numam-dpdk/drivers/net/cnxk/cn10k_rx.h
Nithin Dabilpuram 4382a7ccf7 net/cnxk: support Rx security offload on cn10k
Add support to receive CPT processed packets on Rx via
second pass on CN10K.

Signed-off-by: Nithin Dabilpuram <ndabilpuram@marvell.com>
Acked-by: Jerin Jacob <jerinj@marvell.com>
2021-10-02 15:45:15 +02:00

1265 lines
42 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(C) 2021 Marvell.
*/
#ifndef __CN10K_RX_H__
#define __CN10K_RX_H__
#include <rte_ether.h>
#include <rte_vect.h>
#include <cnxk_ethdev.h>
#define NIX_RX_OFFLOAD_NONE (0)
#define NIX_RX_OFFLOAD_RSS_F BIT(0)
#define NIX_RX_OFFLOAD_PTYPE_F BIT(1)
#define NIX_RX_OFFLOAD_CHECKSUM_F BIT(2)
#define NIX_RX_OFFLOAD_MARK_UPDATE_F BIT(3)
#define NIX_RX_OFFLOAD_TSTAMP_F BIT(4)
#define NIX_RX_OFFLOAD_VLAN_STRIP_F BIT(5)
#define NIX_RX_OFFLOAD_SECURITY_F BIT(6)
/* Flags to control cqe_to_mbuf conversion function.
* Defining it from backwards to denote its been
* not used as offload flags to pick function
*/
#define NIX_RX_VWQE_F BIT(13)
#define NIX_RX_MULTI_SEG_F BIT(14)
#define CPT_RX_WQE_F BIT(15)
#define CNXK_NIX_CQ_ENTRY_SZ 128
#define NIX_DESCS_PER_LOOP 4
#define CQE_CAST(x) ((struct nix_cqe_hdr_s *)(x))
#define CQE_SZ(x) ((x) * CNXK_NIX_CQ_ENTRY_SZ)
#define CQE_PTR_OFF(b, i, o, f) \
(((f) & NIX_RX_VWQE_F) ? \
(uint64_t *)(((uintptr_t)((uint64_t *)(b))[i]) + (o)) : \
(uint64_t *)(((uintptr_t)(b)) + CQE_SZ(i) + (o)))
union mbuf_initializer {
struct {
uint16_t data_off;
uint16_t refcnt;
uint16_t nb_segs;
uint16_t port;
} fields;
uint64_t value;
};
static __rte_always_inline uint64_t
nix_clear_data_off(uint64_t oldval)
{
union mbuf_initializer mbuf_init = {.value = oldval};
mbuf_init.fields.data_off = 0;
return mbuf_init.value;
}
static __rte_always_inline struct rte_mbuf *
nix_get_mbuf_from_cqe(void *cq, const uint64_t data_off)
{
rte_iova_t buff;
/* Skip CQE, NIX_RX_PARSE_S and SG HDR(9 DWORDs) and peek buff addr */
buff = *((rte_iova_t *)((uint64_t *)cq + 9));
return (struct rte_mbuf *)(buff - data_off);
}
static __rte_always_inline void
nix_sec_flush_meta(uintptr_t laddr, uint16_t lmt_id, uint8_t loff,
uintptr_t aura_handle)
{
uint64_t pa;
/* laddr is pointing to first pointer */
laddr -= 8;
/* Trigger free either on lmtline full or different aura handle */
pa = roc_npa_aura_handle_to_base(aura_handle) + NPA_LF_AURA_BATCH_FREE0;
/* Update aura handle */
*(uint64_t *)laddr = (((uint64_t)(loff & 0x1) << 32) |
roc_npa_aura_handle_to_aura(aura_handle));
pa |= ((loff >> 1) << 4);
roc_lmt_submit_steorl(lmt_id, pa);
}
static __rte_always_inline struct rte_mbuf *
nix_sec_meta_to_mbuf_sc(uint64_t cq_w1, const uint64_t sa_base, uintptr_t laddr,
uint8_t *loff, struct rte_mbuf *mbuf, uint16_t data_off)
{
const void *__p = (void *)((uintptr_t)mbuf + (uint16_t)data_off);
const struct cpt_parse_hdr_s *hdr = (const struct cpt_parse_hdr_s *)__p;
struct cn10k_inb_priv_data *inb_priv;
struct rte_mbuf *inner;
uint32_t sa_idx;
void *inb_sa;
uint64_t w0;
if (cq_w1 & BIT(11)) {
inner = (struct rte_mbuf *)(rte_be_to_cpu_64(hdr->wqe_ptr) -
sizeof(struct rte_mbuf));
/* Get SPI from CPT_PARSE_S's cookie(already swapped) */
w0 = hdr->w0.u64;
sa_idx = w0 >> 32;
inb_sa = roc_nix_inl_ot_ipsec_inb_sa(sa_base, sa_idx);
inb_priv = roc_nix_inl_ot_ipsec_inb_sa_sw_rsvd(inb_sa);
/* Update dynamic field with userdata */
*rte_security_dynfield(inner) = (uint64_t)inb_priv->userdata;
/* Update l2 hdr length first */
inner->pkt_len = (hdr->w2.il3_off -
sizeof(struct cpt_parse_hdr_s) - (w0 & 0x7));
/* Store meta in lmtline to free
* Assume all meta's from same aura.
*/
*(uint64_t *)(laddr + (*loff << 3)) = (uint64_t)mbuf;
*loff = *loff + 1;
return inner;
}
return mbuf;
}
#if defined(RTE_ARCH_ARM64)
static __rte_always_inline struct rte_mbuf *
nix_sec_meta_to_mbuf(uint64_t cq_w1, uintptr_t sa_base, uintptr_t laddr,
uint8_t *loff, struct rte_mbuf *mbuf, uint16_t data_off,
uint8x16_t *rx_desc_field1, uint64_t *ol_flags)
{
const void *__p = (void *)((uintptr_t)mbuf + (uint16_t)data_off);
const struct cpt_parse_hdr_s *hdr = (const struct cpt_parse_hdr_s *)__p;
struct cn10k_inb_priv_data *inb_priv;
struct rte_mbuf *inner;
uint64_t *sg, res_w1;
uint32_t sa_idx;
void *inb_sa;
uint16_t len;
uint64_t w0;
if (cq_w1 & BIT(11)) {
inner = (struct rte_mbuf *)(rte_be_to_cpu_64(hdr->wqe_ptr) -
sizeof(struct rte_mbuf));
/* Get SPI from CPT_PARSE_S's cookie(already swapped) */
w0 = hdr->w0.u64;
sa_idx = w0 >> 32;
inb_sa = roc_nix_inl_ot_ipsec_inb_sa(sa_base, sa_idx);
inb_priv = roc_nix_inl_ot_ipsec_inb_sa_sw_rsvd(inb_sa);
/* Update dynamic field with userdata */
*rte_security_dynfield(inner) = (uint64_t)inb_priv->userdata;
/* CPT result(struct cpt_cn10k_res_s) is at
* after first IOVA in meta
*/
sg = (uint64_t *)(inner + 1);
res_w1 = sg[10];
/* Clear checksum flags and update security flag */
*ol_flags &= ~(PKT_RX_L4_CKSUM_MASK | PKT_RX_IP_CKSUM_MASK);
*ol_flags |= (((res_w1 & 0xFF) == CPT_COMP_WARN) ?
