc and queue mapping with VSI */
info->tc_mapping[0] = rte_cpu_to_le_16((qp_idx <<
ICE_AQ_VSI_TC_Q_OFFSET_S) |
(bsf << ICE_AQ_VSI_TC_Q_NUM_S));
/* Associate queue number with VSI */
info->mapping_flags |= rte_cpu_to_le_16(ICE_AQ_VSI_Q_MAP_CONTIG);
info->q_mapping[0] = rte_cpu_to_le_16(vsi->base_queue);
info->q_mapping[1] = rte_cpu_to_le_16(vsi->nb_qps);
info->valid_sections |=
rte_cpu_to_le_16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
/* Set the info.ingress_table and info.egress_table
* for UP translate table. Now just set it to 1:1 map by default
* -- 0b 111 110 101 100 011 010 001 000 == 0xFAC688
*/
#define ICE_TC_QUEUE_TABLE_DFLT 0x00FAC688
info->ingress_table = rte_cpu_to_le_32(ICE_TC_QUEUE_TABLE_DFLT);
info->egress_table = rte_cpu_to_le_32(ICE_TC_QUEUE_TABLE_DFLT);
info->outer_up_table = rte_cpu_to_le_32(ICE_TC_QUEUE_TABLE_DFLT);
return 0;
}
static int
ice_init_mac_address(struct rte_eth_dev *dev)
{
struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (!rte_is_unicast_ether_addr
((struct rte_ether_addr *)hw->port_info[0].mac.lan_addr)) {
PMD_INIT_LOG(ERR, "Invalid MAC address");
return -EINVAL;
}
rte_ether_addr_copy(
(struct rte_ether_addr *)hw->port_info[0].mac.lan_addr,
(struct rte_ether_addr *)hw->port_info[0].mac.perm_addr);
dev->data->mac_addrs =
rte_zmalloc(NULL, sizeof(struct rte_ether_addr) * ICE_NUM_MACADDR_MAX, 0);
if (!dev->data->mac_addrs) {
PMD_INIT_LOG(ERR,
"Failed to allocate memory to store mac address");
return -ENOMEM;
}
/* store it to dev data */
rte_ether_addr_copy(
(struct rte_ether_addr *)hw->port_info[0].mac.perm_addr,
&dev->data->mac_addrs[0]);
return 0;
}
/* Find out specific MAC filter */
static struct ice_mac_filter *
ice_find_mac_filter(struct ice_vsi *vsi, struct rte_ether_addr *macaddr)
{
struct ice_mac_filter *f;
TAILQ_FOREACH(f, &vsi->mac_list, next) {
if (rte_is_same_ether_addr(macaddr, &f->mac_info.mac_addr))
return f;
}
return NULL;
}
static int
ice_add_mac_filter(struct ice_vsi *vsi, struct rte_ether_addr *mac_addr)
{
struct ice_fltr_list_entry *m_list_itr = NULL;
struct ice_mac_filter *f;
struct LIST_HEAD_TYPE list_head;
struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
int ret = 0;
/* If it's added and configured, return */
f = ice_find_mac_filter(vsi, mac_addr);
if (f) {
PMD_DRV_LOG(INFO, "This MAC filter already exists.");
return 0;
}
INIT_LIST_HEAD(&list_head);
m_list_itr = (struct ice_fltr_list_entry *)
ice_malloc(hw, sizeof(*m_list_itr));
if (!m_list_itr) {
ret = -ENOMEM;
goto DONE;
}
ice_memcpy(m_list_itr->fltr_info.l_data.mac.mac_addr,
mac_addr, ETH_ALEN, ICE_NONDMA_TO_NONDMA);
m_list_itr->fltr_info.src_id = ICE_SRC_ID_VSI;
m_list_itr->fltr_info.fltr_act = ICE_FWD_TO_VSI;
m_list_itr->fltr_info.lkup_type = ICE_SW_LKUP_MAC;
m_list_itr->fltr_info.flag = ICE_FLTR_TX;
m_list_itr->fltr_info.vsi_handle = vsi->idx;
LIST_ADD(&m_list_itr->list_entry, &list_head);
/* Add the mac */
ret = ice_add_mac(hw, &list_head);
if (ret != ICE_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to add MAC filter");
ret = -EINVAL;
goto DONE;
}
/* Add the mac addr into mac list */
f = rte_zmalloc(NULL, sizeof(*f), 0);
if (!f) {
PMD_DRV_LOG(ERR, "failed to allocate memory");
ret = -ENOMEM;
goto DONE;
}
rte_ether_addr_copy(mac_addr, &f->mac_info.mac_addr);
TAILQ_INSERT_TAIL(&vsi->mac_list, f, next);
vsi->mac_num++;
ret = 0;
DONE:
rte_free(m_list_itr);
return ret;
}
static int
ice_remove_mac_filter(struct ice_vsi *vsi, struct rte_ether_addr *mac_addr)
{
struct ice_fltr_list_entry *m_list_itr = NULL;
struct ice_mac_filter *f;
struct LIST_HEAD_TYPE list_head;
struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
int ret = 0;
/* Can't find it, return an error */
f = ice_find_mac_filter(vsi, mac_addr);
if (!f)
return -EINVAL;
INIT_LIST_HEAD(&list_head);
m_list_itr = (struct ice_fltr_list_entry *)
ice_malloc(hw, sizeof(*m_list_itr));
if (!m_list_itr) {
ret = -ENOMEM;
goto DONE;
}
ice_memcpy(m_list_itr->fltr_info.l_data.mac.mac_addr,
mac_addr, ETH_ALEN, ICE_NONDMA_TO_NONDMA);
m_list_itr->fltr_info.src_id = ICE_SRC_ID_VSI;
m_list_itr->fltr_info.fltr_act = ICE_FWD_TO_VSI;
m_list_itr->fltr_info.lkup_type = ICE_SW_LKUP_MAC;
m_list_itr->fltr_info.flag = ICE_FLTR_TX;
m_list_itr->fltr_info.vsi_handle = vsi->idx;
LIST_ADD(&m_list_itr->list_entry, &list_head);
/* remove the mac filter */
ret = ice_remove_mac(hw, &list_head);
if (ret != ICE_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to remove MAC filter");
ret = -EINVAL;
goto DONE;
}
/* Remove the mac addr from mac list */
TAILQ_REMOVE(&vsi->mac_list, f, next);
rte_free(f);
vsi->mac_num--;
ret = 0;
DONE:
rte_free(m_list_itr);
return ret;
}
/* Find out specific VLAN filter */
static struct ice_vlan_filter *
ice_find_vlan_filter(struct ice_vsi *vsi, struct ice_vlan *vlan)
{
struct ice_vlan_filter *f;
TAILQ_FOREACH(f, &vsi->vlan_list, next) {
if (vlan->tpid == f->vlan_info.vlan.tpid &&
vlan->vid == f->vlan_info.vlan.vid)
return f;
}
return NULL;
}
static int
ice_add_vlan_filter(struct ice_vsi *vsi, struct ice_vlan *vlan)
{
struct ice_fltr_list_entry *v_list_itr = NULL;
struct ice_vlan_filter *f;
struct LIST_HEAD_TYPE list_head;
struct ice_hw *hw;
int ret = 0;
if (!vsi || vlan->vid > RTE_ETHER_MAX_VLAN_ID)
return -EINVAL;
hw = ICE_VSI_TO_HW(vsi);
/* If it's added and configured, return. */
f = ice_find_vlan_filter(vsi, vlan);
if (f) {
PMD_DRV_LOG(INFO, "This VLAN filter already exists.");
return 0;
}
if (!vsi->vlan_anti_spoof_on && !vsi->vlan_filter_on)
return 0;
INIT_LIST_HEAD(&list_head);
v_list_itr = (struct ice_fltr_list_entry *)
ice_malloc(hw, sizeof(*v_list_itr));
if (!v_list_itr) {
ret = -ENOMEM;
goto DONE;
}
v_list_itr->fltr_info.l_data.vlan.vlan_id = vlan->vid;
v_list_itr->fltr_info.l_data.vlan.tpid = vlan->tpid;
v_list_itr->fltr_info.l_data.vlan.tpid_valid = true;
v_list_itr->fltr_info.src_id = ICE_SRC_ID_VSI;
v_list_itr->fltr_info.fltr_act = ICE_FWD_TO_VSI;
v_list_itr->fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
v_list_itr->fltr_info.flag = ICE_FLTR_TX;
v_list_itr->fltr_info.vsi_handle = vsi->idx;
LIST_ADD(&v_list_itr->list_entry, &list_head);
/* Add the vlan */
ret = ice_add_vlan(hw, &list_head);
if (ret != ICE_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to add VLAN filter");
ret = -EINVAL;
goto DONE;
}
/* Add vlan into vlan list */
f = rte_zmalloc(NULL, sizeof(*f), 0);
if (!f) {
PMD_DRV_LOG(ERR, "failed to allocate memory");
ret = -ENOMEM;
goto DONE;
}
f->vlan_info.vlan.tpid = vlan->tpid;
f->vlan_info.vlan.vid = vlan->vid;
TAILQ_INSERT_TAIL(&vsi->vlan_list, f, next);
vsi->vlan_num++;
ret = 0;
DONE:
rte_free(v_list_itr);
return ret;
}
static int
ice_remove_vlan_filter(struct ice_vsi *vsi, struct ice_vlan *vlan)
{
struct ice_fltr_list_entry *v_list_itr = NULL;
struct ice_vlan_filter *f;
struct LIST_HEAD_TYPE list_head;
struct ice_hw *hw;
int ret = 0;
if (!vsi || vlan->vid > RTE_ETHER_MAX_VLAN_ID)
return -EINVAL;
hw = ICE_VSI_TO_HW(vsi);
/* Can't find it, return an error */
f = ice_find_vlan_filter(vsi, vlan);
if (!f)
return -EINVAL;
INIT_LIST_HEAD(&list_head);
v_list_itr = (struct ice_fltr_list_entry *)
ice_malloc(hw, sizeof(*v_list_itr));
if (!v_list_itr) {
ret = -ENOMEM;
goto DONE;
}
v_list_itr->fltr_info.l_data.vlan.vlan_id = vlan->vid;
v_list_itr->fltr_info.l_data.vlan.tpid = vlan->tpid;
v_list_itr->fltr_info.l_data.vlan.tpid_valid = true;
v_list_itr->fltr_info.src_id = ICE_SRC_ID_VSI;
v_list_itr->fltr_info.fltr_act = ICE_FWD_TO_VSI;
v_list_itr->fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
v_list_itr->fltr_info.flag = ICE_FLTR_TX;
v_list_itr->fltr_info.vsi_handle = vsi->idx;
LIST_ADD(&v_list_itr->list_entry, &list_head);
/* remove the vlan filter */
ret = ice_remove_vlan(hw, &list_head);
if (ret != ICE_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to remove VLAN filter");
ret = -EINVAL;
goto DONE;
}
/* Remove the vlan id from vlan list */
TAILQ_REMOVE(&vsi->vlan_list, f, next);
rte_free(f);
vsi->vlan_num--;
ret = 0;
DONE:
rte_free(v_list_itr);
return ret;
}
static int
ice_remove_all_mac_vlan_filters(struct ice_vsi *vsi)
{
struct ice_mac_filter *m_f;
struct ice_vlan_filter *v_f;
int ret = 0;
if (!vsi || !vsi->mac_num)
return -EINVAL;
TAILQ_FOREACH(m_f, &vsi->mac_list, next) {
ret = ice_remove_mac_filter(vsi, &m_f->mac_info.mac_addr);
if (ret != ICE_SUCCESS) {
ret = -EINVAL;
goto DONE;
}
}
if (vsi->vlan_num == 0)
return 0;
TAILQ_FOREACH(v_f, &vsi->vlan_list, next) {
ret = ice_remove_vlan_filter(vsi, &v_f->vlan_info.vlan);
if (ret != ICE_SUCCESS) {
ret = -EINVAL;
goto DONE;
}
}
DONE:
return ret;
}
/* Enable IRQ0 */
static void
ice_pf_enable_irq0(struct ice_hw *hw)
{
/* reset the registers */
ICE_WRITE_REG(hw, PFINT_OICR_ENA, 0);
ICE_READ_REG(hw, PFINT_OICR);
#ifdef ICE_LSE_SPT
ICE_WRITE_REG(hw, PFINT_OICR_ENA,
(uint32_t)(PFINT_OICR_ENA_INT_ENA_M &
(~PFINT_OICR_LINK_STAT_CHANGE_M)));
ICE_WRITE_REG(hw, PFINT_OICR_CTL,
(0 & PFINT_OICR_CTL_MSIX_INDX_M) |
((0 << PFINT_OICR_CTL_ITR_INDX_S) &
PFINT_OICR_CTL_ITR_INDX_M) |
PFINT_OICR_CTL_CAUSE_ENA_M);
ICE_WRITE_REG(hw, PFINT_FW_CTL,
(0 & PFINT_FW_CTL_MSIX_INDX_M) |
((0 << PFINT_FW_CTL_ITR_INDX_S) &
PFINT_FW_CTL_ITR_INDX_M) |
PFINT_FW_CTL_CAUSE_ENA_M);
#else
ICE_WRITE_REG(hw, PFINT_OICR_ENA, PFINT_OICR_ENA_INT_ENA_M);
#endif
ICE_WRITE_REG(hw, GLINT_DYN_CTL(0),
GLINT_DYN_CTL_INTENA_M |
GLINT_DYN_CTL_CLEARPBA_M |
GLINT_DYN_CTL_ITR_INDX_M);
ice_flush(hw);
}
/* Disable IRQ0 */
static void
ice_pf_disable_irq0(struct ice_hw *hw)
{
/* Disable all interrupt types */
ICE_WRITE_REG(hw, GLINT_DYN_CTL(0), GLINT_DYN_CTL_WB_ON_ITR_M);
ice_flush(hw);
}
#ifdef ICE_LSE_SPT
static void
ice_handle_aq_msg(struct rte_eth_dev *dev)
{
struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct ice_ctl_q_info *cq = &hw->adminq;
struct ice_rq_event_info event;
uint16_t pending, opcode;
int ret;
event.buf_len = ICE_AQ_MAX_BUF_LEN;
event.msg_buf = rte_zmalloc(NULL, event.buf_len, 0);
if (!event.msg_buf) {
PMD_DRV_LOG(ERR, "Failed to allocate mem");
return;
}
pending = 1;
while (pending) {
ret = ice_clean_rq_elem(hw, cq, &event, &pending);
if (ret != ICE_SUCCESS) {
PMD_DRV_LOG(INFO,
"Failed to read msg from AdminQ, "
"adminq_err: %u",
hw->adminq.sq_last_status);
break;
}
opcode = rte_le_to_cpu_16(event.desc.opcode);
switch (opcode) {
case ice_aqc_opc_get_link_status:
ret = ice_link_update(dev, 0);
if (!ret)
rte_eth_dev_callback_process
(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
break;
default:
PMD_DRV_LOG(DEBUG, "Request %u is not supported yet",
opcode);
break;
}
}
rte_free(event.msg_buf);
}
#endif
/**
* Interrupt handler triggered by NIC for handling
* specific interrupt.
*
* @param handle
* Pointer to interrupt handle.
* @param param
* The address of parameter (struct rte_eth_dev *) regsitered before.
*
* @return
* void
*/
static void
ice_interrupt_handler(void *param)
{
struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t oicr;
uint32_t reg;
uint8_t pf_num;
uint8_t event;
uint16_t queue;
int ret;
#ifdef ICE_LSE_SPT
uint32_t int_fw_ctl;
#endif
/* Disable interrupt */
ice_pf_disable_irq0(hw);
/* read out interrupt causes */
oicr = ICE_READ_REG(hw, PFINT_OICR);
#ifdef ICE_LSE_SPT
int_fw_ctl = ICE_READ_REG(hw, PFINT_FW_CTL);
#endif
/* No interrupt event indicated */
if (!(oicr & PFINT_OICR_INTEVENT_M)) {
PMD_DRV_LOG(INFO, "No interrupt event");
goto done;
}
#ifdef ICE_LSE_SPT
if (int_fw_ctl & PFINT_FW_CTL_INTEVENT_M) {
PMD_DRV_LOG(INFO, "FW_CTL: link state change event");
ice_handle_aq_msg(dev);
}
#else
if (oicr & PFINT_OICR_LINK_STAT_CHANGE_M) {
PMD_DRV_LOG(INFO, "OICR: link state change event");
ret = ice_link_update(dev, 0);
if (!ret)
rte_eth_dev_callback_process
(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
}
#endif
if (oicr & PFINT_OICR_MAL_DETECT_M) {
PMD_DRV_LOG(WARNING, "OICR: MDD event");
reg = ICE_READ_REG(hw, GL_MDET_TX_PQM);
if (reg & GL_MDET_TX_PQM_VALID_M) {
pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
GL_MDET_TX_PQM_PF_NUM_S;
event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
GL_MDET_TX_PQM_MAL_TYPE_S;
queue = (reg & GL_MDET_TX_PQM_QNUM_M) >>
GL_MDET_TX_PQM_QNUM_S;
PMD_DRV_LOG(WARNING, "Malicious Driver Detection event "
"%d by PQM on TX queue %d PF# %d",
event, queue, pf_num);
}
reg = ICE_READ_REG(hw, GL_MDET_TX_TCLAN);
if (reg & GL_MDET_TX_TCLAN_VALID_M) {
pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
GL_MDET_TX_TCLAN_PF_NUM_S;
event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
GL_MDET_TX_TCLAN_MAL_TYPE_S;
queue = (reg & GL_MDET_TX_TCLAN_QNUM_M) >>
GL_MDET_TX_TCLAN_QNUM_S;
PMD_DRV_LOG(WARNING, "Malicious Driver Detection event "
"%d by TCLAN on TX queue %d PF# %d",
event, queue, pf_num);
}
}
done:
/* Enable interrupt */
ice_pf_enable_irq0(hw);
rte_intr_ack(dev->intr_handle);
}
static void
ice_init_proto_xtr(struct rte_eth_dev *dev)
{
struct ice_adapter *ad =
ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct ice_hw *hw = ICE_PF_TO_HW(pf);
const struct proto_xtr_ol_flag *ol_flag;
bool proto_xtr_enable = false;
int offset;
uint16_t i;
pf->proto_xtr = rte_zmalloc(NULL, pf->lan_nb_qps, 0);
if (unlikely(pf->proto_xtr == NULL)) {
PMD_DRV_LOG(ERR, "No memory for setting up protocol extraction table");
return;
}
for (i = 0; i < pf->lan_nb_qps; i++) {
pf->proto_xtr[i] = ad->devargs.proto_xtr[i] != PROTO_XTR_NONE ?
