numam-dpdk/drivers/net/iavf/iavf_rxtx_vec_avx512.c
Ke Zhang fced83c122 net/iavf: fix mbuf release in multi-process
In the multiple process environment, the subprocess operates on the
shared memory and changes the function pointer of the main process,
resulting in the failure to find the address of the function when main
process releasing, resulting in crash.

Fixes: 319c421f38 ("net/avf: enable SSE Rx Tx")
Cc: stable@dpdk.org

Signed-off-by: Ke Zhang <ke1x.zhang@intel.com>
Acked-by: Qi Zhang <qi.z.zhang@intel.com>
2022-05-24 04:53:37 +02:00

2028 lines
64 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2020 Intel Corporation
*/
#include "iavf_rxtx_vec_common.h"
#include <rte_vect.h>
#ifndef __INTEL_COMPILER
#pragma GCC diagnostic ignored "-Wcast-qual"
#endif
#define IAVF_DESCS_PER_LOOP_AVX 8
#define PKTLEN_SHIFT 10
/******************************************************************************
* If user knows a specific offload is not enabled by APP,
* the macro can be commented to save the effort of fast path.
* Currently below 2 features are supported in RX path,
* 1, checksum offload
* 2, VLAN/QINQ stripping
* 3, RSS hash
* 4, packet type analysis
* 5, flow director ID report
******************************************************************************/
#define IAVF_RX_CSUM_OFFLOAD
#define IAVF_RX_VLAN_OFFLOAD
#define IAVF_RX_RSS_OFFLOAD
#define IAVF_RX_PTYPE_OFFLOAD
#define IAVF_RX_FDIR_OFFLOAD
static __rte_always_inline void
iavf_rxq_rearm(struct iavf_rx_queue *rxq)
{
int i;
uint16_t rx_id;
volatile union iavf_rx_desc *rxdp;
struct rte_mempool_cache *cache =
rte_mempool_default_cache(rxq->mp, rte_lcore_id());
struct rte_mbuf **rxp = &rxq->sw_ring[rxq->rxrearm_start];
rxdp = rxq->rx_ring + rxq->rxrearm_start;
if (unlikely(!cache))
return iavf_rxq_rearm_common(rxq, true);
/* We need to pull 'n' more MBUFs into the software ring from mempool
* We inline the mempool function here, so we can vectorize the copy
* from the cache into the shadow ring.
*/
/* Can this be satisfied from the cache? */
if (cache->len < IAVF_RXQ_REARM_THRESH) {
/* No. Backfill the cache first, and then fill from it */
uint32_t req = IAVF_RXQ_REARM_THRESH + (cache->size -
cache->len);
/* How many do we require i.e. number to fill the cache + the request */
int ret = rte_mempool_ops_dequeue_bulk
(rxq->mp, &cache->objs[cache->len], req);
if (ret == 0) {
cache->len += req;
} else {
if (rxq->rxrearm_nb + IAVF_RXQ_REARM_THRESH >=
rxq->nb_rx_desc) {
__m128i dma_addr0;
dma_addr0 = _mm_setzero_si128();
for (i = 0; i < IAVF_VPMD_DESCS_PER_LOOP; i++) {
rxp[i] = &rxq->fake_mbuf;
_mm_storeu_si128((__m128i *)&rxdp[i].read,
dma_addr0);
}
}
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
IAVF_RXQ_REARM_THRESH;
return;
}
}
const __m512i iova_offsets = _mm512_set1_epi64(offsetof
(struct rte_mbuf, buf_iova));
const __m512i headroom = _mm512_set1_epi64(RTE_PKTMBUF_HEADROOM);
#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
/* to shuffle the addresses to correct slots. Values 4-7 will contain
* zeros, so use 7 for a zero-value.
*/
const __m512i permute_idx = _mm512_set_epi64(7, 7, 3, 1, 7, 7, 2, 0);
#else
const __m512i permute_idx = _mm512_set_epi64(7, 3, 6, 2, 5, 1, 4, 0);
#endif
/* Initialize the mbufs in vector, process 8 mbufs in one loop, taking
* from mempool cache and populating both shadow and HW rings
*/
for (i = 0; i < IAVF_RXQ_REARM_THRESH / IAVF_DESCS_PER_LOOP_AVX; i++) {
const __m512i mbuf_ptrs = _mm512_loadu_si512
(&cache->objs[cache->len - IAVF_DESCS_PER_LOOP_AVX]);
_mm512_storeu_si512(rxp, mbuf_ptrs);
const __m512i iova_base_addrs = _mm512_i64gather_epi64
(_mm512_add_epi64(mbuf_ptrs, iova_offsets),
0, /* base */
1 /* scale */);
const __m512i iova_addrs = _mm512_add_epi64(iova_base_addrs,
headroom);
#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
const __m512i iovas0 = _mm512_castsi256_si512
(_mm512_extracti64x4_epi64(iova_addrs, 0));
const __m512i iovas1 = _mm512_castsi256_si512
(_mm512_extracti64x4_epi64(iova_addrs, 1));
/* permute leaves desc 2-3 addresses in header address slots 0-1
* but these are ignored by driver since header split not
* enabled. Similarly for desc 6 & 7.
*/
const __m512i desc0_1 = _mm512_permutexvar_epi64
(permute_idx,
iovas0);
const __m512i desc2_3 = _mm512_bsrli_epi128(desc0_1, 8);
const __m512i desc4_5 = _mm512_permutexvar_epi64
(permute_idx,
iovas1);
const __m512i desc6_7 = _mm512_bsrli_epi128(desc4_5, 8);
_mm512_storeu_si512((void *)rxdp, desc0_1);
_mm512_storeu_si512((void *)(rxdp + 2), desc2_3);
_mm512_storeu_si512((void *)(rxdp + 4), desc4_5);
_mm512_storeu_si512((void *)(rxdp + 6), desc6_7);
#else
/* permute leaves desc 4-7 addresses in header address slots 0-3
* but these are ignored by driver since header split not
* enabled.
*/
const __m512i desc0_3 = _mm512_permutexvar_epi64(permute_idx,
iova_addrs);
const __m512i desc4_7 = _mm512_bsrli_epi128(desc0_3, 8);
_mm512_storeu_si512((void *)rxdp, desc0_3);
_mm512_storeu_si512((void *)(rxdp + 4), desc4_7);
#endif
rxp += IAVF_DESCS_PER_LOOP_AVX;
rxdp += IAVF_DESCS_PER_LOOP_AVX;
cache->len -= IAVF_DESCS_PER_LOOP_AVX;
}
rxq->rxrearm_start += IAVF_RXQ_REARM_THRESH;
if (rxq->rxrearm_start >= rxq->nb_rx_desc)
rxq->rxrearm_start = 0;
rxq->rxrearm_nb -= IAVF_RXQ_REARM_THRESH;
rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
(rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
/* Update the tail pointer on the NIC */
IAVF_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
}
#define IAVF_RX_LEN_MASK 0x80808080
static __rte_always_inline uint16_t
_iavf_recv_raw_pkts_vec_avx512(struct iavf_rx_queue *rxq,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts, uint8_t *split_packet,
bool offload)
{
#ifdef IAVF_RX_PTYPE_OFFLOAD
const uint32_t *type_table = rxq->vsi->adapter->ptype_tbl;
#endif
const __m256i mbuf_init = _mm256_set_epi64x(0, 0, 0,
rxq->mbuf_initializer);
struct rte_mbuf **sw_ring = &rxq->sw_ring[rxq->rx_tail];
volatile union iavf_rx_desc *rxdp = rxq->rx_ring + rxq->rx_tail;
rte_prefetch0(rxdp);
/* nb_pkts has to be floor-aligned to IAVF_DESCS_PER_LOOP_AVX */
nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_DESCS_PER_LOOP_AVX);
/* See if we need to rearm the RX queue - gives the prefetch a bit
* of time to act
*/
if (rxq->rxrearm_nb > IAVF_RXQ_REARM_THRESH)
iavf_rxq_rearm(rxq);
/* Before we start moving massive data around, check to see if
* there is actually a packet available
*/
if (!(rxdp->wb.qword1.status_error_len &
rte_cpu_to_le_32(1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
return 0;
/* constants used in processing loop */
const __m512i crc_adjust =
_mm512_set_epi32
(/* 1st descriptor */
0, /* ignore non-length fields */
-rxq->crc_len, /* sub crc on data_len */
-rxq->crc_len, /* sub crc on pkt_len */
0, /* ignore pkt_type field */
/* 2nd descriptor */
0, /* ignore non-length fields */
-rxq->crc_len, /* sub crc on data_len */
-rxq->crc_len, /* sub crc on pkt_len */
0, /* ignore pkt_type field */
/* 3rd descriptor */
0, /* ignore non-length fields */
-rxq->crc_len, /* sub crc on data_len */
-rxq->crc_len, /* sub crc on pkt_len */
0, /* ignore pkt_type field */
/* 4th descriptor */
0, /* ignore non-length fields */
-rxq->crc_len, /* sub crc on data_len */
-rxq->crc_len, /* sub crc on pkt_len */
0 /* ignore pkt_type field */
);
/* 8 packets DD mask, LSB in each 32-bit value */
const __m256i dd_check = _mm256_set1_epi32(1);
/* 8 packets EOP mask, second-LSB in each 32-bit value */
const __m256i eop_check = _mm256_slli_epi32(dd_check,
IAVF_RX_DESC_STATUS_EOF_SHIFT);
/* mask to shuffle from desc. to mbuf (4 descriptors)*/
const __m512i shuf_msk =
_mm512_set_epi32
(/* 1st descriptor */
0x07060504, /* octet 4~7, 32bits rss */
0x03020F0E, /* octet 2~3, low 16 bits vlan_macip */
/* octet 15~14, 16 bits data_len */
0xFFFF0F0E, /* skip high 16 bits pkt_len, zero out */
/* octet 15~14, low 16 bits pkt_len */
0xFFFFFFFF, /* pkt_type set as unknown */
/* 2nd descriptor */
0x07060504, /* octet 4~7, 32bits rss */
0x03020F0E, /* octet 2~3, low 16 bits vlan_macip */
/* octet 15~14, 16 bits data_len */
0xFFFF0F0E, /* skip high 16 bits pkt_len, zero out */
/* octet 15~14, low 16 bits pkt_len */
0xFFFFFFFF, /* pkt_type set as unknown */
/* 3rd descriptor */
0x07060504, /* octet 4~7, 32bits rss */
0x03020F0E, /* octet 2~3, low 16 bits vlan_macip */
/* octet 15~14, 16 bits data_len */
0xFFFF0F0E, /* skip high 16 bits pkt_len, zero out */
/* octet 15~14, low 16 bits pkt_len */
0xFFFFFFFF, /* pkt_type set as unknown */
/* 4th descriptor */
0x07060504, /* octet 4~7, 32bits rss */
0x03020F0E, /* octet 2~3, low 16 bits vlan_macip */
/* octet 15~14, 16 bits data_len */
0xFFFF0F0E, /* skip high 16 bits pkt_len, zero out */
/* octet 15~14, low 16 bits pkt_len */
0xFFFFFFFF /* pkt_type set as unknown */
);
/**
* compile-time check the above crc and shuffle layout is correct.