PKT_RX_SEC_OFFLOAD :
(PKT_RX_SEC_OFFLOAD | PKT_RX_SEC_OFFLOAD_FAILED));
/* Calculate inner packet length */
len = ((res_w1 >> 16) & 0xFFFF) + hdr->w2.il3_off -
sizeof(struct cpt_parse_hdr_s) - (w0 & 0x7);
/* Update pkt_len and data_len */
*rx_desc_field1 = vsetq_lane_u16(len, *rx_desc_field1, 2);
*rx_desc_field1 = vsetq_lane_u16(len, *rx_desc_field1, 4);
/* Store meta in lmtline to free
* Assume all meta's from same aura.
*/
*(uint64_t *)(laddr + (*loff << 3)) = (uint64_t)mbuf;
*loff = *loff + 1;
/* Return inner mbuf */
return inner;
}
/* Return same mbuf as it is not a decrypted pkt */
return mbuf;
}
#endif
static __rte_always_inline uint32_t
nix_ptype_get(const void *const lookup_mem, const uint64_t in)
{
const uint16_t *const ptype = lookup_mem;
const uint16_t lh_lg_lf = (in & 0xFFF0000000000000) >> 52;
const uint16_t tu_l2 = ptype[(in & 0x000FFFF000000000) >> 36];
const uint16_t il4_tu = ptype[PTYPE_NON_TUNNEL_ARRAY_SZ + lh_lg_lf];
return (il4_tu << PTYPE_NON_TUNNEL_WIDTH) | tu_l2;
}
static __rte_always_inline uint32_t
nix_rx_olflags_get(const void *const lookup_mem, const uint64_t in)
{
const uint32_t *const ol_flags =
(const uint32_t *)((const uint8_t *)lookup_mem +
PTYPE_ARRAY_SZ);
return ol_flags[(in & 0xfff00000) >> 20];
}
static inline uint64_t
nix_update_match_id(const uint16_t match_id, uint64_t ol_flags,
struct rte_mbuf *mbuf)
{
/* There is no separate bit to check match_id
* is valid or not? and no flag to identify it is an
* RTE_FLOW_ACTION_TYPE_FLAG vs RTE_FLOW_ACTION_TYPE_MARK
* action. The former case addressed through 0 being invalid
* value and inc/dec match_id pair when MARK is activated.
* The later case addressed through defining
* CNXK_FLOW_MARK_DEFAULT as value for
* RTE_FLOW_ACTION_TYPE_MARK.
* This would translate to not use
* CNXK_FLOW_ACTION_FLAG_DEFAULT - 1 and
* CNXK_FLOW_ACTION_FLAG_DEFAULT for match_id.
* i.e valid mark_id's are from
* 0 to CNXK_FLOW_ACTION_FLAG_DEFAULT - 2
*/
if (likely(match_id)) {
ol_flags |= PKT_RX_FDIR;
if (match_id != CNXK_FLOW_ACTION_FLAG_DEFAULT) {
ol_flags |= PKT_RX_FDIR_ID;
mbuf->hash.fdir.hi = match_id - 1;
}
}
return ol_flags;
}
static __rte_always_inline void
nix_cqe_xtract_mseg(const union nix_rx_parse_u *rx, struct rte_mbuf *mbuf,
uint64_t rearm, const uint16_t flags)
{
const rte_iova_t *iova_list;
struct rte_mbuf *head;
const rte_iova_t *eol;
uint8_t nb_segs;
uint64_t sg;
sg = *(const uint64_t *)(rx + 1);
nb_segs = (sg >> 48) & 0x3;
if (nb_segs == 1) {
mbuf->next = NULL;
return;
}
mbuf->pkt_len = (rx->pkt_lenm1 + 1) - (flags & NIX_RX_OFFLOAD_TSTAMP_F ?
CNXK_NIX_TIMESYNC_RX_OFFSET : 0);
mbuf->data_len = (sg & 0xFFFF) - (flags & NIX_RX_OFFLOAD_TSTAMP_F ?
CNXK_NIX_TIMESYNC_RX_OFFSET : 0);
mbuf->nb_segs = nb_segs;
sg = sg >> 16;
eol = ((const rte_iova_t *)(rx + 1) + ((rx->desc_sizem1 + 1) << 1));
/* Skip SG_S and first IOVA*/
iova_list = ((const rte_iova_t *)(rx + 1)) + 2;
nb_segs--;
rearm = rearm & ~0xFFFF;
head = mbuf;
while (nb_segs) {
mbuf->next = ((struct rte_mbuf *)*iova_list) - 1;
mbuf = mbuf->next;
__mempool_check_cookies(mbuf->pool, (void **)&mbuf, 1, 1);
mbuf->data_len = sg & 0xFFFF;
sg = sg >> 16;
*(uint64_t *)(&mbuf->rearm_data) = rearm;
nb_segs--;
iova_list++;
if (!nb_segs && (iova_list + 1 < eol)) {
sg = *(const uint64_t *)(iova_list);
nb_segs = (sg >> 48) & 0x3;
head->nb_segs += nb_segs;
iova_list = (const rte_iova_t *)(iova_list + 1);
}
}
mbuf->next = NULL;
}
static __rte_always_inline void
cn10k_nix_cqe_to_mbuf(const struct nix_cqe_hdr_s *cq, const uint32_t tag,
struct rte_mbuf *mbuf, const void *lookup_mem,
const uint64_t val, const uint16_t flag)
{
const union nix_rx_parse_u *rx =
(const union nix_rx_parse_u *)((const uint64_t *)cq + 1);
const uint64_t w1 = *(const uint64_t *)rx;
uint16_t len = rx->pkt_lenm1 + 1;
uint64_t ol_flags = 0;
/* Mark mempool obj as "get" as it is alloc'ed by NIX */
__mempool_check_cookies(mbuf->pool, (void **)&mbuf, 1, 1);
if (flag & NIX_RX_OFFLOAD_PTYPE_F)
mbuf->packet_type = nix_ptype_get(lookup_mem, w1);
else
mbuf->packet_type = 0;
if (flag & NIX_RX_OFFLOAD_RSS_F) {
mbuf->hash.rss = tag;
ol_flags |= PKT_RX_RSS_HASH;
}
/* Process Security packets */
if (flag & NIX_RX_OFFLOAD_SECURITY_F) {
if (w1 & BIT(11)) {
/* CPT result(struct cpt_cn10k_res_s) is at
* after first IOVA in meta
*/
const uint64_t *sg = (const uint64_t *)(mbuf + 1);
const uint64_t res_w1 = sg[10];
const uint16_t uc_cc = res_w1 & 0xFF;
/* Rlen */
len = ((res_w1 >> 16) & 0xFFFF) + mbuf->pkt_len;
ol_flags |= ((uc_cc == CPT_COMP_WARN) ?