ad->devargs.proto_xtr[i] :
ad->devargs.proto_xtr_dflt;
if (pf->proto_xtr[i] != PROTO_XTR_NONE) {
uint8_t type = pf->proto_xtr[i];
ice_proto_xtr_ol_flag_params[type].required = true;
proto_xtr_enable = true;
}
}
if (likely(!proto_xtr_enable))
return;
ice_check_proto_xtr_support(hw);
offset = rte_mbuf_dynfield_register(&ice_proto_xtr_metadata_param);
if (unlikely(offset == -1)) {
PMD_DRV_LOG(ERR,
"Protocol extraction metadata is disabled in mbuf with error %d",
-rte_errno);
return;
}
PMD_DRV_LOG(DEBUG,
"Protocol extraction metadata offset in mbuf is : %d",
offset);
rte_net_ice_dynfield_proto_xtr_metadata_offs = offset;
for (i = 0; i < RTE_DIM(ice_proto_xtr_ol_flag_params); i++) {
ol_flag = &ice_proto_xtr_ol_flag_params[i];
if (!ol_flag->required)
continue;
if (!ice_proto_xtr_hw_support[i]) {
PMD_DRV_LOG(ERR,
"Protocol extraction type %u is not supported in hardware",
i);
rte_net_ice_dynfield_proto_xtr_metadata_offs = -1;
break;
}
offset = rte_mbuf_dynflag_register(&ol_flag->param);
if (unlikely(offset == -1)) {
PMD_DRV_LOG(ERR,
"Protocol extraction offload '%s' failed to register with error %d",
ol_flag->param.name, -rte_errno);
rte_net_ice_dynfield_proto_xtr_metadata_offs = -1;
break;
}
PMD_DRV_LOG(DEBUG,
"Protocol extraction offload '%s' offset in mbuf is : %d",
ol_flag->param.name, offset);
*ol_flag->ol_flag = 1ULL << offset;
}
}
/* Initialize SW parameters of PF */
static int
ice_pf_sw_init(struct rte_eth_dev *dev)
{
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct ice_hw *hw = ICE_PF_TO_HW(pf);
pf->lan_nb_qp_max =
(uint16_t)RTE_MIN(hw->func_caps.common_cap.num_txq,
hw->func_caps.common_cap.num_rxq);
pf->lan_nb_qps = pf->lan_nb_qp_max;
ice_init_proto_xtr(dev);
if (hw->func_caps.fd_fltr_guar > 0 ||
hw->func_caps.fd_fltr_best_effort > 0) {
pf->flags |= ICE_FLAG_FDIR;
pf->fdir_nb_qps = ICE_DEFAULT_QP_NUM_FDIR;
pf->lan_nb_qps = pf->lan_nb_qp_max - pf->fdir_nb_qps;
} else {
pf->fdir_nb_qps = 0;
}
pf->fdir_qp_offset = 0;
return 0;
}
struct ice_vsi *
ice_setup_vsi(struct ice_pf *pf, enum ice_vsi_type type)
{
struct ice_hw *hw = ICE_PF_TO_HW(pf);
struct ice_vsi *vsi = NULL;
struct ice_vsi_ctx vsi_ctx;
int ret;
struct rte_ether_addr broadcast = {
.addr_bytes = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff} };
struct rte_ether_addr mac_addr;
uint16_t max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
uint8_t tc_bitmap = 0x1;
uint16_t cfg;
/* hw->num_lports = 1 in NIC mode */
vsi = rte_zmalloc(NULL, sizeof(struct ice_vsi), 0);
if (!vsi)
return NULL;
vsi->idx = pf->next_vsi_idx;
pf->next_vsi_idx++;
vsi->type = type;
vsi->adapter = ICE_PF_TO_ADAPTER(pf);
vsi->max_macaddrs = ICE_NUM_MACADDR_MAX;
vsi->vlan_anti_spoof_on = 0;
vsi->vlan_filter_on = 1;
TAILQ_INIT(&vsi->mac_list);
TAILQ_INIT(&vsi->vlan_list);
/* Be sync with ETH_RSS_RETA_SIZE_x maximum value definition */
pf->hash_lut_size = hw->func_caps.common_cap.rss_table_size >
ETH_RSS_RETA_SIZE_512 ? ETH_RSS_RETA_SIZE_512 :
hw->func_caps.common_cap.rss_table_size;
pf->flags |= ICE_FLAG_RSS_AQ_CAPABLE;
memset(&vsi_ctx, 0, sizeof(vsi_ctx));
switch (type) {
case ICE_VSI_PF:
vsi->nb_qps = pf->lan_nb_qps;
vsi->base_queue = 1;
ice_vsi_config_default_rss(&vsi_ctx.info);
vsi_ctx.alloc_from_pool = true;
vsi_ctx.flags = ICE_AQ_VSI_TYPE_PF;
/* switch_id is queried by get_switch_config aq, which is done
* by ice_init_hw
*/
vsi_ctx.info.sw_id = hw->port_info->sw_id;
vsi_ctx.info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
/* Allow all untagged or tagged packets */
vsi_ctx.info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL;
vsi_ctx.info.inner_vlan_flags |= ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
vsi_ctx.info.q_opt_rss = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF |
ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
if (ice_is_dvm_ena(hw)) {
vsi_ctx.info.outer_vlan_flags =
(ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL <<
ICE_AQ_VSI_OUTER_VLAN_TX_MODE_S) &
ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M;
vsi_ctx.info.outer_vlan_flags |=
(ICE_AQ_VSI_OUTER_TAG_VLAN_8100 <<
ICE_AQ_VSI_OUTER_TAG_TYPE_S) &
ICE_AQ_VSI_OUTER_TAG_TYPE_M;
}
/* FDIR */
cfg = ICE_AQ_VSI_PROP_SECURITY_VALID |
ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
vsi_ctx.info.valid_sections |= rte_cpu_to_le_16(cfg);
cfg = ICE_AQ_VSI_FD_ENABLE;
vsi_ctx.info.fd_options = rte_cpu_to_le_16(cfg);
vsi_ctx.info.max_fd_fltr_dedicated =
rte_cpu_to_le_16(hw->func_caps.fd_fltr_guar);
vsi_ctx.info.max_fd_fltr_shared =
rte_cpu_to_le_16(hw->func_caps.fd_fltr_best_effort);
/* Enable VLAN/UP trip */
ret = ice_vsi_config_tc_queue_mapping(vsi,
&vsi_ctx.info,
ICE_DEFAULT_TCMAP);
if (ret) {
PMD_INIT_LOG(ERR,
"tc queue mapping with vsi failed, "
"err = %d",
ret);
goto fail_mem;
}
break;
case ICE_VSI_CTRL:
vsi->nb_qps = pf->fdir_nb_qps;
vsi->base_queue = ICE_FDIR_QUEUE_ID;
vsi_ctx.alloc_from_pool = true;
vsi_ctx.flags = ICE_AQ_VSI_TYPE_PF;
cfg = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
vsi_ctx.info.valid_sections |= rte_cpu_to_le_16(cfg);
cfg = ICE_AQ_VSI_FD_PROG_ENABLE;
vsi_ctx.info.fd_options = rte_cpu_to_le_16(cfg);
vsi_ctx.info.sw_id = hw->port_info->sw_id;
vsi_ctx.info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
ret = ice_vsi_config_tc_queue_mapping(vsi,
&vsi_ctx.info,
ICE_DEFAULT_TCMAP);
if (ret) {
PMD_INIT_LOG(ERR,
"tc queue mapping with vsi failed, "
"err = %d",
ret);
goto fail_mem;
}
break;
default:
/* for other types of VSI */
PMD_INIT_LOG(ERR, "other types of VSI not supported");
goto fail_mem;
}
/* VF has MSIX interrupt in VF range, don't allocate here */
if (type == ICE_VSI_PF) {
ret = ice_res_pool_alloc(&pf->msix_pool,
RTE_MIN(vsi->nb_qps,
RTE_MAX_RXTX_INTR_VEC_ID));
if (ret < 0) {
PMD_INIT_LOG(ERR, "VSI MAIN %d get heap failed %d",
vsi->vsi_id, ret);
}
vsi->msix_intr = ret;
vsi->nb_msix = RTE_MIN(vsi->nb_qps, RTE_MAX_RXTX_INTR_VEC_ID);
} else if (type == ICE_VSI_CTRL) {
ret = ice_res_pool_alloc(&pf->msix_pool, 1);
if (ret < 0) {
PMD_DRV_LOG(ERR, "VSI %d get heap failed %d",
vsi->vsi_id, ret);
}
vsi->msix_intr = ret;
vsi->nb_msix = 1;
} else {
vsi->msix_intr = 0;
vsi->nb_msix = 0;
}
ret = ice_add_vsi(hw, vsi->idx, &vsi_ctx, NULL);
if (ret != ICE_SUCCESS) {
PMD_INIT_LOG(ERR, "add vsi failed, err = %d", ret);
goto fail_mem;
}
/* store vsi information is SW structure */
vsi->vsi_id = vsi_ctx.vsi_num;
vsi->info = vsi_ctx.info;
pf->vsis_allocated = vsi_ctx.vsis_allocd;
pf->vsis_unallocated = vsi_ctx.vsis_unallocated;
if (type == ICE_VSI_PF) {
/* MAC configuration */
rte_ether_addr_copy((struct rte_ether_addr *)
hw->port_info->mac.perm_addr,
&pf->dev_addr);
rte_ether_addr_copy(&pf->dev_addr, &mac_addr);
ret = ice_add_mac_filter(vsi, &mac_addr);
if (ret != ICE_SUCCESS)
PMD_INIT_LOG(ERR, "Failed to add dflt MAC filter");
rte_ether_addr_copy(&broadcast, &mac_addr);
ret = ice_add_mac_filter(vsi, &mac_addr);
if (ret != ICE_SUCCESS)
PMD_INIT_LOG(ERR, "Failed to add MAC filter");
}
/* At the beginning, only TC0. */
/* What we need here is the maximam number of the TX queues.
* Currently vsi->nb_qps means it.
* Correct it if any change.
*/
max_txqs[0] = vsi->nb_qps;
ret = ice_cfg_vsi_lan(hw->port_info, vsi->idx,
tc_bitmap, max_txqs);
if (ret != ICE_SUCCESS)
PMD_INIT_LOG(ERR, "Failed to config vsi sched");
return vsi;
fail_mem:
rte_free(vsi);
pf->next_vsi_idx--;
return NULL;
}
static int
ice_send_driver_ver(struct ice_hw *hw)
{
struct ice_driver_ver dv;
/* we don't have driver version use 0 for dummy */
dv.major_ver = 0;
dv.minor_ver = 0;
dv.build_ver = 0;
dv.subbuild_ver = 0;
strncpy((char *)dv.driver_string, "dpdk", sizeof(dv.driver_string));
return ice_aq_send_driver_ver(hw, &dv, NULL);
}
static int
ice_pf_setup(struct ice_pf *pf)
{
struct ice_hw *hw = ICE_PF_TO_HW(pf);
struct ice_vsi *vsi;
uint16_t unused;
/* Clear all stats counters */
pf->offset_loaded = false;
memset(&pf->stats, 0, sizeof(struct ice_hw_port_stats));
memset(&pf->stats_offset, 0, sizeof(struct ice_hw_port_stats));
memset(&pf->internal_stats, 0, sizeof(struct ice_eth_stats));
memset(&pf->internal_stats_offset, 0, sizeof(struct ice_eth_stats));
/* force guaranteed filter pool for PF */
ice_alloc_fd_guar_item(hw, &unused,
hw->func_caps.fd_fltr_guar);
/* force shared filter pool for PF */
ice_alloc_fd_shrd_item(hw, &unused,
hw->func_caps.fd_fltr_best_effort);
vsi = ice_setup_vsi(pf, ICE_VSI_PF);
if (!vsi) {
PMD_INIT_LOG(ERR, "Failed to add vsi for PF");
return -EINVAL;
}
pf->main_vsi = vsi;
return 0;
}
/*
* Extract device serial number from PCIe Configuration Space and
* determine the pkg file path according to the DSN.
*/
static int
ice_pkg_file_search_path(struct rte_pci_device *pci_dev, char *pkg_file)
{
off_t pos;
char opt_ddp_filename[ICE_MAX_PKG_FILENAME_SIZE];
uint32_t dsn_low, dsn_high;
memset(opt_ddp_filename, 0, ICE_MAX_PKG_FILENAME_SIZE);
pos = rte_pci_find_ext_capability(pci_dev, RTE_PCI_EXT_CAP_ID_DSN);
if (pos) {
if (rte_pci_read_config(pci_dev, &dsn_low, 4, pos + 4) < 0) {
PMD_INIT_LOG(ERR, "Failed to read pci config space\n");
return -1;
}
if (rte_pci_read_config(pci_dev, &dsn_high, 4, pos + 8) < 0) {
PMD_INIT_LOG(ERR, "Failed to read pci config space\n");
return -1;
}
snprintf(opt_ddp_filename, ICE_MAX_PKG_FILENAME_SIZE,
"ice-%08x%08x.pkg", dsn_high, dsn_low);
} else {
PMD_INIT_LOG(ERR, "Failed to read device serial number\n");
goto fail_dsn;
}
strncpy(pkg_file, ICE_PKG_FILE_SEARCH_PATH_UPDATES,
ICE_MAX_PKG_FILENAME_SIZE);
if (!access(strcat(pkg_file, opt_ddp_filename), 0))
return 0;
strncpy(pkg_file, ICE_PKG_FILE_SEARCH_PATH_DEFAULT,
ICE_MAX_PKG_FILENAME_SIZE);
if (!access(strcat(pkg_file, opt_ddp_filename), 0))
return 0;
fail_dsn:
strncpy(pkg_file, ICE_PKG_FILE_UPDATES, ICE_MAX_PKG_FILENAME_SIZE);
if (!access(pkg_file, 0))
return 0;
strncpy(pkg_file, ICE_PKG_FILE_DEFAULT, ICE_MAX_PKG_FILENAME_SIZE);
return 0;
}
enum ice_pkg_type
ice_load_pkg_type(struct ice_hw *hw)
{
enum ice_pkg_type package_type;
/* store the activated package type (OS default or Comms) */
if (!strncmp((char *)hw->active_pkg_name, ICE_OS_DEFAULT_PKG_NAME,
ICE_PKG_NAME_SIZE))
package_type = ICE_PKG_TYPE_OS_DEFAULT;
else if (!strncmp((char *)hw->active_pkg_name, ICE_COMMS_PKG_NAME,
ICE_PKG_NAME_SIZE))
package_type = ICE_PKG_TYPE_COMMS;
else
package_type = ICE_PKG_TYPE_UNKNOWN;
PMD_INIT_LOG(NOTICE, "Active package is: %d.%d.%d.%d, %s (%s VLAN mode)",
hw->active_pkg_ver.major, hw->active_pkg_ver.minor,
hw->active_pkg_ver.update, hw->active_pkg_ver.draft,
hw->active_pkg_name,
ice_is_dvm_ena(hw) ? "double" : "single");
return package_type;
}
static int ice_load_pkg(struct rte_eth_dev *dev)
{
struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
char pkg_file[ICE_MAX_PKG_FILENAME_SIZE];
int err;
uint8_t *buf;
int buf_len;
FILE *file;
struct stat fstat;
struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev->device);
struct ice_adapter *ad =
ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
err = ice_pkg_file_search_path(pci_dev, pkg_file);
if (err) {
PMD_INIT_LOG(ERR, "failed to search file path\n");
return err;
}
file = fopen(pkg_file, "rb");
if (!file) {
PMD_INIT_LOG(ERR, "failed to open file: %s\n", pkg_file);
return -1;
}
err = stat(pkg_file, &fstat);
if (err) {
PMD_INIT_LOG(ERR, "failed to get file stats\n");
fclose(file);
return err;
}
buf_len = fstat.st_size;
buf = rte_malloc(NULL, buf_len, 0);
if (!buf) {
PMD_INIT_LOG(ERR, "failed to allocate buf of size %d for package\n",
buf_len);
fclose(file);
return -1;
}
err = fread(buf, buf_len, 1, file);
if (err != 1) {
PMD_INIT_LOG(ERR, "failed to read package data\n");
fclose(file);
err = -1;
goto fail_exit;
}
fclose(file);
err = ice_copy_and_init_pkg(hw, buf, buf_len);
if (err) {
PMD_INIT_LOG(ERR, "ice_copy_and_init_hw failed: %d\n", err);
goto fail_exit;
}
/* store the loaded pkg type info */
ad->active_pkg_type = ice_load_pkg_type(hw);
err = ice_init_hw_tbls(hw);
if (err) {
PMD_INIT_LOG(ERR, "ice_init_hw_tbls failed: %d\n", err);
goto fail_init_tbls;
}
return 0;
fail_init_tbls:
rte_free(hw->pkg_copy);
fail_exit:
rte_free(buf);
return err;
}
static void
ice_base_queue_get(struct ice_pf *pf)
{
uint32_t reg;
struct ice_hw *hw = ICE_PF_TO_HW(pf);
reg = ICE_READ_REG(hw, PFLAN_RX_QALLOC);
if (reg & PFLAN_RX_QALLOC_VALID_M) {
pf->base_queue = reg & PFLAN_RX_QALLOC_FIRSTQ_M;
} else {
PMD_INIT_LOG(WARNING, "Failed to get Rx base queue"
" index");
}
}
static int
parse_bool(const char *key, const char *value, void *args)
{
int *i = (int *)args;
char *end;
int num;
num = strtoul(value, &end, 10);
if (num != 0 && num != 1) {
PMD_DRV_LOG(WARNING, "invalid value:\"%s\" for key:\"%s\", "
"value must be 0 or 1",
value, key);
return -1;
}
*i = num;
return 0;
}
static int ice_parse_devargs(struct rte_eth_dev *dev)
{
struct ice_adapter *ad =
ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct rte_devargs *devargs = dev->device->devargs;
struct rte_kvargs *kvlist;
int ret;
if (devargs == NULL)
return 0;
kvlist = rte_kvargs_parse(devargs->args, ice_valid_args);
if (kvlist == NULL) {
PMD_INIT_LOG(ERR, "Invalid kvargs key\n");
return -EINVAL;
}
ad->devargs.proto_xtr_dflt = PROTO_XTR_NONE;
memset(ad->devargs.proto_xtr, PROTO_XTR_NONE,
sizeof(ad->devargs.proto_xtr));
ret = rte_kvargs_process(kvlist, ICE_PROTO_XTR_ARG,
&handle_proto_xtr_arg, &ad->devargs);
if (ret)
goto bail;
ret = rte_kvargs_process(kvlist, ICE_SAFE_MODE_SUPPORT_ARG,
&parse_bool, &ad->devargs.safe_mode_support);
if (ret)
goto bail;
ret = rte_kvargs_process(kvlist, ICE_PIPELINE_MODE_SUPPORT_ARG,
&parse_bool, &ad->devargs.pipe_mode_support);
if (ret)
goto bail;
bail:
rte_kvargs_free(kvlist);
return ret;
}
/* Forward LLDP packets to default VSI by set switch rules */
static int
ice_vsi_config_sw_lldp(struct ice_vsi *vsi, bool on)
{
struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
struct ice_fltr_list_entry *s_list_itr = NULL;
struct LIST_HEAD_TYPE list_head;
int ret = 0;
INIT_LIST_HEAD(&list_head);
s_list_itr = (struct ice_fltr_list_entry *)
ice_malloc(hw, sizeof(*s_list_itr));
if (!s_list_itr)
return -ENOMEM;
s_list_itr->fltr_info.lkup_type = ICE_SW_LKUP_ETHERTYPE;
s_list_itr->fltr_info.vsi_handle = vsi->idx;
s_list_itr->fltr_info.l_data.ethertype_mac.ethertype =
RTE_ETHER_TYPE_LLDP;
s_list_itr->fltr_info.fltr_act = ICE_FWD_TO_VSI;
s_list_itr->fltr_info.flag = ICE_FLTR_RX;
s_list_itr->fltr_info.src_id = ICE_SRC_ID_LPORT;
LIST_ADD(&s_list_itr->list_entry, &list_head);
if (on)
ret = ice_add_eth_mac(hw, &list_head);
else
ret = ice_remove_eth_mac(hw, &list_head);
rte_free(s_list_itr);
return ret;
}
static enum ice_status
ice_get_hw_res(struct ice_hw *hw, uint16_t res_type,
uint16_t num, uint16_t desc_id,
uint16_t *prof_buf, uint16_t *num_prof)
{
struct ice_aqc_res_elem *resp_buf;
int ret;
uint16_t buf_len;
bool res_shared = 1;
struct ice_aq_desc aq_desc;
struct ice_sq_cd *cd = NULL;
struct ice_aqc_get_allocd_res_desc *cmd =
&aq_desc.params.get_res_desc;
buf_len = sizeof(*resp_buf) * num;
resp_buf = ice_malloc(hw, buf_len);
if (!resp_buf)
return -ENOMEM;
ice_fill_dflt_direct_cmd_desc(&aq_desc,
ice_aqc_opc_get_allocd_res_desc);
cmd->ops.cmd.res = CPU_TO_LE16(((res_type << ICE_AQC_RES_TYPE_S) &
ICE_AQC_RES_TYPE_M) | (res_shared ?
