numam-dpdk/examples/dpdk_qat/main.c
Bruce Richardson 13c4ebd65a examples: minor changes
A series of minor changes to example applications included in the
Intel DPDK 1.6 release.
* changes to NIC configuration flags, e.g. specifying RSS
* replacing local "DIM" macro with common "RTE_DIM" macro
* minor whitespace changes for alignment.

Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-26 10:47:59 +01:00

882 lines
22 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/types.h>
#include <string.h>
#include <sys/queue.h>
#include <stdarg.h>
#include <errno.h>
#include <getopt.h>
#include <rte_common.h>
#include <rte_byteorder.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_tailq.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_launch.h>
#include <rte_atomic.h>
#include <rte_cycles.h>
#include <rte_prefetch.h>
#include <rte_lcore.h>
#include <rte_per_lcore.h>
#include <rte_branch_prediction.h>
#include <rte_interrupts.h>
#include <rte_pci.h>
#include <rte_random.h>
#include <rte_debug.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_ring.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_ip.h>
#include <rte_string_fns.h>
#include "main.h"
#include "crypto.h"
#define MBUF_SIZE (2048 + sizeof(struct rte_mbuf) + RTE_PKTMBUF_HEADROOM)
#define NB_MBUF (32 * 1024)
/*
* RX and TX Prefetch, Host, and Write-back threshold values should be
* carefully set for optimal performance. Consult the network
* controller's datasheet and supporting DPDK documentation for guidance
* on how these parameters should be set.
*/
#define RX_PTHRESH 8 /**< Default values of RX prefetch threshold reg. */
#define RX_HTHRESH 8 /**< Default values of RX host threshold reg. */
#define RX_WTHRESH 4 /**< Default values of RX write-back threshold reg. */
/*
* These default values are optimized for use with the Intel(R) 82599 10 GbE
* Controller and the DPDK ixgbe PMD. Consider using other values for other
* network controllers and/or network drivers.
*/
#define TX_PTHRESH 36 /**< Default values of TX prefetch threshold reg. */
#define TX_HTHRESH 0 /**< Default values of TX host threshold reg. */
#define TX_WTHRESH 0 /**< Default values of TX write-back threshold reg. */
#define MAX_PKT_BURST 32
#define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
#define TX_QUEUE_FLUSH_MASK 0xFFFFFFFF
#define TSC_COUNT_LIMIT 1000
#define ACTION_ENCRYPT 1
#define ACTION_DECRYPT 2
/*
* Configurable number of RX/TX ring descriptors
*/
#define RTE_TEST_RX_DESC_DEFAULT 128
#define RTE_TEST_TX_DESC_DEFAULT 512
static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
/* ethernet addresses of ports */
static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
/* mask of enabled ports */
static unsigned enabled_port_mask = 0;
static int promiscuous_on = 1; /**< Ports set in promiscuous mode on by default. */
/* list of enabled ports */
static uint32_t dst_ports[RTE_MAX_ETHPORTS];
struct mbuf_table {
uint16_t len;
struct rte_mbuf *m_table[MAX_PKT_BURST];
};
struct lcore_rx_queue {
uint8_t port_id;
uint8_t queue_id;
};
#define MAX_RX_QUEUE_PER_LCORE 16
#define MAX_LCORE_PARAMS 1024
struct lcore_params {
uint8_t port_id;
uint8_t queue_id;
uint8_t lcore_id;
};
