numam-dpdk/lib/librte_member/rte_member_ht.c
Ciara Power c9cd5806f7 member: check max SIMD bitwidth
When choosing a vector path to take, an extra condition must be
satisfied to ensure the max SIMD bitwidth allows for the CPU
enabled path.

Signed-off-by: Ciara Power <ciara.power@intel.com>
Acked-by: Yipeng Wang <yipeng1.wang@intel.com>
2020-10-19 16:45:02 +02:00

560 lines
16 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017 Intel Corporation
*/
#include <rte_errno.h>
#include <rte_malloc.h>
#include <rte_prefetch.h>
#include <rte_random.h>
#include <rte_log.h>
#include <rte_vect.h>
#include "rte_member.h"
#include "rte_member_ht.h"
#if defined(RTE_ARCH_X86)
#include "rte_member_x86.h"
#endif
/* Search bucket for entry with tmp_sig and update set_id */
static inline int
update_entry_search(uint32_t bucket_id, member_sig_t tmp_sig,
struct member_ht_bucket *buckets,
member_set_t set_id)
{
uint32_t i;
for (i = 0; i < RTE_MEMBER_BUCKET_ENTRIES; i++) {
if (buckets[bucket_id].sigs[i] == tmp_sig) {
buckets[bucket_id].sets[i] = set_id;
return 1;
}
}
return 0;
}
static inline int
search_bucket_single(uint32_t bucket_id, member_sig_t tmp_sig,
struct member_ht_bucket *buckets,
member_set_t *set_id)
{
uint32_t iter;
for (iter = 0; iter < RTE_MEMBER_BUCKET_ENTRIES; iter++) {
if (tmp_sig == buckets[bucket_id].sigs[iter] &&
buckets[bucket_id].sets[iter] !=
RTE_MEMBER_NO_MATCH) {
*set_id = buckets[bucket_id].sets[iter];
return 1;
}
}
return 0;
}
static inline void
search_bucket_multi(uint32_t bucket_id, member_sig_t tmp_sig,
struct member_ht_bucket *buckets,
uint32_t *counter,
uint32_t matches_per_key,
member_set_t *set_id)
{
uint32_t iter;
for (iter = 0; iter < RTE_MEMBER_BUCKET_ENTRIES; iter++) {
if (tmp_sig == buckets[bucket_id].sigs[iter] &&
buckets[bucket_id].sets[iter] !=
RTE_MEMBER_NO_MATCH) {
set_id[*counter] = buckets[bucket_id].sets[iter];
(*counter)++;
if (*counter >= matches_per_key)
return;
}
}
}
int
rte_member_create_ht(struct rte_member_setsum *ss,
const struct rte_member_parameters *params)
{
uint32_t i, j;
uint32_t size_bucket_t;
uint32_t num_entries = rte_align32pow2(params->num_keys);
if ((num_entries > RTE_MEMBER_ENTRIES_MAX) ||
!rte_is_power_of_2(RTE_MEMBER_BUCKET_ENTRIES) ||
num_entries < RTE_MEMBER_BUCKET_ENTRIES) {
rte_errno = EINVAL;
RTE_MEMBER_LOG(ERR,
"Membership HT create with invalid parameters\n");
return -EINVAL;
}
uint32_t num_buckets = num_entries / RTE_MEMBER_BUCKET_ENTRIES;
size_bucket_t = sizeof(struct member_ht_bucket);
struct member_ht_bucket *buckets = rte_zmalloc_socket(NULL,
num_buckets * size_bucket_t,
RTE_CACHE_LINE_SIZE, ss->socket_id);
if (buckets == NULL) {
RTE_MEMBER_LOG(ERR, "memory allocation failed for HT "
"setsummary\n");
return -ENOMEM;
}
ss->table = buckets;
ss->bucket_cnt = num_buckets;
ss->bucket_mask = num_buckets - 1;
ss->cache = params->is_cache;
for (i = 0; i < num_buckets; i++) {
for (j = 0; j < RTE_MEMBER_BUCKET_ENTRIES; j++)
buckets[i].sets[j] = RTE_MEMBER_NO_MATCH;
}
#if defined(RTE_ARCH_X86)
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) &&
RTE_MEMBER_BUCKET_ENTRIES == 16 &&
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
ss->sig_cmp_fn = RTE_MEMBER_COMPARE_AVX2;
else
#endif
ss->sig_cmp_fn = RTE_MEMBER_COMPARE_SCALAR;
RTE_MEMBER_LOG(DEBUG, "Hash table based filter created, "
"the table has %u entries, %u buckets\n",
num_entries, num_buckets);
return 0;
}
static inline void
get_buckets_index(const struct rte_member_setsum *ss, const void *key,
uint32_t *prim_bkt, uint32_t *sec_bkt, member_sig_t *sig)
{
uint32_t first_hash = MEMBER_HASH_FUNC(key, ss->key_len,
ss->prim_hash_seed);
uint32_t sec_hash = MEMBER_HASH_FUNC(&first_hash, sizeof(uint32_t),
ss->sec_hash_seed);
/*
* We use the first hash value for the signature, and the second hash
* value to derive the primary and secondary bucket locations.