ICE_AQC_RES_TYPE_FLAG_SHARED : 0));
cmd->ops.cmd.first_desc = CPU_TO_LE16(desc_id);
ret = ice_aq_send_cmd(hw, &aq_desc, resp_buf, buf_len, cd);
if (!ret)
*num_prof = LE16_TO_CPU(cmd->ops.resp.num_desc);
else
goto exit;
ice_memcpy(prof_buf, resp_buf, sizeof(*resp_buf) *
(*num_prof), ICE_NONDMA_TO_NONDMA);
exit:
rte_free(resp_buf);
return ret;
}
static int
ice_cleanup_resource(struct ice_hw *hw, uint16_t res_type)
{
int ret;
uint16_t prof_id;
uint16_t prof_buf[ICE_MAX_RES_DESC_NUM];
uint16_t first_desc = 1;
uint16_t num_prof = 0;
ret = ice_get_hw_res(hw, res_type, ICE_MAX_RES_DESC_NUM,
first_desc, prof_buf, &num_prof);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to get fxp resource");
return ret;
}
for (prof_id = 0; prof_id < num_prof; prof_id++) {
ret = ice_free_hw_res(hw, res_type, 1, &prof_buf[prof_id]);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to free fxp resource");
return ret;
}
}
return 0;
}
static int
ice_reset_fxp_resource(struct ice_hw *hw)
{
int ret;
ret = ice_cleanup_resource(hw, ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to clearup fdir resource");
return ret;
}
ret = ice_cleanup_resource(hw, ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to clearup rss resource");
return ret;
}
return 0;
}
static void
ice_rss_ctx_init(struct ice_pf *pf)
{
memset(&pf->hash_ctx, 0, sizeof(pf->hash_ctx));
}
static uint64_t
ice_get_supported_rxdid(struct ice_hw *hw)
{
uint64_t supported_rxdid = 0; /* bitmap for supported RXDID */
uint32_t regval;
int i;
supported_rxdid |= BIT(ICE_RXDID_LEGACY_1);
for (i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) {
regval = ICE_READ_REG(hw, GLFLXP_RXDID_FLAGS(i, 0));
if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S)
& GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M)
supported_rxdid |= BIT(i);
}
return supported_rxdid;
}
static int
ice_dev_init(struct rte_eth_dev *dev)
{
struct rte_pci_device *pci_dev;
struct rte_intr_handle *intr_handle;
struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct ice_adapter *ad =
ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct ice_vsi *vsi;
int ret;
dev->dev_ops = &ice_eth_dev_ops;
dev->rx_queue_count = ice_rx_queue_count;
dev->rx_descriptor_status = ice_rx_descriptor_status;
dev->tx_descriptor_status = ice_tx_descriptor_status;
dev->rx_pkt_burst = ice_recv_pkts;
dev->tx_pkt_burst = ice_xmit_pkts;
dev->tx_pkt_prepare = ice_prep_pkts;
/* for secondary processes, we don't initialise any further as primary
* has already done this work.
*/
if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
ice_set_rx_function(dev);
ice_set_tx_function(dev);
return 0;
}
dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
ice_set_default_ptype_table(dev);
pci_dev = RTE_DEV_TO_PCI(dev->device);
intr_handle = &pci_dev->intr_handle;
pf->adapter = ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
pf->adapter->eth_dev = dev;
pf->dev_data = dev->data;
hw->back = pf->adapter;
hw->hw_addr = (uint8_t *)pci_dev->mem_resource[0].addr;
hw->vendor_id = pci_dev->id.vendor_id;
hw->device_id = pci_dev->id.device_id;
hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
hw->bus.device = pci_dev->addr.devid;
hw->bus.func = pci_dev->addr.function;
ret = ice_parse_devargs(dev);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to parse devargs");
return -EINVAL;
}
ice_init_controlq_parameter(hw);
ret = ice_init_hw(hw);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to initialize HW");
return -EINVAL;
}
ret = ice_load_pkg(dev);
if (ret) {
if (ad->devargs.safe_mode_support == 0) {
PMD_INIT_LOG(ERR, "Failed to load the DDP package,"
"Use safe-mode-support=1 to enter Safe Mode");
return ret;
}
PMD_INIT_LOG(WARNING, "Failed to load the DDP package,"
"Entering Safe Mode");
ad->is_safe_mode = 1;
}
PMD_INIT_LOG(INFO, "FW %d.%d.%05d API %d.%d",
hw->fw_maj_ver, hw->fw_min_ver, hw->fw_build,
hw->api_maj_ver, hw->api_min_ver);
ice_pf_sw_init(dev);
ret = ice_init_mac_address(dev);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to initialize mac address");
goto err_init_mac;
}
ret = ice_res_pool_init(&pf->msix_pool, 1,
hw->func_caps.common_cap.num_msix_vectors - 1);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to init MSIX pool");
goto err_msix_pool_init;
}
ret = ice_pf_setup(pf);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to setup PF");
goto err_pf_setup;
}
ret = ice_send_driver_ver(hw);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to send driver version");
goto err_pf_setup;
}
vsi = pf->main_vsi;
ret = ice_aq_stop_lldp(hw, true, false, NULL);
if (ret != ICE_SUCCESS)
PMD_INIT_LOG(DEBUG, "lldp has already stopped\n");
ret = ice_init_dcb(hw, true);
if (ret != ICE_SUCCESS)
PMD_INIT_LOG(DEBUG, "Failed to init DCB\n");
/* Forward LLDP packets to default VSI */
ret = ice_vsi_config_sw_lldp(vsi, true);
if (ret != ICE_SUCCESS)
PMD_INIT_LOG(DEBUG, "Failed to cfg lldp\n");
/* register callback func to eal lib */
rte_intr_callback_register(intr_handle,
ice_interrupt_handler, dev);
ice_pf_enable_irq0(hw);
/* enable uio intr after callback register */
rte_intr_enable(intr_handle);
/* get base queue pairs index in the device */
ice_base_queue_get(pf);
/* Initialize RSS context for gtpu_eh */
ice_rss_ctx_init(pf);
if (!ad->is_safe_mode) {
ret = ice_flow_init(ad);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to initialize flow");
return ret;
}
}
ret = ice_reset_fxp_resource(hw);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to reset fxp resource");
return ret;
}
pf->supported_rxdid = ice_get_supported_rxdid(hw);
return 0;
err_pf_setup:
ice_res_pool_destroy(&pf->msix_pool);
err_msix_pool_init:
rte_free(dev->data->mac_addrs);
dev->data->mac_addrs = NULL;
err_init_mac:
ice_sched_cleanup_all(hw);
rte_free(hw->port_info);
ice_shutdown_all_ctrlq(hw);
rte_free(pf->proto_xtr);
return ret;
}
int
ice_release_vsi(struct ice_vsi *vsi)
{
struct ice_hw *hw;
struct ice_vsi_ctx vsi_ctx;
enum ice_status ret;
int error = 0;
if (!vsi)
return error;
hw = ICE_VSI_TO_HW(vsi);
ice_remove_all_mac_vlan_filters(vsi);
memset(&vsi_ctx, 0, sizeof(vsi_ctx));
vsi_ctx.vsi_num = vsi->vsi_id;
vsi_ctx.info = vsi->info;
ret = ice_free_vsi(hw, vsi->idx, &vsi_ctx, false, NULL);
if (ret != ICE_SUCCESS) {
PMD_INIT_LOG(ERR, "Failed to free vsi by aq, %u", vsi->vsi_id);
error = -1;
}
rte_free(vsi->rss_lut);
rte_free(vsi->rss_key);
rte_free(vsi);
return error;
}
void
ice_vsi_disable_queues_intr(struct ice_vsi *vsi)
{
struct rte_eth_dev *dev = vsi->adapter->eth_dev;
struct rte_pci_device *pci_dev = ICE_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
uint16_t msix_intr, i;
/* disable interrupt and also clear all the exist config */
for (i = 0; i < vsi->nb_qps; i++) {
ICE_WRITE_REG(hw, QINT_TQCTL(vsi->base_queue + i), 0);
ICE_WRITE_REG(hw, QINT_RQCTL(vsi->base_queue + i), 0);
rte_wmb();
}
if (rte_intr_allow_others(intr_handle))
/* vfio-pci */
for (i = 0; i < vsi->nb_msix; i++) {
msix_intr = vsi->msix_intr + i;
ICE_WRITE_REG(hw, GLINT_DYN_CTL(msix_intr),
GLINT_DYN_CTL_WB_ON_ITR_M);
}
else
/* igb_uio */
ICE_WRITE_REG(hw, GLINT_DYN_CTL(0), GLINT_DYN_CTL_WB_ON_ITR_M);
}
static int
ice_dev_stop(struct rte_eth_dev *dev)
{
struct rte_eth_dev_data *data = dev->data;
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct ice_vsi *main_vsi = pf->main_vsi;
struct rte_pci_device *pci_dev = ICE_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
uint16_t i;
/* avoid stopping again */
if (pf->adapter_stopped)
return 0;
/* stop and clear all Rx queues */
for (i = 0; i < data->nb_rx_queues; i++)
ice_rx_queue_stop(dev, i);
/* stop and clear all Tx queues */
for (i = 0; i < data->nb_tx_queues; i++)
ice_tx_queue_stop(dev, i);
/* disable all queue interrupts */
ice_vsi_disable_queues_intr(main_vsi);
if (pf->init_link_up)
ice_dev_set_link_up(dev);
else
ice_dev_set_link_down(dev);
/* Clean datapath event and queue/vec mapping */
rte_intr_efd_disable(intr_handle);
if (intr_handle->intr_vec) {
rte_free(intr_handle->intr_vec);
intr_handle->intr_vec = NULL;
}
pf->adapter_stopped = true;
dev->data->dev_started = 0;
return 0;
}
static int
ice_dev_close(struct rte_eth_dev *dev)
{
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
struct ice_adapter *ad =
ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
int ret;
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
/* Since stop will make link down, then the link event will be
* triggered, disable the irq firstly to avoid the port_infoe etc
* resources deallocation causing the interrupt service thread
* crash.
*/
ice_pf_disable_irq0(hw);
ret = ice_dev_stop(dev);
if (!ad->is_safe_mode)
ice_flow_uninit(ad);
/* release all queue resource */
ice_free_queues(dev);
ice_res_pool_destroy(&pf->msix_pool);
ice_release_vsi(pf->main_vsi);
ice_sched_cleanup_all(hw);
ice_free_hw_tbls(hw);
rte_free(hw->port_info);
hw->port_info = NULL;
ice_shutdown_all_ctrlq(hw);
rte_free(pf->proto_xtr);
pf->proto_xtr = NULL;
/* disable uio intr before callback unregister */
rte_intr_disable(intr_handle);
/* unregister callback func from eal lib */
rte_intr_callback_unregister(intr_handle,
ice_interrupt_handler, dev);
return ret;
}
static int
ice_dev_uninit(struct rte_eth_dev *dev)
{
ice_dev_close(dev);
return 0;
}
static bool
is_hash_cfg_valid(struct ice_rss_hash_cfg *cfg)
{
return (cfg->hash_flds != 0 && cfg->addl_hdrs != 0) ? true : false;
}
static void
hash_cfg_reset(struct ice_rss_hash_cfg *cfg)
{
cfg->hash_flds = 0;
cfg->addl_hdrs = 0;
cfg->symm = 0;
cfg->hdr_type = ICE_RSS_OUTER_HEADERS;
}
static int
ice_hash_moveout(struct ice_pf *pf, struct ice_rss_hash_cfg *cfg)
{
enum ice_status status = ICE_SUCCESS;
struct ice_hw *hw = ICE_PF_TO_HW(pf);
struct ice_vsi *vsi = pf->main_vsi;
if (!is_hash_cfg_valid(cfg))
return -ENOENT;
status = ice_rem_rss_cfg(hw, vsi->idx, cfg);
if (status && status != ICE_ERR_DOES_NOT_EXIST) {
PMD_DRV_LOG(ERR,
"ice_rem_rss_cfg failed for VSI:%d, error:%d\n",
vsi->idx, status);
return -EBUSY;
}
return 0;
}
static int
ice_hash_moveback(struct ice_pf *pf, struct ice_rss_hash_cfg *cfg)
{
enum ice_status status = ICE_SUCCESS;
struct ice_hw *hw = ICE_PF_TO_HW(pf);
struct ice_vsi *vsi = pf->main_vsi;
if (!is_hash_cfg_valid(cfg))
return -ENOENT;
status = ice_add_rss_cfg(hw, vsi->idx, cfg);
if (status) {
PMD_DRV_LOG(ERR,
"ice_add_rss_cfg failed for VSI:%d, error:%d\n",
vsi->idx, status);
return -EBUSY;
}
return 0;
}
static int
ice_hash_remove(struct ice_pf *pf, struct ice_rss_hash_cfg *cfg)
{
int ret;
ret = ice_hash_moveout(pf, cfg);
if (ret && (ret != -ENOENT))
return ret;
hash_cfg_reset(cfg);
return 0;
}
static int
ice_add_rss_cfg_pre_gtpu(struct ice_pf *pf, struct ice_hash_gtpu_ctx *ctx,
u8 ctx_idx)
{
int ret;
switch (ctx_idx) {
case ICE_HASH_GTPU_CTX_EH_IP:
ret = ice_hash_remove(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP_UDP]);
if (ret && (ret != -ENOENT))
return ret;
ret = ice_hash_remove(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP_TCP]);
if (ret && (ret != -ENOENT))
return ret;
ret = ice_hash_remove(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP]);
if (ret && (ret != -ENOENT))
return ret;
ret = ice_hash_remove(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP_UDP]);
if (ret && (ret != -ENOENT))
return ret;
ret = ice_hash_remove(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP_TCP]);
if (ret && (ret != -ENOENT))
return ret;
ret = ice_hash_remove(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP]);
if (ret && (ret != -ENOENT))
return ret;
ret = ice_hash_remove(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP_UDP]);
if (ret && (ret != -ENOENT))
return ret;
ret = ice_hash_remove(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP_TCP]);
if (ret && (ret != -ENOENT))
return ret;
break;
case ICE_HASH_GTPU_CTX_EH_IP_UDP:
ret = ice_hash_remove(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP_UDP]);
if (ret && (ret != -ENOENT))
return ret;
ret = ice_hash_remove(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP_UDP]);
if (ret && (ret != -ENOENT))
return ret;
ret = ice_hash_moveout(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP]);
if (ret && (ret != -ENOENT))
return ret;
ret = ice_hash_moveout(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP_TCP]);
if (ret && (ret != -ENOENT))
return ret;
ret = ice_hash_moveout(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP]);
if (ret && (ret != -ENOENT))
return ret;
ret = ice_hash_moveout(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP_TCP]);
if (ret && (ret != -ENOENT))
return ret;
break;
case ICE_HASH_GTPU_CTX_EH_IP_TCP:
ret = ice_hash_remove(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP_TCP]);
if (ret && (ret != -ENOENT))
return ret;
ret = ice_hash_remove(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP_TCP]);
if (ret && (ret != -ENOENT))
return ret;
ret = ice_hash_moveout(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP]);
if (ret && (ret != -ENOENT))
return ret;
ret = ice_hash_moveout(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP_UDP]);
if (ret && (ret != -ENOENT))
return ret;
ret = ice_hash_moveout(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP]);
if (ret && (ret != -ENOENT))
return ret;
ret = ice_hash_moveout(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP_UDP]);
if (ret && (ret != -ENOENT))
return ret;
break;
case ICE_HASH_GTPU_CTX_UP_IP:
ret = ice_hash_remove(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP_UDP]);
if (ret && (ret != -ENOENT))
return ret;
ret = ice_hash_remove(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP_TCP]);
if (ret && (ret != -ENOENT))
return ret;
ret = ice_hash_moveout(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP]);
if (ret && (ret != -ENOENT))
return ret;
ret = ice_hash_moveout(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP_UDP]);
if (ret && (ret != -ENOENT))
return ret;
ret = ice_hash_moveout(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP_TCP]);
if (ret && (ret != -ENOENT))
return ret;
break;
case ICE_HASH_GTPU_CTX_UP_IP_UDP:
case ICE_HASH_GTPU_CTX_UP_IP_TCP:
ret = ice_hash_moveout(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP]);
if (ret && (ret != -ENOENT))
return ret;
ret = ice_hash_moveout(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP_UDP]);
if (ret && (ret != -ENOENT))
return ret;
ret = ice_hash_moveout(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP_TCP]);
if (ret && (ret != -ENOENT))
return ret;
break;
case ICE_HASH_GTPU_CTX_DW_IP:
ret = ice_hash_remove(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP_UDP]);
if (ret && (ret != -ENOENT))
return ret;
ret = ice_hash_remove(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP_TCP]);
if (ret && (ret != -ENOENT))
return ret;
ret = ice_hash_moveout(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP]);
if (ret && (ret != -ENOENT))
return ret;
ret = ice_hash_moveout(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP_UDP]);
if (ret && (ret != -ENOENT))
return ret;
ret = ice_hash_moveout(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP_TCP]);
if (ret && (ret != -ENOENT))
return ret;
break;
case ICE_HASH_GTPU_CTX_DW_IP_UDP:
case ICE_HASH_GTPU_CTX_DW_IP_TCP:
ret = ice_hash_moveout(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP]);
if (ret && (ret != -ENOENT))
return ret;
ret = ice_hash_moveout(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP_UDP]);
if (ret && (ret != -ENOENT))
return ret;
ret = ice_hash_moveout(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP_TCP]);
if (ret && (ret != -ENOENT))
return ret;
break;
default:
break;
}
return 0;
}
static u8 calc_gtpu_ctx_idx(uint32_t hdr)
{
u8 eh_idx, ip_idx;
if (hdr & ICE_FLOW_SEG_HDR_GTPU_EH)