static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
static struct lcore_params lcore_params_array_default[] = {
{0, 0, 2},
{0, 1, 2},
{0, 2, 2},
{1, 0, 2},
{1, 1, 2},
{1, 2, 2},
{2, 0, 2},
{3, 0, 3},
{3, 1, 3},
};
static struct lcore_params * lcore_params = lcore_params_array_default;
static uint16_t nb_lcore_params = sizeof(lcore_params_array_default) /
sizeof(lcore_params_array_default[0]);
static struct rte_eth_conf port_conf = {
.rxmode = {
.mq_mode = ETH_MQ_RX_RSS,
.split_hdr_size = 0,
.header_split = 0, /**< Header Split disabled */
.hw_ip_checksum = 1, /**< IP checksum offload enabled */
.hw_vlan_filter = 0, /**< VLAN filtering disabled */
.jumbo_frame = 0, /**< Jumbo Frame Support disabled */
.hw_strip_crc = 0, /**< CRC stripped by hardware */
},
.rx_adv_conf = {
.rss_conf = {
.rss_key = NULL,
.rss_hf = ETH_RSS_IPV4 | ETH_RSS_IPV6,
},
},
.txmode = {
.mq_mode = ETH_MQ_TX_NONE,
},
};
static const struct rte_eth_rxconf rx_conf = {
.rx_thresh = {
.pthresh = RX_PTHRESH,
.hthresh = RX_HTHRESH,
.wthresh = RX_WTHRESH,
},
};
static const struct rte_eth_txconf tx_conf = {
.tx_thresh = {
.pthresh = TX_PTHRESH,
.hthresh = TX_HTHRESH,
.wthresh = TX_WTHRESH,
},
.tx_free_thresh = 0, /* Use PMD default values */
.tx_rs_thresh = 0, /* Use PMD default values */
};
static struct rte_mempool * pktmbuf_pool[RTE_MAX_NUMA_NODES];
struct lcore_conf {
uint64_t tsc;
uint64_t tsc_count;
uint32_t tx_mask;
uint16_t n_rx_queue;
uint16_t rx_queue_list_pos;
struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
struct mbuf_table rx_mbuf;
uint32_t rx_mbuf_pos;
uint32_t rx_curr_queue;
struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS];
} __rte_cache_aligned;
static struct lcore_conf lcore_conf[RTE_MAX_LCORE];
static inline struct rte_mbuf *
nic_rx_get_packet(struct lcore_conf *qconf)
{
struct rte_mbuf *pkt;
if (unlikely(qconf->n_rx_queue == 0))
return NULL;
/* Look for the next queue with packets; return if none */
if (unlikely(qconf->rx_mbuf_pos == qconf->rx_mbuf.len)) {
uint32_t i;
qconf->rx_mbuf_pos = 0;
for (i = 0; i < qconf->n_rx_queue; i++) {
qconf->rx_mbuf.len = rte_eth_rx_burst(
qconf->rx_queue_list[qconf->rx_curr_queue].port_id,
qconf->rx_queue_list[qconf->rx_curr_queue].queue_id,
qconf->rx_mbuf.m_table, MAX_PKT_BURST);
qconf->rx_curr_queue++;
if (unlikely(qconf->rx_curr_queue == qconf->n_rx_queue))
qconf->rx_curr_queue = 0;
if (likely(qconf->rx_mbuf.len > 0))
break;
}
if (unlikely(i == qconf->n_rx_queue))
return NULL;
}
/* Get the next packet from the current queue; if last packet, go to next queue */
pkt = qconf->rx_mbuf.m_table[qconf->rx_mbuf_pos];
qconf->rx_mbuf_pos++;
return pkt;
}
static inline void
nic_tx_flush_queues(struct lcore_conf *qconf)
{
uint8_t portid;
for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
struct rte_mbuf **m_table = NULL;
uint16_t queueid, len;
uint32_t n, i;
if (likely((qconf->tx_mask & (1 << portid)) == 0))
continue;
len = qconf->tx_mbufs[portid].len;
if (likely(len == 0))
continue;
queueid = qconf->tx_queue_id[portid];
m_table = qconf->tx_mbufs[portid].m_table;
n = rte_eth_tx_burst(portid, queueid, m_table, len);
for (i = n; i < len; i++){
rte_pktmbuf_free(m_table[i]);
}
qconf->tx_mbufs[portid].len = 0;
}
