numam-dpdk/drivers/net/sfc/sfc_ef10_essb_rx.c
Andrew Rybchenko 793f6dc325 net/sfc: remove inclusion of unused headers
Defines and functions from rte_mbuf_ptype.h are not used.

Only libefx types and EF10 register definitions are used.
Native datapaths should be independent from main libefx interface.

Signed-off-by: Andrew Rybchenko <arybchenko@solarflare.com>
2020-07-21 18:13:45 +02:00

732 lines
20 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright(c) 2019-2020 Xilinx, Inc.
* Copyright(c) 2017-2019 Solarflare Communications Inc.
*
* This software was jointly developed between OKTET Labs (under contract
* for Solarflare) and Solarflare Communications, Inc.
*/
/* EF10 equal stride packed stream receive native datapath implementation */
#include <stdbool.h>
#include <rte_byteorder.h>
#include <rte_mbuf.h>
#include <rte_io.h>
#include "efx_types.h"
#include "efx_regs_ef10.h"
#include "sfc_tweak.h"
#include "sfc_dp_rx.h"
#include "sfc_kvargs.h"
#include "sfc_ef10.h"
/* Tunnels are not supported */
#define SFC_EF10_RX_EV_ENCAP_SUPPORT 0
#include "sfc_ef10_rx_ev.h"
#define sfc_ef10_essb_rx_err(dpq, ...) \
SFC_DP_LOG(SFC_KVARG_DATAPATH_EF10_ESSB, ERR, dpq, __VA_ARGS__)
#define sfc_ef10_essb_rx_info(dpq, ...) \
SFC_DP_LOG(SFC_KVARG_DATAPATH_EF10_ESSB, INFO, dpq, __VA_ARGS__)
/*
* Fake length for RXQ descriptors in equal stride super-buffer mode
* to make hardware happy.
*/
#define SFC_EF10_ESSB_RX_FAKE_BUF_SIZE 32
/**
* Minimum number of Rx buffers the datapath allows to use.
*
* Each HW Rx descriptor has many Rx buffers. The number of buffers
* in one HW Rx descriptor is equal to size of contiguous block
* provided by Rx buffers memory pool. The contiguous block size
* depends on CONFIG_RTE_DRIVER_MEMPOOL_BUCKET_SIZE_KB and rte_mbuf
* data size specified on the memory pool creation. Typical rte_mbuf
* data size is about 2k which makes a bit less than 32 buffers in
* contiguous block with default bucket size equal to 64k.
* Since HW Rx descriptors are pushed by 8 (see SFC_EF10_RX_WPTR_ALIGN),
* it makes about 256 as required minimum. Double it in advertised
* minimum to allow for at least 2 refill blocks.
*/
#define SFC_EF10_ESSB_RX_DESCS_MIN 512
/**
* Number of Rx buffers should be aligned to.
*
* There are no extra requirements on alignment since actual number of
* pushed Rx buffers will be multiple by contiguous block size which
* is unknown beforehand.
*/
#define SFC_EF10_ESSB_RX_DESCS_ALIGN 1
/**
* Maximum number of descriptors/buffers in the Rx ring.
* It should guarantee that corresponding event queue never overfill.