PKT_RX_SEC_OFFLOAD :
(PKT_RX_SEC_OFFLOAD |
PKT_RX_SEC_OFFLOAD_FAILED));
} else {
if (flag & NIX_RX_OFFLOAD_CHECKSUM_F)
ol_flags |= nix_rx_olflags_get(lookup_mem, w1);
}
} else {
if (flag & NIX_RX_OFFLOAD_CHECKSUM_F)
ol_flags |= nix_rx_olflags_get(lookup_mem, w1);
}
if (flag & NIX_RX_OFFLOAD_VLAN_STRIP_F) {
if (rx->vtag0_gone) {
ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
mbuf->vlan_tci = rx->vtag0_tci;
}
if (rx->vtag1_gone) {
ol_flags |= PKT_RX_QINQ | PKT_RX_QINQ_STRIPPED;
mbuf->vlan_tci_outer = rx->vtag1_tci;
}
}
if (flag & NIX_RX_OFFLOAD_MARK_UPDATE_F)
ol_flags = nix_update_match_id(rx->match_id, ol_flags, mbuf);
mbuf->ol_flags = ol_flags;
mbuf->pkt_len = len;
mbuf->data_len = len;
*(uint64_t *)(&mbuf->rearm_data) = val;
if (flag & NIX_RX_MULTI_SEG_F)
nix_cqe_xtract_mseg(rx, mbuf, val, flag);
else
mbuf->next = NULL;
}
static inline uint16_t
nix_rx_nb_pkts(struct cn10k_eth_rxq *rxq, const uint64_t wdata,
const uint16_t pkts, const uint32_t qmask)
{
uint32_t available = rxq->available;
/* Update the available count if cached value is not enough */
if (unlikely(available < pkts)) {
uint64_t reg, head, tail;
/* Use LDADDA version to avoid reorder */
reg = roc_atomic64_add_sync(wdata, rxq->cq_status);
/* CQ_OP_STATUS operation error */
if (reg & BIT_ULL(NIX_CQ_OP_STAT_OP_ERR) ||
reg & BIT_ULL(NIX_CQ_OP_STAT_CQ_ERR))
return 0;
tail = reg & 0xFFFFF;
head = (reg >> 20) & 0xFFFFF;
if (tail < head)
available = tail - head + qmask + 1;
else
available = tail - head;
rxq->available = available;
}
return RTE_MIN(pkts, available);
}
static __rte_always_inline uint16_t
cn10k_nix_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t pkts,
const uint16_t flags)
{
struct cn10k_eth_rxq *rxq = rx_queue;
const uint64_t mbuf_init = rxq->mbuf_initializer;
const void *lookup_mem = rxq->lookup_mem;
const uint64_t data_off = rxq->data_off;
const uintptr_t desc = rxq->desc;
const uint64_t wdata = rxq->wdata;
const uint32_t qmask = rxq->qmask;
uint64_t lbase = rxq->lmt_base;
uint16_t packets = 0, nb_pkts;
uint8_t loff = 0, lnum = 0;
uint32_t head = rxq->head;
struct nix_cqe_hdr_s *cq;
struct rte_mbuf *mbuf;
uint64_t aura_handle;
uint64_t sa_base;
uint16_t lmt_id;
uint64_t laddr;
nb_pkts = nix_rx_nb_pkts(rxq, wdata, pkts, qmask);
if (flags & NIX_RX_OFFLOAD_SECURITY_F) {
aura_handle = rxq->aura_handle;
sa_base = rxq->sa_base;
sa_base &= ~(ROC_NIX_INL_SA_BASE_ALIGN - 1);
ROC_LMT_BASE_ID_GET(lbase, lmt_id);
laddr = lbase;
laddr += 8;
}
while (packets < nb_pkts) {
/* Prefetch N desc ahead */
rte_prefetch_non_temporal(
(void *)(desc + (CQE_SZ((head + 2) & qmask))));
cq = (struct nix_cqe_hdr_s *)(desc + CQE_SZ(head));
mbuf = nix_get_mbuf_from_cqe(cq, data_off);
/* Translate meta to mbuf */
if (flags & NIX_RX_OFFLOAD_SECURITY_F) {
const uint64_t cq_w1 = *((const uint64_t *)cq + 1);
mbuf = nix_sec_meta_to_mbuf_sc(cq_w1, sa_base, laddr,
&loff, mbuf, data_off);
}
cn10k_nix_cqe_to_mbuf(cq, cq->tag, mbuf, lookup_mem, mbuf_init,
flags);
cnxk_nix_mbuf_to_tstamp(mbuf, rxq->tstamp,
(flags & NIX_RX_OFFLOAD_TSTAMP_F),
(flags & NIX_RX_MULTI_SEG_F),
(uint64_t *)((uint8_t *)mbuf
+ data_off));
rx_pkts[packets++] = mbuf;
roc_prefetch_store_keep(mbuf);
head++;
head &= qmask;
if (flags & NIX_RX_OFFLOAD_SECURITY_F) {
/* Flush when we don't have space for 4 meta */
if ((15 - loff) < 1) {
nix_sec_flush_meta(laddr, lmt_id + lnum, loff,
aura_handle);
lnum++;
lnum &= BIT_ULL(ROC_LMT_LINES_PER_CORE_LOG2) -
1;
/* First pointer starts at 8B offset */
laddr = (uintptr_t)LMT_OFF(lbase, lnum, 8);
loff = 0;
}
}
}
rxq->head = head;
rxq->available -= nb_pkts;
/* Free all the CQs that we've processed */
plt_write64((wdata | nb_pkts), rxq->cq_door);
/* Free remaining meta buffers if any */
if (flags & NIX_RX_OFFLOAD_SECURITY_F && loff) {
nix_sec_flush_meta(laddr, lmt_id + lnum, loff, aura_handle);
plt_io_wmb();
}
return nb_pkts;
}
#if defined(RTE_ARCH_ARM64)
static __rte_always_inline uint64_t
nix_vlan_update(const uint64_t w2, uint64_t ol_flags, uint8x16_t *f)
{
if (w2 & BIT_ULL(21) /* vtag0_gone */) {
ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
*f = vsetq_lane_u16((uint16_t)(w2 >> 32), *f, 5);
}
return ol_flags;
}
static __rte_always_inline uint64_t
nix_qinq_update(const uint64_t w2, uint64_t ol_flags, struct rte_mbuf *mbuf)
{
if (w2 & BIT_ULL(23) /* vtag1_gone */) {
ol_flags |= PKT_RX_QINQ | PKT_RX_QINQ_STRIPPED;
mbuf->vlan_tci_outer = (uint16_t)(w2 >> 48);
}
return ol_flags;
}
static __rte_always_inline uint16_t
cn10k_nix_recv_pkts_vector(void *args, struct rte_mbuf **mbufs, uint16_t pkts,
const uint16_t flags, void *lookup_mem,
struct cnxk_timesync_info *tstamp,
uintptr_t lmt_base)
{
struct cn10k_eth_rxq *rxq = args;
const uint64_t mbuf_initializer = (flags & NIX_RX_VWQE_F) ?