*
* For non-cache mode, we use the lower bits for the primary bucket
* location. Then we xor primary bucket location and the signature
* to get the secondary bucket location. This is called "partial-key
* cuckoo hashing" proposed by B. Fan, et al's paper
* "Cuckoo Filter: Practically Better Than Bloom". The benefit to use
* xor is that one could derive the alternative bucket location
* by only using the current bucket location and the signature. This is
* generally required by non-cache mode's eviction and deletion
* process without the need to store alternative hash value nor the full
* key.
*
* For cache mode, we use the lower bits for the primary bucket
* location and the higher bits for the secondary bucket location. In
* cache mode, keys are simply overwritten if bucket is full. We do not
* use xor since lower/higher bits are more independent hash values thus
* should provide slightly better table load.
*/
*sig = first_hash;
if (ss->cache) {
*prim_bkt = sec_hash & ss->bucket_mask;
*sec_bkt = (sec_hash >> 16) & ss->bucket_mask;
} else {
*prim_bkt = sec_hash & ss->bucket_mask;
*sec_bkt = (*prim_bkt ^ *sig) & ss->bucket_mask;
}
}
int
rte_member_lookup_ht(const struct rte_member_setsum *ss,
const void *key, member_set_t *set_id)
{
uint32_t prim_bucket, sec_bucket;
member_sig_t tmp_sig;
struct member_ht_bucket *buckets = ss->table;
*set_id = RTE_MEMBER_NO_MATCH;
get_buckets_index(ss, key, &prim_bucket, &sec_bucket, &tmp_sig);
switch (ss->sig_cmp_fn) {
#if defined(RTE_ARCH_X86) && defined(__AVX2__)
case RTE_MEMBER_COMPARE_AVX2:
if (search_bucket_single_avx(prim_bucket, tmp_sig, buckets,
set_id) ||
search_bucket_single_avx(sec_bucket, tmp_sig,
buckets, set_id))
return 1;
break;
#endif
default:
if (search_bucket_single(prim_bucket, tmp_sig, buckets,
set_id) ||
search_bucket_single(sec_bucket, tmp_sig,
buckets, set_id))
return 1;
}
return 0;
}
uint32_t
rte_member_lookup_bulk_ht(const struct rte_member_setsum *ss,
const void **keys, uint32_t num_keys, member_set_t *set_id)
{
uint32_t i;
uint32_t num_matches = 0;
struct member_ht_bucket *buckets = ss->table;
member_sig_t tmp_sig[RTE_MEMBER_LOOKUP_BULK_MAX];
uint32_t prim_buckets[RTE_MEMBER_LOOKUP_BULK_MAX];
uint32_t sec_buckets[RTE_MEMBER_LOOKUP_BULK_MAX];
for (i = 0; i < num_keys; i++) {
get_buckets_index(ss, keys[i], &prim_buckets[i],
&sec_buckets[i], &tmp_sig[i]);
rte_prefetch0(&buckets[prim_buckets[i]]);
rte_prefetch0(&buckets[sec_buckets[i]]);
}
for (i = 0; i < num_keys; i++) {
switch (ss->sig_cmp_fn) {
#if defined(RTE_ARCH_X86) && defined(__AVX2__)
case RTE_MEMBER_COMPARE_AVX2:
if (search_bucket_single_avx(prim_buckets[i],
tmp_sig[i], buckets, &set_id[i]) ||
search_bucket_single_avx(sec_buckets[i],
tmp_sig[i], buckets, &set_id[i]))
num_matches++;
else
set_id[i] = RTE_MEMBER_NO_MATCH;
break;
#endif
default:
if (search_bucket_single(prim_buckets[i], tmp_sig[i],