eh_idx = 0;
else if (hdr & ICE_FLOW_SEG_HDR_GTPU_UP)
eh_idx = 1;
else if (hdr & ICE_FLOW_SEG_HDR_GTPU_DWN)
eh_idx = 2;
else
return ICE_HASH_GTPU_CTX_MAX;
ip_idx = 0;
if (hdr & ICE_FLOW_SEG_HDR_UDP)
ip_idx = 1;
else if (hdr & ICE_FLOW_SEG_HDR_TCP)
ip_idx = 2;
if (hdr & (ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV6))
return eh_idx * 3 + ip_idx;
else
return ICE_HASH_GTPU_CTX_MAX;
}
static int
ice_add_rss_cfg_pre(struct ice_pf *pf, uint32_t hdr)
{
u8 gtpu_ctx_idx = calc_gtpu_ctx_idx(hdr);
if (hdr & ICE_FLOW_SEG_HDR_IPV4)
return ice_add_rss_cfg_pre_gtpu(pf, &pf->hash_ctx.gtpu4,
gtpu_ctx_idx);
else if (hdr & ICE_FLOW_SEG_HDR_IPV6)
return ice_add_rss_cfg_pre_gtpu(pf, &pf->hash_ctx.gtpu6,
gtpu_ctx_idx);
return 0;
}
static int
ice_add_rss_cfg_post_gtpu(struct ice_pf *pf, struct ice_hash_gtpu_ctx *ctx,
u8 ctx_idx, struct ice_rss_hash_cfg *cfg)
{
int ret;
if (ctx_idx < ICE_HASH_GTPU_CTX_MAX)
ctx->ctx[ctx_idx] = *cfg;
switch (ctx_idx) {
case ICE_HASH_GTPU_CTX_EH_IP:
break;
case ICE_HASH_GTPU_CTX_EH_IP_UDP:
ret = ice_hash_moveback(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP]);
if (ret && (ret != -ENOENT))
return ret;
ret = ice_hash_moveback(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP_TCP]);
if (ret && (ret != -ENOENT))
return ret;
ret = ice_hash_moveback(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP]);
if (ret && (ret != -ENOENT))
return ret;
ret = ice_hash_moveback(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP_TCP]);
if (ret && (ret != -ENOENT))
return ret;
break;
case ICE_HASH_GTPU_CTX_EH_IP_TCP:
ret = ice_hash_moveback(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP]);
if (ret && (ret != -ENOENT))
return ret;
ret = ice_hash_moveback(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP_UDP]);
if (ret && (ret != -ENOENT))
return ret;
ret = ice_hash_moveback(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP]);
if (ret && (ret != -ENOENT))
return ret;
ret = ice_hash_moveback(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP_UDP]);
if (ret && (ret != -ENOENT))
return ret;
break;
case ICE_HASH_GTPU_CTX_UP_IP:
case ICE_HASH_GTPU_CTX_UP_IP_UDP:
case ICE_HASH_GTPU_CTX_UP_IP_TCP:
case ICE_HASH_GTPU_CTX_DW_IP:
case ICE_HASH_GTPU_CTX_DW_IP_UDP:
case ICE_HASH_GTPU_CTX_DW_IP_TCP:
ret = ice_hash_moveback(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP]);
if (ret && (ret != -ENOENT))
return ret;
ret = ice_hash_moveback(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP_UDP]);
if (ret && (ret != -ENOENT))
return ret;
ret = ice_hash_moveback(pf,
&ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP_TCP]);
if (ret && (ret != -ENOENT))
return ret;
break;
default:
break;
}
return 0;
}
static int
ice_add_rss_cfg_post(struct ice_pf *pf, struct ice_rss_hash_cfg *cfg)
{
u8 gtpu_ctx_idx = calc_gtpu_ctx_idx(cfg->addl_hdrs);
if (cfg->addl_hdrs & ICE_FLOW_SEG_HDR_IPV4)
return ice_add_rss_cfg_post_gtpu(pf, &pf->hash_ctx.gtpu4,
gtpu_ctx_idx, cfg);
else if (cfg->addl_hdrs & ICE_FLOW_SEG_HDR_IPV6)
return ice_add_rss_cfg_post_gtpu(pf, &pf->hash_ctx.gtpu6,
gtpu_ctx_idx, cfg);
return 0;
}
static void
ice_rem_rss_cfg_post(struct ice_pf *pf, uint32_t hdr)
{
u8 gtpu_ctx_idx = calc_gtpu_ctx_idx(hdr);
if (gtpu_ctx_idx >= ICE_HASH_GTPU_CTX_MAX)
return;
if (hdr & ICE_FLOW_SEG_HDR_IPV4)
hash_cfg_reset(&pf->hash_ctx.gtpu4.ctx[gtpu_ctx_idx]);
else if (hdr & ICE_FLOW_SEG_HDR_IPV6)
hash_cfg_reset(&pf->hash_ctx.gtpu6.ctx[gtpu_ctx_idx]);
}
int
ice_rem_rss_cfg_wrap(struct ice_pf *pf, uint16_t vsi_id,
struct ice_rss_hash_cfg *cfg)
{
struct ice_hw *hw = ICE_PF_TO_HW(pf);
int ret;
ret = ice_rem_rss_cfg(hw, vsi_id, cfg);
if (ret && ret != ICE_ERR_DOES_NOT_EXIST)
PMD_DRV_LOG(ERR, "remove rss cfg failed\n");
ice_rem_rss_cfg_post(pf, cfg->addl_hdrs);
return 0;
}
int
ice_add_rss_cfg_wrap(struct ice_pf *pf, uint16_t vsi_id,
struct ice_rss_hash_cfg *cfg)
{
struct ice_hw *hw = ICE_PF_TO_HW(pf);
int ret;
ret = ice_add_rss_cfg_pre(pf, cfg->addl_hdrs);
if (ret)
PMD_DRV_LOG(ERR, "add rss cfg pre failed\n");
ret = ice_add_rss_cfg(hw, vsi_id, cfg);
if (ret)
PMD_DRV_LOG(ERR, "add rss cfg failed\n");
ret = ice_add_rss_cfg_post(pf, cfg);
if (ret)
PMD_DRV_LOG(ERR, "add rss cfg post failed\n");
return 0;
}
static void
ice_rss_hash_set(struct ice_pf *pf, uint64_t rss_hf)
{
struct ice_hw *hw = ICE_PF_TO_HW(pf);
struct ice_vsi *vsi = pf->main_vsi;
struct ice_rss_hash_cfg cfg;
int ret;
#define ICE_RSS_HF_ALL ( \
ETH_RSS_IPV4 | \
ETH_RSS_IPV6 | \
ETH_RSS_NONFRAG_IPV4_UDP | \
ETH_RSS_NONFRAG_IPV6_UDP | \
ETH_RSS_NONFRAG_IPV4_TCP | \
ETH_RSS_NONFRAG_IPV6_TCP | \
ETH_RSS_NONFRAG_IPV4_SCTP | \
ETH_RSS_NONFRAG_IPV6_SCTP)
ret = ice_rem_vsi_rss_cfg(hw, vsi->idx);
if (ret)
PMD_DRV_LOG(ERR, "%s Remove rss vsi fail %d",
__func__, ret);
cfg.symm = 0;
cfg.hdr_type = ICE_RSS_OUTER_HEADERS;
/* Configure RSS for IPv4 with src/dst addr as input set */
if (rss_hf & ETH_RSS_IPV4) {
cfg.addl_hdrs = ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV_OTHER;
cfg.hash_flds = ICE_FLOW_HASH_IPV4;
ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg);
if (ret)
PMD_DRV_LOG(ERR, "%s IPV4 rss flow fail %d",
__func__, ret);
}
/* Configure RSS for IPv6 with src/dst addr as input set */
if (rss_hf & ETH_RSS_IPV6) {
cfg.addl_hdrs = ICE_FLOW_SEG_HDR_IPV6 | ICE_FLOW_SEG_HDR_IPV_OTHER;
cfg.hash_flds = ICE_FLOW_HASH_IPV6;
ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg);
if (ret)
PMD_DRV_LOG(ERR, "%s IPV6 rss flow fail %d",
__func__, ret);
}
/* Configure RSS for udp4 with src/dst addr and port as input set */
if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP) {
cfg.addl_hdrs = ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4 |
ICE_FLOW_SEG_HDR_IPV_OTHER;
cfg.hash_flds = ICE_HASH_UDP_IPV4;
ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg);
if (ret)
PMD_DRV_LOG(ERR, "%s UDP_IPV4 rss flow fail %d",
__func__, ret);
}
/* Configure RSS for udp6 with src/dst addr and port as input set */
if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP) {
cfg.addl_hdrs = ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6 |
ICE_FLOW_SEG_HDR_IPV_OTHER;
cfg.hash_flds = ICE_HASH_UDP_IPV6;
ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg);
if (ret)
PMD_DRV_LOG(ERR, "%s UDP_IPV6 rss flow fail %d",
__func__, ret);
}
/* Configure RSS for tcp4 with src/dst addr and port as input set */
if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP) {
cfg.addl_hdrs = ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4 |
ICE_FLOW_SEG_HDR_IPV_OTHER;
cfg.hash_flds = ICE_HASH_TCP_IPV4;
ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg);
if (ret)
PMD_DRV_LOG(ERR, "%s TCP_IPV4 rss flow fail %d",
__func__, ret);
}
/* Configure RSS for tcp6 with src/dst addr and port as input set */
if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP) {
cfg.addl_hdrs = ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6 |
ICE_FLOW_SEG_HDR_IPV_OTHER;
cfg.hash_flds = ICE_HASH_TCP_IPV6;
ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg);
if (ret)
PMD_DRV_LOG(ERR, "%s TCP_IPV6 rss flow fail %d",
__func__, ret);
}
/* Configure RSS for sctp4 with src/dst addr and port as input set */
if (rss_hf & ETH_RSS_NONFRAG_IPV4_SCTP) {
cfg.addl_hdrs = ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4 |
ICE_FLOW_SEG_HDR_IPV_OTHER;
cfg.hash_flds = ICE_HASH_SCTP_IPV4;
ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg);
if (ret)
PMD_DRV_LOG(ERR, "%s SCTP_IPV4 rss flow fail %d",
__func__, ret);
}
/* Configure RSS for sctp6 with src/dst addr and port as input set */
if (rss_hf & ETH_RSS_NONFRAG_IPV6_SCTP) {
cfg.addl_hdrs = ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6 |
ICE_FLOW_SEG_HDR_IPV_OTHER;
cfg.hash_flds = ICE_HASH_SCTP_IPV6;
ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg);
if (ret)
PMD_DRV_LOG(ERR, "%s SCTP_IPV6 rss flow fail %d",
__func__, ret);
}
if (rss_hf & ETH_RSS_IPV4) {
cfg.addl_hdrs = ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV4 |
ICE_FLOW_SEG_HDR_IPV_OTHER;
cfg.hash_flds = ICE_FLOW_HASH_IPV4;
ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg);
if (ret)
PMD_DRV_LOG(ERR, "%s GTPU_IPV4 rss flow fail %d",
__func__, ret);
cfg.addl_hdrs = ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV4 |
ICE_FLOW_SEG_HDR_IPV_OTHER;
ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg);
if (ret)
PMD_DRV_LOG(ERR, "%s GTPU_EH_IPV4 rss flow fail %d",
__func__, ret);
cfg.addl_hdrs = ICE_FLOW_SEG_HDR_PPPOE | ICE_FLOW_SEG_HDR_IPV4 |
ICE_FLOW_SEG_HDR_IPV_OTHER;
ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg);
if (ret)
PMD_DRV_LOG(ERR, "%s PPPoE_IPV4 rss flow fail %d",
__func__, ret);
}
if (rss_hf & ETH_RSS_IPV6) {
cfg.addl_hdrs = ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV6 |
ICE_FLOW_SEG_HDR_IPV_OTHER;
cfg.hash_flds = ICE_FLOW_HASH_IPV6;
ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg);
if (ret)
PMD_DRV_LOG(ERR, "%s GTPU_IPV6 rss flow fail %d",
__func__, ret);
cfg.addl_hdrs = ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV6 |
ICE_FLOW_SEG_HDR_IPV_OTHER;
ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg);
if (ret)
PMD_DRV_LOG(ERR, "%s GTPU_EH_IPV6 rss flow fail %d",
__func__, ret);
cfg.addl_hdrs = ICE_FLOW_SEG_HDR_PPPOE | ICE_FLOW_SEG_HDR_IPV6 |
ICE_FLOW_SEG_HDR_IPV_OTHER;
ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg);
if (ret)
PMD_DRV_LOG(ERR, "%s PPPoE_IPV6 rss flow fail %d",
__func__, ret);
}
if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP) {
cfg.addl_hdrs = ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_UDP |
ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV_OTHER;
cfg.hash_flds = ICE_HASH_UDP_IPV4;
ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg);
if (ret)
PMD_DRV_LOG(ERR, "%s GTPU_IPV4_UDP rss flow fail %d",
__func__, ret);
cfg.addl_hdrs = ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_UDP |
ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV_OTHER;
ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg);
if (ret)
PMD_DRV_LOG(ERR, "%s GTPU_EH_IPV4_UDP rss flow fail %d",
__func__, ret);
cfg.addl_hdrs = ICE_FLOW_SEG_HDR_PPPOE | ICE_FLOW_SEG_HDR_UDP |
ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV_OTHER;
ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg);
if (ret)
PMD_DRV_LOG(ERR, "%s PPPoE_IPV4_UDP rss flow fail %d",
__func__, ret);
}
if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP) {
cfg.addl_hdrs = ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_UDP |
ICE_FLOW_SEG_HDR_IPV6 | ICE_FLOW_SEG_HDR_IPV_OTHER;
cfg.hash_flds = ICE_HASH_UDP_IPV6;
ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg);
if (ret)
PMD_DRV_LOG(ERR, "%s GTPU_IPV6_UDP rss flow fail %d",
__func__, ret);
cfg.addl_hdrs = ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_UDP |
ICE_FLOW_SEG_HDR_IPV6 | ICE_FLOW_SEG_HDR_IPV_OTHER;
ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg);
if (ret)
PMD_DRV_LOG(ERR, "%s GTPU_EH_IPV6_UDP rss flow fail %d",
__func__, ret);
cfg.addl_hdrs = ICE_FLOW_SEG_HDR_PPPOE | ICE_FLOW_SEG_HDR_UDP |
ICE_FLOW_SEG_HDR_IPV6 | ICE_FLOW_SEG_HDR_IPV_OTHER;
ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg);
if (ret)
PMD_DRV_LOG(ERR, "%s PPPoE_IPV6_UDP rss flow fail %d",
__func__, ret);
}
if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP) {
cfg.addl_hdrs = ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_TCP |
ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV_OTHER;
cfg.hash_flds = ICE_HASH_TCP_IPV4;
ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg);
if (ret)
PMD_DRV_LOG(ERR, "%s GTPU_IPV4_TCP rss flow fail %d",
__func__, ret);
cfg.addl_hdrs = ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_TCP |
ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV_OTHER;
ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg);
if (ret)
PMD_DRV_LOG(ERR, "%s GTPU_EH_IPV4_TCP rss flow fail %d",
__func__, ret);
cfg.addl_hdrs = ICE_FLOW_SEG_HDR_PPPOE | ICE_FLOW_SEG_HDR_TCP |
ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV_OTHER;
ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg);
if (ret)
PMD_DRV_LOG(ERR, "%s PPPoE_IPV4_TCP rss flow fail %d",
__func__, ret);
}
if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP) {
cfg.addl_hdrs = ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_TCP |
ICE_FLOW_SEG_HDR_IPV6 | ICE_FLOW_SEG_HDR_IPV_OTHER;
cfg.hash_flds = ICE_HASH_TCP_IPV6;
ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg);
if (ret)
PMD_DRV_LOG(ERR, "%s GTPU_IPV6_TCP rss flow fail %d",
__func__, ret);
cfg.addl_hdrs = ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_TCP |
ICE_FLOW_SEG_HDR_IPV6 | ICE_FLOW_SEG_HDR_IPV_OTHER;
ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg);
if (ret)
PMD_DRV_LOG(ERR, "%s GTPU_EH_IPV6_TCP rss flow fail %d",
__func__, ret);
cfg.addl_hdrs = ICE_FLOW_SEG_HDR_PPPOE | ICE_FLOW_SEG_HDR_TCP |
ICE_FLOW_SEG_HDR_IPV6 | ICE_FLOW_SEG_HDR_IPV_OTHER;
ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg);
if (ret)
PMD_DRV_LOG(ERR, "%s PPPoE_IPV6_TCP rss flow fail %d",
__func__, ret);
}
pf->rss_hf = rss_hf & ICE_RSS_HF_ALL;
}
static int ice_init_rss(struct ice_pf *pf)
{
struct ice_hw *hw = ICE_PF_TO_HW(pf);
struct ice_vsi *vsi = pf->main_vsi;
struct rte_eth_dev *dev = pf->adapter->eth_dev;
struct ice_aq_get_set_rss_lut_params lut_params;
struct rte_eth_rss_conf *rss_conf;
struct ice_aqc_get_set_rss_keys key;
uint16_t i, nb_q;
int ret = 0;
bool is_safe_mode = pf->adapter->is_safe_mode;
uint32_t reg;
rss_conf = &dev->data->dev_conf.rx_adv_conf.rss_conf;
nb_q = dev->data->nb_rx_queues;
vsi->rss_key_size = ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE;
vsi->rss_lut_size = pf->hash_lut_size;
if (nb_q == 0) {
PMD_DRV_LOG(WARNING,
"RSS is not supported as rx queues number is zero\n");
return 0;
}
if (is_safe_mode) {
PMD_DRV_LOG(WARNING, "RSS is not supported in safe mode\n");
return 0;
}
if (!vsi->rss_key) {
vsi->rss_key = rte_zmalloc(NULL,
vsi->rss_key_size, 0);
if (vsi->rss_key == NULL) {
PMD_DRV_LOG(ERR, "Failed to allocate memory for rss_key");
return -ENOMEM;
}
}
if (!vsi->rss_lut) {
vsi->rss_lut = rte_zmalloc(NULL,
vsi->rss_lut_size, 0);
if (vsi->rss_lut == NULL) {
PMD_DRV_LOG(ERR, "Failed to allocate memory for rss_key");
rte_free(vsi->rss_key);
vsi->rss_key = NULL;
return -ENOMEM;
}
}
/* configure RSS key */
if (!rss_conf->rss_key) {
/* Calculate the default hash key */
for (i = 0; i <= vsi->rss_key_size; i++)
vsi->rss_key[i] = (uint8_t)rte_rand();
} else {
rte_memcpy(vsi->rss_key, rss_conf->rss_key,
RTE_MIN(rss_conf->rss_key_len,
vsi->rss_key_size));
}
rte_memcpy(key.standard_rss_key, vsi->rss_key, vsi->rss_key_size);
ret = ice_aq_set_rss_key(hw, vsi->idx, &key);
if (ret)
goto out;
/* init RSS LUT table */
for (i = 0; i < vsi->rss_lut_size; i++)
vsi->rss_lut[i] = i % nb_q;
lut_params.vsi_handle = vsi->idx;
lut_params.lut_size = vsi->rss_lut_size;
lut_params.lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
lut_params.lut = vsi->rss_lut;
lut_params.global_lut_id = 0;
ret = ice_aq_set_rss_lut(hw, &lut_params);
if (ret)
goto out;
/* Enable registers for symmetric_toeplitz function. */
reg = ICE_READ_REG(hw, VSIQF_HASH_CTL(vsi->vsi_id));
reg = (reg & (~VSIQF_HASH_CTL_HASH_SCHEME_M)) |
(1 << VSIQF_HASH_CTL_HASH_SCHEME_S);
ICE_WRITE_REG(hw, VSIQF_HASH_CTL(vsi->vsi_id), reg);
/* RSS hash configuration */
ice_rss_hash_set(pf, rss_conf->rss_hf);
return 0;
out:
rte_free(vsi->rss_key);
vsi->rss_key = NULL;
rte_free(vsi->rss_lut);
vsi->rss_lut = NULL;
return -EINVAL;
}
static int
ice_dev_configure(struct rte_eth_dev *dev)
{
struct ice_adapter *ad =
ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
int ret;
/* Initialize to TRUE. If any of Rx queues doesn't meet the
* bulk allocation or vector Rx preconditions we will reset it.