*/
#define SFC_EF10_ESSB_RXQ_LIMIT(_nevs) \
((_nevs) - 1 /* head must not step on tail */ - \
(SFC_EF10_EV_PER_CACHE_LINE - 1) /* max unused EvQ entries */ - \
1 /* Rx error */ - 1 /* flush */)
struct sfc_ef10_essb_rx_sw_desc {
struct rte_mbuf *first_mbuf;
};
struct sfc_ef10_essb_rxq {
/* Used on data path */
unsigned int flags;
#define SFC_EF10_ESSB_RXQ_STARTED 0x1
#define SFC_EF10_ESSB_RXQ_NOT_RUNNING 0x2
#define SFC_EF10_ESSB_RXQ_EXCEPTION 0x4
unsigned int rxq_ptr_mask;
unsigned int block_size;
unsigned int buf_stride;
unsigned int bufs_ptr;
unsigned int completed;
unsigned int pending_id;
unsigned int bufs_pending;
unsigned int left_in_completed;
unsigned int left_in_pending;
unsigned int evq_read_ptr;
unsigned int evq_ptr_mask;
efx_qword_t *evq_hw_ring;
struct sfc_ef10_essb_rx_sw_desc *sw_ring;
uint16_t port_id;
/* Used on refill */
unsigned int added;
unsigned int max_fill_level;
unsigned int refill_threshold;
struct rte_mempool *refill_mb_pool;
efx_qword_t *rxq_hw_ring;
volatile void *doorbell;
/* Datapath receive queue anchor */
struct sfc_dp_rxq dp;
};
static inline struct sfc_ef10_essb_rxq *
sfc_ef10_essb_rxq_by_dp_rxq(struct sfc_dp_rxq *dp_rxq)
{
return container_of(dp_rxq, struct sfc_ef10_essb_rxq, dp);
}
static struct rte_mbuf *
sfc_ef10_essb_next_mbuf(const struct sfc_ef10_essb_rxq *rxq,
struct rte_mbuf *mbuf)
{
struct rte_mbuf *m;
m = (struct rte_mbuf *)((uintptr_t)mbuf + rxq->buf_stride);
MBUF_RAW_ALLOC_CHECK(m);
return m;
}
static struct rte_mbuf *
sfc_ef10_essb_mbuf_by_index(const struct sfc_ef10_essb_rxq *rxq,
struct rte_mbuf *mbuf, unsigned int idx)
{
struct rte_mbuf *m;
m = (struct rte_mbuf *)((uintptr_t)mbuf + idx * rxq->buf_stride);
MBUF_RAW_ALLOC_CHECK(m);
return m;
}
static struct rte_mbuf *
sfc_ef10_essb_maybe_next_completed(struct sfc_ef10_essb_rxq *rxq)
{
const struct sfc_ef10_essb_rx_sw_desc *rxd;
if (rxq->left_in_completed != 0) {
rxd = &rxq->sw_ring[rxq->completed & rxq->rxq_ptr_mask];
return sfc_ef10_essb_mbuf_by_index(rxq, rxd->first_mbuf,
rxq->block_size - rxq->left_in_completed);
} else {
rxq->completed++;
rxd = &rxq->sw_ring[rxq->completed & rxq->rxq_ptr_mask];
rxq->left_in_completed = rxq->block_size;
return rxd->first_mbuf;
}
}
static void
sfc_ef10_essb_rx_qrefill(struct sfc_ef10_essb_rxq *rxq)
{
const unsigned int rxq_ptr_mask = rxq->rxq_ptr_mask;
unsigned int free_space;
unsigned int bulks;
void *mbuf_blocks[SFC_EF10_RX_WPTR_ALIGN];
unsigned int added = rxq->added;
free_space = rxq->max_fill_level - (added - rxq->completed);
if (free_space < rxq->refill_threshold)
return;
bulks = free_space / RTE_DIM(mbuf_blocks);
/* refill_threshold guarantees that bulks is positive */
SFC_ASSERT(bulks > 0);
do {
unsigned int id;
unsigned int i;
if (unlikely(rte_mempool_get_contig_blocks(rxq->refill_mb_pool,
mbuf_blocks, RTE_DIM(mbuf_blocks)) < 0)) {
struct rte_eth_dev_data *dev_data =
rte_eth_devices[rxq->port_id].data;
/*
* It is hardly a safe way to increment counter
* from different contexts, but all PMDs do it.