*(uint64_t *)args :
rxq->mbuf_initializer;
const uint64x2_t data_off = flags & NIX_RX_VWQE_F ?
vdupq_n_u64(0x80ULL) :
vdupq_n_u64(rxq->data_off);
const uint32_t qmask = flags & NIX_RX_VWQE_F ? 0 : rxq->qmask;
const uint64_t wdata = flags & NIX_RX_VWQE_F ? 0 : rxq->wdata;
const uintptr_t desc = flags & NIX_RX_VWQE_F ? 0 : rxq->desc;
uint64x2_t cq0_w8, cq1_w8, cq2_w8, cq3_w8, mbuf01, mbuf23;
uint64_t ol_flags0, ol_flags1, ol_flags2, ol_flags3;
uint64x2_t rearm0 = vdupq_n_u64(mbuf_initializer);
uint64x2_t rearm1 = vdupq_n_u64(mbuf_initializer);
uint64x2_t rearm2 = vdupq_n_u64(mbuf_initializer);
uint64x2_t rearm3 = vdupq_n_u64(mbuf_initializer);
struct rte_mbuf *mbuf0, *mbuf1, *mbuf2, *mbuf3;
uint64_t aura_handle, lbase, laddr;
uint8_t loff = 0, lnum = 0;
uint8x16_t f0, f1, f2, f3;
uint16_t lmt_id, d_off;
uint16_t packets = 0;
uint16_t pkts_left;
uintptr_t sa_base;
uint32_t head;
uintptr_t cq0;
if (!(flags & NIX_RX_VWQE_F)) {
lookup_mem = rxq->lookup_mem;
head = rxq->head;
pkts = nix_rx_nb_pkts(rxq, wdata, pkts, qmask);
pkts_left = pkts & (NIX_DESCS_PER_LOOP - 1);
/* Packets has to be floor-aligned to NIX_DESCS_PER_LOOP */
pkts = RTE_ALIGN_FLOOR(pkts, NIX_DESCS_PER_LOOP);
if (flags & NIX_RX_OFFLOAD_TSTAMP_F)
tstamp = rxq->tstamp;
} else {
RTE_SET_USED(head);
}
if (flags & NIX_RX_OFFLOAD_SECURITY_F) {
if (flags & NIX_RX_VWQE_F) {
uint16_t port;
mbuf0 = (struct rte_mbuf *)((uintptr_t)mbufs[0] -
sizeof(struct rte_mbuf));
/* Pick first mbuf's aura handle assuming all
* mbufs are from a vec and are from same RQ.
*/
aura_handle = mbuf0->pool->pool_id;
/* Calculate offset from mbuf to actual data area */
d_off = ((uintptr_t)mbuf0->buf_addr - (uintptr_t)mbuf0);
d_off += (mbuf_initializer & 0xFFFF);
/* Get SA Base from lookup tbl using port_id */
port = mbuf_initializer >> 48;
sa_base = cnxk_nix_sa_base_get(port, lookup_mem);
lbase = lmt_base;
} else {
aura_handle = rxq->aura_handle;
d_off = rxq->data_off;
sa_base = rxq->sa_base;
lbase = rxq->lmt_base;
}
sa_base &= ~(ROC_NIX_INL_SA_BASE_ALIGN - 1);
ROC_LMT_BASE_ID_GET(lbase, lmt_id);
lnum = 0;
laddr = lbase;
laddr += 8;
}
while (packets < pkts) {
if (!(flags & NIX_RX_VWQE_F)) {
/* Exit loop if head is about to wrap and become
* unaligned.
*/
if (((head + NIX_DESCS_PER_LOOP - 1) & qmask) <
NIX_DESCS_PER_LOOP) {
pkts_left += (pkts - packets);
break;
}
cq0 = desc + CQE_SZ(head);
} else {
cq0 = (uintptr_t)&mbufs[packets];
}
/* Prefetch N desc ahead */
rte_prefetch_non_temporal(CQE_PTR_OFF(cq0, 8, 0, flags));
rte_prefetch_non_temporal(CQE_PTR_OFF(cq0, 9, 0, flags));
rte_prefetch_non_temporal(CQE_PTR_OFF(cq0, 10, 0, flags));
rte_prefetch_non_temporal(CQE_PTR_OFF(cq0, 11, 0, flags));
/* Get NIX_RX_SG_S for size and buffer pointer */
cq0_w8 = vld1q_u64(CQE_PTR_OFF(cq0, 0, 64, flags));
cq1_w8 = vld1q_u64(CQE_PTR_OFF(cq0, 1, 64, flags));
cq2_w8 = vld1q_u64(CQE_PTR_OFF(cq0, 2, 64, flags));
cq3_w8 = vld1q_u64(CQE_PTR_OFF(cq0, 3, 64, flags));
if (!(flags & NIX_RX_VWQE_F)) {
/* Extract mbuf from NIX_RX_SG_S */
mbuf01 = vzip2q_u64(cq0_w8, cq1_w8);
mbuf23 = vzip2q_u64(cq2_w8, cq3_w8);
mbuf01 = vqsubq_u64(mbuf01, data_off);
mbuf23 = vqsubq_u64(mbuf23, data_off);
} else {
mbuf01 =
vsubq_u64(vld1q_u64((uint64_t *)cq0), data_off);
mbuf23 = vsubq_u64(vld1q_u64((uint64_t *)(cq0 + 16)),
data_off);
}
/* Move mbufs to scalar registers for future use */
mbuf0 = (struct rte_mbuf *)vgetq_lane_u64(mbuf01, 0);
mbuf1 = (struct rte_mbuf *)vgetq_lane_u64(mbuf01, 1);
mbuf2 = (struct rte_mbuf *)vgetq_lane_u64(mbuf23, 0);
mbuf3 = (struct rte_mbuf *)vgetq_lane_u64(mbuf23, 1);
/* Mask to get packet len from NIX_RX_SG_S */
const uint8x16_t shuf_msk = {
0xFF, 0xFF, /* pkt_type set as unknown */
0xFF, 0xFF, /* pkt_type set as unknown */
0, 1, /* octet 1~0, low 16 bits pkt_len */
0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */
0, 1, /* octet 1~0, 16 bits data_len */
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
/* Form the rx_descriptor_fields1 with pkt_len and data_len */
f0 = vqtbl1q_u8(cq0_w8, shuf_msk);
f1 = vqtbl1q_u8(cq1_w8, shuf_msk);
f2 = vqtbl1q_u8(cq2_w8, shuf_msk);
f3 = vqtbl1q_u8(cq3_w8, shuf_msk);
if (flags & NIX_RX_OFFLOAD_SECURITY_F) {
/* Prefetch probable CPT parse header area */
rte_prefetch_non_temporal(RTE_PTR_ADD(mbuf0, d_off));
rte_prefetch_non_temporal(RTE_PTR_ADD(mbuf1, d_off));
rte_prefetch_non_temporal(RTE_PTR_ADD(mbuf2, d_off));
rte_prefetch_non_temporal(RTE_PTR_ADD(mbuf3, d_off));
}
/* Load CQE word0 and word 1 */
const uint64_t cq0_w0 = *CQE_PTR_OFF(cq0, 0, 0, flags);
const uint64_t cq0_w1 = *CQE_PTR_OFF(cq0, 0, 8, flags);
const uint64_t cq1_w0 = *CQE_PTR_OFF(cq0, 1, 0, flags);
const uint64_t cq1_w1 = *CQE_PTR_OFF(cq0, 1, 8, flags);
const uint64_t cq2_w0 = *CQE_PTR_OFF(cq0, 2, 0, flags);
const uint64_t cq2_w1 = *CQE_PTR_OFF(cq0, 2, 8, flags);
const uint64_t cq3_w0 = *CQE_PTR_OFF(cq0, 3, 0, flags);
const uint64_t cq3_w1 = *CQE_PTR_OFF(cq0, 3, 8, flags);
if (flags & NIX_RX_OFFLOAD_RSS_F) {
/* Fill rss in the rx_descriptor_fields1 */