*/
ad->rx_bulk_alloc_allowed = true;
ad->tx_simple_allowed = true;
if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)
dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
if (dev->data->nb_rx_queues) {
ret = ice_init_rss(pf);
if (ret) {
PMD_DRV_LOG(ERR, "Failed to enable rss for PF");
return ret;
}
}
return 0;
}
static void
__vsi_queues_bind_intr(struct ice_vsi *vsi, uint16_t msix_vect,
int base_queue, int nb_queue)
{
struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
uint32_t val, val_tx;
int i;
for (i = 0; i < nb_queue; i++) {
/*do actual bind*/
val = (msix_vect & QINT_RQCTL_MSIX_INDX_M) |
(0 << QINT_RQCTL_ITR_INDX_S) | QINT_RQCTL_CAUSE_ENA_M;
val_tx = (msix_vect & QINT_TQCTL_MSIX_INDX_M) |
(0 << QINT_TQCTL_ITR_INDX_S) | QINT_TQCTL_CAUSE_ENA_M;
PMD_DRV_LOG(INFO, "queue %d is binding to vect %d",
base_queue + i, msix_vect);
/* set ITR0 value */
ICE_WRITE_REG(hw, GLINT_ITR(0, msix_vect), 0x2);
ICE_WRITE_REG(hw, QINT_RQCTL(base_queue + i), val);
ICE_WRITE_REG(hw, QINT_TQCTL(base_queue + i), val_tx);
}
}
void
ice_vsi_queues_bind_intr(struct ice_vsi *vsi)
{
struct rte_eth_dev *dev = vsi->adapter->eth_dev;
struct rte_pci_device *pci_dev = ICE_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
uint16_t msix_vect = vsi->msix_intr;
uint16_t nb_msix = RTE_MIN(vsi->nb_msix, intr_handle->nb_efd);
uint16_t queue_idx = 0;
int record = 0;
int i;
/* clear Rx/Tx queue interrupt */
for (i = 0; i < vsi->nb_used_qps; i++) {
ICE_WRITE_REG(hw, QINT_TQCTL(vsi->base_queue + i), 0);
ICE_WRITE_REG(hw, QINT_RQCTL(vsi->base_queue + i), 0);
}
/* PF bind interrupt */
if (rte_intr_dp_is_en(intr_handle)) {
queue_idx = 0;
record = 1;
}
for (i = 0; i < vsi->nb_used_qps; i++) {
if (nb_msix <= 1) {
if (!rte_intr_allow_others(intr_handle))
msix_vect = ICE_MISC_VEC_ID;
/* uio mapping all queue to one msix_vect */
__vsi_queues_bind_intr(vsi, msix_vect,
vsi->base_queue + i,
vsi->nb_used_qps - i);
for (; !!record && i < vsi->nb_used_qps; i++)
intr_handle->intr_vec[queue_idx + i] =
msix_vect;
break;
}
/* vfio 1:1 queue/msix_vect mapping */
__vsi_queues_bind_intr(vsi, msix_vect,
vsi->base_queue + i, 1);
if (!!record)
intr_handle->intr_vec[queue_idx + i] = msix_vect;
msix_vect++;
nb_msix--;
}
}
void
ice_vsi_enable_queues_intr(struct ice_vsi *vsi)
{
struct rte_eth_dev *dev = vsi->adapter->eth_dev;
struct rte_pci_device *pci_dev = ICE_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
uint16_t msix_intr, i;
if (rte_intr_allow_others(intr_handle))
for (i = 0; i < vsi->nb_used_qps; i++) {
msix_intr = vsi->msix_intr + i;
ICE_WRITE_REG(hw, GLINT_DYN_CTL(msix_intr),
GLINT_DYN_CTL_INTENA_M |
GLINT_DYN_CTL_CLEARPBA_M |
GLINT_DYN_CTL_ITR_INDX_M |
GLINT_DYN_CTL_WB_ON_ITR_M);
}
else
ICE_WRITE_REG(hw, GLINT_DYN_CTL(0),
GLINT_DYN_CTL_INTENA_M |
GLINT_DYN_CTL_CLEARPBA_M |
GLINT_DYN_CTL_ITR_INDX_M |
GLINT_DYN_CTL_WB_ON_ITR_M);
}
static int
ice_rxq_intr_setup(struct rte_eth_dev *dev)
{
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct rte_pci_device *pci_dev = ICE_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
struct ice_vsi *vsi = pf->main_vsi;
uint32_t intr_vector = 0;
rte_intr_disable(intr_handle);
/* check and configure queue intr-vector mapping */
if ((rte_intr_cap_multiple(intr_handle) ||
!RTE_ETH_DEV_SRIOV(dev).active) &&
dev->data->dev_conf.intr_conf.rxq != 0) {
intr_vector = dev->data->nb_rx_queues;
if (intr_vector > ICE_MAX_INTR_QUEUE_NUM) {
PMD_DRV_LOG(ERR, "At most %d intr queues supported",
ICE_MAX_INTR_QUEUE_NUM);
return -ENOTSUP;
}
if (rte_intr_efd_enable(intr_handle, intr_vector))
return -1;
}
if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
intr_handle->intr_vec =
rte_zmalloc(NULL, dev->data->nb_rx_queues * sizeof(int),
0);
if (!intr_handle->intr_vec) {
PMD_DRV_LOG(ERR,
"Failed to allocate %d rx_queues intr_vec",
dev->data->nb_rx_queues);
return -ENOMEM;
}
}
/* Map queues with MSIX interrupt */
vsi->nb_used_qps = dev->data->nb_rx_queues;
ice_vsi_queues_bind_intr(vsi);
/* Enable interrupts for all the queues */
ice_vsi_enable_queues_intr(vsi);
rte_intr_enable(intr_handle);
return 0;
}
static void
ice_get_init_link_status(struct rte_eth_dev *dev)
{
struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
bool enable_lse = dev->data->dev_conf.intr_conf.lsc ? true : false;
struct ice_link_status link_status;
int ret;
ret = ice_aq_get_link_info(hw->port_info, enable_lse,
&link_status, NULL);
if (ret != ICE_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to get link info");
pf->init_link_up = false;
return;
}
if (link_status.link_info & ICE_AQ_LINK_UP)
pf->init_link_up = true;
}
static int
ice_dev_start(struct rte_eth_dev *dev)
{
struct rte_eth_dev_data *data = dev->data;
struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct ice_vsi *vsi = pf->main_vsi;
uint16_t nb_rxq = 0;
uint16_t nb_txq, i;
uint16_t max_frame_size;
int mask, ret;
/* program Tx queues' context in hardware */
for (nb_txq = 0; nb_txq < data->nb_tx_queues; nb_txq++) {
ret = ice_tx_queue_start(dev, nb_txq);
if (ret) {
PMD_DRV_LOG(ERR, "fail to start Tx queue %u", nb_txq);
goto tx_err;
}
}
/* program Rx queues' context in hardware*/
for (nb_rxq = 0; nb_rxq < data->nb_rx_queues; nb_rxq++) {
ret = ice_rx_queue_start(dev, nb_rxq);
if (ret) {
PMD_DRV_LOG(ERR, "fail to start Rx queue %u", nb_rxq);
goto rx_err;
}
}
ice_set_rx_function(dev);
ice_set_tx_function(dev);
mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK |
ETH_VLAN_EXTEND_MASK;
ret = ice_vlan_offload_set(dev, mask);
if (ret) {
PMD_INIT_LOG(ERR, "Unable to set VLAN offload");
goto rx_err;
}
/* enable Rx interrput and mapping Rx queue to interrupt vector */
if (ice_rxq_intr_setup(dev))
return -EIO;
/* Enable receiving broadcast packets and transmitting packets */
ret = ice_set_vsi_promisc(hw, vsi->idx,
ICE_PROMISC_BCAST_RX | ICE_PROMISC_BCAST_TX |
ICE_PROMISC_UCAST_TX | ICE_PROMISC_MCAST_TX,
0);
if (ret != ICE_SUCCESS)
PMD_DRV_LOG(INFO, "fail to set vsi broadcast");
ret = ice_aq_set_event_mask(hw, hw->port_info->lport,
((u16)(ICE_AQ_LINK_EVENT_LINK_FAULT |
ICE_AQ_LINK_EVENT_PHY_TEMP_ALARM |
ICE_AQ_LINK_EVENT_EXCESSIVE_ERRORS |
ICE_AQ_LINK_EVENT_SIGNAL_DETECT |
ICE_AQ_LINK_EVENT_AN_COMPLETED |
ICE_AQ_LINK_EVENT_PORT_TX_SUSPENDED)),
NULL);
if (ret != ICE_SUCCESS)
PMD_DRV_LOG(WARNING, "Fail to set phy mask");
ice_get_init_link_status(dev);
ice_dev_set_link_up(dev);
/* Call get_link_info aq commond to enable/disable LSE */
ice_link_update(dev, 0);
pf->adapter_stopped = false;
/* Set the max frame size to default value*/
max_frame_size = pf->dev_data->dev_conf.rxmode.max_rx_pkt_len ?
pf->dev_data->dev_conf.rxmode.max_rx_pkt_len :
ICE_FRAME_SIZE_MAX;
/* Set the max frame size to HW*/
ice_aq_set_mac_cfg(hw, max_frame_size, NULL);
return 0;
/* stop the started queues if failed to start all queues */
rx_err:
for (i = 0; i < nb_rxq; i++)
ice_rx_queue_stop(dev, i);
tx_err:
for (i = 0; i < nb_txq; i++)
ice_tx_queue_stop(dev, i);
return -EIO;
}
static int
ice_dev_reset(struct rte_eth_dev *dev)
{
int ret;
if (dev->data->sriov.active)
return -ENOTSUP;
ret = ice_dev_uninit(dev);
if (ret) {
PMD_INIT_LOG(ERR, "failed to uninit device, status = %d", ret);
return -ENXIO;
}
ret = ice_dev_init(dev);
if (ret) {
PMD_INIT_LOG(ERR, "failed to init device, status = %d", ret);
return -ENXIO;
}
return 0;
}
static int
ice_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
{
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct ice_vsi *vsi = pf->main_vsi;
struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev->device);
bool is_safe_mode = pf->adapter->is_safe_mode;
u64 phy_type_low;
u64 phy_type_high;
dev_info->min_rx_bufsize = ICE_BUF_SIZE_MIN;
dev_info->max_rx_pktlen = ICE_FRAME_SIZE_MAX;
dev_info->max_rx_queues = vsi->nb_qps;
dev_info->max_tx_queues = vsi->nb_qps;
dev_info->max_mac_addrs = vsi->max_macaddrs;
dev_info->max_vfs = pci_dev->max_vfs;
dev_info->max_mtu = dev_info->max_rx_pktlen - ICE_ETH_OVERHEAD;
dev_info->min_mtu = RTE_ETHER_MIN_MTU;
dev_info->rx_offload_capa =
DEV_RX_OFFLOAD_VLAN_STRIP |
DEV_RX_OFFLOAD_JUMBO_FRAME |
DEV_RX_OFFLOAD_KEEP_CRC |
DEV_RX_OFFLOAD_SCATTER |
DEV_RX_OFFLOAD_VLAN_FILTER;
dev_info->tx_offload_capa =
DEV_TX_OFFLOAD_VLAN_INSERT |
DEV_TX_OFFLOAD_TCP_TSO |
DEV_TX_OFFLOAD_MULTI_SEGS |
DEV_TX_OFFLOAD_MBUF_FAST_FREE;
dev_info->flow_type_rss_offloads = 0;
if (!is_safe_mode) {
dev_info->rx_offload_capa |=
DEV_RX_OFFLOAD_IPV4_CKSUM |
DEV_RX_OFFLOAD_UDP_CKSUM |
DEV_RX_OFFLOAD_TCP_CKSUM |
DEV_RX_OFFLOAD_QINQ_STRIP |
DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
DEV_RX_OFFLOAD_VLAN_EXTEND |
DEV_RX_OFFLOAD_RSS_HASH;
dev_info->tx_offload_capa |=
DEV_TX_OFFLOAD_QINQ_INSERT |
DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_UDP_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM |
DEV_TX_OFFLOAD_SCTP_CKSUM |
DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
DEV_TX_OFFLOAD_OUTER_UDP_CKSUM;
dev_info->flow_type_rss_offloads |= ICE_RSS_OFFLOAD_ALL;
}
dev_info->rx_queue_offload_capa = 0;
dev_info->tx_queue_offload_capa = 0;
dev_info->reta_size = pf->hash_lut_size;
dev_info->hash_key_size = (VSIQF_HKEY_MAX_INDEX + 1) * sizeof(uint32_t);
dev_info->default_rxconf = (struct rte_eth_rxconf) {
.rx_thresh = {
.pthresh = ICE_DEFAULT_RX_PTHRESH,
.hthresh = ICE_DEFAULT_RX_HTHRESH,
.wthresh = ICE_DEFAULT_RX_WTHRESH,
},
.rx_free_thresh = ICE_DEFAULT_RX_FREE_THRESH,
.rx_drop_en = 0,
.offloads = 0,
};
dev_info->default_txconf = (struct rte_eth_txconf) {
.tx_thresh = {
.pthresh = ICE_DEFAULT_TX_PTHRESH,
.hthresh = ICE_DEFAULT_TX_HTHRESH,
.wthresh = ICE_DEFAULT_TX_WTHRESH,
},
.tx_free_thresh = ICE_DEFAULT_TX_FREE_THRESH,
.tx_rs_thresh = ICE_DEFAULT_TX_RSBIT_THRESH,
.offloads = 0,
};
dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
.nb_max = ICE_MAX_RING_DESC,
.nb_min = ICE_MIN_RING_DESC,
.nb_align = ICE_ALIGN_RING_DESC,
};
dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
.nb_max = ICE_MAX_RING_DESC,
.nb_min = ICE_MIN_RING_DESC,
.nb_align = ICE_ALIGN_RING_DESC,
};
dev_info->speed_capa = ETH_LINK_SPEED_10M |
ETH_LINK_SPEED_100M |
ETH_LINK_SPEED_1G |
ETH_LINK_SPEED_2_5G |
ETH_LINK_SPEED_5G |
ETH_LINK_SPEED_10G |
ETH_LINK_SPEED_20G |
ETH_LINK_SPEED_25G;
phy_type_low = hw->port_info->phy.phy_type_low;
phy_type_high = hw->port_info->phy.phy_type_high;
if (ICE_PHY_TYPE_SUPPORT_50G(phy_type_low))
dev_info->speed_capa |= ETH_LINK_SPEED_50G;
if (ICE_PHY_TYPE_SUPPORT_100G_LOW(phy_type_low) ||
ICE_PHY_TYPE_SUPPORT_100G_HIGH(phy_type_high))
dev_info->speed_capa |= ETH_LINK_SPEED_100G;
dev_info->nb_rx_queues = dev->data->nb_rx_queues;
dev_info->nb_tx_queues = dev->data->nb_tx_queues;
dev_info->default_rxportconf.burst_size = ICE_RX_MAX_BURST;
dev_info->default_txportconf.burst_size = ICE_TX_MAX_BURST;
dev_info->default_rxportconf.nb_queues = 1;
dev_info->default_txportconf.nb_queues = 1;
dev_info->default_rxportconf.ring_size = ICE_BUF_SIZE_MIN;
dev_info->default_txportconf.ring_size = ICE_BUF_SIZE_MIN;
return 0;
}
static inline int
ice_atomic_read_link_status(struct rte_eth_dev *dev,
struct rte_eth_link *link)
{
struct rte_eth_link *dst = link;
struct rte_eth_link *src = &dev->data->dev_link;
if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
*(uint64_t *)src) == 0)
return -1;
return 0;
}
static inline int
ice_atomic_write_link_status(struct rte_eth_dev *dev,
struct rte_eth_link *link)
{
struct rte_eth_link *dst = &dev->data->dev_link;
struct rte_eth_link *src = link;
if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
*(uint64_t *)src) == 0)
return -1;
return 0;
}
static int
ice_link_update(struct rte_eth_dev *dev, int wait_to_complete)
{
#define CHECK_INTERVAL 100 /* 100ms */
#define MAX_REPEAT_TIME 10 /* 1s (10 * 100ms) in total */
struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct ice_link_status link_status;
struct rte_eth_link link, old;
int status;
unsigned int rep_cnt = MAX_REPEAT_TIME;
bool enable_lse = dev->data->dev_conf.intr_conf.lsc ? true : false;
memset(&link, 0, sizeof(link));
memset(&old, 0, sizeof(old));
memset(&link_status, 0, sizeof(link_status));
ice_atomic_read_link_status(dev, &old);
do {
/* Get link status information from hardware */
status = ice_aq_get_link_info(hw->port_info, enable_lse,
&link_status, NULL);
if (status != ICE_SUCCESS) {
link.link_speed = ETH_SPEED_NUM_100M;
link.link_duplex = ETH_LINK_FULL_DUPLEX;
PMD_DRV_LOG(ERR, "Failed to get link info");
goto out;
}
link.link_status = link_status.link_info & ICE_AQ_LINK_UP;
if (!wait_to_complete || link.link_status)
break;
rte_delay_ms(CHECK_INTERVAL);
} while (--rep_cnt);
if (!link.link_status)
goto out;
/* Full-duplex operation at all supported speeds */
link.link_duplex = ETH_LINK_FULL_DUPLEX;
/* Parse the link status */
switch (link_status.link_speed) {
case ICE_AQ_LINK_SPEED_10MB:
link.link_speed = ETH_SPEED_NUM_10M;
break;
case ICE_AQ_LINK_SPEED_100MB:
link.link_speed = ETH_SPEED_NUM_100M;
break;
case ICE_AQ_LINK_SPEED_1000MB:
link.link_speed = ETH_SPEED_NUM_1G;
break;
case ICE_AQ_LINK_SPEED_2500MB:
link.link_speed = ETH_SPEED_NUM_2_5G;
break;
case ICE_AQ_LINK_SPEED_5GB:
link.link_speed = ETH_SPEED_NUM_5G;
break;
case ICE_AQ_LINK_SPEED_10GB:
link.link_speed = ETH_SPEED_NUM_10G;
break;
case ICE_AQ_LINK_SPEED_20GB:
link.link_speed = ETH_SPEED_NUM_20G;
break;
case ICE_AQ_LINK_SPEED_25GB:
link.link_speed = ETH_SPEED_NUM_25G;
break;
case ICE_AQ_LINK_SPEED_40GB:
link.link_speed = ETH_SPEED_NUM_40G;
break;
case ICE_AQ_LINK_SPEED_50GB:
link.link_speed = ETH_SPEED_NUM_50G;
break;
case ICE_AQ_LINK_SPEED_100GB:
link.link_speed = ETH_SPEED_NUM_100G;
break;
case ICE_AQ_LINK_SPEED_UNKNOWN:
PMD_DRV_LOG(ERR, "Unknown link speed");
link.link_speed = ETH_SPEED_NUM_UNKNOWN;
break;
default:
PMD_DRV_LOG(ERR, "None link speed");
link.link_speed = ETH_SPEED_NUM_NONE;
break;
}
link.link_autoneg = !(dev->data->dev_conf.link_speeds &
ETH_LINK_SPEED_FIXED);
out:
ice_atomic_write_link_status(dev, &link);
if (link.link_status == old.link_status)
return -1;
return 0;
}
/* Force the physical link state by getting the current PHY capabilities from
* hardware and setting the PHY config based on the determined capabilities. If
* link changes, link event will be triggered because both the Enable Automatic
* Link Update and LESM Enable bits are set when setting the PHY capabilities.