qconf->tx_mask = TX_QUEUE_FLUSH_MASK;
}
static inline void
nic_tx_send_packet(struct rte_mbuf *pkt, uint8_t port)
{
struct lcore_conf *qconf;
uint32_t lcoreid;
uint16_t len;
if (unlikely(pkt == NULL)) {
return;
}
lcoreid = rte_lcore_id();
qconf = &lcore_conf[lcoreid];
len = qconf->tx_mbufs[port].len;
qconf->tx_mbufs[port].m_table[len] = pkt;
len++;
/* enough pkts to be sent */
if (unlikely(len == MAX_PKT_BURST)) {
uint32_t n, i;
uint16_t queueid;
queueid = qconf->tx_queue_id[port];
n = rte_eth_tx_burst(port, queueid, qconf->tx_mbufs[port].m_table, MAX_PKT_BURST);
for (i = n; i < MAX_PKT_BURST; i++){
rte_pktmbuf_free(qconf->tx_mbufs[port].m_table[i]);
}
qconf->tx_mask &= ~(1 << port);
len = 0;
}
qconf->tx_mbufs[port].len = len;
}
/* main processing loop */
static __attribute__((noreturn)) int
main_loop(__attribute__((unused)) void *dummy)
{
uint32_t lcoreid;
struct lcore_conf *qconf;
const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
lcoreid = rte_lcore_id();
qconf = &lcore_conf[lcoreid];
printf("Thread %u starting...\n", lcoreid);
for (;;) {
struct rte_mbuf *pkt;
uint32_t pkt_from_nic_rx = 0;
uint8_t port;
/* Flush TX queues */
qconf->tsc_count++;
if (unlikely(qconf->tsc_count == TSC_COUNT_LIMIT)) {
uint64_t tsc, diff_tsc;
tsc = rte_rdtsc();
diff_tsc = tsc - qconf->tsc;
if (unlikely(diff_tsc > drain_tsc)) {
nic_tx_flush_queues(qconf);
crypto_flush_tx_queue(lcoreid);
qconf->tsc = tsc;
}
qconf->tsc_count = 0;
}
/*
* Check the Intel QuickAssist queues first
*
***/
pkt = (struct rte_mbuf *) crypto_get_next_response();
if (pkt == NULL) {
pkt = nic_rx_get_packet(qconf);
pkt_from_nic_rx = 1;
}
if (pkt == NULL)
continue;
/* Send packet to either QAT encrypt, QAT decrypt or NIC TX */
if (pkt_from_nic_rx) {
struct ipv4_hdr *ip = (struct ipv4_hdr *) (rte_pktmbuf_mtod(pkt, unsigned char *) +
sizeof(struct ether_hdr));
if (ip->src_addr & rte_cpu_to_be_32(ACTION_ENCRYPT)) {
if (CRYPTO_RESULT_FAIL == crypto_encrypt(pkt,
(enum cipher_alg)((ip->src_addr >> 16) & 0xFF),
(enum hash_alg)((ip->src_addr >> 8) & 0xFF)))
rte_pktmbuf_free(pkt);
continue;
}
if (ip->src_addr & rte_cpu_to_be_32(ACTION_DECRYPT)) {
if(CRYPTO_RESULT_FAIL == crypto_decrypt(pkt,
(enum cipher_alg)((ip->src_addr >> 16) & 0xFF),
(enum hash_alg)((ip->src_addr >> 8) & 0xFF)))
rte_pktmbuf_free(pkt);
continue;
}
}
port = dst_ports[pkt->pkt.in_port];
/* Transmit the packet */
nic_tx_send_packet(pkt, (uint8_t)port);
}
}
static inline unsigned
get_port_max_rx_queues(uint8_t port_id)
{
struct rte_eth_dev_info dev_info;
rte_eth_dev_info_get(port_id, &dev_info);
return dev_info.max_rx_queues;
}
static inline unsigned
get_port_max_tx_queues(uint8_t port_id)
{
struct rte_eth_dev_info dev_info;
rte_eth_dev_info_get(port_id, &dev_info);
return dev_info.max_tx_queues;
}
static int
check_lcore_params(void)
{
uint16_t i;
for (i = 0; i < nb_lcore_params; ++i) {
if (lcore_params[i].queue_id >= get_port_max_rx_queues(lcore_params[i].port_id)) {
printf("invalid queue number: %hhu\n", lcore_params[i].queue_id);
return -1;
}
if (!rte_lcore_is_enabled(lcore_params[i].lcore_id)) {
printf("error: lcore %hhu is not enabled in lcore mask\n",
lcore_params[i].lcore_id);
return -1;
}
}
return 0;
}
static int