f0 = vsetq_lane_u32(cq0_w0, f0, 3);
f1 = vsetq_lane_u32(cq1_w0, f1, 3);
f2 = vsetq_lane_u32(cq2_w0, f2, 3);
f3 = vsetq_lane_u32(cq3_w0, f3, 3);
ol_flags0 = PKT_RX_RSS_HASH;
ol_flags1 = PKT_RX_RSS_HASH;
ol_flags2 = PKT_RX_RSS_HASH;
ol_flags3 = PKT_RX_RSS_HASH;
} else {
ol_flags0 = 0;
ol_flags1 = 0;
ol_flags2 = 0;
ol_flags3 = 0;
}
if (flags & NIX_RX_OFFLOAD_PTYPE_F) {
/* Fill packet_type in the rx_descriptor_fields1 */
f0 = vsetq_lane_u32(nix_ptype_get(lookup_mem, cq0_w1),
f0, 0);
f1 = vsetq_lane_u32(nix_ptype_get(lookup_mem, cq1_w1),
f1, 0);
f2 = vsetq_lane_u32(nix_ptype_get(lookup_mem, cq2_w1),
f2, 0);
f3 = vsetq_lane_u32(nix_ptype_get(lookup_mem, cq3_w1),
f3, 0);
}
if (flags & NIX_RX_OFFLOAD_CHECKSUM_F) {
ol_flags0 |= nix_rx_olflags_get(lookup_mem, cq0_w1);
ol_flags1 |= nix_rx_olflags_get(lookup_mem, cq1_w1);
ol_flags2 |= nix_rx_olflags_get(lookup_mem, cq2_w1);
ol_flags3 |= nix_rx_olflags_get(lookup_mem, cq3_w1);
}
/* Translate meta to mbuf */
if (flags & NIX_RX_OFFLOAD_SECURITY_F) {
/* Checksum ol_flags will be cleared if mbuf is meta */
mbuf0 = nix_sec_meta_to_mbuf(cq0_w1, sa_base, laddr,
&loff, mbuf0, d_off, &f0,
&ol_flags0);
mbuf01 = vsetq_lane_u64((uint64_t)mbuf0, mbuf01, 0);
mbuf1 = nix_sec_meta_to_mbuf(cq1_w1, sa_base, laddr,
&loff, mbuf1, d_off, &f1,
&ol_flags1);
mbuf01 = vsetq_lane_u64((uint64_t)mbuf1, mbuf01, 1);
mbuf2 = nix_sec_meta_to_mbuf(cq2_w1, sa_base, laddr,
&loff, mbuf2, d_off, &f2,
&ol_flags2);
mbuf23 = vsetq_lane_u64((uint64_t)mbuf2, mbuf23, 0);
mbuf3 = nix_sec_meta_to_mbuf(cq3_w1, sa_base, laddr,
&loff, mbuf3, d_off, &f3,
&ol_flags3);
mbuf23 = vsetq_lane_u64((uint64_t)mbuf3, mbuf23, 1);
}
if (flags & NIX_RX_OFFLOAD_VLAN_STRIP_F) {
uint64_t cq0_w2 = *(uint64_t *)(cq0 + CQE_SZ(0) + 16);
uint64_t cq1_w2 = *(uint64_t *)(cq0 + CQE_SZ(1) + 16);
uint64_t cq2_w2 = *(uint64_t *)(cq0 + CQE_SZ(2) + 16);
uint64_t cq3_w2 = *(uint64_t *)(cq0 + CQE_SZ(3) + 16);
ol_flags0 = nix_vlan_update(cq0_w2, ol_flags0, &f0);
ol_flags1 = nix_vlan_update(cq1_w2, ol_flags1, &f1);
ol_flags2 = nix_vlan_update(cq2_w2, ol_flags2, &f2);
ol_flags3 = nix_vlan_update(cq3_w2, ol_flags3, &f3);
ol_flags0 = nix_qinq_update(cq0_w2, ol_flags0, mbuf0);
ol_flags1 = nix_qinq_update(cq1_w2, ol_flags1, mbuf1);
ol_flags2 = nix_qinq_update(cq2_w2, ol_flags2, mbuf2);
ol_flags3 = nix_qinq_update(cq3_w2, ol_flags3, mbuf3);
}
if (flags & NIX_RX_OFFLOAD_MARK_UPDATE_F) {
ol_flags0 = nix_update_match_id(
*(uint16_t *)CQE_PTR_OFF(cq0, 0, 38, flags),
ol_flags0, mbuf0);
ol_flags1 = nix_update_match_id(
*(uint16_t *)CQE_PTR_OFF(cq0, 1, 38, flags),
ol_flags1, mbuf1);
ol_flags2 = nix_update_match_id(
*(uint16_t *)CQE_PTR_OFF(cq0, 2, 38, flags),
ol_flags2, mbuf2);
ol_flags3 = nix_update_match_id(
*(uint16_t *)CQE_PTR_OFF(cq0, 3, 38, flags),
ol_flags3, mbuf3);
}
if (flags & NIX_RX_OFFLOAD_TSTAMP_F) {
const uint16x8_t len_off = {
0, /* ptype 0:15 */
0, /* ptype 16:32 */
CNXK_NIX_TIMESYNC_RX_OFFSET, /* pktlen 0:15*/
0, /* pktlen 16:32 */
CNXK_NIX_TIMESYNC_RX_OFFSET, /* datalen 0:15 */
0,
0,
0};
const uint32x4_t ptype = {RTE_PTYPE_L2_ETHER_TIMESYNC,
RTE_PTYPE_L2_ETHER_TIMESYNC,
RTE_PTYPE_L2_ETHER_TIMESYNC,
RTE_PTYPE_L2_ETHER_TIMESYNC};
const uint64_t ts_olf = PKT_RX_IEEE1588_PTP |
PKT_RX_IEEE1588_TMST |
tstamp->rx_tstamp_dynflag;
const uint32x4_t and_mask = {0x1, 0x2, 0x4, 0x8};
uint64x2_t ts01, ts23, mask;
uint64_t ts[4];
uint8_t res;
/* Subtract timesync length from total pkt length. */
f0 = vsubq_u16(f0, len_off);
f1 = vsubq_u16(f1, len_off);
f2 = vsubq_u16(f2, len_off);
f3 = vsubq_u16(f3, len_off);
/* Get the address of actual timestamp. */
ts01 = vaddq_u64(mbuf01, data_off);
ts23 = vaddq_u64(mbuf23, data_off);
/* Load timestamp from address. */
ts01 = vsetq_lane_u64(*(uint64_t *)vgetq_lane_u64(ts01,
0),
ts01, 0);
ts01 = vsetq_lane_u64(*(uint64_t *)vgetq_lane_u64(ts01,
1),
ts01, 1);
ts23 = vsetq_lane_u64(*(uint64_t *)vgetq_lane_u64(ts23,
0),
ts23, 0);
ts23 = vsetq_lane_u64(*(uint64_t *)vgetq_lane_u64(ts23,
1),
ts23, 1);
/* Convert from be to cpu byteorder. */
ts01 = vrev64q_u8(ts01);
ts23 = vrev64q_u8(ts23);
/* Store timestamp into scalar for later use. */
ts[0] = vgetq_lane_u64(ts01, 0);
ts[1] = vgetq_lane_u64(ts01, 1);
ts[2] = vgetq_lane_u64(ts23, 0);
ts[3] = vgetq_lane_u64(ts23, 1);
/* Store timestamp into dynfield. */
*cnxk_nix_timestamp_dynfield(mbuf0, tstamp) = ts[0];
*cnxk_nix_timestamp_dynfield(mbuf1, tstamp) = ts[1];
*cnxk_nix_timestamp_dynfield(mbuf2, tstamp) = ts[2];
*cnxk_nix_timestamp_dynfield(mbuf3, tstamp) = ts[3];
/* Generate ptype mask to filter L2 ether timesync */
mask = vdupq_n_u32(vgetq_lane_u32(f0, 0));
mask = vsetq_lane_u32(vgetq_lane_u32(f1, 0), mask, 1);
mask = vsetq_lane_u32(vgetq_lane_u32(f2, 0), mask, 2);
mask = vsetq_lane_u32(vgetq_lane_u32(f3, 0), mask, 3);
/* Match against L2 ether timesync. */
mask = vceqq_u32(mask, ptype);
/* Convert from vector from scalar mask */
res = vaddvq_u32(vandq_u32(mask, and_mask));
res &= 0xF;
if (res) {
/* Fill in the ol_flags for any packets that
* matched.