* NOTE: the first field (lowest address) is given last in set_epi
* calls above.
*/
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
uint16_t i, received;
for (i = 0, received = 0; i < nb_pkts;
i += IAVF_DESCS_PER_LOOP_AVX,
rxdp += IAVF_DESCS_PER_LOOP_AVX) {
/* step 1, copy over 8 mbuf pointers to rx_pkts array */
_mm256_storeu_si256((void *)&rx_pkts[i],
_mm256_loadu_si256((void *)&sw_ring[i]));
#ifdef RTE_ARCH_X86_64
_mm256_storeu_si256
((void *)&rx_pkts[i + 4],
_mm256_loadu_si256((void *)&sw_ring[i + 4]));
#endif
__m512i raw_desc0_3, raw_desc4_7;
const __m128i raw_desc7 =
_mm_load_si128((void *)(rxdp + 7));
rte_compiler_barrier();
const __m128i raw_desc6 =
_mm_load_si128((void *)(rxdp + 6));
rte_compiler_barrier();
const __m128i raw_desc5 =
_mm_load_si128((void *)(rxdp + 5));
rte_compiler_barrier();
const __m128i raw_desc4 =
_mm_load_si128((void *)(rxdp + 4));
rte_compiler_barrier();
const __m128i raw_desc3 =
_mm_load_si128((void *)(rxdp + 3));
rte_compiler_barrier();
const __m128i raw_desc2 =
_mm_load_si128((void *)(rxdp + 2));
rte_compiler_barrier();
const __m128i raw_desc1 =
_mm_load_si128((void *)(rxdp + 1));
rte_compiler_barrier();
const __m128i raw_desc0 =
_mm_load_si128((void *)(rxdp + 0));
raw_desc4_7 = _mm512_broadcast_i32x4(raw_desc4);
raw_desc4_7 = _mm512_inserti32x4(raw_desc4_7, raw_desc5, 1);
raw_desc4_7 = _mm512_inserti32x4(raw_desc4_7, raw_desc6, 2);
raw_desc4_7 = _mm512_inserti32x4(raw_desc4_7, raw_desc7, 3);
raw_desc0_3 = _mm512_broadcast_i32x4(raw_desc0);
raw_desc0_3 = _mm512_inserti32x4(raw_desc0_3, raw_desc1, 1);
raw_desc0_3 = _mm512_inserti32x4(raw_desc0_3, raw_desc2, 2);
raw_desc0_3 = _mm512_inserti32x4(raw_desc0_3, raw_desc3, 3);
if (split_packet) {
int j;
for (j = 0; j < IAVF_DESCS_PER_LOOP_AVX; j++)
rte_mbuf_prefetch_part2(rx_pkts[i + j]);
}
/**
* convert descriptors 4-7 into mbufs, adjusting length and
* re-arranging fields. Then write into the mbuf
*/
const __m512i len4_7 = _mm512_slli_epi32(raw_desc4_7,
PKTLEN_SHIFT);
const __m512i desc4_7 = _mm512_mask_blend_epi16(IAVF_RX_LEN_MASK,
raw_desc4_7,
len4_7);
__m512i mb4_7 = _mm512_shuffle_epi8(desc4_7, shuf_msk);
mb4_7 = _mm512_add_epi32(mb4_7, crc_adjust);
#ifdef IAVF_RX_PTYPE_OFFLOAD
/**
* to get packet types, shift 64-bit values down 30 bits
* and so ptype is in lower 8-bits in each
*/
const __m512i ptypes4_7 = _mm512_srli_epi64(desc4_7, 30);
const __m256i ptypes6_7 = _mm512_extracti64x4_epi64(ptypes4_7, 1);
const __m256i ptypes4_5 = _mm512_extracti64x4_epi64(ptypes4_7, 0);
const uint8_t ptype7 = _mm256_extract_epi8(ptypes6_7, 24);
const uint8_t ptype6 = _mm256_extract_epi8(ptypes6_7, 8);
const uint8_t ptype5 = _mm256_extract_epi8(ptypes4_5, 24);
const uint8_t ptype4 = _mm256_extract_epi8(ptypes4_5, 8);
const __m512i ptype4_7 = _mm512_set_epi32
(0, 0, 0, type_table[ptype7],
0, 0, 0, type_table[ptype6],
0, 0, 0, type_table[ptype5],
0, 0, 0, type_table[ptype4]);
mb4_7 = _mm512_mask_blend_epi32(0x1111, mb4_7, ptype4_7);
#endif
/**
* convert descriptors 0-3 into mbufs, adjusting length and
* re-arranging fields. Then write into the mbuf
*/
const __m512i len0_3 = _mm512_slli_epi32(raw_desc0_3,
PKTLEN_SHIFT);
const __m512i desc0_3 = _mm512_mask_blend_epi16(IAVF_RX_LEN_MASK,
raw_desc0_3,
len0_3);
__m512i mb0_3 = _mm512_shuffle_epi8(desc0_3, shuf_msk);
mb0_3 = _mm512_add_epi32(mb0_3, crc_adjust);
#ifdef IAVF_RX_PTYPE_OFFLOAD
/* get the packet types */
const __m512i ptypes0_3 = _mm512_srli_epi64(desc0_3, 30);
const __m256i ptypes2_3 = _mm512_extracti64x4_epi64(ptypes0_3, 1);
const __m256i ptypes0_1 = _mm512_extracti64x4_epi64(ptypes0_3, 0);
const uint8_t ptype3 = _mm256_extract_epi8(ptypes2_3, 24);
const uint8_t ptype2 = _mm256_extract_epi8(ptypes2_3, 8);
const uint8_t ptype1 = _mm256_extract_epi8(ptypes0_1, 24);
const uint8_t ptype0 = _mm256_extract_epi8(ptypes0_1, 8);
const __m512i ptype0_3 = _mm512_set_epi32
(0, 0, 0, type_table[ptype3],
0, 0, 0, type_table[ptype2],
0, 0, 0, type_table[ptype1],
0, 0, 0, type_table[ptype0]);
mb0_3 = _mm512_mask_blend_epi32(0x1111, mb0_3, ptype0_3);
#endif
/**
* use permute/extract to get status content
* After the operations, the packets status flags are in the
* order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
*/
/* merge the status bits into one register */
const __m512i status_permute_msk = _mm512_set_epi32
(0, 0, 0, 0,
0, 0, 0, 0,
22, 30, 6, 14,
18, 26, 2, 10);
const __m512i raw_status0_7 = _mm512_permutex2var_epi32
(raw_desc4_7, status_permute_msk, raw_desc0_3);
__m256i status0_7 = _mm512_extracti64x4_epi64
(raw_status0_7, 0);
/* now do flag manipulation */
/* merge flags */
__m256i mbuf_flags = _mm256_set1_epi32(0);
if (offload) {
#if defined(IAVF_RX_CSUM_OFFLOAD) || defined(IAVF_RX_VLAN_OFFLOAD) || defined(IAVF_RX_RSS_OFFLOAD)
/* Status/Error flag masks */
/**
* mask everything except RSS, flow director and VLAN flags
* bit2 is for VLAN tag, bit11 for flow director indication
* bit13:12 for RSS indication. Bits 3-5 of error
* field (bits 22-24) are for IP/L4 checksum errors
*/
const __m256i flags_mask =
_mm256_set1_epi32((1 << 2) | (1 << 11) |
(3 << 12) | (7 << 22));
#endif
#ifdef IAVF_RX_VLAN_OFFLOAD
/**
* data to be shuffled by result of flag mask. If VLAN bit is set,
* (bit 2), then position 4 in this array will be used in the
* destination
*/
const __m256i vlan_flags_shuf =
_mm256_set_epi32(0, 0, RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED, 0,
0, 0, RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED, 0);
#endif
#ifdef IAVF_RX_RSS_OFFLOAD
/**
* data to be shuffled by result of flag mask, shifted down 11.