buckets, &set_id[i]) ||
search_bucket_single(sec_buckets[i],
tmp_sig[i], buckets, &set_id[i]))
num_matches++;
else
set_id[i] = RTE_MEMBER_NO_MATCH;
}
}
return num_matches;
}
uint32_t
rte_member_lookup_multi_ht(const struct rte_member_setsum *ss,
const void *key, uint32_t match_per_key,
member_set_t *set_id)
{
uint32_t num_matches = 0;
uint32_t prim_bucket, sec_bucket;
member_sig_t tmp_sig;
struct member_ht_bucket *buckets = ss->table;
get_buckets_index(ss, key, &prim_bucket, &sec_bucket, &tmp_sig);
switch (ss->sig_cmp_fn) {
#if defined(RTE_ARCH_X86) && defined(__AVX2__)
case RTE_MEMBER_COMPARE_AVX2:
search_bucket_multi_avx(prim_bucket, tmp_sig, buckets,
&num_matches, match_per_key, set_id);
if (num_matches < match_per_key)
search_bucket_multi_avx(sec_bucket, tmp_sig,
buckets, &num_matches, match_per_key, set_id);
return num_matches;
#endif
default:
search_bucket_multi(prim_bucket, tmp_sig, buckets, &num_matches,
match_per_key, set_id);
if (num_matches < match_per_key)
search_bucket_multi(sec_bucket, tmp_sig,
buckets, &num_matches, match_per_key, set_id);
return num_matches;
}
}
uint32_t
rte_member_lookup_multi_bulk_ht(const struct rte_member_setsum *ss,
const void **keys, uint32_t num_keys, uint32_t match_per_key,
uint32_t *match_count,
member_set_t *set_ids)
{
uint32_t i;
uint32_t num_matches = 0;
struct member_ht_bucket *buckets = ss->table;
uint32_t match_cnt_tmp;
member_sig_t tmp_sig[RTE_MEMBER_LOOKUP_BULK_MAX];
uint32_t prim_buckets[RTE_MEMBER_LOOKUP_BULK_MAX];
uint32_t sec_buckets[RTE_MEMBER_LOOKUP_BULK_MAX];
for (i = 0; i < num_keys; i++) {
get_buckets_index(ss, keys[i], &prim_buckets[i],
&sec_buckets[i], &tmp_sig[i]);
rte_prefetch0(&buckets[prim_buckets[i]]);
rte_prefetch0(&buckets[sec_buckets[i]]);
}
for (i = 0; i < num_keys; i++) {
match_cnt_tmp = 0;
switch (ss->sig_cmp_fn) {
#if defined(RTE_ARCH_X86) && defined(__AVX2__)
case RTE_MEMBER_COMPARE_AVX2:
search_bucket_multi_avx(prim_buckets[i], tmp_sig[i],
buckets, &match_cnt_tmp, match_per_key,
&set_ids[i*match_per_key]);
if (match_cnt_tmp < match_per_key)
search_bucket_multi_avx(sec_buckets[i],
tmp_sig[i], buckets, &match_cnt_tmp,
match_per_key,
&set_ids[i*match_per_key]);
match_count[i] = match_cnt_tmp;
if (match_cnt_tmp != 0)
num_matches++;
break;
#endif
default:
search_bucket_multi(prim_buckets[i], tmp_sig[i],
buckets, &match_cnt_tmp, match_per_key,
&set_ids[i*match_per_key]);
if (match_cnt_tmp < match_per_key)
search_bucket_multi(sec_buckets[i], tmp_sig[i],
buckets, &match_cnt_tmp, match_per_key,
&set_ids[i*match_per_key]);
match_count[i] = match_cnt_tmp;
if (match_cnt_tmp != 0)
num_matches++;
}
}
return num_matches;
}
static inline int
try_insert(struct member_ht_bucket *buckets, uint32_t prim, uint32_t sec,
member_sig_t sig, member_set_t set_id)
{
int i;
/* If not full then insert into one slot */
for (i = 0; i < RTE_MEMBER_BUCKET_ENTRIES; i++) {