*/
ol_flags0 |= ((res & 0x1) ? ts_olf : 0);
ol_flags1 |= ((res & 0x2) ? ts_olf : 0);
ol_flags2 |= ((res & 0x4) ? ts_olf : 0);
ol_flags3 |= ((res & 0x8) ? ts_olf : 0);
/* Update Rxq timestamp with the latest
* timestamp.
*/
tstamp->rx_ready = 1;
tstamp->rx_tstamp = ts[31 - __builtin_clz(res)];
}
}
/* Form rearm_data with ol_flags */
rearm0 = vsetq_lane_u64(ol_flags0, rearm0, 1);
rearm1 = vsetq_lane_u64(ol_flags1, rearm1, 1);
rearm2 = vsetq_lane_u64(ol_flags2, rearm2, 1);
rearm3 = vsetq_lane_u64(ol_flags3, rearm3, 1);
/* Update rx_descriptor_fields1 */
vst1q_u64((uint64_t *)mbuf0->rx_descriptor_fields1, f0);
vst1q_u64((uint64_t *)mbuf1->rx_descriptor_fields1, f1);
vst1q_u64((uint64_t *)mbuf2->rx_descriptor_fields1, f2);
vst1q_u64((uint64_t *)mbuf3->rx_descriptor_fields1, f3);
/* Update rearm_data */
vst1q_u64((uint64_t *)mbuf0->rearm_data, rearm0);
vst1q_u64((uint64_t *)mbuf1->rearm_data, rearm1);
vst1q_u64((uint64_t *)mbuf2->rearm_data, rearm2);
vst1q_u64((uint64_t *)mbuf3->rearm_data, rearm3);
/* Store the mbufs to rx_pkts */
vst1q_u64((uint64_t *)&mbufs[packets], mbuf01);
vst1q_u64((uint64_t *)&mbufs[packets + 2], mbuf23);
if (flags & NIX_RX_MULTI_SEG_F) {
/* Multi segment is enable build mseg list for
* individual mbufs in scalar mode.
*/
nix_cqe_xtract_mseg((union nix_rx_parse_u *)
(CQE_PTR_OFF(cq0, 0, 8, flags)),
mbuf0, mbuf_initializer, flags);
nix_cqe_xtract_mseg((union nix_rx_parse_u *)
(CQE_PTR_OFF(cq0, 1, 8, flags)),
mbuf1, mbuf_initializer, flags);
nix_cqe_xtract_mseg((union nix_rx_parse_u *)
(CQE_PTR_OFF(cq0, 2, 8, flags)),
mbuf2, mbuf_initializer, flags);
nix_cqe_xtract_mseg((union nix_rx_parse_u *)
(CQE_PTR_OFF(cq0, 3, 8, flags)),
mbuf3, mbuf_initializer, flags);
} else {
/* Update that no more segments */
mbuf0->next = NULL;
mbuf1->next = NULL;
mbuf2->next = NULL;
mbuf3->next = NULL;
}
/* Prefetch mbufs */
roc_prefetch_store_keep(mbuf0);
roc_prefetch_store_keep(mbuf1);
roc_prefetch_store_keep(mbuf2);
roc_prefetch_store_keep(mbuf3);
/* Mark mempool obj as "get" as it is alloc'ed by NIX */
__mempool_check_cookies(mbuf0->pool, (void **)&mbuf0, 1, 1);
__mempool_check_cookies(mbuf1->pool, (void **)&mbuf1, 1, 1);
__mempool_check_cookies(mbuf2->pool, (void **)&mbuf2, 1, 1);
__mempool_check_cookies(mbuf3->pool, (void **)&mbuf3, 1, 1);
packets += NIX_DESCS_PER_LOOP;
if (!(flags & NIX_RX_VWQE_F)) {
/* Advance head pointer and packets */
head += NIX_DESCS_PER_LOOP;
head &= qmask;
}
if (flags & NIX_RX_OFFLOAD_SECURITY_F) {
/* Flush when we don't have space for 4 meta */
if ((15 - loff) < 4) {
nix_sec_flush_meta(laddr, lmt_id + lnum, loff,
aura_handle);
lnum++;
lnum &= BIT_ULL(ROC_LMT_LINES_PER_CORE_LOG2) -
1;
/* First pointer starts at 8B offset */
laddr = (uintptr_t)LMT_OFF(lbase, lnum, 8);
loff = 0;
}
}
}
if (flags & NIX_RX_OFFLOAD_SECURITY_F && loff) {
nix_sec_flush_meta(laddr, lmt_id + lnum, loff, aura_handle);
if (flags & NIX_RX_VWQE_F)
plt_io_wmb();
}
if (flags & NIX_RX_VWQE_F)
return packets;
rxq->head = head;
rxq->available -= packets;
rte_io_wmb();
/* Free all the CQs that we've processed */
plt_write64((rxq->wdata | packets), rxq->cq_door);
if (unlikely(pkts_left))
packets += cn10k_nix_recv_pkts(args, &mbufs[packets], pkts_left,
flags);
return packets;
}
#else
static inline uint16_t
cn10k_nix_recv_pkts_vector(void *args, struct rte_mbuf **mbufs, uint16_t pkts,
const uint16_t flags, void *lookup_mem,
struct cnxk_timesync_info *tstamp,
uintptr_t lmt_base)