check_port_config(const unsigned nb_ports)
{
unsigned portid;
uint16_t i;
for (i = 0; i < nb_lcore_params; ++i) {
portid = lcore_params[i].port_id;
if ((enabled_port_mask & (1 << portid)) == 0) {
printf("port %u is not enabled in port mask\n", portid);
return -1;
}
if (portid >= nb_ports) {
printf("port %u is not present on the board\n", portid);
return -1;
}
}
return 0;
}
static uint8_t
get_port_n_rx_queues(const uint8_t port)
{
int queue = -1;
uint16_t i;
for (i = 0; i < nb_lcore_params; ++i) {
if (lcore_params[i].port_id == port && lcore_params[i].queue_id > queue)
queue = lcore_params[i].queue_id;
}
return (uint8_t)(++queue);
}
static int
init_lcore_rx_queues(void)
{
uint16_t i, nb_rx_queue;
uint8_t lcore;
for (i = 0; i < nb_lcore_params; ++i) {
lcore = lcore_params[i].lcore_id;
nb_rx_queue = lcore_conf[lcore].n_rx_queue;
if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
printf("error: too many queues (%u) for lcore: %u\n",
(unsigned)nb_rx_queue + 1, (unsigned)lcore);
return -1;
}
lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
lcore_params[i].port_id;
lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
lcore_params[i].queue_id;
lcore_conf[lcore].n_rx_queue++;
}
return 0;
}
/* display usage */
static void
print_usage(const char *prgname)
{
printf ("%s [EAL options] -- -p PORTMASK [--no-promisc]"
" [--config '(port,queue,lcore)[,(port,queue,lcore)]'\n"
" -p PORTMASK: hexadecimal bitmask of ports to configure\n"
" --no-promisc: disable promiscuous mode (default is ON)\n"
" --config '(port,queue,lcore)': rx queues configuration\n",
prgname);
}
static unsigned
parse_portmask(const char *portmask)
{
char *end = NULL;
unsigned pm;
/* parse hexadecimal string */
pm = strtoul(portmask, &end, 16);
if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
return 0;
return pm;
}
static int
parse_config(const char *q_arg)
{
char s[256];
const char *p, *p_end = q_arg;
char *end;
enum fieldnames {
FLD_PORT = 0,
FLD_QUEUE,
FLD_LCORE,
_NUM_FLD
};
unsigned long int_fld[_NUM_FLD];
char *str_fld[_NUM_FLD];
int i;
unsigned size;
nb_lcore_params = 0;
while ((p = strchr(p_end,'(')) != NULL) {
if (nb_lcore_params >= MAX_LCORE_PARAMS) {
printf("exceeded max number of lcore params: %hu\n",
nb_lcore_params);
return -1;
}
++p;
if((p_end = strchr(p,')')) == NULL)
return -1;
size = p_end - p;
if(size >= sizeof(s))
return -1;
rte_snprintf(s, sizeof(s), "%.*s", size, p);
if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') != _NUM_FLD)
return -1;
for (i = 0; i < _NUM_FLD; i++) {
errno = 0;
int_fld[i] = strtoul(str_fld[i], &end, 0);
if (errno != 0 || end == str_fld[i] || int_fld[i] > 255)
return -1;
}
lcore_params_array[nb_lcore_params].port_id = (uint8_t)int_fld[FLD_PORT];
lcore_params_array[nb_lcore_params].queue_id = (uint8_t)int_fld[FLD_QUEUE];
lcore_params_array[nb_lcore_params].lcore_id = (uint8_t)int_fld[FLD_LCORE];
++nb_lcore_params;
}
lcore_params = lcore_params_array;
return 0;
}
/* Parse the argument given in the command line of the application */
static int
parse_args(int argc, char **argv)
{
int opt, ret;
char **argvopt;
int option_index;
char *prgname = argv[0];
static struct option lgopts[] = {
{"config", 1, 0, 0},
{"no-promisc", 0, 0, 0},