* If RSS/FDIR bits are set, shuffle moves appropriate flags in
* place.
*/
const __m256i rss_flags_shuf =
_mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_FDIR, RTE_MBUF_F_RX_RSS_HASH,
0, 0, 0, 0, RTE_MBUF_F_RX_FDIR, 0,/* end up 128-bits */
0, 0, 0, 0, 0, 0, 0, 0,
RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_FDIR, RTE_MBUF_F_RX_RSS_HASH,
0, 0, 0, 0, RTE_MBUF_F_RX_FDIR, 0);
#endif
#ifdef IAVF_RX_CSUM_OFFLOAD
/**
* data to be shuffled by the result of the flags mask shifted by 22
* bits. This gives use the l3_l4 flags.
*/
const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
/* shift right 1 bit to make sure it not exceed 255 */
(RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1,
RTE_MBUF_F_RX_IP_CKSUM_BAD >> 1,
(RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD) >> 1,
/* second 128-bits */
0, 0, 0, 0, 0, 0, 0, 0,
(RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1,
RTE_MBUF_F_RX_IP_CKSUM_BAD >> 1,
(RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD) >> 1);
const __m256i cksum_mask =
_mm256_set1_epi32(RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD);
#endif
#if defined(IAVF_RX_CSUM_OFFLOAD) || defined(IAVF_RX_VLAN_OFFLOAD) || defined(IAVF_RX_RSS_OFFLOAD)
/* get only flag/error bits we want */
const __m256i flag_bits =
_mm256_and_si256(status0_7, flags_mask);
#endif
/* set vlan and rss flags */
#ifdef IAVF_RX_VLAN_OFFLOAD
const __m256i vlan_flags =
_mm256_shuffle_epi8(vlan_flags_shuf, flag_bits);
#endif
#ifdef IAVF_RX_RSS_OFFLOAD
const __m256i rss_flags =
_mm256_shuffle_epi8(rss_flags_shuf,
_mm256_srli_epi32(flag_bits, 11));
#endif
#ifdef IAVF_RX_CSUM_OFFLOAD
/**
* l3_l4_error flags, shuffle, then shift to correct adjustment
* of flags in flags_shuf, and finally mask out extra bits
*/
__m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
_mm256_srli_epi32(flag_bits, 22));
l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
#endif
#ifdef IAVF_RX_CSUM_OFFLOAD
mbuf_flags = _mm256_or_si256(mbuf_flags, l3_l4_flags);
#endif
#ifdef IAVF_RX_RSS_OFFLOAD
mbuf_flags = _mm256_or_si256(mbuf_flags, rss_flags);
#endif
#ifdef IAVF_RX_VLAN_OFFLOAD
mbuf_flags = _mm256_or_si256(mbuf_flags, vlan_flags);
#endif
}
/**
* At this point, we have the 8 sets of flags in the low 16-bits
* of each 32-bit value in vlan0.
* We want to extract these, and merge them with the mbuf init
* data so we can do a single write to the mbuf to set the flags
* and all the other initialization fields. Extracting the
* appropriate flags means that we have to do a shift and blend
* for each mbuf before we do the write. However, we can also
* add in the previously computed rx_descriptor fields to
* make a single 256-bit write per mbuf
*/
/* check the structure matches expectations */
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
offsetof(struct rte_mbuf, rearm_data) + 8);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
RTE_ALIGN(offsetof(struct rte_mbuf,
rearm_data),
16));
/* build up data and do writes */
__m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
rearm6, rearm7;
const __m256i mb4_5 = _mm512_extracti64x4_epi64(mb4_7, 0);
const __m256i mb6_7 = _mm512_extracti64x4_epi64(mb4_7, 1);
const __m256i mb0_1 = _mm512_extracti64x4_epi64(mb0_3, 0);
const __m256i mb2_3 = _mm512_extracti64x4_epi64(mb0_3, 1);
if (offload) {
rearm6 = _mm256_blend_epi32(mbuf_init,
_mm256_slli_si256(mbuf_flags, 8),
0x04);
rearm4 = _mm256_blend_epi32(mbuf_init,
_mm256_slli_si256(mbuf_flags, 4),
0x04);
rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
rearm0 = _mm256_blend_epi32(mbuf_init,
_mm256_srli_si256(mbuf_flags, 4),
0x04);
/* permute to add in the rx_descriptor e.g. rss fields */
rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
} else {
rearm6 = _mm256_permute2f128_si256(mbuf_init, mb6_7, 0x20);
rearm4 = _mm256_permute2f128_si256(mbuf_init, mb4_5, 0x20);
rearm2 = _mm256_permute2f128_si256(mbuf_init, mb2_3, 0x20);
rearm0 = _mm256_permute2f128_si256(mbuf_init, mb0_1, 0x20);
}
/* write to mbuf */
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
rearm6);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
rearm4);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
rearm2);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
rearm0);
/* repeat for the odd mbufs */
if (offload) {
const __m256i odd_flags =
_mm256_castsi128_si256
(_mm256_extracti128_si256(mbuf_flags, 1));
rearm7 = _mm256_blend_epi32(mbuf_init,
_mm256_slli_si256(odd_flags, 8),
0x04);
rearm5 = _mm256_blend_epi32(mbuf_init,
_mm256_slli_si256(odd_flags, 4),
0x04);
rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
rearm1 = _mm256_blend_epi32(mbuf_init,
_mm256_srli_si256(odd_flags, 4),
0x04);
/* since odd mbufs are already in hi 128-bits use blend */
rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
} else {
rearm7 = _mm256_blend_epi32(mbuf_init, mb6_7, 0xF0);
rearm5 = _mm256_blend_epi32(mbuf_init, mb4_5, 0xF0);
rearm3 = _mm256_blend_epi32(mbuf_init, mb2_3, 0xF0);
rearm1 = _mm256_blend_epi32(mbuf_init, mb0_1, 0xF0);
}
/* again write to mbufs */
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
rearm7);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
rearm5);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
rearm3);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
rearm1);
/* extract and record EOP bit */
if (split_packet) {
const __m128i eop_mask =
_mm_set1_epi16(1 << IAVF_RX_DESC_STATUS_EOF_SHIFT);
const __m256i eop_bits256 = _mm256_and_si256(status0_7,
eop_check);
/* pack status bits into a single 128-bit register */
const __m128i eop_bits =
_mm_packus_epi32
(_mm256_castsi256_si128(eop_bits256),
_mm256_extractf128_si256(eop_bits256,
1));
/**
* flip bits, and mask out the EOP bit, which is now
* a split-packet bit i.e. !EOP, rather than EOP one.
*/
__m128i split_bits = _mm_andnot_si128(eop_bits,
eop_mask);
/**
* eop bits are out of order, so we need to shuffle them
* back into order again. In doing so, only use low 8
* bits, which acts like another pack instruction
* The original order is (hi->lo): 1,3,5,7,0,2,4,6
* [Since we use epi8, the 16-bit positions are
* multiplied by 2 in the eop_shuffle value.]