*/
dev_data->rx_mbuf_alloc_failed += RTE_DIM(mbuf_blocks);
/* Return if we have posted nothing yet */
if (added == rxq->added)
return;
/* Push posted */
break;
}
for (i = 0, id = added & rxq_ptr_mask;
i < RTE_DIM(mbuf_blocks);
++i, ++id) {
struct rte_mbuf *m = mbuf_blocks[i];
struct sfc_ef10_essb_rx_sw_desc *rxd;
SFC_ASSERT((id & ~rxq_ptr_mask) == 0);
rxd = &rxq->sw_ring[id];
rxd->first_mbuf = m;
/* RX_KER_BYTE_CNT is ignored by firmware */
EFX_POPULATE_QWORD_2(rxq->rxq_hw_ring[id],
ESF_DZ_RX_KER_BYTE_CNT,
SFC_EF10_ESSB_RX_FAKE_BUF_SIZE,
ESF_DZ_RX_KER_BUF_ADDR,
rte_mbuf_data_iova_default(m));
}
added += RTE_DIM(mbuf_blocks);
} while (--bulks > 0);
SFC_ASSERT(rxq->added != added);
rxq->added = added;
sfc_ef10_rx_qpush(rxq->doorbell, added, rxq_ptr_mask);
}
static bool
sfc_ef10_essb_rx_event_get(struct sfc_ef10_essb_rxq *rxq, efx_qword_t *rx_ev)
{
*rx_ev = rxq->evq_hw_ring[rxq->evq_read_ptr & rxq->evq_ptr_mask];
if (!sfc_ef10_ev_present(*rx_ev))
return false;
if (unlikely(EFX_QWORD_FIELD(*rx_ev, FSF_AZ_EV_CODE) !=
FSE_AZ_EV_CODE_RX_EV)) {
/*
* Do not move read_ptr to keep the event for exception
* handling
*/
rxq->flags |= SFC_EF10_ESSB_RXQ_EXCEPTION;
sfc_ef10_essb_rx_err(&rxq->dp.dpq,
"RxQ exception at EvQ read ptr %#x",
rxq->evq_read_ptr);
return false;
}
rxq->evq_read_ptr++;
return true;
}
static void
sfc_ef10_essb_rx_process_ev(struct sfc_ef10_essb_rxq *rxq, efx_qword_t rx_ev)
{
unsigned int ready;
ready = (EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_DSC_PTR_LBITS) -
rxq->bufs_ptr) &
EFX_MASK32(ESF_DZ_RX_DSC_PTR_LBITS);
rxq->bufs_ptr += ready;
rxq->bufs_pending += ready;
SFC_ASSERT(ready > 0);
do {
const struct sfc_ef10_essb_rx_sw_desc *rxd;
struct rte_mbuf *m;
unsigned int todo_bufs;
struct rte_mbuf *m0;
rxd = &rxq->sw_ring[rxq->pending_id];
m = sfc_ef10_essb_mbuf_by_index(rxq, rxd->first_mbuf,
rxq->block_size - rxq->left_in_pending);
if (ready < rxq->left_in_pending) {
todo_bufs = ready;
ready = 0;
rxq->left_in_pending -= todo_bufs;
} else {
todo_bufs = rxq->left_in_pending;
ready -= todo_bufs;
rxq->left_in_pending = rxq->block_size;
if (rxq->pending_id != rxq->rxq_ptr_mask)
rxq->pending_id++;
else
rxq->pending_id = 0;
}
SFC_ASSERT(todo_bufs > 0);
--todo_bufs;
sfc_ef10_rx_ev_to_offloads(rx_ev, m, ~0ull);
/* Prefetch pseudo-header */
rte_prefetch0((uint8_t *)m->buf_addr + RTE_PKTMBUF_HEADROOM);
m0 = m;
while (todo_bufs-- > 0) {
m = sfc_ef10_essb_next_mbuf(rxq, m);
m->ol_flags = m0->ol_flags;
m->packet_type = m0->packet_type;
/* Prefetch pseudo-header */
rte_prefetch0((uint8_t *)m->buf_addr +
RTE_PKTMBUF_HEADROOM);
}
} while (ready > 0);
}
static unsigned int
sfc_ef10_essb_rx_get_pending(struct sfc_ef10_essb_rxq *rxq,
struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
unsigned int n_rx_pkts = 0;
unsigned int todo_bufs;
struct rte_mbuf *m;
while ((todo_bufs = RTE_MIN(nb_pkts - n_rx_pkts,