*/
static enum ice_status
ice_force_phys_link_state(struct ice_hw *hw, bool link_up)
{
struct ice_aqc_set_phy_cfg_data cfg = { 0 };
struct ice_aqc_get_phy_caps_data *pcaps;
struct ice_port_info *pi;
enum ice_status status;
if (!hw || !hw->port_info)
return ICE_ERR_PARAM;
pi = hw->port_info;
pcaps = (struct ice_aqc_get_phy_caps_data *)
ice_malloc(hw, sizeof(*pcaps));
if (!pcaps)
return ICE_ERR_NO_MEMORY;
status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
pcaps, NULL);
if (status)
goto out;
/* No change in link */
if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
goto out;
cfg.phy_type_low = pcaps->phy_type_low;
cfg.phy_type_high = pcaps->phy_type_high;
cfg.caps = pcaps->caps | ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
cfg.low_power_ctrl_an = pcaps->low_power_ctrl_an;
cfg.eee_cap = pcaps->eee_cap;
cfg.eeer_value = pcaps->eeer_value;
cfg.link_fec_opt = pcaps->link_fec_options;
if (link_up)
cfg.caps |= ICE_AQ_PHY_ENA_LINK;
else
cfg.caps &= ~ICE_AQ_PHY_ENA_LINK;
status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
out:
ice_free(hw, pcaps);
return status;
}
static int
ice_dev_set_link_up(struct rte_eth_dev *dev)
{
struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
return ice_force_phys_link_state(hw, true);
}
static int
ice_dev_set_link_down(struct rte_eth_dev *dev)
{
struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
return ice_force_phys_link_state(hw, false);
}
static int
ice_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
{
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct rte_eth_dev_data *dev_data = pf->dev_data;
uint32_t frame_size = mtu + ICE_ETH_OVERHEAD;
/* check if mtu is within the allowed range */
if (mtu < RTE_ETHER_MIN_MTU || frame_size > ICE_FRAME_SIZE_MAX)
return -EINVAL;
/* mtu setting is forbidden if port is start */
if (dev_data->dev_started) {
PMD_DRV_LOG(ERR,
"port %d must be stopped before configuration",
dev_data->port_id);
return -EBUSY;
}
if (frame_size > ICE_ETH_MAX_LEN)
dev_data->dev_conf.rxmode.offloads |=
DEV_RX_OFFLOAD_JUMBO_FRAME;
else
dev_data->dev_conf.rxmode.offloads &=
~DEV_RX_OFFLOAD_JUMBO_FRAME;
dev_data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
return 0;
}
static int ice_macaddr_set(struct rte_eth_dev *dev,
struct rte_ether_addr *mac_addr)
{
struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct ice_vsi *vsi = pf->main_vsi;
struct ice_mac_filter *f;
uint8_t flags = 0;
int ret;
if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
PMD_DRV_LOG(ERR, "Tried to set invalid MAC address.");
return -EINVAL;
}
TAILQ_FOREACH(f, &vsi->mac_list, next) {
if (rte_is_same_ether_addr(&pf->dev_addr, &f->mac_info.mac_addr))
break;
}
if (!f) {
PMD_DRV_LOG(ERR, "Failed to find filter for default mac");
return -EIO;
}
ret = ice_remove_mac_filter(vsi, &f->mac_info.mac_addr);
if (ret != ICE_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to delete mac filter");
return -EIO;
}
ret = ice_add_mac_filter(vsi, mac_addr);
if (ret != ICE_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to add mac filter");
return -EIO;
}
rte_ether_addr_copy(mac_addr, &pf->dev_addr);
flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
ret = ice_aq_manage_mac_write(hw, mac_addr->addr_bytes, flags, NULL);
if (ret != ICE_SUCCESS)
PMD_DRV_LOG(ERR, "Failed to set manage mac");
return 0;
}
/* Add a MAC address, and update filters */
static int
ice_macaddr_add(struct rte_eth_dev *dev,
struct rte_ether_addr *mac_addr,
__rte_unused uint32_t index,
__rte_unused uint32_t pool)
{
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct ice_vsi *vsi = pf->main_vsi;
int ret;
ret = ice_add_mac_filter(vsi, mac_addr);
if (ret != ICE_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to add MAC filter");
return -EINVAL;
}
return ICE_SUCCESS;
}
/* Remove a MAC address, and update filters */
static void
ice_macaddr_remove(struct rte_eth_dev *dev, uint32_t index)
{
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct ice_vsi *vsi = pf->main_vsi;
struct rte_eth_dev_data *data = dev->data;
struct rte_ether_addr *macaddr;
int ret;
macaddr = &data->mac_addrs[index];
ret = ice_remove_mac_filter(vsi, macaddr);
if (ret) {
PMD_DRV_LOG(ERR, "Failed to remove MAC filter");
return;
}
}
static int
ice_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
{
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct ice_vlan vlan = ICE_VLAN(RTE_ETHER_TYPE_VLAN, vlan_id);
struct ice_vsi *vsi = pf->main_vsi;
int ret;
PMD_INIT_FUNC_TRACE();
/**
* Vlan 0 is the generic filter for untagged packets
* and can't be removed or added by user.
*/
if (vlan_id == 0)
return 0;
if (on) {
ret = ice_add_vlan_filter(vsi, &vlan);
if (ret < 0) {
PMD_DRV_LOG(ERR, "Failed to add vlan filter");
return -EINVAL;
}
} else {
ret = ice_remove_vlan_filter(vsi, &vlan);
if (ret < 0) {
PMD_DRV_LOG(ERR, "Failed to remove vlan filter");
return -EINVAL;
}
}
return 0;
}
/* In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are
* based on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8)
* doesn't matter. In Double VLAN Mode (DVM), outer/single VLAN filters via
* ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID.
*
* For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic
* when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged
* traffic in SVM, since the VLAN TPID isn't part of filtering.
*
* If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be
* added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is
* part of filtering.
*/
static int
ice_vsi_add_vlan_zero(struct ice_vsi *vsi)
{
struct ice_vlan vlan;
int err;
vlan = ICE_VLAN(0, 0);
err = ice_add_vlan_filter(vsi, &vlan);
if (err) {
PMD_DRV_LOG(DEBUG, "Failed to add VLAN ID 0");
return err;
}
/* in SVM both VLAN 0 filters are identical */
if (!ice_is_dvm_ena(&vsi->adapter->hw))
return 0;
vlan = ICE_VLAN(RTE_ETHER_TYPE_VLAN, 0);
err = ice_add_vlan_filter(vsi, &vlan);
if (err) {
PMD_DRV_LOG(DEBUG, "Failed to add VLAN ID 0 in double VLAN mode");
return err;
}
return 0;
}
/*
* Delete the VLAN 0 filters in the same manner that they were added in
* ice_vsi_add_vlan_zero.
*/
static int
ice_vsi_del_vlan_zero(struct ice_vsi *vsi)
{
struct ice_vlan vlan;
int err;
vlan = ICE_VLAN(0, 0);
err = ice_remove_vlan_filter(vsi, &vlan);
if (err) {
PMD_DRV_LOG(DEBUG, "Failed to remove VLAN ID 0");
return err;
}
/* in SVM both VLAN 0 filters are identical */
if (!ice_is_dvm_ena(&vsi->adapter->hw))
return 0;
vlan = ICE_VLAN(RTE_ETHER_TYPE_VLAN, 0);
err = ice_remove_vlan_filter(vsi, &vlan);
if (err) {
PMD_DRV_LOG(DEBUG, "Failed to remove VLAN ID 0 in double VLAN mode");
return err;
}
return 0;
}
/* Configure vlan filter on or off */
static int
ice_vsi_config_vlan_filter(struct ice_vsi *vsi, bool on)
{
struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
struct ice_vsi_ctx ctxt;
uint8_t sw_flags2;
int ret = 0;
sw_flags2 = ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
if (on)
vsi->info.sw_flags2 |= sw_flags2;
else
vsi->info.sw_flags2 &= ~sw_flags2;
vsi->info.sw_id = hw->port_info->sw_id;
(void)rte_memcpy(&ctxt.info, &vsi->info, sizeof(vsi->info));
ctxt.info.valid_sections =
rte_cpu_to_le_16(ICE_AQ_VSI_PROP_SW_VALID |
ICE_AQ_VSI_PROP_SECURITY_VALID);
ctxt.vsi_num = vsi->vsi_id;
ret = ice_update_vsi(hw, vsi->idx, &ctxt, NULL);
if (ret) {
PMD_DRV_LOG(INFO, "Update VSI failed to %s vlan rx pruning",
on ? "enable" : "disable");
return -EINVAL;
} else {
vsi->info.valid_sections |=
rte_cpu_to_le_16(ICE_AQ_VSI_PROP_SW_VALID |
ICE_AQ_VSI_PROP_SECURITY_VALID);
}
/* consist with other drivers, allow untagged packet when vlan filter on */
if (on)
ret = ice_vsi_add_vlan_zero(vsi);
else
ret = ice_vsi_del_vlan_zero(vsi);
return 0;
}
/* Manage VLAN stripping for the VSI for Rx */
static int
ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena)
{
struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
struct ice_vsi_ctx ctxt;
enum ice_status status;
int err = 0;
/* do not allow modifying VLAN stripping when a port VLAN is configured
* on this VSI
*/
if (vsi->info.port_based_inner_vlan)
return 0;
memset(&ctxt, 0, sizeof(ctxt));
if (ena)
/* Strip VLAN tag from Rx packet and put it in the desc */
ctxt.info.inner_vlan_flags =
ICE_AQ_VSI_INNER_VLAN_EMODE_STR_BOTH;
else
/* Disable stripping. Leave tag in packet */
ctxt.info.inner_vlan_flags =
ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
/* Allow all packets untagged/tagged */
ctxt.info.inner_vlan_flags |= ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL;
ctxt.info.valid_sections = rte_cpu_to_le_16(ICE_AQ_VSI_PROP_VLAN_VALID);
status = ice_update_vsi(hw, vsi->idx, &ctxt, NULL);
if (status) {
PMD_DRV_LOG(ERR, "Update VSI failed to %s vlan stripping",
ena ? "enable" : "disable");
err = -EIO;
} else {
vsi->info.inner_vlan_flags = ctxt.info.inner_vlan_flags;
}
return err;
}
static int
ice_vsi_ena_inner_stripping(struct ice_vsi *vsi)
{
return ice_vsi_manage_vlan_stripping(vsi, true);
}
static int
ice_vsi_dis_inner_stripping(struct ice_vsi *vsi)
{
return ice_vsi_manage_vlan_stripping(vsi, false);
}
static int ice_vsi_ena_outer_stripping(struct ice_vsi *vsi)
{
struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
struct ice_vsi_ctx ctxt;
enum ice_status status;
int err = 0;
/* do not allow modifying VLAN stripping when a port VLAN is configured
* on this VSI
*/
if (vsi->info.port_based_outer_vlan)
return 0;
memset(&ctxt, 0, sizeof(ctxt));
ctxt.info.valid_sections =
rte_cpu_to_le_16(ICE_AQ_VSI_PROP_OUTER_TAG_VALID);
/* clear current outer VLAN strip settings */
ctxt.info.outer_vlan_flags = vsi->info.outer_vlan_flags &
~(ICE_AQ_VSI_OUTER_VLAN_EMODE_M | ICE_AQ_VSI_OUTER_TAG_TYPE_M);
ctxt.info.outer_vlan_flags |=
(ICE_AQ_VSI_OUTER_VLAN_EMODE_SHOW_BOTH <<
ICE_AQ_VSI_OUTER_VLAN_EMODE_S) |
(ICE_AQ_VSI_OUTER_TAG_VLAN_8100 <<
ICE_AQ_VSI_OUTER_TAG_TYPE_S);
status = ice_update_vsi(hw, vsi->idx, &ctxt, NULL);
if (status) {
PMD_DRV_LOG(ERR, "Update VSI failed to enable outer VLAN stripping");
err = -EIO;
} else {
vsi->info.outer_vlan_flags = ctxt.info.outer_vlan_flags;
}
return err;
}
static int
ice_vsi_dis_outer_stripping(struct ice_vsi *vsi)
{
struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
struct ice_vsi_ctx ctxt;
enum ice_status status;
int err = 0;
if (vsi->info.port_based_outer_vlan)
return 0;
memset(&ctxt, 0, sizeof(ctxt));
ctxt.info.valid_sections =
rte_cpu_to_le_16(ICE_AQ_VSI_PROP_OUTER_TAG_VALID);
/* clear current outer VLAN strip settings */
ctxt.info.outer_vlan_flags = vsi->info.outer_vlan_flags &
~ICE_AQ_VSI_OUTER_VLAN_EMODE_M;
ctxt.info.outer_vlan_flags |= ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING <<
ICE_AQ_VSI_OUTER_VLAN_EMODE_S;
status = ice_update_vsi(hw, vsi->idx, &ctxt, NULL);
if (status) {
PMD_DRV_LOG(ERR, "Update VSI failed to disable outer VLAN stripping");
err = -EIO;
} else {
vsi->info.outer_vlan_flags = ctxt.info.outer_vlan_flags;
}
return err;
}
static int
ice_vsi_config_vlan_stripping(struct ice_vsi *vsi, bool ena)
{
struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
int ret;
if (ice_is_dvm_ena(hw)) {
if (ena)
ret = ice_vsi_ena_outer_stripping(vsi);
else
ret = ice_vsi_dis_outer_stripping(vsi);
} else {
if (ena)
ret = ice_vsi_ena_inner_stripping(vsi);
else
ret = ice_vsi_dis_inner_stripping(vsi);
}
return ret;
}
static int
ice_vlan_offload_set(struct rte_eth_dev *dev, int mask)
{
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct ice_vsi *vsi = pf->main_vsi;
struct rte_eth_rxmode *rxmode;
rxmode = &dev->data->dev_conf.rxmode;
if (mask & ETH_VLAN_FILTER_MASK) {
if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
ice_vsi_config_vlan_filter(vsi, true);
else
ice_vsi_config_vlan_filter(vsi, false);
}
if (mask & ETH_VLAN_STRIP_MASK) {
if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
ice_vsi_config_vlan_stripping(vsi, true);
else
ice_vsi_config_vlan_stripping(vsi, false);
}
return 0;
}
static int
ice_get_rss_lut(struct ice_vsi *vsi, uint8_t *lut, uint16_t lut_size)
{
struct ice_aq_get_set_rss_lut_params lut_params;
struct ice_pf *pf = ICE_VSI_TO_PF(vsi);
struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
int ret;
if (!lut)
return -EINVAL;
if (pf->flags & ICE_FLAG_RSS_AQ_CAPABLE) {
lut_params.vsi_handle = vsi->idx;
lut_params.lut_size = lut_size;
lut_params.lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
lut_params.lut = lut;
lut_params.global_lut_id = 0;
ret = ice_aq_get_rss_lut(hw, &lut_params);
if (ret) {
PMD_DRV_LOG(ERR, "Failed to get RSS lookup table");
return -EINVAL;
}
} else {
uint64_t *lut_dw = (uint64_t *)lut;
uint16_t i, lut_size_dw = lut_size / 4;
for (i = 0; i < lut_size_dw; i++)
lut_dw[i] = ICE_READ_REG(hw, PFQF_HLUT(i));
}
return 0;
}
static int
ice_set_rss_lut(struct ice_vsi *vsi, uint8_t *lut, uint16_t lut_size)
{
struct ice_aq_get_set_rss_lut_params lut_params;
struct ice_pf *pf;
struct ice_hw *hw;
int ret;
if (!vsi || !lut)
return -EINVAL;
pf = ICE_VSI_TO_PF(vsi);
hw = ICE_VSI_TO_HW(vsi);
if (pf->flags & ICE_FLAG_RSS_AQ_CAPABLE) {
lut_params.vsi_handle = vsi->idx;
lut_params.lut_size = lut_size;
lut_params.lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
lut_params.lut = lut;
lut_params.global_lut_id = 0;
ret = ice_aq_set_rss_lut(hw, &lut_params);
if (ret) {
PMD_DRV_LOG(ERR, "Failed to set RSS lookup table");
return -EINVAL;
}
} else {
uint64_t *lut_dw = (uint64_t *)lut;
uint16_t i, lut_size_dw = lut_size / 4;
for (i = 0; i < lut_size_dw; i++)
ICE_WRITE_REG(hw, PFQF_HLUT(i), lut_dw[i]);
ice_flush(hw);
}
return 0;
}
static int
ice_rss_reta_update(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
uint16_t i, lut_size = pf->hash_lut_size;
uint16_t idx, shift;
uint8_t *lut;
int ret;
if (reta_size != ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128 &&
reta_size != ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512 &&
reta_size != ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K) {
PMD_DRV_LOG(ERR,
"The size of hash lookup table configured (%d)"
"doesn't match the number hardware can "
"supported (128, 512, 2048)",
reta_size);
return -EINVAL;
}
/* It MUST use the current LUT size to get the RSS lookup table,
* otherwise if will fail with -100 error code.