*/
__m128i eop_shuffle =
_mm_set_epi8(/* zero hi 64b */
0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF,
/* move values to lo 64b */
8, 0, 10, 2,
12, 4, 14, 6);
split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
*(uint64_t *)split_packet =
_mm_cvtsi128_si64(split_bits);
split_packet += IAVF_DESCS_PER_LOOP_AVX;
}
/* perform dd_check */
status0_7 = _mm256_and_si256(status0_7, dd_check);
status0_7 = _mm256_packs_epi32(status0_7,
_mm256_setzero_si256());
uint64_t burst = __builtin_popcountll
(_mm_cvtsi128_si64
(_mm256_extracti128_si256
(status0_7, 1)));
burst += __builtin_popcountll
(_mm_cvtsi128_si64
(_mm256_castsi256_si128(status0_7)));
received += burst;
if (burst != IAVF_DESCS_PER_LOOP_AVX)
break;
}
/* update tail pointers */
rxq->rx_tail += received;
rxq->rx_tail &= (rxq->nb_rx_desc - 1);
if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep aligned */
rxq->rx_tail--;
received--;
}
rxq->rxrearm_nb += received;
return received;
}
static __rte_always_inline __m256i
flex_rxd_to_fdir_flags_vec_avx512(const __m256i fdir_id0_7)
{
#define FDID_MIS_MAGIC 0xFFFFFFFF
RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_FDIR != (1 << 2));
RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_FDIR_ID != (1 << 13));
const __m256i pkt_fdir_bit = _mm256_set1_epi32(RTE_MBUF_F_RX_FDIR |
RTE_MBUF_F_RX_FDIR_ID);
/* desc->flow_id field == 0xFFFFFFFF means fdir mismatch */
const __m256i fdir_mis_mask = _mm256_set1_epi32(FDID_MIS_MAGIC);
__m256i fdir_mask = _mm256_cmpeq_epi32(fdir_id0_7,
fdir_mis_mask);
/* this XOR op results to bit-reverse the fdir_mask */
fdir_mask = _mm256_xor_si256(fdir_mask, fdir_mis_mask);
const __m256i fdir_flags = _mm256_and_si256(fdir_mask, pkt_fdir_bit);
return fdir_flags;
}
static __rte_always_inline uint16_t
_iavf_recv_raw_pkts_vec_avx512_flex_rxd(struct iavf_rx_queue *rxq,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts,
uint8_t *split_packet,
bool offload)
{
struct iavf_adapter *adapter = rxq->vsi->adapter;
uint64_t offloads = adapter->dev_data->dev_conf.rxmode.offloads;
#ifdef IAVF_RX_PTYPE_OFFLOAD
const uint32_t *type_table = adapter->ptype_tbl;
#endif
const __m256i mbuf_init = _mm256_set_epi64x(0, 0, 0,
rxq->mbuf_initializer);
struct rte_mbuf **sw_ring = &rxq->sw_ring[rxq->rx_tail];
volatile union iavf_rx_flex_desc *rxdp =
(union iavf_rx_flex_desc *)rxq->rx_ring + rxq->rx_tail;
rte_prefetch0(rxdp);
/* nb_pkts has to be floor-aligned to IAVF_DESCS_PER_LOOP_AVX */
nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_DESCS_PER_LOOP_AVX);
/* See if we need to rearm the RX queue - gives the prefetch a bit
* of time to act
*/
if (rxq->rxrearm_nb > IAVF_RXQ_REARM_THRESH)
iavf_rxq_rearm(rxq);
/* Before we start moving massive data around, check to see if
* there is actually a packet available
*/
if (!(rxdp->wb.status_error0 &
rte_cpu_to_le_32(1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
return 0;
/* constants used in processing loop */
const __m512i crc_adjust =
_mm512_set_epi32
(/* 1st descriptor */
0, /* ignore non-length fields */
-rxq->crc_len, /* sub crc on data_len */
-rxq->crc_len, /* sub crc on pkt_len */
0, /* ignore pkt_type field */
/* 2nd descriptor */
0, /* ignore non-length fields */
-rxq->crc_len, /* sub crc on data_len */
-rxq->crc_len, /* sub crc on pkt_len */
0, /* ignore pkt_type field */
/* 3rd descriptor */
0, /* ignore non-length fields */
-rxq->crc_len, /* sub crc on data_len */
-rxq->crc_len, /* sub crc on pkt_len */
0, /* ignore pkt_type field */
/* 4th descriptor */
0, /* ignore non-length fields */
-rxq->crc_len, /* sub crc on data_len */
-rxq->crc_len, /* sub crc on pkt_len */
0 /* ignore pkt_type field */
);
/* 8 packets DD mask, LSB in each 32-bit value */
const __m256i dd_check = _mm256_set1_epi32(1);
/* 8 packets EOP mask, second-LSB in each 32-bit value */
const __m256i eop_check = _mm256_slli_epi32(dd_check,
IAVF_RX_FLEX_DESC_STATUS0_EOF_S);
/* mask to shuffle from desc. to mbuf (4 descriptors)*/
const __m512i shuf_msk =
_mm512_set_epi32
(/* 1st descriptor */
0xFFFFFFFF, /* rss hash parsed separately */
0x0B0A0504, /* octet 10~11, 16 bits vlan_macip */
/* octet 4~5, 16 bits data_len */
0xFFFF0504, /* skip hi 16 bits pkt_len, zero out */
/* octet 4~5, 16 bits pkt_len */
0xFFFFFFFF, /* pkt_type set as unknown */
/* 2nd descriptor */
0xFFFFFFFF, /* rss hash parsed separately */
0x0B0A0504, /* octet 10~11, 16 bits vlan_macip */
/* octet 4~5, 16 bits data_len */
0xFFFF0504, /* skip hi 16 bits pkt_len, zero out */
/* octet 4~5, 16 bits pkt_len */
0xFFFFFFFF, /* pkt_type set as unknown */
/* 3rd descriptor */
0xFFFFFFFF, /* rss hash parsed separately */
0x0B0A0504, /* octet 10~11, 16 bits vlan_macip */
/* octet 4~5, 16 bits data_len */
0xFFFF0504, /* skip hi 16 bits pkt_len, zero out */
/* octet 4~5, 16 bits pkt_len */
0xFFFFFFFF, /* pkt_type set as unknown */
/* 4th descriptor */
0xFFFFFFFF, /* rss hash parsed separately */
0x0B0A0504, /* octet 10~11, 16 bits vlan_macip */
/* octet 4~5, 16 bits data_len */
0xFFFF0504, /* skip hi 16 bits pkt_len, zero out */
/* octet 4~5, 16 bits pkt_len */
0xFFFFFFFF /* pkt_type set as unknown */
);
/**
* compile-time check the above crc and shuffle layout is correct.
* NOTE: the first field (lowest address) is given last in set_epi
* calls above.
*/
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
uint16_t i, received;
for (i = 0, received = 0; i < nb_pkts;
i += IAVF_DESCS_PER_LOOP_AVX,
rxdp += IAVF_DESCS_PER_LOOP_AVX) {
/* step 1, copy over 8 mbuf pointers to rx_pkts array */
_mm256_storeu_si256((void *)&rx_pkts[i],
_mm256_loadu_si256((void *)&sw_ring[i]));
#ifdef RTE_ARCH_X86_64
_mm256_storeu_si256
((void *)&rx_pkts[i + 4],
_mm256_loadu_si256((void *)&sw_ring[i + 4]));
#endif
__m512i raw_desc0_3, raw_desc4_7;
const __m128i raw_desc7 =
_mm_load_si128((void *)(rxdp + 7));
rte_compiler_barrier();
const __m128i raw_desc6 =
_mm_load_si128((void *)(rxdp + 6));
rte_compiler_barrier();
const __m128i raw_desc5 =
_mm_load_si128((void *)(rxdp + 5));
rte_compiler_barrier();
const __m128i raw_desc4 =
_mm_load_si128((void *)(rxdp + 4));
rte_compiler_barrier();
const __m128i raw_desc3 =
_mm_load_si128((void *)(rxdp + 3));
rte_compiler_barrier();
const __m128i raw_desc2 =
_mm_load_si128((void *)(rxdp + 2));
rte_compiler_barrier();
const __m128i raw_desc1 =
_mm_load_si128((void *)(rxdp + 1));
rte_compiler_barrier();
const __m128i raw_desc0 =
_mm_load_si128((void *)(rxdp + 0));
raw_desc4_7 = _mm512_broadcast_i32x4(raw_desc4);
raw_desc4_7 = _mm512_inserti32x4(raw_desc4_7, raw_desc5, 1);
raw_desc4_7 = _mm512_inserti32x4(raw_desc4_7, raw_desc6, 2);
raw_desc4_7 = _mm512_inserti32x4(raw_desc4_7, raw_desc7, 3);
raw_desc0_3 = _mm512_broadcast_i32x4(raw_desc0);
raw_desc0_3 = _mm512_inserti32x4(raw_desc0_3, raw_desc1, 1);
raw_desc0_3 = _mm512_inserti32x4(raw_desc0_3, raw_desc2, 2);
raw_desc0_3 = _mm512_inserti32x4(raw_desc0_3, raw_desc3, 3);
if (split_packet) {
int j;
for (j = 0; j < IAVF_DESCS_PER_LOOP_AVX; j++)
rte_mbuf_prefetch_part2(rx_pkts[i + j]);
}
/**
* convert descriptors 4-7 into mbufs, re-arrange fields.
* Then write into the mbuf.