rxq->bufs_pending)) > 0) {
m = sfc_ef10_essb_maybe_next_completed(rxq);
todo_bufs = RTE_MIN(todo_bufs, rxq->left_in_completed);
rxq->bufs_pending -= todo_bufs;
rxq->left_in_completed -= todo_bufs;
SFC_ASSERT(todo_bufs > 0);
todo_bufs--;
do {
const efx_qword_t *qwordp;
uint16_t pkt_len;
/* Buffers to be discarded have 0 in packet type */
if (unlikely(m->packet_type == 0)) {
rte_mbuf_raw_free(m);
goto next_buf;
}
rx_pkts[n_rx_pkts++] = m;
/* Parse pseudo-header */
qwordp = (const efx_qword_t *)
((uint8_t *)m->buf_addr + RTE_PKTMBUF_HEADROOM);
pkt_len =
EFX_QWORD_FIELD(*qwordp,
ES_EZ_ESSB_RX_PREFIX_DATA_LEN);
m->data_off = RTE_PKTMBUF_HEADROOM +
ES_EZ_ESSB_RX_PREFIX_LEN;
m->port = rxq->port_id;
rte_pktmbuf_pkt_len(m) = pkt_len;
rte_pktmbuf_data_len(m) = pkt_len;
m->ol_flags |=
(PKT_RX_RSS_HASH *
!!EFX_TEST_QWORD_BIT(*qwordp,
ES_EZ_ESSB_RX_PREFIX_HASH_VALID_LBN)) |
(PKT_RX_FDIR_ID *
!!EFX_TEST_QWORD_BIT(*qwordp,
ES_EZ_ESSB_RX_PREFIX_MARK_VALID_LBN)) |
(PKT_RX_FDIR *
!!EFX_TEST_QWORD_BIT(*qwordp,
ES_EZ_ESSB_RX_PREFIX_MATCH_FLAG_LBN));
/* EFX_QWORD_FIELD converts little-endian to CPU */
m->hash.rss =
EFX_QWORD_FIELD(*qwordp,
ES_EZ_ESSB_RX_PREFIX_HASH);
m->hash.fdir.hi =
EFX_QWORD_FIELD(*qwordp,
ES_EZ_ESSB_RX_PREFIX_MARK);
next_buf:
m = sfc_ef10_essb_next_mbuf(rxq, m);
} while (todo_bufs-- > 0);
}
return n_rx_pkts;
}
static uint16_t
sfc_ef10_essb_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct sfc_ef10_essb_rxq *rxq = sfc_ef10_essb_rxq_by_dp_rxq(rx_queue);
const unsigned int evq_old_read_ptr = rxq->evq_read_ptr;
uint16_t n_rx_pkts;
efx_qword_t rx_ev;
if (unlikely(rxq->flags & (SFC_EF10_ESSB_RXQ_NOT_RUNNING |
SFC_EF10_ESSB_RXQ_EXCEPTION)))
return 0;
n_rx_pkts = sfc_ef10_essb_rx_get_pending(rxq, rx_pkts, nb_pkts);
while (n_rx_pkts != nb_pkts &&
sfc_ef10_essb_rx_event_get(rxq, &rx_ev)) {
/*
* DROP_EVENT is an internal to the NIC, software should
* never see it and, therefore, may ignore it.
*/
sfc_ef10_essb_rx_process_ev(rxq, rx_ev);
n_rx_pkts += sfc_ef10_essb_rx_get_pending(rxq,
rx_pkts + n_rx_pkts,
nb_pkts - n_rx_pkts);
}
sfc_ef10_ev_qclear(rxq->evq_hw_ring, rxq->evq_ptr_mask,
evq_old_read_ptr, rxq->evq_read_ptr);
/* It is not a problem if we refill in the case of exception */
sfc_ef10_essb_rx_qrefill(rxq);
return n_rx_pkts;
}
static sfc_dp_rx_qdesc_npending_t sfc_ef10_essb_rx_qdesc_npending;
static unsigned int
sfc_ef10_essb_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
{
struct sfc_ef10_essb_rxq *rxq = sfc_ef10_essb_rxq_by_dp_rxq(dp_rxq);
const unsigned int evq_old_read_ptr = rxq->evq_read_ptr;
efx_qword_t rx_ev;
if (unlikely(rxq->flags & (SFC_EF10_ESSB_RXQ_NOT_RUNNING |
SFC_EF10_ESSB_RXQ_EXCEPTION)))
return rxq->bufs_pending;
while (sfc_ef10_essb_rx_event_get(rxq, &rx_ev)) {
/*
* DROP_EVENT is an internal to the NIC, software should
* never see it and, therefore, may ignore it.