*/
lut = rte_zmalloc(NULL, RTE_MAX(reta_size, lut_size), 0);
if (!lut) {
PMD_DRV_LOG(ERR, "No memory can be allocated");
return -ENOMEM;
}
ret = ice_get_rss_lut(pf->main_vsi, lut, lut_size);
if (ret)
goto out;
for (i = 0; i < reta_size; i++) {
idx = i / RTE_RETA_GROUP_SIZE;
shift = i % RTE_RETA_GROUP_SIZE;
if (reta_conf[idx].mask & (1ULL << shift))
lut[i] = reta_conf[idx].reta[shift];
}
ret = ice_set_rss_lut(pf->main_vsi, lut, reta_size);
if (ret == 0 && lut_size != reta_size) {
PMD_DRV_LOG(INFO,
"The size of hash lookup table is changed from (%d) to (%d)",
lut_size, reta_size);
pf->hash_lut_size = reta_size;
}
out:
rte_free(lut);
return ret;
}
static int
ice_rss_reta_query(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
uint16_t i, lut_size = pf->hash_lut_size;
uint16_t idx, shift;
uint8_t *lut;
int ret;
if (reta_size != lut_size) {
PMD_DRV_LOG(ERR,
"The size of hash lookup table configured (%d)"
"doesn't match the number hardware can "
"supported (%d)",
reta_size, lut_size);
return -EINVAL;
}
lut = rte_zmalloc(NULL, reta_size, 0);
if (!lut) {
PMD_DRV_LOG(ERR, "No memory can be allocated");
return -ENOMEM;
}
ret = ice_get_rss_lut(pf->main_vsi, lut, reta_size);
if (ret)
goto out;
for (i = 0; i < reta_size; i++) {
idx = i / RTE_RETA_GROUP_SIZE;
shift = i % RTE_RETA_GROUP_SIZE;
if (reta_conf[idx].mask & (1ULL << shift))
reta_conf[idx].reta[shift] = lut[i];
}
out:
rte_free(lut);
return ret;
}
static int
ice_set_rss_key(struct ice_vsi *vsi, uint8_t *key, uint8_t key_len)
{
struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
int ret = 0;
if (!key || key_len == 0) {
PMD_DRV_LOG(DEBUG, "No key to be configured");
return 0;
} else if (key_len != (VSIQF_HKEY_MAX_INDEX + 1) *
sizeof(uint32_t)) {
PMD_DRV_LOG(ERR, "Invalid key length %u", key_len);
return -EINVAL;
}
struct ice_aqc_get_set_rss_keys *key_dw =
(struct ice_aqc_get_set_rss_keys *)key;
ret = ice_aq_set_rss_key(hw, vsi->idx, key_dw);
if (ret) {
PMD_DRV_LOG(ERR, "Failed to configure RSS key via AQ");
ret = -EINVAL;
}
return ret;
}
static int
ice_get_rss_key(struct ice_vsi *vsi, uint8_t *key, uint8_t *key_len)
{
struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
int ret;
if (!key || !key_len)
return -EINVAL;
ret = ice_aq_get_rss_key
(hw, vsi->idx,
(struct ice_aqc_get_set_rss_keys *)key);
if (ret) {
PMD_DRV_LOG(ERR, "Failed to get RSS key via AQ");
return -EINVAL;
}
*key_len = (VSIQF_HKEY_MAX_INDEX + 1) * sizeof(uint32_t);
return 0;
}
static int
ice_rss_hash_update(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
enum ice_status status = ICE_SUCCESS;
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct ice_vsi *vsi = pf->main_vsi;
/* set hash key */
status = ice_set_rss_key(vsi, rss_conf->rss_key, rss_conf->rss_key_len);
if (status)
return status;
if (rss_conf->rss_hf == 0) {
pf->rss_hf = 0;
return 0;
}
/* RSS hash configuration */
ice_rss_hash_set(pf, rss_conf->rss_hf);
return 0;
}
static int
ice_rss_hash_conf_get(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct ice_vsi *vsi = pf->main_vsi;
ice_get_rss_key(vsi, rss_conf->rss_key,
&rss_conf->rss_key_len);
rss_conf->rss_hf = pf->rss_hf;
return 0;
}
static int
ice_promisc_enable(struct rte_eth_dev *dev)
{
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct ice_vsi *vsi = pf->main_vsi;
enum ice_status status;
uint8_t pmask;
int ret = 0;
pmask = ICE_PROMISC_UCAST_RX | ICE_PROMISC_UCAST_TX |
ICE_PROMISC_MCAST_RX | ICE_PROMISC_MCAST_TX;
status = ice_set_vsi_promisc(hw, vsi->idx, pmask, 0);
switch (status) {
case ICE_ERR_ALREADY_EXISTS:
PMD_DRV_LOG(DEBUG, "Promisc mode has already been enabled");
case ICE_SUCCESS:
break;
default:
PMD_DRV_LOG(ERR, "Failed to enable promisc, err=%d", status);
ret = -EAGAIN;
}
return ret;
}
static int
ice_promisc_disable(struct rte_eth_dev *dev)
{
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct ice_vsi *vsi = pf->main_vsi;
enum ice_status status;
uint8_t pmask;
int ret = 0;
pmask = ICE_PROMISC_UCAST_RX | ICE_PROMISC_UCAST_TX |
ICE_PROMISC_MCAST_RX | ICE_PROMISC_MCAST_TX;
status = ice_clear_vsi_promisc(hw, vsi->idx, pmask, 0);
if (status != ICE_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to clear promisc, err=%d", status);
ret = -EAGAIN;
}
return ret;
}
static int
ice_allmulti_enable(struct rte_eth_dev *dev)
{
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct ice_vsi *vsi = pf->main_vsi;
enum ice_status status;
uint8_t pmask;
int ret = 0;
pmask = ICE_PROMISC_MCAST_RX | ICE_PROMISC_MCAST_TX;
status = ice_set_vsi_promisc(hw, vsi->idx, pmask, 0);
switch (status) {
case ICE_ERR_ALREADY_EXISTS:
PMD_DRV_LOG(DEBUG, "Allmulti has already been enabled");
case ICE_SUCCESS:
break;
default:
PMD_DRV_LOG(ERR, "Failed to enable allmulti, err=%d", status);
ret = -EAGAIN;
}
return ret;
}
static int
ice_allmulti_disable(struct rte_eth_dev *dev)
{
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct ice_vsi *vsi = pf->main_vsi;
enum ice_status status;
uint8_t pmask;
int ret = 0;
if (dev->data->promiscuous == 1)
return 0; /* must remain in all_multicast mode */
pmask = ICE_PROMISC_MCAST_RX | ICE_PROMISC_MCAST_TX;
status = ice_clear_vsi_promisc(hw, vsi->idx, pmask, 0);
if (status != ICE_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to clear allmulti, err=%d", status);
ret = -EAGAIN;
}
return ret;
}
static int ice_rx_queue_intr_enable(struct rte_eth_dev *dev,
uint16_t queue_id)
{
struct rte_pci_device *pci_dev = ICE_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t val;
uint16_t msix_intr;
msix_intr = intr_handle->intr_vec[queue_id];
val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
GLINT_DYN_CTL_ITR_INDX_M;
val &= ~GLINT_DYN_CTL_WB_ON_ITR_M;
ICE_WRITE_REG(hw, GLINT_DYN_CTL(msix_intr), val);
rte_intr_ack(&pci_dev->intr_handle);
return 0;
}
static int ice_rx_queue_intr_disable(struct rte_eth_dev *dev,
uint16_t queue_id)
{
struct rte_pci_device *pci_dev = ICE_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint16_t msix_intr;
msix_intr = intr_handle->intr_vec[queue_id];
ICE_WRITE_REG(hw, GLINT_DYN_CTL(msix_intr), GLINT_DYN_CTL_WB_ON_ITR_M);
return 0;
}
static int
ice_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
{
struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
u8 ver, patch;
u16 build;
int ret;
ver = hw->flash.orom.major;
patch = hw->flash.orom.patch;
build = hw->flash.orom.build;
ret = snprintf(fw_version, fw_size,
"%x.%02x 0x%08x %d.%d.%d",
hw->flash.nvm.major,
hw->flash.nvm.minor,
hw->flash.nvm.eetrack,
ver, build, patch);
/* add the size of '\0' */
ret += 1;
if (fw_size < (u32)ret)
return ret;
else
return 0;
}
static int
ice_vsi_vlan_pvid_set(struct ice_vsi *vsi, struct ice_vsi_vlan_pvid_info *info)
{
struct ice_hw *hw;
struct ice_vsi_ctx ctxt;
uint8_t vlan_flags = 0;
int ret;
if (!vsi || !info) {
PMD_DRV_LOG(ERR, "invalid parameters");
return -EINVAL;
}
if (info->on) {
vsi->info.port_based_inner_vlan = info->config.pvid;
/**
* If insert pvid is enabled, only tagged pkts are
* allowed to be sent out.
*/
vlan_flags = ICE_AQ_VSI_INNER_VLAN_INSERT_PVID |
ICE_AQ_VSI_INNER_VLAN_TX_MODE_ACCEPTUNTAGGED;
} else {
vsi->info.port_based_inner_vlan = 0;
if (info->config.reject.tagged == 0)
vlan_flags |= ICE_AQ_VSI_INNER_VLAN_TX_MODE_ACCEPTTAGGED;
if (info->config.reject.untagged == 0)
vlan_flags |= ICE_AQ_VSI_INNER_VLAN_TX_MODE_ACCEPTUNTAGGED;
}
vsi->info.inner_vlan_flags &= ~(ICE_AQ_VSI_INNER_VLAN_INSERT_PVID |
ICE_AQ_VSI_INNER_VLAN_EMODE_M);
vsi->info.inner_vlan_flags |= vlan_flags;
memset(&ctxt, 0, sizeof(ctxt));
rte_memcpy(&ctxt.info, &vsi->info, sizeof(vsi->info));
ctxt.info.valid_sections =
rte_cpu_to_le_16(ICE_AQ_VSI_PROP_VLAN_VALID);
ctxt.vsi_num = vsi->vsi_id;
hw = ICE_VSI_TO_HW(vsi);
ret = ice_update_vsi(hw, vsi->idx, &ctxt, NULL);
if (ret != ICE_SUCCESS) {
PMD_DRV_LOG(ERR,
"update VSI for VLAN insert failed, err %d",
ret);
return -EINVAL;
}
vsi->info.valid_sections |=
rte_cpu_to_le_16(ICE_AQ_VSI_PROP_VLAN_VALID);
return ret;
}
static int
ice_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on)
{
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct ice_vsi *vsi = pf->main_vsi;
struct rte_eth_dev_data *data = pf->dev_data;
struct ice_vsi_vlan_pvid_info info;
int ret;
memset(&info, 0, sizeof(info));
info.on = on;
if (info.on) {
info.config.pvid = pvid;
} else {
info.config.reject.tagged =
data->dev_conf.txmode.hw_vlan_reject_tagged;
info.config.reject.untagged =
data->dev_conf.txmode.hw_vlan_reject_untagged;
}
ret = ice_vsi_vlan_pvid_set(vsi, &info);
if (ret < 0) {
PMD_DRV_LOG(ERR, "Failed to set pvid.");
return -EINVAL;
}
return 0;
}
static int
ice_get_eeprom_length(struct rte_eth_dev *dev)
{
struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
return hw->flash.flash_size;
}
static int
ice_get_eeprom(struct rte_eth_dev *dev,
struct rte_dev_eeprom_info *eeprom)
{
struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
enum ice_status status = ICE_SUCCESS;
uint8_t *data = eeprom->data;
eeprom->magic = hw->vendor_id | (hw->device_id << 16);
status = ice_acquire_nvm(hw, ICE_RES_READ);
if (status) {
PMD_DRV_LOG(ERR, "acquire nvm failed.");
return -EIO;
}
status = ice_read_flat_nvm(hw, eeprom->offset, &eeprom->length,
data, false);
ice_release_nvm(hw);
if (status) {
PMD_DRV_LOG(ERR, "EEPROM read failed.");
return -EIO;
}
return 0;
}
static void
ice_stat_update_32(struct ice_hw *hw,
uint32_t reg,
bool offset_loaded,
uint64_t *offset,
uint64_t *stat)
{
uint64_t new_data;
new_data = (uint64_t)ICE_READ_REG(hw, reg);
if (!offset_loaded)
*offset = new_data;
if (new_data >= *offset)
*stat = (uint64_t)(new_data - *offset);
else
*stat = (uint64_t)((new_data +
((uint64_t)1 << ICE_32_BIT_WIDTH))
- *offset);
}
static void
ice_stat_update_40(struct ice_hw *hw,
uint32_t hireg,
uint32_t loreg,
bool offset_loaded,
uint64_t *offset,
uint64_t *stat)
{
uint64_t new_data;
new_data = (uint64_t)ICE_READ_REG(hw, loreg);
new_data |= (uint64_t)(ICE_READ_REG(hw, hireg) & ICE_8_BIT_MASK) <<
ICE_32_BIT_WIDTH;
if (!offset_loaded)
*offset = new_data;
if (new_data >= *offset)
*stat = new_data - *offset;
else
*stat = (uint64_t)((new_data +
((uint64_t)1 << ICE_40_BIT_WIDTH)) -
*offset);
*stat &= ICE_40_BIT_MASK;
}
/* Get all the statistics of a VSI */
static void
ice_update_vsi_stats(struct ice_vsi *vsi)
{
struct ice_eth_stats *oes = &vsi->eth_stats_offset;
struct ice_eth_stats *nes = &vsi->eth_stats;
struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
int idx = rte_le_to_cpu_16(vsi->vsi_id);
ice_stat_update_40(hw, GLV_GORCH(idx), GLV_GORCL(idx),
vsi->offset_loaded, &oes->rx_bytes,
&nes->rx_bytes);
ice_stat_update_40(hw, GLV_UPRCH(idx), GLV_UPRCL(idx),
vsi->offset_loaded, &oes->rx_unicast,
&nes->rx_unicast);
ice_stat_update_40(hw, GLV_MPRCH(idx), GLV_MPRCL(idx),
vsi->offset_loaded, &oes->rx_multicast,
&nes->rx_multicast);
ice_stat_update_40(hw, GLV_BPRCH(idx), GLV_BPRCL(idx),
vsi->offset_loaded, &oes->rx_broadcast,
&nes->rx_broadcast);
/* enlarge the limitation when rx_bytes overflowed */
if (vsi->offset_loaded) {
if (ICE_RXTX_BYTES_LOW(vsi->old_rx_bytes) > nes->rx_bytes)
nes->rx_bytes += (uint64_t)1 << ICE_40_BIT_WIDTH;
nes->rx_bytes += ICE_RXTX_BYTES_HIGH(vsi->old_rx_bytes);
}
vsi->old_rx_bytes = nes->rx_bytes;
/* exclude CRC bytes */
nes->rx_bytes -= (nes->rx_unicast + nes->rx_multicast +
nes->rx_broadcast) * RTE_ETHER_CRC_LEN;
ice_stat_update_32(hw, GLV_RDPC(idx), vsi->offset_loaded,
&oes->rx_discards, &nes->rx_discards);
/* GLV_REPC not supported */
/* GLV_RMPC not supported */
ice_stat_update_32(hw, GLSWID_RUPP(idx), vsi->offset_loaded,
&oes->rx_unknown_protocol,
&nes->rx_unknown_protocol);
ice_stat_update_40(hw, GLV_GOTCH(idx), GLV_GOTCL(idx),
vsi->offset_loaded, &oes->tx_bytes,
&nes->tx_bytes);
ice_stat_update_40(hw, GLV_UPTCH(idx), GLV_UPTCL(idx),
vsi->offset_loaded, &oes->tx_unicast,
&nes->tx_unicast);
ice_stat_update_40(hw, GLV_MPTCH(idx), GLV_MPTCL(idx),
vsi->offset_loaded, &oes->tx_multicast,
&nes->tx_multicast);
ice_stat_update_40(hw, GLV_BPTCH(idx), GLV_BPTCL(idx),
vsi->offset_loaded, &oes->tx_broadcast,
&nes->tx_broadcast);
/* GLV_TDPC not supported */
ice_stat_update_32(hw, GLV_TEPC(idx), vsi->offset_loaded,
&oes->tx_errors, &nes->tx_errors);
/* enlarge the limitation when tx_bytes overflowed */
if (vsi->offset_loaded) {
if (ICE_RXTX_BYTES_LOW(vsi->old_tx_bytes) > nes->tx_bytes)
nes->tx_bytes += (uint64_t)1 << ICE_40_BIT_WIDTH;
nes->tx_bytes += ICE_RXTX_BYTES_HIGH(vsi->old_tx_bytes);
}
vsi->old_tx_bytes = nes->tx_bytes;
vsi->offset_loaded = true;
PMD_DRV_LOG(DEBUG, "************** VSI[%u] stats start **************",
vsi->vsi_id);
PMD_DRV_LOG(DEBUG, "rx_bytes: %"PRIu64"", nes->rx_bytes);
PMD_DRV_LOG(DEBUG, "rx_unicast: %"PRIu64"", nes->rx_unicast);
PMD_DRV_LOG(DEBUG, "rx_multicast: %"PRIu64"", nes->rx_multicast);
PMD_DRV_LOG(DEBUG, "rx_broadcast: %"PRIu64"", nes->rx_broadcast);
PMD_DRV_LOG(DEBUG, "rx_discards: %"PRIu64"", nes->rx_discards);
PMD_DRV_LOG(DEBUG, "rx_unknown_protocol: %"PRIu64"",
nes->rx_unknown_protocol);
PMD_DRV_LOG(DEBUG, "tx_bytes: %"PRIu64"", nes->tx_bytes);
PMD_DRV_LOG(DEBUG, "tx_unicast: %"PRIu64"", nes->tx_unicast);
PMD_DRV_LOG(DEBUG, "tx_multicast: %"PRIu64"", nes->tx_multicast);
PMD_DRV_LOG(DEBUG, "tx_broadcast: %"PRIu64"", nes->tx_broadcast);
PMD_DRV_LOG(DEBUG, "tx_discards: %"PRIu64"", nes->tx_discards);
PMD_DRV_LOG(DEBUG, "tx_errors: %"PRIu64"", nes->tx_errors);
PMD_DRV_LOG(DEBUG, "************** VSI[%u] stats end ****************",
vsi->vsi_id);
}
static void
ice_read_stats_registers(struct ice_pf *pf, struct ice_hw *hw)
{
struct ice_hw_port_stats *ns = &pf->stats; /* new stats */
struct ice_hw_port_stats *os = &pf->stats_offset; /* old stats */
/* Get statistics of struct ice_eth_stats */
ice_stat_update_40(hw, GLPRT_GORCH(hw->port_info->lport),
GLPRT_GORCL(hw->port_info->lport),
pf->offset_loaded, &os->eth.rx_bytes,
&ns->eth.rx_bytes);
ice_stat_update_40(hw, GLPRT_UPRCH(hw->port_info->lport),
GLPRT_UPRCL(hw->port_info->lport),
pf->offset_loaded, &os->eth.rx_unicast,
&ns->eth.rx_unicast);
ice_stat_update_40(hw, GLPRT_MPRCH(hw->port_info->lport),
GLPRT_MPRCL(hw->port_info->lport),
pf->offset_loaded, &os->eth.rx_multicast,
&ns->eth.rx_multicast);
ice_stat_update_40(hw, GLPRT_BPRCH(hw->port_info->lport),
GLPRT_BPRCL(hw->port_info->lport),
pf->offset_loaded, &os->eth.rx_broadcast,
&ns->eth.rx_broadcast);
ice_stat_update_32(hw, PRTRPB_RDPC,
pf->offset_loaded, &os->eth.rx_discards,
&ns->eth.rx_discards);
/* enlarge the limitation when rx_bytes overflowed */
if (pf->offset_loaded) {
if (ICE_RXTX_BYTES_LOW(pf->old_rx_bytes) > ns->eth.rx_bytes)
ns->eth.rx_bytes += (uint64_t)1 << ICE_40_BIT_WIDTH;
ns->eth.rx_bytes += ICE_RXTX_BYTES_HIGH(pf->old_rx_bytes);
}
pf->old_rx_bytes = ns->eth.rx_bytes;
/* Workaround: CRC size should not be included in byte statistics,
* so subtract RTE_ETHER_CRC_LEN from the byte counter for each rx
* packet.