*/
__m512i mb4_7 = _mm512_shuffle_epi8(raw_desc4_7, shuf_msk);
mb4_7 = _mm512_add_epi32(mb4_7, crc_adjust);
#ifdef IAVF_RX_PTYPE_OFFLOAD
/**
* to get packet types, ptype is located in bit16-25
* of each 128bits
*/
const __m512i ptype_mask =
_mm512_set1_epi16(IAVF_RX_FLEX_DESC_PTYPE_M);
const __m512i ptypes4_7 =
_mm512_and_si512(raw_desc4_7, ptype_mask);
const __m256i ptypes6_7 = _mm512_extracti64x4_epi64(ptypes4_7, 1);
const __m256i ptypes4_5 = _mm512_extracti64x4_epi64(ptypes4_7, 0);
const uint16_t ptype7 = _mm256_extract_epi16(ptypes6_7, 9);
const uint16_t ptype6 = _mm256_extract_epi16(ptypes6_7, 1);
const uint16_t ptype5 = _mm256_extract_epi16(ptypes4_5, 9);
const uint16_t ptype4 = _mm256_extract_epi16(ptypes4_5, 1);
const __m512i ptype4_7 = _mm512_set_epi32
(0, 0, 0, type_table[ptype7],
0, 0, 0, type_table[ptype6],
0, 0, 0, type_table[ptype5],
0, 0, 0, type_table[ptype4]);
mb4_7 = _mm512_mask_blend_epi32(0x1111, mb4_7, ptype4_7);
#endif
/**
* convert descriptors 0-3 into mbufs, re-arrange fields.
* Then write into the mbuf.
*/
__m512i mb0_3 = _mm512_shuffle_epi8(raw_desc0_3, shuf_msk);
mb0_3 = _mm512_add_epi32(mb0_3, crc_adjust);
#ifdef IAVF_RX_PTYPE_OFFLOAD
/**
* to get packet types, ptype is located in bit16-25
* of each 128bits
*/
const __m512i ptypes0_3 =
_mm512_and_si512(raw_desc0_3, ptype_mask);
const __m256i ptypes2_3 = _mm512_extracti64x4_epi64(ptypes0_3, 1);
const __m256i ptypes0_1 = _mm512_extracti64x4_epi64(ptypes0_3, 0);
const uint16_t ptype3 = _mm256_extract_epi16(ptypes2_3, 9);
const uint16_t ptype2 = _mm256_extract_epi16(ptypes2_3, 1);
const uint16_t ptype1 = _mm256_extract_epi16(ptypes0_1, 9);
const uint16_t ptype0 = _mm256_extract_epi16(ptypes0_1, 1);
const __m512i ptype0_3 = _mm512_set_epi32
(0, 0, 0, type_table[ptype3],
0, 0, 0, type_table[ptype2],
0, 0, 0, type_table[ptype1],
0, 0, 0, type_table[ptype0]);
mb0_3 = _mm512_mask_blend_epi32(0x1111, mb0_3, ptype0_3);
#endif
/**
* use permute/extract to get status content
* After the operations, the packets status flags are in the
* order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
*/
/* merge the status bits into one register */
const __m512i status_permute_msk = _mm512_set_epi32
(0, 0, 0, 0,
0, 0, 0, 0,
22, 30, 6, 14,
18, 26, 2, 10);
const __m512i raw_status0_7 = _mm512_permutex2var_epi32
(raw_desc4_7, status_permute_msk, raw_desc0_3);
__m256i status0_7 = _mm512_extracti64x4_epi64
(raw_status0_7, 0);
/* now do flag manipulation */
/* merge flags */
__m256i mbuf_flags = _mm256_set1_epi32(0);
__m256i vlan_flags = _mm256_setzero_si256();
if (offload) {
#if defined(IAVF_RX_CSUM_OFFLOAD) || defined(IAVF_RX_VLAN_OFFLOAD) || defined(IAVF_RX_RSS_OFFLOAD)
/* Status/Error flag masks */
/**
* mask everything except Checksum Reports, RSS indication
* and VLAN indication.
* bit6:4 for IP/L4 checksum errors.
* bit12 is for RSS indication.
* bit13 is for VLAN indication.
*/
const __m256i flags_mask =
_mm256_set1_epi32((7 << 4) | (1 << 12) | (1 << 13));
#endif
#ifdef IAVF_RX_CSUM_OFFLOAD
/**
* data to be shuffled by the result of the flags mask shifted by 4
* bits. This gives use the l3_l4 flags.
*/
const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
/* shift right 1 bit to make sure it not exceed 255 */
(RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
(RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
(RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
(RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
/* second 128-bits */
0, 0, 0, 0, 0, 0, 0, 0,
(RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
(RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
(RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
(RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1);
const __m256i cksum_mask =
_mm256_set1_epi32(RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD);
#endif
#if defined(IAVF_RX_VLAN_OFFLOAD) || defined(IAVF_RX_RSS_OFFLOAD)
/**
* data to be shuffled by result of flag mask, shifted down 12.
* If RSS(bit12)/VLAN(bit13) are set,
* shuffle moves appropriate flags in place.
*/
const __m256i rss_flags_shuf = _mm256_set_epi8
(0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
RTE_MBUF_F_RX_RSS_HASH, 0,
RTE_MBUF_F_RX_RSS_HASH, 0,
/* end up 128-bits */
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
RTE_MBUF_F_RX_RSS_HASH, 0,
RTE_MBUF_F_RX_RSS_HASH, 0);
const __m256i vlan_flags_shuf = _mm256_set_epi8
(0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
0, 0,
/* end up 128-bits */
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
0, 0);
#endif
#if defined(IAVF_RX_CSUM_OFFLOAD) || defined(IAVF_RX_VLAN_OFFLOAD) || defined(IAVF_RX_RSS_OFFLOAD)
/* get only flag/error bits we want */
const __m256i flag_bits =
_mm256_and_si256(status0_7, flags_mask);
#endif
#ifdef IAVF_RX_CSUM_OFFLOAD
/**
* l3_l4_error flags, shuffle, then shift to correct adjustment
* of flags in flags_shuf, and finally mask out extra bits
*/
__m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
_mm256_srli_epi32(flag_bits, 4));
l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
#endif
#if defined(IAVF_RX_VLAN_OFFLOAD) || defined(IAVF_RX_RSS_OFFLOAD)
/* set rss and vlan flags */
const __m256i rss_vlan_flag_bits =
_mm256_srli_epi32(flag_bits, 12);
const __m256i rss_flags =
_mm256_shuffle_epi8(rss_flags_shuf,
rss_vlan_flag_bits);
if (rxq->rx_flags == IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG1)
vlan_flags =
_mm256_shuffle_epi8(vlan_flags_shuf,
rss_vlan_flag_bits);
const __m256i rss_vlan_flags =
_mm256_or_si256(rss_flags, vlan_flags);
#endif
#ifdef IAVF_RX_CSUM_OFFLOAD
mbuf_flags = _mm256_or_si256(mbuf_flags, l3_l4_flags);
#endif
#if defined(IAVF_RX_VLAN_OFFLOAD) || defined(IAVF_RX_RSS_OFFLOAD)
mbuf_flags = _mm256_or_si256(mbuf_flags, rss_vlan_flags);
#endif
}
#ifdef IAVF_RX_FDIR_OFFLOAD
if (rxq->fdir_enabled) {
const __m512i fdir_permute_mask = _mm512_set_epi32
(0, 0, 0, 0,
0, 0, 0, 0,
7, 15, 23, 31,
3, 11, 19, 27);
__m512i fdir_tmp = _mm512_permutex2var_epi32
(raw_desc0_3, fdir_permute_mask, raw_desc4_7);
const __m256i fdir_id0_7 = _mm512_extracti64x4_epi64
(fdir_tmp, 0);
const __m256i fdir_flags =
flex_rxd_to_fdir_flags_vec_avx512(fdir_id0_7);
/* merge with fdir_flags */
mbuf_flags = _mm256_or_si256(mbuf_flags, fdir_flags);
/* write to mbuf: have to use scalar store here */
rx_pkts[i + 0]->hash.fdir.hi =
_mm256_extract_epi32(fdir_id0_7, 3);
rx_pkts[i + 1]->hash.fdir.hi =
_mm256_extract_epi32(fdir_id0_7, 7);
rx_pkts[i + 2]->hash.fdir.hi =
_mm256_extract_epi32(fdir_id0_7, 2);
rx_pkts[i + 3]->hash.fdir.hi =
_mm256_extract_epi32(fdir_id0_7, 6);
rx_pkts[i + 4]->hash.fdir.hi =
_mm256_extract_epi32(fdir_id0_7, 1);
rx_pkts[i + 5]->hash.fdir.hi =
_mm256_extract_epi32(fdir_id0_7, 5);
rx_pkts[i + 6]->hash.fdir.hi =
_mm256_extract_epi32(fdir_id0_7, 0);
rx_pkts[i + 7]->hash.fdir.hi =
_mm256_extract_epi32(fdir_id0_7, 4);
} /* if() on fdir_enabled */
#endif
__m256i mb4_5 = _mm512_extracti64x4_epi64(mb4_7, 0);
__m256i mb6_7 = _mm512_extracti64x4_epi64(mb4_7, 1);
__m256i mb0_1 = _mm512_extracti64x4_epi64(mb0_3, 0);
__m256i mb2_3 = _mm512_extracti64x4_epi64(mb0_3, 1);
#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
if (offload) {
#ifdef IAVF_RX_RSS_OFFLOAD
/**
* needs to load 2nd 16B of each desc for RSS hash parsing,
* will cause performance drop to get into this context.