*/
sfc_ef10_essb_rx_process_ev(rxq, rx_ev);
}
sfc_ef10_ev_qclear(rxq->evq_hw_ring, rxq->evq_ptr_mask,
evq_old_read_ptr, rxq->evq_read_ptr);
return rxq->bufs_pending;
}
static sfc_dp_rx_qdesc_status_t sfc_ef10_essb_rx_qdesc_status;
static int
sfc_ef10_essb_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
{
struct sfc_ef10_essb_rxq *rxq = sfc_ef10_essb_rxq_by_dp_rxq(dp_rxq);
unsigned int pending = sfc_ef10_essb_rx_qdesc_npending(dp_rxq);
if (offset < pending)
return RTE_ETH_RX_DESC_DONE;
if (offset < (rxq->added - rxq->completed) * rxq->block_size +
rxq->left_in_completed - rxq->block_size)
return RTE_ETH_RX_DESC_AVAIL;
return RTE_ETH_RX_DESC_UNAVAIL;
}
static sfc_dp_rx_get_dev_info_t sfc_ef10_essb_rx_get_dev_info;
static void
sfc_ef10_essb_rx_get_dev_info(struct rte_eth_dev_info *dev_info)
{
/*
* Number of descriptors just defines maximum number of pushed
* descriptors (fill level).
*/
dev_info->rx_desc_lim.nb_min = SFC_EF10_ESSB_RX_DESCS_MIN;
dev_info->rx_desc_lim.nb_align = SFC_EF10_ESSB_RX_DESCS_ALIGN;
}
static sfc_dp_rx_pool_ops_supported_t sfc_ef10_essb_rx_pool_ops_supported;
static int
sfc_ef10_essb_rx_pool_ops_supported(const char *pool)
{
SFC_ASSERT(pool != NULL);
if (strcmp(pool, "bucket") == 0)
return 0;
return -ENOTSUP;
}
static sfc_dp_rx_qsize_up_rings_t sfc_ef10_essb_rx_qsize_up_rings;
static int
sfc_ef10_essb_rx_qsize_up_rings(uint16_t nb_rx_desc,
struct sfc_dp_rx_hw_limits *limits,
struct rte_mempool *mb_pool,
unsigned int *rxq_entries,
unsigned int *evq_entries,
unsigned int *rxq_max_fill_level)
{
int rc;
struct rte_mempool_info mp_info;
unsigned int nb_hw_rx_desc;
unsigned int max_events;
rc = rte_mempool_ops_get_info(mb_pool, &mp_info);
if (rc != 0)
return -rc;
if (mp_info.contig_block_size == 0)
return EINVAL;
/*
* Calculate required number of hardware Rx descriptors each
* carrying contig block size Rx buffers.
* It cannot be less than Rx write pointer alignment plus 1
* in order to avoid cases when the ring is guaranteed to be
* empty.
*/
nb_hw_rx_desc = RTE_MAX(SFC_DIV_ROUND_UP(nb_rx_desc,
mp_info.contig_block_size),
SFC_EF10_RX_WPTR_ALIGN + 1);
if (nb_hw_rx_desc <= limits->rxq_min_entries) {
*rxq_entries = limits->rxq_min_entries;
} else {
*rxq_entries = rte_align32pow2(nb_hw_rx_desc);
if (*rxq_entries > limits->rxq_max_entries)
return EINVAL;
}
max_events = RTE_ALIGN_FLOOR(nb_hw_rx_desc, SFC_EF10_RX_WPTR_ALIGN) *
mp_info.contig_block_size +
(SFC_EF10_EV_PER_CACHE_LINE - 1) /* max unused EvQ entries */ +
1 /* Rx error */ + 1 /* flush */ + 1 /* head-tail space */;
*evq_entries = rte_align32pow2(max_events);
*evq_entries = RTE_MAX(*evq_entries, limits->evq_min_entries);
*evq_entries = RTE_MIN(*evq_entries, limits->evq_max_entries);
/*
* May be even maximum event queue size is insufficient to handle
* so many Rx descriptors. If so, we should limit Rx queue fill level.