if (buckets[prim].sets[i] == RTE_MEMBER_NO_MATCH) {
buckets[prim].sigs[i] = sig;
buckets[prim].sets[i] = set_id;
return 0;
}
}
/* If prim failed, we need to access second bucket */
for (i = 0; i < RTE_MEMBER_BUCKET_ENTRIES; i++) {
if (buckets[sec].sets[i] == RTE_MEMBER_NO_MATCH) {
buckets[sec].sigs[i] = sig;
buckets[sec].sets[i] = set_id;
return 0;
}
}
return -1;
}
static inline int
try_update(struct member_ht_bucket *buckets, uint32_t prim, uint32_t sec,
member_sig_t sig, member_set_t set_id,
enum rte_member_sig_compare_function cmp_fn)
{
switch (cmp_fn) {
#if defined(RTE_ARCH_X86) && defined(__AVX2__)
case RTE_MEMBER_COMPARE_AVX2:
if (update_entry_search_avx(prim, sig, buckets, set_id) ||
update_entry_search_avx(sec, sig, buckets,
set_id))
return 0;
break;
#endif
default:
if (update_entry_search(prim, sig, buckets, set_id) ||
update_entry_search(sec, sig, buckets,
set_id))
return 0;
}
return -1;
}
static inline int
evict_from_bucket(void)
{
/* For now, we randomly pick one entry to evict */
return rte_rand() & (RTE_MEMBER_BUCKET_ENTRIES - 1);
}
/*
* This function is similar to the cuckoo hash make_space function in hash
* library
*/
static inline int
make_space_bucket(const struct rte_member_setsum *ss, uint32_t bkt_idx,
unsigned int *nr_pushes)
{
unsigned int i, j;
int ret;
struct member_ht_bucket *buckets = ss->table;
uint32_t next_bucket_idx;
struct member_ht_bucket *next_bkt[RTE_MEMBER_BUCKET_ENTRIES];
struct member_ht_bucket *bkt = &buckets[bkt_idx];
/* MSB is set to indicate if an entry has been already pushed */
member_set_t flag_mask = 1U << (sizeof(member_set_t) * 8 - 1);
/*
* Push existing item (search for bucket with space in
* alternative locations) to its alternative location
*/
for (i = 0; i < RTE_MEMBER_BUCKET_ENTRIES; i++) {
/* Search for space in alternative locations */
next_bucket_idx = (bkt->sigs[i] ^ bkt_idx) & ss->bucket_mask;
next_bkt[i] = &buckets[next_bucket_idx];
for (j = 0; j < RTE_MEMBER_BUCKET_ENTRIES; j++) {
if (next_bkt[i]->sets[j] == RTE_MEMBER_NO_MATCH)
break;
}
if (j != RTE_MEMBER_BUCKET_ENTRIES)
break;
}
/* Alternative location has spare room (end of recursive function) */
if (i != RTE_MEMBER_BUCKET_ENTRIES) {
next_bkt[i]->sigs[j] = bkt->sigs[i];
next_bkt[i]->sets[j] = bkt->sets[i];
return i;
}
/* Pick entry that has not been pushed yet */
for (i = 0; i < RTE_MEMBER_BUCKET_ENTRIES; i++)
if ((bkt->sets[i] & flag_mask) == 0)
break;
/* All entries have been pushed, so entry cannot be added */
if (i == RTE_MEMBER_BUCKET_ENTRIES ||
++(*nr_pushes) > RTE_MEMBER_MAX_PUSHES)
return -ENOSPC;
next_bucket_idx = (bkt->sigs[i] ^ bkt_idx) & ss->bucket_mask;
/* Set flag to indicate that this entry is going to be pushed */
bkt->sets[i] |= flag_mask;
/* Need room in alternative bucket to insert the pushed entry */
ret = make_space_bucket(ss, next_bucket_idx, nr_pushes);
/*
* After recursive function.