*/
if (offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH ||
rxq->rx_flags & IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG2_2) {
/* load bottom half of every 32B desc */
const __m128i raw_desc_bh7 =
_mm_load_si128
((void *)(&rxdp[7].wb.status_error1));
rte_compiler_barrier();
const __m128i raw_desc_bh6 =
_mm_load_si128
((void *)(&rxdp[6].wb.status_error1));
rte_compiler_barrier();
const __m128i raw_desc_bh5 =
_mm_load_si128
((void *)(&rxdp[5].wb.status_error1));
rte_compiler_barrier();
const __m128i raw_desc_bh4 =
_mm_load_si128
((void *)(&rxdp[4].wb.status_error1));
rte_compiler_barrier();
const __m128i raw_desc_bh3 =
_mm_load_si128
((void *)(&rxdp[3].wb.status_error1));
rte_compiler_barrier();
const __m128i raw_desc_bh2 =
_mm_load_si128
((void *)(&rxdp[2].wb.status_error1));
rte_compiler_barrier();
const __m128i raw_desc_bh1 =
_mm_load_si128
((void *)(&rxdp[1].wb.status_error1));
rte_compiler_barrier();
const __m128i raw_desc_bh0 =
_mm_load_si128
((void *)(&rxdp[0].wb.status_error1));
__m256i raw_desc_bh6_7 =
_mm256_inserti128_si256
(_mm256_castsi128_si256(raw_desc_bh6),
raw_desc_bh7, 1);
__m256i raw_desc_bh4_5 =
_mm256_inserti128_si256
(_mm256_castsi128_si256(raw_desc_bh4),
raw_desc_bh5, 1);
__m256i raw_desc_bh2_3 =
_mm256_inserti128_si256
(_mm256_castsi128_si256(raw_desc_bh2),
raw_desc_bh3, 1);
__m256i raw_desc_bh0_1 =
_mm256_inserti128_si256
(_mm256_castsi128_si256(raw_desc_bh0),
raw_desc_bh1, 1);
if (offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH) {
/**
* to shift the 32b RSS hash value to the
* highest 32b of each 128b before mask
*/
__m256i rss_hash6_7 =
_mm256_slli_epi64
(raw_desc_bh6_7, 32);
__m256i rss_hash4_5 =
_mm256_slli_epi64
(raw_desc_bh4_5, 32);
__m256i rss_hash2_3 =
_mm256_slli_epi64
(raw_desc_bh2_3, 32);
__m256i rss_hash0_1 =
_mm256_slli_epi64
(raw_desc_bh0_1, 32);
const __m256i rss_hash_msk =
_mm256_set_epi32
(0xFFFFFFFF, 0, 0, 0,
0xFFFFFFFF, 0, 0, 0);
rss_hash6_7 = _mm256_and_si256
(rss_hash6_7, rss_hash_msk);
rss_hash4_5 = _mm256_and_si256
(rss_hash4_5, rss_hash_msk);
rss_hash2_3 = _mm256_and_si256
(rss_hash2_3, rss_hash_msk);
rss_hash0_1 = _mm256_and_si256
(rss_hash0_1, rss_hash_msk);
mb6_7 = _mm256_or_si256
(mb6_7, rss_hash6_7);
mb4_5 = _mm256_or_si256
(mb4_5, rss_hash4_5);
mb2_3 = _mm256_or_si256
(mb2_3, rss_hash2_3);
mb0_1 = _mm256_or_si256
(mb0_1, rss_hash0_1);
}
if (rxq->rx_flags & IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG2_2) {
/* merge the status/error-1 bits into one register */
const __m256i status1_4_7 =
_mm256_unpacklo_epi32
(raw_desc_bh6_7,
raw_desc_bh4_5);
const __m256i status1_0_3 =
_mm256_unpacklo_epi32
(raw_desc_bh2_3,
raw_desc_bh0_1);
const __m256i status1_0_7 =
_mm256_unpacklo_epi64
(status1_4_7, status1_0_3);
const __m256i l2tag2p_flag_mask =
_mm256_set1_epi32
(1 << IAVF_RX_FLEX_DESC_STATUS1_L2TAG2P_S);
__m256i l2tag2p_flag_bits =
_mm256_and_si256
(status1_0_7,
l2tag2p_flag_mask);
l2tag2p_flag_bits =
_mm256_srli_epi32
(l2tag2p_flag_bits,
IAVF_RX_FLEX_DESC_STATUS1_L2TAG2P_S);
const __m256i l2tag2_flags_shuf =
_mm256_set_epi8
(0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
/* end up 128-bits */
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0,
RTE_MBUF_F_RX_VLAN |
RTE_MBUF_F_RX_VLAN_STRIPPED,
0);
vlan_flags =
_mm256_shuffle_epi8
(l2tag2_flags_shuf,
l2tag2p_flag_bits);
/* merge with vlan_flags */
mbuf_flags = _mm256_or_si256
(mbuf_flags,
vlan_flags);
/* L2TAG2_2 */
__m256i vlan_tci6_7 =
_mm256_slli_si256
(raw_desc_bh6_7, 4);
__m256i vlan_tci4_5 =
_mm256_slli_si256
(raw_desc_bh4_5, 4);
__m256i vlan_tci2_3 =
_mm256_slli_si256
(raw_desc_bh2_3, 4);
__m256i vlan_tci0_1 =
_mm256_slli_si256
(raw_desc_bh0_1, 4);
const __m256i vlan_tci_msk =
_mm256_set_epi32
(0, 0xFFFF0000, 0, 0,
0, 0xFFFF0000, 0, 0);
vlan_tci6_7 = _mm256_and_si256
(vlan_tci6_7,
vlan_tci_msk);
vlan_tci4_5 = _mm256_and_si256
(vlan_tci4_5,
vlan_tci_msk);
vlan_tci2_3 = _mm256_and_si256
(vlan_tci2_3,
vlan_tci_msk);
vlan_tci0_1 = _mm256_and_si256
(vlan_tci0_1,
vlan_tci_msk);
mb6_7 = _mm256_or_si256
(mb6_7, vlan_tci6_7);
mb4_5 = _mm256_or_si256
(mb4_5, vlan_tci4_5);
mb2_3 = _mm256_or_si256
(mb2_3, vlan_tci2_3);
mb0_1 = _mm256_or_si256
(mb0_1, vlan_tci0_1);
}
} /* if() on RSS hash parsing */
#endif
}
#endif
/**
* At this point, we have the 8 sets of flags in the low 16-bits
* of each 32-bit value in vlan0.
* We want to extract these, and merge them with the mbuf init
* data so we can do a single write to the mbuf to set the flags
* and all the other initialization fields. Extracting the
* appropriate flags means that we have to do a shift and blend
* for each mbuf before we do the write. However, we can also
* add in the previously computed rx_descriptor fields to
* make a single 256-bit write per mbuf
*/
/* check the structure matches expectations */
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
offsetof(struct rte_mbuf, rearm_data) + 8);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
RTE_ALIGN(offsetof(struct rte_mbuf,
rearm_data),
16));
/* build up data and do writes */
__m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
rearm6, rearm7;
rearm6 = _mm256_blend_epi32(mbuf_init,
_mm256_slli_si256(mbuf_flags, 8),
0x04);
rearm4 = _mm256_blend_epi32(mbuf_init,
_mm256_slli_si256(mbuf_flags, 4),
0x04);
rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
rearm0 = _mm256_blend_epi32(mbuf_init,
_mm256_srli_si256(mbuf_flags, 4),
0x04);
/* permute to add in the rx_descriptor e.g. rss fields */
rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
/* write to mbuf */
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
rearm6);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
rearm4);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
rearm2);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
rearm0);
/* repeat for the odd mbufs */
const __m256i odd_flags =
_mm256_castsi128_si256
(_mm256_extracti128_si256(mbuf_flags, 1));
rearm7 = _mm256_blend_epi32(mbuf_init,
_mm256_slli_si256(odd_flags, 8),
0x04);
rearm5 = _mm256_blend_epi32(mbuf_init,
_mm256_slli_si256(odd_flags, 4),
0x04);
rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
rearm1 = _mm256_blend_epi32(mbuf_init,
_mm256_srli_si256(odd_flags, 4),
0x04);
/* since odd mbufs are already in hi 128-bits use blend */
rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
/* again write to mbufs */
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
rearm7);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
rearm5);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
rearm3);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
rearm1);
/* extract and record EOP bit */
if (split_packet) {
const __m128i eop_mask =
_mm_set1_epi16(1 <<
IAVF_RX_FLEX_DESC_STATUS0_EOF_S);
const __m256i eop_bits256 = _mm256_and_si256(status0_7,
eop_check);
/* pack status bits into a single 128-bit register */
const __m128i eop_bits =
_mm_packus_epi32
(_mm256_castsi256_si128(eop_bits256),
_mm256_extractf128_si256(eop_bits256,
1));
/**
* flip bits, and mask out the EOP bit, which is now
* a split-packet bit i.e. !EOP, rather than EOP one.