*/
*rxq_max_fill_level = RTE_MIN(nb_rx_desc,
SFC_EF10_ESSB_RXQ_LIMIT(*evq_entries));
return 0;
}
static sfc_dp_rx_qcreate_t sfc_ef10_essb_rx_qcreate;
static int
sfc_ef10_essb_rx_qcreate(uint16_t port_id, uint16_t queue_id,
const struct rte_pci_addr *pci_addr, int socket_id,
const struct sfc_dp_rx_qcreate_info *info,
struct sfc_dp_rxq **dp_rxqp)
{
struct rte_mempool * const mp = info->refill_mb_pool;
struct rte_mempool_info mp_info;
struct sfc_ef10_essb_rxq *rxq;
int rc;
rc = rte_mempool_ops_get_info(mp, &mp_info);
if (rc != 0) {
/* Positive errno is used in the driver */
rc = -rc;
goto fail_get_contig_block_size;
}
/* Check if the mempool provides block dequeue */
rc = EINVAL;
if (mp_info.contig_block_size == 0)
goto fail_no_block_dequeue;
rc = ENOMEM;
rxq = rte_zmalloc_socket("sfc-ef10-rxq", sizeof(*rxq),
RTE_CACHE_LINE_SIZE, socket_id);
if (rxq == NULL)
goto fail_rxq_alloc;
sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
rc = ENOMEM;
rxq->sw_ring = rte_calloc_socket("sfc-ef10-rxq-sw_ring",
info->rxq_entries,
sizeof(*rxq->sw_ring),
RTE_CACHE_LINE_SIZE, socket_id);
if (rxq->sw_ring == NULL)
goto fail_desc_alloc;
rxq->block_size = mp_info.contig_block_size;
rxq->buf_stride = mp->header_size + mp->elt_size + mp->trailer_size;
rxq->rxq_ptr_mask = info->rxq_entries - 1;
rxq->evq_ptr_mask = info->evq_entries - 1;
rxq->evq_hw_ring = info->evq_hw_ring;
rxq->port_id = port_id;
rxq->max_fill_level = info->max_fill_level / mp_info.contig_block_size;
rxq->refill_threshold =
RTE_MAX(info->refill_threshold / mp_info.contig_block_size,
SFC_EF10_RX_WPTR_ALIGN);
rxq->refill_mb_pool = mp;
rxq->rxq_hw_ring = info->rxq_hw_ring;
rxq->doorbell = (volatile uint8_t *)info->mem_bar +
ER_DZ_RX_DESC_UPD_REG_OFST +
(info->hw_index << info->vi_window_shift);
sfc_ef10_essb_rx_info(&rxq->dp.dpq,
"block size is %u, buf stride is %u",
rxq->block_size, rxq->buf_stride);
sfc_ef10_essb_rx_info(&rxq->dp.dpq,
"max fill level is %u descs (%u bufs), "
"refill threashold %u descs (%u bufs)",
rxq->max_fill_level,
rxq->max_fill_level * rxq->block_size,
rxq->refill_threshold,
rxq->refill_threshold * rxq->block_size);
*dp_rxqp = &rxq->dp;
return 0;
fail_desc_alloc:
rte_free(rxq);
fail_rxq_alloc:
fail_no_block_dequeue:
fail_get_contig_block_size:
return rc;
}
static sfc_dp_rx_qdestroy_t sfc_ef10_essb_rx_qdestroy;
static void
sfc_ef10_essb_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
{
struct sfc_ef10_essb_rxq *rxq = sfc_ef10_essb_rxq_by_dp_rxq(dp_rxq);
rte_free(rxq->sw_ring);
rte_free(rxq);
}
static sfc_dp_rx_qstart_t sfc_ef10_essb_rx_qstart;
static int
sfc_ef10_essb_rx_qstart(struct sfc_dp_rxq *dp_rxq, unsigned int evq_read_ptr)
{
struct sfc_ef10_essb_rxq *rxq = sfc_ef10_essb_rxq_by_dp_rxq(dp_rxq);