*/
ns->eth.rx_bytes -= (ns->eth.rx_unicast + ns->eth.rx_multicast +
ns->eth.rx_broadcast) * RTE_ETHER_CRC_LEN;
/* GLPRT_REPC not supported */
/* GLPRT_RMPC not supported */
ice_stat_update_32(hw, GLSWID_RUPP(hw->port_info->lport),
pf->offset_loaded,
&os->eth.rx_unknown_protocol,
&ns->eth.rx_unknown_protocol);
ice_stat_update_40(hw, GLPRT_GOTCH(hw->port_info->lport),
GLPRT_GOTCL(hw->port_info->lport),
pf->offset_loaded, &os->eth.tx_bytes,
&ns->eth.tx_bytes);
ice_stat_update_40(hw, GLPRT_UPTCH(hw->port_info->lport),
GLPRT_UPTCL(hw->port_info->lport),
pf->offset_loaded, &os->eth.tx_unicast,
&ns->eth.tx_unicast);
ice_stat_update_40(hw, GLPRT_MPTCH(hw->port_info->lport),
GLPRT_MPTCL(hw->port_info->lport),
pf->offset_loaded, &os->eth.tx_multicast,
&ns->eth.tx_multicast);
ice_stat_update_40(hw, GLPRT_BPTCH(hw->port_info->lport),
GLPRT_BPTCL(hw->port_info->lport),
pf->offset_loaded, &os->eth.tx_broadcast,
&ns->eth.tx_broadcast);
/* enlarge the limitation when tx_bytes overflowed */
if (pf->offset_loaded) {
if (ICE_RXTX_BYTES_LOW(pf->old_tx_bytes) > ns->eth.tx_bytes)
ns->eth.tx_bytes += (uint64_t)1 << ICE_40_BIT_WIDTH;
ns->eth.tx_bytes += ICE_RXTX_BYTES_HIGH(pf->old_tx_bytes);
}
pf->old_tx_bytes = ns->eth.tx_bytes;
ns->eth.tx_bytes -= (ns->eth.tx_unicast + ns->eth.tx_multicast +
ns->eth.tx_broadcast) * RTE_ETHER_CRC_LEN;
/* GLPRT_TEPC not supported */
/* additional port specific stats */
ice_stat_update_32(hw, GLPRT_TDOLD(hw->port_info->lport),
pf->offset_loaded, &os->tx_dropped_link_down,
&ns->tx_dropped_link_down);
ice_stat_update_32(hw, GLPRT_CRCERRS(hw->port_info->lport),
pf->offset_loaded, &os->crc_errors,
&ns->crc_errors);
ice_stat_update_32(hw, GLPRT_ILLERRC(hw->port_info->lport),
pf->offset_loaded, &os->illegal_bytes,
&ns->illegal_bytes);
/* GLPRT_ERRBC not supported */
ice_stat_update_32(hw, GLPRT_MLFC(hw->port_info->lport),
pf->offset_loaded, &os->mac_local_faults,
&ns->mac_local_faults);
ice_stat_update_32(hw, GLPRT_MRFC(hw->port_info->lport),
pf->offset_loaded, &os->mac_remote_faults,
&ns->mac_remote_faults);
ice_stat_update_32(hw, GLPRT_RLEC(hw->port_info->lport),
pf->offset_loaded, &os->rx_len_errors,
&ns->rx_len_errors);
ice_stat_update_32(hw, GLPRT_LXONRXC(hw->port_info->lport),
pf->offset_loaded, &os->link_xon_rx,
&ns->link_xon_rx);
ice_stat_update_32(hw, GLPRT_LXOFFRXC(hw->port_info->lport),
pf->offset_loaded, &os->link_xoff_rx,
&ns->link_xoff_rx);
ice_stat_update_32(hw, GLPRT_LXONTXC(hw->port_info->lport),
pf->offset_loaded, &os->link_xon_tx,
&ns->link_xon_tx);
ice_stat_update_32(hw, GLPRT_LXOFFTXC(hw->port_info->lport),
pf->offset_loaded, &os->link_xoff_tx,
&ns->link_xoff_tx);
ice_stat_update_40(hw, GLPRT_PRC64H(hw->port_info->lport),
GLPRT_PRC64L(hw->port_info->lport),
pf->offset_loaded, &os->rx_size_64,
&ns->rx_size_64);
ice_stat_update_40(hw, GLPRT_PRC127H(hw->port_info->lport),
GLPRT_PRC127L(hw->port_info->lport),
pf->offset_loaded, &os->rx_size_127,
&ns->rx_size_127);
ice_stat_update_40(hw, GLPRT_PRC255H(hw->port_info->lport),
GLPRT_PRC255L(hw->port_info->lport),
pf->offset_loaded, &os->rx_size_255,
&ns->rx_size_255);
ice_stat_update_40(hw, GLPRT_PRC511H(hw->port_info->lport),
GLPRT_PRC511L(hw->port_info->lport),
pf->offset_loaded, &os->rx_size_511,
&ns->rx_size_511);
ice_stat_update_40(hw, GLPRT_PRC1023H(hw->port_info->lport),
GLPRT_PRC1023L(hw->port_info->lport),
pf->offset_loaded, &os->rx_size_1023,
&ns->rx_size_1023);
ice_stat_update_40(hw, GLPRT_PRC1522H(hw->port_info->lport),
GLPRT_PRC1522L(hw->port_info->lport),
pf->offset_loaded, &os->rx_size_1522,
&ns->rx_size_1522);
ice_stat_update_40(hw, GLPRT_PRC9522H(hw->port_info->lport),
GLPRT_PRC9522L(hw->port_info->lport),
pf->offset_loaded, &os->rx_size_big,
&ns->rx_size_big);
ice_stat_update_32(hw, GLPRT_RUC(hw->port_info->lport),
pf->offset_loaded, &os->rx_undersize,
&ns->rx_undersize);
ice_stat_update_32(hw, GLPRT_RFC(hw->port_info->lport),
pf->offset_loaded, &os->rx_fragments,
&ns->rx_fragments);
ice_stat_update_32(hw, GLPRT_ROC(hw->port_info->lport),
pf->offset_loaded, &os->rx_oversize,
&ns->rx_oversize);
ice_stat_update_32(hw, GLPRT_RJC(hw->port_info->lport),
pf->offset_loaded, &os->rx_jabber,
&ns->rx_jabber);
ice_stat_update_40(hw, GLPRT_PTC64H(hw->port_info->lport),
GLPRT_PTC64L(hw->port_info->lport),
pf->offset_loaded, &os->tx_size_64,
&ns->tx_size_64);
ice_stat_update_40(hw, GLPRT_PTC127H(hw->port_info->lport),
GLPRT_PTC127L(hw->port_info->lport),
pf->offset_loaded, &os->tx_size_127,
&ns->tx_size_127);
ice_stat_update_40(hw, GLPRT_PTC255H(hw->port_info->lport),
GLPRT_PTC255L(hw->port_info->lport),
pf->offset_loaded, &os->tx_size_255,
&ns->tx_size_255);
ice_stat_update_40(hw, GLPRT_PTC511H(hw->port_info->lport),
GLPRT_PTC511L(hw->port_info->lport),
pf->offset_loaded, &os->tx_size_511,
&ns->tx_size_511);
ice_stat_update_40(hw, GLPRT_PTC1023H(hw->port_info->lport),
GLPRT_PTC1023L(hw->port_info->lport),
pf->offset_loaded, &os->tx_size_1023,
&ns->tx_size_1023);
ice_stat_update_40(hw, GLPRT_PTC1522H(hw->port_info->lport),
GLPRT_PTC1522L(hw->port_info->lport),
pf->offset_loaded, &os->tx_size_1522,
&ns->tx_size_1522);
ice_stat_update_40(hw, GLPRT_PTC9522H(hw->port_info->lport),
GLPRT_PTC9522L(hw->port_info->lport),
pf->offset_loaded, &os->tx_size_big,
&ns->tx_size_big);
/* GLPRT_MSPDC not supported */
/* GLPRT_XEC not supported */
pf->offset_loaded = true;
if (pf->main_vsi)
ice_update_vsi_stats(pf->main_vsi);
}
/* Get all statistics of a port */
static int
ice_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
{
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct ice_hw_port_stats *ns = &pf->stats; /* new stats */
/* call read registers - updates values, now write them to struct */
ice_read_stats_registers(pf, hw);
stats->ipackets = pf->main_vsi->eth_stats.rx_unicast +
pf->main_vsi->eth_stats.rx_multicast +
pf->main_vsi->eth_stats.rx_broadcast -
pf->main_vsi->eth_stats.rx_discards;
stats->opackets = ns->eth.tx_unicast +
ns->eth.tx_multicast +
ns->eth.tx_broadcast;
stats->ibytes = pf->main_vsi->eth_stats.rx_bytes;
stats->obytes = ns->eth.tx_bytes;
stats->oerrors = ns->eth.tx_errors +
pf->main_vsi->eth_stats.tx_errors;
/* Rx Errors */
stats->imissed = ns->eth.rx_discards +
pf->main_vsi->eth_stats.rx_discards;
stats->ierrors = ns->crc_errors +
ns->rx_undersize +
ns->rx_oversize + ns->rx_fragments + ns->rx_jabber;
PMD_DRV_LOG(DEBUG, "*************** PF stats start *****************");
PMD_DRV_LOG(DEBUG, "rx_bytes: %"PRIu64"", ns->eth.rx_bytes);
PMD_DRV_LOG(DEBUG, "rx_unicast: %"PRIu64"", ns->eth.rx_unicast);
PMD_DRV_LOG(DEBUG, "rx_multicast:%"PRIu64"", ns->eth.rx_multicast);
PMD_DRV_LOG(DEBUG, "rx_broadcast:%"PRIu64"", ns->eth.rx_broadcast);
PMD_DRV_LOG(DEBUG, "rx_discards:%"PRIu64"", ns->eth.rx_discards);
PMD_DRV_LOG(DEBUG, "vsi rx_discards:%"PRIu64"",
pf->main_vsi->eth_stats.rx_discards);
PMD_DRV_LOG(DEBUG, "rx_unknown_protocol: %"PRIu64"",
ns->eth.rx_unknown_protocol);
PMD_DRV_LOG(DEBUG, "tx_bytes: %"PRIu64"", ns->eth.tx_bytes);
PMD_DRV_LOG(DEBUG, "tx_unicast: %"PRIu64"", ns->eth.tx_unicast);
PMD_DRV_LOG(DEBUG, "tx_multicast:%"PRIu64"", ns->eth.tx_multicast);
PMD_DRV_LOG(DEBUG, "tx_broadcast:%"PRIu64"", ns->eth.tx_broadcast);
PMD_DRV_LOG(DEBUG, "tx_discards:%"PRIu64"", ns->eth.tx_discards);
PMD_DRV_LOG(DEBUG, "vsi tx_discards:%"PRIu64"",
pf->main_vsi->eth_stats.tx_discards);
PMD_DRV_LOG(DEBUG, "tx_errors: %"PRIu64"", ns->eth.tx_errors);
PMD_DRV_LOG(DEBUG, "tx_dropped_link_down: %"PRIu64"",
ns->tx_dropped_link_down);
PMD_DRV_LOG(DEBUG, "crc_errors: %"PRIu64"", ns->crc_errors);
PMD_DRV_LOG(DEBUG, "illegal_bytes: %"PRIu64"",
ns->illegal_bytes);
PMD_DRV_LOG(DEBUG, "error_bytes: %"PRIu64"", ns->error_bytes);
PMD_DRV_LOG(DEBUG, "mac_local_faults: %"PRIu64"",
ns->mac_local_faults);
PMD_DRV_LOG(DEBUG, "mac_remote_faults: %"PRIu64"",
ns->mac_remote_faults);
PMD_DRV_LOG(DEBUG, "link_xon_rx: %"PRIu64"", ns->link_xon_rx);
PMD_DRV_LOG(DEBUG, "link_xoff_rx: %"PRIu64"", ns->link_xoff_rx);
PMD_DRV_LOG(DEBUG, "link_xon_tx: %"PRIu64"", ns->link_xon_tx);
PMD_DRV_LOG(DEBUG, "link_xoff_tx: %"PRIu64"", ns->link_xoff_tx);
PMD_DRV_LOG(DEBUG, "rx_size_64: %"PRIu64"", ns->rx_size_64);
PMD_DRV_LOG(DEBUG, "rx_size_127: %"PRIu64"", ns->rx_size_127);
PMD_DRV_LOG(DEBUG, "rx_size_255: %"PRIu64"", ns->rx_size_255);
PMD_DRV_LOG(DEBUG, "rx_size_511: %"PRIu64"", ns->rx_size_511);
PMD_DRV_LOG(DEBUG, "rx_size_1023: %"PRIu64"", ns->rx_size_1023);
PMD_DRV_LOG(DEBUG, "rx_size_1522: %"PRIu64"", ns->rx_size_1522);
PMD_DRV_LOG(DEBUG, "rx_size_big: %"PRIu64"", ns->rx_size_big);
PMD_DRV_LOG(DEBUG, "rx_undersize: %"PRIu64"", ns->rx_undersize);
PMD_DRV_LOG(DEBUG, "rx_fragments: %"PRIu64"", ns->rx_fragments);
PMD_DRV_LOG(DEBUG, "rx_oversize: %"PRIu64"", ns->rx_oversize);
PMD_DRV_LOG(DEBUG, "rx_jabber: %"PRIu64"", ns->rx_jabber);
PMD_DRV_LOG(DEBUG, "tx_size_64: %"PRIu64"", ns->tx_size_64);
PMD_DRV_LOG(DEBUG, "tx_size_127: %"PRIu64"", ns->tx_size_127);
PMD_DRV_LOG(DEBUG, "tx_size_255: %"PRIu64"", ns->tx_size_255);
PMD_DRV_LOG(DEBUG, "tx_size_511: %"PRIu64"", ns->tx_size_511);
PMD_DRV_LOG(DEBUG, "tx_size_1023: %"PRIu64"", ns->tx_size_1023);
PMD_DRV_LOG(DEBUG, "tx_size_1522: %"PRIu64"", ns->tx_size_1522);
PMD_DRV_LOG(DEBUG, "tx_size_big: %"PRIu64"", ns->tx_size_big);
PMD_DRV_LOG(DEBUG, "rx_len_errors: %"PRIu64"", ns->rx_len_errors);
PMD_DRV_LOG(DEBUG, "************* PF stats end ****************");
return 0;
}
/* Reset the statistics */
static int
ice_stats_reset(struct rte_eth_dev *dev)
{
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* Mark PF and VSI stats to update the offset, aka "reset" */
pf->offset_loaded = false;
if (pf->main_vsi)
pf->main_vsi->offset_loaded = false;
/* read the stats, reading current register values into offset */
ice_read_stats_registers(pf, hw);
return 0;
}
static uint32_t
ice_xstats_calc_num(void)
{
uint32_t num;
num = ICE_NB_ETH_XSTATS + ICE_NB_HW_PORT_XSTATS;
return num;
}
static int
ice_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
unsigned int n)
{
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
unsigned int i;
unsigned int count;
struct ice_hw_port_stats *hw_stats = &pf->stats;
count = ice_xstats_calc_num();
if (n < count)
return count;
ice_read_stats_registers(pf, hw);
if (!xstats)
return 0;
count = 0;
/* Get stats from ice_eth_stats struct */
for (i = 0; i < ICE_NB_ETH_XSTATS; i++) {
xstats[count].value =
*(uint64_t *)((char *)&hw_stats->eth +
ice_stats_strings[i].offset);
xstats[count].id = count;
count++;
}
/* Get individiual stats from ice_hw_port struct */
for (i = 0; i < ICE_NB_HW_PORT_XSTATS; i++) {
xstats[count].value =
*(uint64_t *)((char *)hw_stats +
ice_hw_port_strings[i].offset);
xstats[count].id = count;
count++;
}
return count;
}
static int ice_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
struct rte_eth_xstat_name *xstats_names,
__rte_unused unsigned int limit)
{
unsigned int count = 0;
unsigned int i;
if (!xstats_names)
return ice_xstats_calc_num();
/* Note: limit checked in rte_eth_xstats_names() */
/* Get stats from ice_eth_stats struct */
for (i = 0; i < ICE_NB_ETH_XSTATS; i++) {
strlcpy(xstats_names[count].name, ice_stats_strings[i].name,
sizeof(xstats_names[count].name));
count++;
}
/* Get individiual stats from ice_hw_port struct */
for (i = 0; i < ICE_NB_HW_PORT_XSTATS; i++) {
strlcpy(xstats_names[count].name, ice_hw_port_strings[i].name,
sizeof(xstats_names[count].name));
count++;
}
return count;
}
static int
ice_dev_flow_ops_get(struct rte_eth_dev *dev,
const struct rte_flow_ops **ops)
{
if (!dev)
return -EINVAL;
*ops = &ice_flow_ops;
return 0;
}
/* Add UDP tunneling port */
static int
ice_dev_udp_tunnel_port_add(struct rte_eth_dev *dev,
struct rte_eth_udp_tunnel *udp_tunnel)
{
int ret = 0;
struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (udp_tunnel == NULL)
return -EINVAL;
switch (udp_tunnel->prot_type) {
case RTE_TUNNEL_TYPE_VXLAN:
ret = ice_create_tunnel(hw, TNL_VXLAN, udp_tunnel->udp_port);
break;
default:
PMD_DRV_LOG(ERR, "Invalid tunnel type");
ret = -EINVAL;
break;
}
return ret;
}
/* Delete UDP tunneling port */
static int
ice_dev_udp_tunnel_port_del(struct rte_eth_dev *dev,
struct rte_eth_udp_tunnel *udp_tunnel)
{
int ret = 0;
struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (udp_tunnel == NULL)
return -EINVAL;
switch (udp_tunnel->prot_type) {
case RTE_TUNNEL_TYPE_VXLAN:
ret = ice_destroy_tunnel(hw, udp_tunnel->udp_port, 0);
break;
default:
PMD_DRV_LOG(ERR, "Invalid tunnel type");
ret = -EINVAL;
break;
}
return ret;
}
static int
ice_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_probe(pci_dev,
sizeof(struct ice_adapter),
ice_dev_init);
}
static int
ice_pci_remove(struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_remove(pci_dev, ice_dev_uninit);
}
static struct rte_pci_driver rte_ice_pmd = {
.id_table = pci_id_ice_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
.probe = ice_pci_probe,
.remove = ice_pci_remove,
};
/**
* Driver initialization routine.
* Invoked once at EAL init time.
* Register itself as the [Poll Mode] Driver of PCI devices.
*/
RTE_PMD_REGISTER_PCI(net_ice, rte_ice_pmd);
RTE_PMD_REGISTER_PCI_TABLE(net_ice, pci_id_ice_map);
RTE_PMD_REGISTER_KMOD_DEP(net_ice, "* igb_uio | uio_pci_generic | vfio-pci");
RTE_PMD_REGISTER_PARAM_STRING(net_ice,
ICE_PROTO_XTR_ARG "=[queue:]<vlan|ipv4|ipv6|ipv6_flow|tcp|ip_offset>"
ICE_SAFE_MODE_SUPPORT_ARG "=<0|1>"
ICE_PIPELINE_MODE_SUPPORT_ARG "=<0|1>");
RTE_LOG_REGISTER(ice_logtype_init, pmd.net.ice.init, NOTICE);
RTE_LOG_REGISTER(ice_logtype_driver, pmd.net.ice.driver, NOTICE);
#ifdef RTE_LIBRTE_ICE_DEBUG_RX
RTE_LOG_REGISTER(ice_logtype_rx, pmd.net.ice.rx, DEBUG);
#endif
#ifdef RTE_LIBRTE_ICE_DEBUG_TX
RTE_LOG_REGISTER(ice_logtype_tx, pmd.net.ice.tx, DEBUG);
#endif
#ifdef RTE_LIBRTE_ICE_DEBUG_TX_FREE
RTE_LOG_REGISTER(ice_logtype_tx_free, pmd.net.ice.tx_free, DEBUG);
#endif