*/
__m128i split_bits = _mm_andnot_si128(eop_bits,
eop_mask);
/**
* eop bits are out of order, so we need to shuffle them
* back into order again. In doing so, only use low 8
* bits, which acts like another pack instruction
* The original order is (hi->lo): 1,3,5,7,0,2,4,6
* [Since we use epi8, the 16-bit positions are
* multiplied by 2 in the eop_shuffle value.]
*/
__m128i eop_shuffle =
_mm_set_epi8(/* zero hi 64b */
0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF,
/* move values to lo 64b */
8, 0, 10, 2,
12, 4, 14, 6);
split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
*(uint64_t *)split_packet =
_mm_cvtsi128_si64(split_bits);
split_packet += IAVF_DESCS_PER_LOOP_AVX;
}
/* perform dd_check */
status0_7 = _mm256_and_si256(status0_7, dd_check);
status0_7 = _mm256_packs_epi32(status0_7,
_mm256_setzero_si256());
uint64_t burst = __builtin_popcountll
(_mm_cvtsi128_si64
(_mm256_extracti128_si256
(status0_7, 1)));
burst += __builtin_popcountll
(_mm_cvtsi128_si64
(_mm256_castsi256_si128(status0_7)));
received += burst;
if (burst != IAVF_DESCS_PER_LOOP_AVX)
break;
}
/* update tail pointers */
rxq->rx_tail += received;
rxq->rx_tail &= (rxq->nb_rx_desc - 1);
if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep aligned */
rxq->rx_tail--;
received--;
}
rxq->rxrearm_nb += received;
return received;
}
/**
* Notice:
* - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
*/
uint16_t
iavf_recv_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return _iavf_recv_raw_pkts_vec_avx512(rx_queue, rx_pkts, nb_pkts,
NULL, false);
}
/**
* Notice:
* - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
*/
uint16_t
iavf_recv_pkts_vec_avx512_flex_rxd(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return _iavf_recv_raw_pkts_vec_avx512_flex_rxd(rx_queue, rx_pkts,
nb_pkts, NULL, false);
}
/**
* vPMD receive routine that reassembles single burst of 32 scattered packets
* Notice:
* - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
*/
static __rte_always_inline uint16_t
iavf_recv_scattered_burst_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts, bool offload)
{
struct iavf_rx_queue *rxq = rx_queue;
uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0};
/* get some new buffers */
uint16_t nb_bufs = _iavf_recv_raw_pkts_vec_avx512(rxq, rx_pkts, nb_pkts,
split_flags, offload);
if (nb_bufs == 0)
return 0;
/* happy day case, full burst + no packets to be joined */
const uint64_t *split_fl64 = (uint64_t *)split_flags;
if (!rxq->pkt_first_seg &&
split_fl64[0] == 0 && split_fl64[1] == 0 &&
split_fl64[2] == 0 && split_fl64[3] == 0)
return nb_bufs;
/* reassemble any packets that need reassembly*/
unsigned int i = 0;
if (!rxq->pkt_first_seg) {
/* find the first split flag, and only reassemble then*/
while (i < nb_bufs && !split_flags[i])
i++;
if (i == nb_bufs)
return nb_bufs;
rxq->pkt_first_seg = rx_pkts[i];
}
return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
&split_flags[i]);
}
/**
* vPMD receive routine that reassembles scattered packets.
* Main receive routine that can handle arbitrary burst sizes
* Notice:
* - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
*/
static __rte_always_inline uint16_t
iavf_recv_scattered_pkts_vec_avx512_cmn(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts, bool offload)
{
uint16_t retval = 0;
while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) {
uint16_t burst = iavf_recv_scattered_burst_vec_avx512(rx_queue,
rx_pkts + retval, IAVF_VPMD_RX_MAX_BURST, offload);
retval += burst;
nb_pkts -= burst;
if (burst < IAVF_VPMD_RX_MAX_BURST)
return retval;
}
return retval + iavf_recv_scattered_burst_vec_avx512(rx_queue,
rx_pkts + retval, nb_pkts, offload);
}
uint16_t
iavf_recv_scattered_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return iavf_recv_scattered_pkts_vec_avx512_cmn(rx_queue, rx_pkts,
nb_pkts, false);
}
/**
* vPMD receive routine that reassembles single burst of
* 32 scattered packets for flex RxD
* Notice:
* - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
*/
static __rte_always_inline uint16_t
iavf_recv_scattered_burst_vec_avx512_flex_rxd(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts,
bool offload)
{
struct iavf_rx_queue *rxq = rx_queue;
uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0};
/* get some new buffers */
uint16_t nb_bufs = _iavf_recv_raw_pkts_vec_avx512_flex_rxd(rxq,
rx_pkts, nb_pkts, split_flags, offload);
if (nb_bufs == 0)
return 0;
/* happy day case, full burst + no packets to be joined */
const uint64_t *split_fl64 = (uint64_t *)split_flags;
if (!rxq->pkt_first_seg &&
split_fl64[0] == 0 && split_fl64[1] == 0 &&
split_fl64[2] == 0 && split_fl64[3] == 0)
return nb_bufs;
/* reassemble any packets that need reassembly*/
unsigned int i = 0;
if (!rxq->pkt_first_seg) {
/* find the first split flag, and only reassemble then*/
while (i < nb_bufs && !split_flags[i])
i++;
if (i == nb_bufs)
return nb_bufs;
rxq->pkt_first_seg = rx_pkts[i];
}
return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
&split_flags[i]);
}
/**
* vPMD receive routine that reassembles scattered packets for flex RxD.
* Main receive routine that can handle arbitrary burst sizes
* Notice:
* - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
*/
static __rte_always_inline uint16_t
iavf_recv_scattered_pkts_vec_avx512_flex_rxd_cmn(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts,
bool offload)
{
uint16_t retval = 0;
while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) {
uint16_t burst =
iavf_recv_scattered_burst_vec_avx512_flex_rxd
(rx_queue, rx_pkts + retval,
IAVF_VPMD_RX_MAX_BURST, offload);
retval += burst;
nb_pkts -= burst;
if (burst < IAVF_VPMD_RX_MAX_BURST)
return retval;
}
return retval + iavf_recv_scattered_burst_vec_avx512_flex_rxd(rx_queue,
rx_pkts + retval, nb_pkts, offload);
}
uint16_t
iavf_recv_scattered_pkts_vec_avx512_flex_rxd(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return iavf_recv_scattered_pkts_vec_avx512_flex_rxd_cmn(rx_queue,
rx_pkts,
nb_pkts,
false);
}
uint16_t
iavf_recv_pkts_vec_avx512_offload(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return _iavf_recv_raw_pkts_vec_avx512(rx_queue, rx_pkts,
nb_pkts, NULL, true);
}
uint16_t
iavf_recv_scattered_pkts_vec_avx512_offload(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return iavf_recv_scattered_pkts_vec_avx512_cmn(rx_queue, rx_pkts,
nb_pkts, true);
}
uint16_t
iavf_recv_pkts_vec_avx512_flex_rxd_offload(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return _iavf_recv_raw_pkts_vec_avx512_flex_rxd(rx_queue,
rx_pkts,
nb_pkts,
NULL,
true);
}
uint16_t
iavf_recv_scattered_pkts_vec_avx512_flex_rxd_offload(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return iavf_recv_scattered_pkts_vec_avx512_flex_rxd_cmn(rx_queue,
rx_pkts,
nb_pkts,
true);
}
static __rte_always_inline int
iavf_tx_free_bufs_avx512(struct iavf_tx_queue *txq)
{
struct iavf_tx_vec_entry *txep;
uint32_t n;
uint32_t i;
int nb_free = 0;
struct rte_mbuf *m, *free[IAVF_VPMD_TX_MAX_FREE_BUF];
/* check DD bits on threshold descriptor */
if ((txq->tx_ring[txq->next_dd].cmd_type_offset_bsz &
rte_cpu_to_le_64(IAVF_TXD_QW1_DTYPE_MASK)) !=
rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE))
return 0;
n = txq->rs_thresh;
/* first buffer to free from S/W ring is at index
* tx_next_dd - (tx_rs_thresh-1)
*/
txep = (void *)txq->sw_ring;
txep += txq->next_dd - (n - 1);
if (txq->offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE && (n & 31) == 0) {
struct rte_mempool *mp = txep[0].mbuf->pool;
struct rte_mempool_cache *cache = rte_mempool_default_cache(mp,
rte_lcore_id());
void **cache_objs;
if (!cache || cache->len == 0)
goto normal;
cache_objs = &cache->objs[cache->len];
if (n > RTE_MEMPOOL_CACHE_MAX_SIZE) {
rte_mempool_ops_enqueue_bulk(mp, (void *)txep, n);
goto done;
}
/* The cache follows the following algorithm
* 1. Add the objects to the cache
* 2. Anything greater than the cache min value (if it crosses the
* cache flush threshold) is flushed to the ring.