{NULL, 0, 0, 0}
};
argvopt = argv;
while ((opt = getopt_long(argc, argvopt, "p:",
lgopts, &option_index)) != EOF) {
switch (opt) {
/* portmask */
case 'p':
enabled_port_mask = parse_portmask(optarg);
if (enabled_port_mask == 0) {
printf("invalid portmask\n");
print_usage(prgname);
return -1;
}
break;
/* long options */
case 0:
if (strcmp(lgopts[option_index].name, "config") == 0) {
ret = parse_config(optarg);
if (ret) {
printf("invalid config\n");
print_usage(prgname);
return -1;
}
}
if (strcmp(lgopts[option_index].name, "no-promisc") == 0) {
printf("Promiscuous mode disabled\n");
promiscuous_on = 0;
}
break;
default:
print_usage(prgname);
return -1;
}
}
if (enabled_port_mask == 0) {
printf("portmask not specified\n");
print_usage(prgname);
return -1;
}
if (optind >= 0)
argv[optind-1] = prgname;
ret = optind-1;
optind = 0; /* reset getopt lib */
return ret;
}
static void
print_ethaddr(const char *name, const struct ether_addr *eth_addr)
{
printf ("%s%02X:%02X:%02X:%02X:%02X:%02X", name,
eth_addr->addr_bytes[0],
eth_addr->addr_bytes[1],
eth_addr->addr_bytes[2],
eth_addr->addr_bytes[3],
eth_addr->addr_bytes[4],
eth_addr->addr_bytes[5]);
}
static int
init_mem(void)
{
const unsigned flags = 0;
int socketid;
unsigned lcoreid;
char s[64];
RTE_LCORE_FOREACH(lcoreid) {
socketid = rte_lcore_to_socket_id(lcoreid);
if (socketid >= RTE_MAX_NUMA_NODES) {
printf("Socket %d of lcore %u is out of range %d\n",
socketid, lcoreid, RTE_MAX_NUMA_NODES);
return -1;
}
if (pktmbuf_pool[socketid] == NULL) {
rte_snprintf(s, sizeof(s), "mbuf_pool_%d", socketid);
pktmbuf_pool[socketid] =
rte_mempool_create(s, NB_MBUF, MBUF_SIZE, 32,
sizeof(struct rte_pktmbuf_pool_private),
rte_pktmbuf_pool_init, NULL,
rte_pktmbuf_init, NULL,
socketid, flags);
if (pktmbuf_pool[socketid] == NULL) {
printf("Cannot init mbuf pool on socket %d\n", socketid);
return -1;
}
printf("Allocated mbuf pool on socket %d\n", socketid);
}
}
return 0;
}
int
MAIN(int argc, char **argv)
{
struct lcore_conf *qconf;
struct rte_eth_link link;
int ret;
unsigned nb_ports;
uint16_t queueid;
unsigned lcoreid;
uint32_t nb_tx_queue;
uint8_t portid, nb_rx_queue, queue, socketid, last_port;
unsigned nb_ports_in_mask = 0;
/* init EAL */
ret = rte_eal_init(argc, argv);
if (ret < 0)
return -1;
argc -= ret;
argv += ret;
/* parse application arguments (after the EAL ones) */
ret = parse_args(argc, argv);
if (ret < 0)
return -1;
/* init driver */
#ifdef RTE_LIBRTE_IGB_PMD
if (rte_igb_pmd_init() < 0)
rte_panic("Cannot init igb pmd\n");
#endif
#ifdef RTE_LIBRTE_IXGBE_PMD
if (rte_ixgbe_pmd_init() < 0)
rte_panic("Cannot init ixgbe pmd\n");
#endif
if (rte_eal_pci_probe() < 0)
rte_panic("Cannot probe PCI\n");
if (check_lcore_params() < 0)
rte_panic("check_lcore_params failed\n");
ret = init_lcore_rx_queues();
if (ret < 0)
return -1;
ret = init_mem();
if (ret < 0)
return -1;
nb_ports = rte_eth_dev_count();
if (nb_ports > RTE_MAX_ETHPORTS)
nb_ports = RTE_MAX_ETHPORTS;
if (check_port_config(nb_ports) < 0)
rte_panic("check_port_config failed\n");
/* reset dst_ports */
for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++)
dst_ports[portid] = 0;
last_port = 0;
/*
* Each logical core is assigned a dedicated TX queue on each port.