{
RTE_SET_USED(args);
RTE_SET_USED(mbufs);
RTE_SET_USED(pkts);
RTE_SET_USED(flags);
RTE_SET_USED(lookup_mem);
RTE_SET_USED(tstamp);
RTE_SET_USED(lmt_base);
return 0;
}
#endif
#define RSS_F NIX_RX_OFFLOAD_RSS_F
#define PTYPE_F NIX_RX_OFFLOAD_PTYPE_F
#define CKSUM_F NIX_RX_OFFLOAD_CHECKSUM_F
#define MARK_F NIX_RX_OFFLOAD_MARK_UPDATE_F
#define TS_F NIX_RX_OFFLOAD_TSTAMP_F
#define RX_VLAN_F NIX_RX_OFFLOAD_VLAN_STRIP_F
#define R_SEC_F NIX_RX_OFFLOAD_SECURITY_F
/* [R_SEC_F] [RX_VLAN_F] [TS] [MARK] [CKSUM] [PTYPE] [RSS] */
#define NIX_RX_FASTPATH_MODES \
R(no_offload, 0, 0, 0, 0, 0, 0, 0, \
NIX_RX_OFFLOAD_NONE) \
R(rss, 0, 0, 0, 0, 0, 0, 1, \
RSS_F) \
R(ptype, 0, 0, 0, 0, 0, 1, 0, \
PTYPE_F) \
R(ptype_rss, 0, 0, 0, 0, 0, 1, 1, \
PTYPE_F | RSS_F) \
R(cksum, 0, 0, 0, 0, 1, 0, 0, \
CKSUM_F) \
R(cksum_rss, 0, 0, 0, 0, 1, 0, 1, \
CKSUM_F | RSS_F) \
R(cksum_ptype, 0, 0, 0, 0, 1, 1, 0, \
CKSUM_F | PTYPE_F) \
R(cksum_ptype_rss, 0, 0, 0, 0, 1, 1, 1, \
CKSUM_F | PTYPE_F | RSS_F) \
R(mark, 0, 0, 0, 1, 0, 0, 0, \
MARK_F) \
R(mark_rss, 0, 0, 0, 1, 0, 0, 1, \
MARK_F | RSS_F) \
R(mark_ptype, 0, 0, 0, 1, 0, 1, 0, \
MARK_F | PTYPE_F) \
R(mark_ptype_rss, 0, 0, 0, 1, 0, 1, 1, \
MARK_F | PTYPE_F | RSS_F) \
R(mark_cksum, 0, 0, 0, 1, 1, 0, 0, \
MARK_F | CKSUM_F) \
R(mark_cksum_rss, 0, 0, 0, 1, 1, 0, 1, \
MARK_F | CKSUM_F | RSS_F) \
R(mark_cksum_ptype, 0, 0, 0, 1, 1, 1, 0, \
MARK_F | CKSUM_F | PTYPE_F) \
R(mark_cksum_ptype_rss, 0, 0, 0, 1, 1, 1, 1, \
MARK_F | CKSUM_F | PTYPE_F | RSS_F) \
R(ts, 0, 0, 1, 0, 0, 0, 0, \
TS_F) \
R(ts_rss, 0, 0, 1, 0, 0, 0, 1, \
TS_F | RSS_F) \
R(ts_ptype, 0, 0, 1, 0, 0, 1, 0, \
TS_F | PTYPE_F) \
R(ts_ptype_rss, 0, 0, 1, 0, 0, 1, 1, \
TS_F | PTYPE_F | RSS_F) \
R(ts_cksum, 0, 0, 1, 0, 1, 0, 0, \
TS_F | CKSUM_F) \
R(ts_cksum_rss, 0, 0, 1, 0, 1, 0, 1, \
TS_F | CKSUM_F | RSS_F) \
R(ts_cksum_ptype, 0, 0, 1, 0, 1, 1, 0, \
TS_F | CKSUM_F | PTYPE_F) \
R(ts_cksum_ptype_rss, 0, 0, 1, 0, 1, 1, 1, \
TS_F | CKSUM_F | PTYPE_F | RSS_F) \
R(ts_mark, 0, 0, 1, 1, 0, 0, 0, \
TS_F | MARK_F) \
R(ts_mark_rss, 0, 0, 1, 1, 0, 0, 1, \
TS_F | MARK_F | RSS_F) \
R(ts_mark_ptype, 0, 0, 1, 1, 0, 1, 0, \
TS_F | MARK_F | PTYPE_F) \
R(ts_mark_ptype_rss, 0, 0, 1, 1, 0, 1, 1, \
TS_F | MARK_F | PTYPE_F | RSS_F) \
R(ts_mark_cksum, 0, 0, 1, 1, 1, 0, 0, \
TS_F | MARK_F | CKSUM_F) \
R(ts_mark_cksum_rss, 0, 0, 1, 1, 1, 0, 1, \
TS_F | MARK_F | CKSUM_F | RSS_F) \
R(ts_mark_cksum_ptype, 0, 0, 1, 1, 1, 1, 0, \
TS_F | MARK_F | CKSUM_F | PTYPE_F) \
R(ts_mark_cksum_ptype_rss, 0, 0, 1, 1, 1, 1, 1, \
TS_F | MARK_F | CKSUM_F | PTYPE_F | RSS_F) \
R(vlan, 0, 1, 0, 0, 0, 0, 0, \
RX_VLAN_F) \
R(vlan_rss, 0, 1, 0, 0, 0, 0, 1, \
RX_VLAN_F | RSS_F) \
R(vlan_ptype, 0, 1, 0, 0, 0, 1, 0, \
RX_VLAN_F | PTYPE_F) \
R(vlan_ptype_rss, 0, 1, 0, 0, 0, 1, 1, \
RX_VLAN_F | PTYPE_F | RSS_F) \
R(vlan_cksum, 0, 1, 0, 0, 1, 0, 0, \
RX_VLAN_F | CKSUM_F) \
R(vlan_cksum_rss, 0, 1, 0, 0, 1, 0, 1, \
RX_VLAN_F | CKSUM_F | RSS_F) \
R(vlan_cksum_ptype, 0, 1, 0, 0, 1, 1, 0, \
RX_VLAN_F | CKSUM_F | PTYPE_F) \
R(vlan_cksum_ptype_rss, 0, 1, 0, 0, 1, 1, 1, \
RX_VLAN_F | CKSUM_F | PTYPE_F | RSS_F) \
R(vlan_mark, 0, 1, 0, 1, 0, 0, 0, \
RX_VLAN_F | MARK_F) \
R(vlan_mark_rss, 0, 1, 0, 1, 0, 0, 1, \
RX_VLAN_F | MARK_F | RSS_F) \
R(vlan_mark_ptype, 0, 1, 0, 1, 0, 1, 0, \
RX_VLAN_F | MARK_F | PTYPE_F) \
R(vlan_mark_ptype_rss, 0, 1, 0, 1, 0, 1, 1, \
RX_VLAN_F | MARK_F | PTYPE_F | RSS_F) \
R(vlan_mark_cksum, 0, 1, 0, 1, 1, 0, 0, \