* Clear flags and insert the pushed entry
* in its alternative location if successful,
* or return error
*/
bkt->sets[i] &= ~flag_mask;
if (ret >= 0) {
next_bkt[i]->sigs[ret] = bkt->sigs[i];
next_bkt[i]->sets[ret] = bkt->sets[i];
return i;
} else
return ret;
}
int
rte_member_add_ht(const struct rte_member_setsum *ss,
const void *key, member_set_t set_id)
{
int ret;
unsigned int nr_pushes = 0;
uint32_t prim_bucket, sec_bucket;
member_sig_t tmp_sig;
struct member_ht_bucket *buckets = ss->table;
member_set_t flag_mask = 1U << (sizeof(member_set_t) * 8 - 1);
if (set_id == RTE_MEMBER_NO_MATCH || (set_id & flag_mask) != 0)
return -EINVAL;
get_buckets_index(ss, key, &prim_bucket, &sec_bucket, &tmp_sig);
/*
* If it is cache based setsummary, we try overwriting (updating)
* existing entry with the same signature first. In cache mode, we allow
* false negatives and only cache the most recent keys.
*
* For non-cache mode, we do not update existing entry with the same
* signature. This is because if two keys with same signature update
* each other, false negative may happen, which is not the expected
* behavior for non-cache setsummary.
*/
if (ss->cache) {
ret = try_update(buckets, prim_bucket, sec_bucket, tmp_sig,
set_id, ss->sig_cmp_fn);
if (ret != -1)
return ret;
}
/* If not full then insert into one slot */
ret = try_insert(buckets, prim_bucket, sec_bucket, tmp_sig, set_id);
if (ret != -1)
return ret;
/* Random pick prim or sec for recursive displacement */
uint32_t select_bucket = (tmp_sig && 1U) ? prim_bucket : sec_bucket;
if (ss->cache) {
ret = evict_from_bucket();
buckets[select_bucket].sigs[ret] = tmp_sig;
buckets[select_bucket].sets[ret] = set_id;
return 1;
}
ret = make_space_bucket(ss, select_bucket, &nr_pushes);
if (ret >= 0) {
buckets[select_bucket].sigs[ret] = tmp_sig;
buckets[select_bucket].sets[ret] = set_id;
ret = 1;
}
return ret;
}
void
rte_member_free_ht(struct rte_member_setsum *ss)
{
rte_free(ss->table);
}
int
rte_member_delete_ht(const struct rte_member_setsum *ss, const void *key,
member_set_t set_id)
{
int i;
uint32_t prim_bucket, sec_bucket;
member_sig_t tmp_sig;
struct member_ht_bucket *buckets = ss->table;
get_buckets_index(ss, key, &prim_bucket, &sec_bucket, &tmp_sig);
for (i = 0; i < RTE_MEMBER_BUCKET_ENTRIES; i++) {
if (tmp_sig == buckets[prim_bucket].sigs[i] &&
set_id == buckets[prim_bucket].sets[i]) {
buckets[prim_bucket].sets[i] = RTE_MEMBER_NO_MATCH;
return 0;
}
}
for (i = 0; i < RTE_MEMBER_BUCKET_ENTRIES; i++) {
if (tmp_sig == buckets[sec_bucket].sigs[i] &&
set_id == buckets[sec_bucket].sets[i]) {
buckets[sec_bucket].sets[i] = RTE_MEMBER_NO_MATCH;
return 0;
}
}
return -ENOENT;
}
void
rte_member_reset_ht(const struct rte_member_setsum *ss)
{
uint32_t i, j;
struct member_ht_bucket *buckets = ss->table;
for (i = 0; i < ss->bucket_cnt; i++) {
for (j = 0; j < RTE_MEMBER_BUCKET_ENTRIES; j++)
buckets[i].sets[j] = RTE_MEMBER_NO_MATCH;
}
}