*/
for (portid = 0; portid < nb_ports; portid++) {
/* skip ports that are not enabled */
if ((enabled_port_mask & (1 << portid)) == 0)
continue;
if (nb_ports_in_mask % 2) {
dst_ports[portid] = last_port;
dst_ports[last_port] = portid;
}
else
last_port = portid;
nb_ports_in_mask++;
}
if (nb_ports_in_mask % 2) {
printf("Notice: odd number of ports in portmask.\n");
dst_ports[last_port] = last_port;
}
/* initialize all ports */
for (portid = 0; portid < nb_ports; portid++) {
/* skip ports that are not enabled */
if ((enabled_port_mask & (1 << portid)) == 0) {
printf("\nSkipping disabled port %d\n", portid);
continue;
}
/* init port */
printf("Initializing port %d ... ", portid );
fflush(stdout);
nb_rx_queue = get_port_n_rx_queues(portid);
if (nb_rx_queue > get_port_max_rx_queues(portid))
rte_panic("Number of rx queues %d exceeds max number of rx queues %u"
" for port %d\n", nb_rx_queue, get_port_max_rx_queues(portid),
portid);
nb_tx_queue = rte_lcore_count();
if (nb_tx_queue > get_port_max_tx_queues(portid))
rte_panic("Number of lcores %u exceeds max number of tx queues %u"
" for port %d\n", nb_tx_queue, get_port_max_tx_queues(portid),
portid);
printf("Creating queues: nb_rxq=%d nb_txq=%u... ",
nb_rx_queue, (unsigned)nb_tx_queue );
ret = rte_eth_dev_configure(portid, nb_rx_queue,
(uint16_t)nb_tx_queue, &port_conf);
if (ret < 0)
rte_panic("Cannot configure device: err=%d, port=%d\n",
ret, portid);
rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
print_ethaddr(" Address:", &ports_eth_addr[portid]);
printf(", ");
/* init one TX queue per couple (lcore,port) */
queueid = 0;
RTE_LCORE_FOREACH(lcoreid) {
socketid = (uint8_t)rte_lcore_to_socket_id(lcoreid);
printf("txq=%u,%d,%d ", lcoreid, queueid, socketid);
fflush(stdout);
ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
socketid, &tx_conf);
if (ret < 0)
rte_panic("rte_eth_tx_queue_setup: err=%d, "
"port=%d\n", ret, portid);
qconf = &lcore_conf[lcoreid];
qconf->tx_queue_id[portid] = queueid;
queueid++;
}
printf("\n");
}
RTE_LCORE_FOREACH(lcoreid) {
qconf = &lcore_conf[lcoreid];
printf("\nInitializing rx queues on lcore %u ... ", lcoreid );
fflush(stdout);
/* init RX queues */
for(queue = 0; queue < qconf->n_rx_queue; ++queue) {
portid = qconf->rx_queue_list[queue].port_id;
queueid = qconf->rx_queue_list[queue].queue_id;
socketid = (uint8_t)rte_lcore_to_socket_id(lcoreid);
printf("rxq=%d,%d,%d ", portid, queueid, socketid);
fflush(stdout);
ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd,
socketid, &rx_conf, pktmbuf_pool[socketid]);
if (ret < 0)
rte_panic("rte_eth_rx_queue_setup: err=%d,"
"port=%d\n", ret, portid);
}
}
printf("\n");
/* start ports */
for (portid = 0; portid < nb_ports; portid++) {
if ((enabled_port_mask & (1 << portid)) == 0)
continue;
/* Start device */
ret = rte_eth_dev_start(portid);
if (ret < 0)
rte_panic("rte_eth_dev_start: err=%d, port=%d\n",
ret, portid);
printf("done: Port %d ", portid);
/* get link status */
rte_eth_link_get(portid, &link);
if (link.link_status)
printf(" Link Up - speed %u Mbps - %s\n",
(unsigned) link.link_speed,
(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
("full-duplex") : ("half-duplex\n"));
else
printf(" Link Down\n");
/*
* If enabled, put device in promiscuous mode.
* This allows IO forwarding mode to forward packets
* to itself through 2 cross-connected ports of the
* target machine.
*/
if (promiscuous_on)
rte_eth_promiscuous_enable(portid);
}
printf("Crypto: Initializing Crypto...\n");
if (crypto_init() != 0)
return -1;
RTE_LCORE_FOREACH(lcoreid) {
if (per_core_crypto_init(lcoreid) != 0) {
printf("Crypto: Cannot init lcore crypto on lcore %u\n", (unsigned)lcoreid);
return -1;
}
}
printf("Crypto: Initialization complete\n");
/* launch per-lcore init on every lcore */
rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
RTE_LCORE_FOREACH_SLAVE(lcoreid) {
if (rte_eal_wait_lcore(lcoreid) < 0)
return -1;
}
return 0;
}