*/
/* Add elements back into the cache */
uint32_t copied = 0;
/* n is multiple of 32 */
while (copied < n) {
const __m512i a = _mm512_loadu_si512(&txep[copied]);
const __m512i b = _mm512_loadu_si512(&txep[copied + 8]);
const __m512i c = _mm512_loadu_si512(&txep[copied + 16]);
const __m512i d = _mm512_loadu_si512(&txep[copied + 24]);
_mm512_storeu_si512(&cache_objs[copied], a);
_mm512_storeu_si512(&cache_objs[copied + 8], b);
_mm512_storeu_si512(&cache_objs[copied + 16], c);
_mm512_storeu_si512(&cache_objs[copied + 24], d);
copied += 32;
}
cache->len += n;
if (cache->len >= cache->flushthresh) {
rte_mempool_ops_enqueue_bulk(mp,
&cache->objs[cache->size],
cache->len - cache->size);
cache->len = cache->size;
}
goto done;
}
normal:
m = rte_pktmbuf_prefree_seg(txep[0].mbuf);
if (likely(m)) {
free[0] = m;
nb_free = 1;
for (i = 1; i < n; i++) {
m = rte_pktmbuf_prefree_seg(txep[i].mbuf);
if (likely(m)) {
if (likely(m->pool == free[0]->pool)) {
free[nb_free++] = m;
} else {
rte_mempool_put_bulk(free[0]->pool,
(void *)free,
nb_free);
free[0] = m;
nb_free = 1;
}
}
}
rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
} else {
for (i = 1; i < n; i++) {
m = rte_pktmbuf_prefree_seg(txep[i].mbuf);
if (m)
rte_mempool_put(m->pool, m);
}
}
done:
/* buffers were freed, update counters */
txq->nb_free = (uint16_t)(txq->nb_free + txq->rs_thresh);
txq->next_dd = (uint16_t)(txq->next_dd + txq->rs_thresh);
if (txq->next_dd >= txq->nb_tx_desc)
txq->next_dd = (uint16_t)(txq->rs_thresh - 1);
return txq->rs_thresh;
}
static __rte_always_inline void
tx_backlog_entry_avx512(struct iavf_tx_vec_entry *txep,
struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
int i;
for (i = 0; i < (int)nb_pkts; ++i)
txep[i].mbuf = tx_pkts[i];
}
static __rte_always_inline void
iavf_vtx1(volatile struct iavf_tx_desc *txdp,
struct rte_mbuf *pkt, uint64_t flags, bool offload)
{
uint64_t high_qw =
(IAVF_TX_DESC_DTYPE_DATA |
((uint64_t)flags << IAVF_TXD_QW1_CMD_SHIFT) |
((uint64_t)pkt->data_len << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT));
if (offload)
iavf_txd_enable_offload(pkt, &high_qw);
__m128i descriptor = _mm_set_epi64x(high_qw,
pkt->buf_iova + pkt->data_off);
_mm_storeu_si128((__m128i *)txdp, descriptor);
}
#define IAVF_TX_LEN_MASK 0xAA
#define IAVF_TX_OFF_MASK 0x55
static __rte_always_inline void
iavf_vtx(volatile struct iavf_tx_desc *txdp,
struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags,
bool offload)
{
const uint64_t hi_qw_tmpl = (IAVF_TX_DESC_DTYPE_DATA |
((uint64_t)flags << IAVF_TXD_QW1_CMD_SHIFT));
/* if unaligned on 32-bit boundary, do one to align */
if (((uintptr_t)txdp & 0x1F) != 0 && nb_pkts != 0) {
iavf_vtx1(txdp, *pkt, flags, offload);
nb_pkts--, txdp++, pkt++;
}
/* do 4 at a time while possible, in bursts */
for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) {
uint64_t hi_qw3 =
hi_qw_tmpl |
((uint64_t)pkt[3]->data_len <<
IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
if (offload)
iavf_txd_enable_offload(pkt[3], &hi_qw3);
uint64_t hi_qw2 =
hi_qw_tmpl |
((uint64_t)pkt[2]->data_len <<
IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
if (offload)
iavf_txd_enable_offload(pkt[2], &hi_qw2);
uint64_t hi_qw1 =
hi_qw_tmpl |
((uint64_t)pkt[1]->data_len <<
IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
if (offload)
iavf_txd_enable_offload(pkt[1], &hi_qw1);
uint64_t hi_qw0 =
hi_qw_tmpl |
((uint64_t)pkt[0]->data_len <<
IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
if (offload)
iavf_txd_enable_offload(pkt[0], &hi_qw0);
__m512i desc0_3 =
_mm512_set_epi64
(hi_qw3,
pkt[3]->buf_iova + pkt[3]->data_off,
hi_qw2,
pkt[2]->buf_iova + pkt[2]->data_off,
hi_qw1,
pkt[1]->buf_iova + pkt[1]->data_off,
hi_qw0,
pkt[0]->buf_iova + pkt[0]->data_off);
_mm512_storeu_si512((void *)txdp, desc0_3);
}
/* do any last ones */
while (nb_pkts) {
iavf_vtx1(txdp, *pkt, flags, offload);
txdp++, pkt++, nb_pkts--;
}
}
static __rte_always_inline uint16_t
iavf_xmit_fixed_burst_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts, bool offload)
{
struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue;
volatile struct iavf_tx_desc *txdp;
struct iavf_tx_vec_entry *txep;
uint16_t n, nb_commit, tx_id;
/* bit2 is reserved and must be set to 1 according to Spec */
uint64_t flags = IAVF_TX_DESC_CMD_EOP | IAVF_TX_DESC_CMD_ICRC;
uint64_t rs = IAVF_TX_DESC_CMD_RS | flags;
if (txq->nb_free < txq->free_thresh)
iavf_tx_free_bufs_avx512(txq);
nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts);
if (unlikely(nb_pkts == 0))
return 0;
tx_id = txq->tx_tail;
txdp = &txq->tx_ring[tx_id];
txep = (void *)txq->sw_ring;
txep += tx_id;
txq->nb_free = (uint16_t)(txq->nb_free - nb_pkts);
n = (uint16_t)(txq->nb_tx_desc - tx_id);
if (nb_commit >= n) {
tx_backlog_entry_avx512(txep, tx_pkts, n);
iavf_vtx(txdp, tx_pkts, n - 1, flags, offload);
tx_pkts += (n - 1);
txdp += (n - 1);
iavf_vtx1(txdp, *tx_pkts++, rs, offload);
nb_commit = (uint16_t)(nb_commit - n);
tx_id = 0;
txq->next_rs = (uint16_t)(txq->rs_thresh - 1);
/* avoid reach the end of ring */
txdp = &txq->tx_ring[tx_id];
txep = (void *)txq->sw_ring;
txep += tx_id;
}
tx_backlog_entry_avx512(txep, tx_pkts, nb_commit);
iavf_vtx(txdp, tx_pkts, nb_commit, flags, offload);
tx_id = (uint16_t)(tx_id + nb_commit);
if (tx_id > txq->next_rs) {
txq->tx_ring[txq->next_rs].cmd_type_offset_bsz |=
rte_cpu_to_le_64(((uint64_t)IAVF_TX_DESC_CMD_RS) <<
IAVF_TXD_QW1_CMD_SHIFT);
txq->next_rs =
(uint16_t)(txq->next_rs + txq->rs_thresh);
}
txq->tx_tail = tx_id;
IAVF_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
return nb_pkts;
}
static __rte_always_inline uint16_t
iavf_xmit_pkts_vec_avx512_cmn(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts, bool offload)
{
uint16_t nb_tx = 0;
struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue;
while (nb_pkts) {
uint16_t ret, num;
/* cross rs_thresh boundary is not allowed */
num = (uint16_t)RTE_MIN(nb_pkts, txq->rs_thresh);
ret = iavf_xmit_fixed_burst_vec_avx512(tx_queue, &tx_pkts[nb_tx],
num, offload);
nb_tx += ret;
nb_pkts -= ret;
if (ret < num)
break;
}
return nb_tx;
}
uint16_t
iavf_xmit_pkts_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
return iavf_xmit_pkts_vec_avx512_cmn(tx_queue, tx_pkts, nb_pkts, false);
}
void __rte_cold
iavf_tx_queue_release_mbufs_avx512(struct iavf_tx_queue *txq)
{
unsigned int i;
const uint16_t max_desc = (uint16_t)(txq->nb_tx_desc - 1);
struct iavf_tx_vec_entry *swr = (void *)txq->sw_ring;
if (!txq->sw_ring || txq->nb_free == max_desc)
return;
i = txq->next_dd - txq->rs_thresh + 1;
if (txq->tx_tail < i) {
for (; i < txq->nb_tx_desc; i++) {
rte_pktmbuf_free_seg(swr[i].mbuf);
swr[i].mbuf = NULL;
}
i = 0;
}
}
int __rte_cold
iavf_txq_vec_setup_avx512(struct iavf_tx_queue *txq)
{
txq->rel_mbufs_type = IAVF_REL_MBUFS_AVX512_VEC;
return 0;
}
uint16_t
iavf_xmit_pkts_vec_avx512_offload(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
return iavf_xmit_pkts_vec_avx512_cmn(tx_queue, tx_pkts, nb_pkts, true);
}