rxq->evq_read_ptr = evq_read_ptr;
/* Initialize before refill */
rxq->completed = rxq->pending_id = rxq->added = 0;
rxq->left_in_completed = rxq->left_in_pending = rxq->block_size;
rxq->bufs_ptr = UINT_MAX;
rxq->bufs_pending = 0;
sfc_ef10_essb_rx_qrefill(rxq);
rxq->flags |= SFC_EF10_ESSB_RXQ_STARTED;
rxq->flags &=
~(SFC_EF10_ESSB_RXQ_NOT_RUNNING | SFC_EF10_ESSB_RXQ_EXCEPTION);
return 0;
}
static sfc_dp_rx_qstop_t sfc_ef10_essb_rx_qstop;
static void
sfc_ef10_essb_rx_qstop(struct sfc_dp_rxq *dp_rxq, unsigned int *evq_read_ptr)
{
struct sfc_ef10_essb_rxq *rxq = sfc_ef10_essb_rxq_by_dp_rxq(dp_rxq);
rxq->flags |= SFC_EF10_ESSB_RXQ_NOT_RUNNING;
*evq_read_ptr = rxq->evq_read_ptr;
}
static sfc_dp_rx_qrx_ev_t sfc_ef10_essb_rx_qrx_ev;
static bool
sfc_ef10_essb_rx_qrx_ev(struct sfc_dp_rxq *dp_rxq, __rte_unused unsigned int id)
{
__rte_unused struct sfc_ef10_essb_rxq *rxq;
rxq = sfc_ef10_essb_rxq_by_dp_rxq(dp_rxq);
SFC_ASSERT(rxq->flags & SFC_EF10_ESSB_RXQ_NOT_RUNNING);
/*
* It is safe to ignore Rx event since we free all mbufs on
* queue purge anyway.
*/
return false;
}
static sfc_dp_rx_qpurge_t sfc_ef10_essb_rx_qpurge;
static void
sfc_ef10_essb_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
{
struct sfc_ef10_essb_rxq *rxq = sfc_ef10_essb_rxq_by_dp_rxq(dp_rxq);
unsigned int i;
const struct sfc_ef10_essb_rx_sw_desc *rxd;
struct rte_mbuf *m;
for (i = rxq->completed; i != rxq->added; ++i) {
rxd = &rxq->sw_ring[i & rxq->rxq_ptr_mask];
m = sfc_ef10_essb_mbuf_by_index(rxq, rxd->first_mbuf,
rxq->block_size - rxq->left_in_completed);
while (rxq->left_in_completed > 0) {
rte_mbuf_raw_free(m);
m = sfc_ef10_essb_next_mbuf(rxq, m);
rxq->left_in_completed--;
}
rxq->left_in_completed = rxq->block_size;
}
rxq->flags &= ~SFC_EF10_ESSB_RXQ_STARTED;
}
struct sfc_dp_rx sfc_ef10_essb_rx = {
.dp = {
.name = SFC_KVARG_DATAPATH_EF10_ESSB,
.type = SFC_DP_RX,
.hw_fw_caps = SFC_DP_HW_FW_CAP_EF10 |
SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER,
},
.features = SFC_DP_RX_FEAT_FLOW_FLAG |
SFC_DP_RX_FEAT_FLOW_MARK,
.dev_offload_capa = DEV_RX_OFFLOAD_CHECKSUM |
DEV_RX_OFFLOAD_RSS_HASH,
.queue_offload_capa = 0,
.get_dev_info = sfc_ef10_essb_rx_get_dev_info,
.pool_ops_supported = sfc_ef10_essb_rx_pool_ops_supported,
.qsize_up_rings = sfc_ef10_essb_rx_qsize_up_rings,
.qcreate = sfc_ef10_essb_rx_qcreate,
.qdestroy = sfc_ef10_essb_rx_qdestroy,
.qstart = sfc_ef10_essb_rx_qstart,
.qstop = sfc_ef10_essb_rx_qstop,
.qrx_ev = sfc_ef10_essb_rx_qrx_ev,
.qpurge = sfc_ef10_essb_rx_qpurge,
.supported_ptypes_get = sfc_ef10_supported_ptypes_get,
.qdesc_npending = sfc_ef10_essb_rx_qdesc_npending,
.qdesc_status = sfc_ef10_essb_rx_qdesc_status,
.pkt_burst = sfc_ef10_essb_recv_pkts,
};