RX_VLAN_F | MARK_F | CKSUM_F) \
R(vlan_mark_cksum_rss, 0, 1, 0, 1, 1, 0, 1, \
RX_VLAN_F | MARK_F | CKSUM_F | RSS_F) \
R(vlan_mark_cksum_ptype, 0, 1, 0, 1, 1, 1, 0, \
RX_VLAN_F | MARK_F | CKSUM_F | PTYPE_F) \
R(vlan_mark_cksum_ptype_rss, 0, 1, 0, 1, 1, 1, 1, \
RX_VLAN_F | MARK_F | CKSUM_F | PTYPE_F | RSS_F) \
R(vlan_ts, 0, 1, 1, 0, 0, 0, 0, \
RX_VLAN_F | TS_F) \
R(vlan_ts_rss, 0, 1, 1, 0, 0, 0, 1, \
RX_VLAN_F | TS_F | RSS_F) \
R(vlan_ts_ptype, 0, 1, 1, 0, 0, 1, 0, \
RX_VLAN_F | TS_F | PTYPE_F) \
R(vlan_ts_ptype_rss, 0, 1, 1, 0, 0, 1, 1, \
RX_VLAN_F | TS_F | PTYPE_F | RSS_F) \
R(vlan_ts_cksum, 0, 1, 1, 0, 1, 0, 0, \
RX_VLAN_F | TS_F | CKSUM_F) \
R(vlan_ts_cksum_rss, 0, 1, 1, 0, 1, 0, 1, \
RX_VLAN_F | TS_F | CKSUM_F | RSS_F) \
R(vlan_ts_cksum_ptype, 0, 1, 1, 0, 1, 1, 0, \
RX_VLAN_F | TS_F | CKSUM_F | PTYPE_F) \
R(vlan_ts_cksum_ptype_rss, 0, 1, 1, 0, 1, 1, 1, \
RX_VLAN_F | TS_F | CKSUM_F | PTYPE_F | RSS_F) \
R(vlan_ts_mark, 0, 1, 1, 1, 0, 0, 0, \
RX_VLAN_F | TS_F | MARK_F) \
R(vlan_ts_mark_rss, 0, 1, 1, 1, 0, 0, 1, \
RX_VLAN_F | TS_F | MARK_F | RSS_F) \
R(vlan_ts_mark_ptype, 0, 1, 1, 1, 0, 1, 0, \
RX_VLAN_F | TS_F | MARK_F | PTYPE_F) \
R(vlan_ts_mark_ptype_rss, 0, 1, 1, 1, 0, 1, 1, \
RX_VLAN_F | TS_F | MARK_F | PTYPE_F | RSS_F) \
R(vlan_ts_mark_cksum, 0, 1, 1, 1, 1, 0, 0, \
RX_VLAN_F | TS_F | MARK_F | CKSUM_F) \
R(vlan_ts_mark_cksum_rss, 0, 1, 1, 1, 1, 0, 1, \
RX_VLAN_F | TS_F | MARK_F | CKSUM_F | RSS_F) \
R(vlan_ts_mark_cksum_ptype, 0, 1, 1, 1, 1, 1, 0, \
RX_VLAN_F | TS_F | MARK_F | CKSUM_F | PTYPE_F) \
R(vlan_ts_mark_cksum_ptype_rss, 0, 1, 1, 1, 1, 1, 1, \
RX_VLAN_F | TS_F | MARK_F | CKSUM_F | PTYPE_F | RSS_F) \
R(sec, 1, 0, 0, 0, 0, 0, 0, \
R_SEC_F) \
R(sec_rss, 1, 0, 0, 0, 0, 0, 1, \
RSS_F) \
R(sec_ptype, 1, 0, 0, 0, 0, 1, 0, \
R_SEC_F | PTYPE_F) \
R(sec_ptype_rss, 1, 0, 0, 0, 0, 1, 1, \
R_SEC_F | PTYPE_F | RSS_F) \
R(sec_cksum, 1, 0, 0, 0, 1, 0, 0, \
R_SEC_F | CKSUM_F) \
R(sec_cksum_rss, 1, 0, 0, 0, 1, 0, 1, \
R_SEC_F | CKSUM_F | RSS_F) \
R(sec_cksum_ptype, 1, 0, 0, 0, 1, 1, 0, \
R_SEC_F | CKSUM_F | PTYPE_F) \
R(sec_cksum_ptype_rss, 1, 0, 0, 0, 1, 1, 1, \
R_SEC_F | CKSUM_F | PTYPE_F | RSS_F) \
R(sec_mark, 1, 0, 0, 1, 0, 0, 0, \
R_SEC_F | MARK_F) \
R(sec_mark_rss, 1, 0, 0, 1, 0, 0, 1, \
R_SEC_F | MARK_F | RSS_F) \
R(sec_mark_ptype, 1, 0, 0, 1, 0, 1, 0, \
R_SEC_F | MARK_F | PTYPE_F) \
R(sec_mark_ptype_rss, 1, 0, 0, 1, 0, 1, 1, \
R_SEC_F | MARK_F | PTYPE_F | RSS_F) \
R(sec_mark_cksum, 1, 0, 0, 1, 1, 0, 0, \
R_SEC_F | MARK_F | CKSUM_F) \
R(sec_mark_cksum_rss, 1, 0, 0, 1, 1, 0, 1, \
R_SEC_F | MARK_F | CKSUM_F | RSS_F) \
R(sec_mark_cksum_ptype, 1, 0, 0, 1, 1, 1, 0, \
R_SEC_F | MARK_F | CKSUM_F | PTYPE_F) \
R(sec_mark_cksum_ptype_rss, 1, 0, 0, 1, 1, 1, 1, \
R_SEC_F | MARK_F | CKSUM_F | PTYPE_F | RSS_F) \
R(sec_ts, 1, 0, 1, 0, 0, 0, 0, \
R_SEC_F | TS_F) \
R(sec_ts_rss, 1, 0, 1, 0, 0, 0, 1, \
R_SEC_F | TS_F | RSS_F) \
R(sec_ts_ptype, 1, 0, 1, 0, 0, 1, 0, \
R_SEC_F | TS_F | PTYPE_F) \
R(sec_ts_ptype_rss, 1, 0, 1, 0, 0, 1, 1, \
R_SEC_F | TS_F | PTYPE_F | RSS_F) \
R(sec_ts_cksum, 1, 0, 1, 0, 1, 0, 0, \
R_SEC_F | TS_F | CKSUM_F) \
R(sec_ts_cksum_rss, 1, 0, 1, 0, 1, 0, 1, \
R_SEC_F | TS_F | CKSUM_F | RSS_F) \
R(sec_ts_cksum_ptype, 1, 0, 1, 0, 1, 1, 0, \
R_SEC_F | TS_F | CKSUM_F | PTYPE_F) \
R(sec_ts_cksum_ptype_rss, 1, 0, 1, 0, 1, 1, 1, \
R_SEC_F | TS_F | CKSUM_F | PTYPE_F | RSS_F) \
R(sec_ts_mark, 1, 0, 1, 1, 0, 0, 0, \
R_SEC_F | TS_F | MARK_F) \
R(sec_ts_mark_rss, 1, 0, 1, 1, 0, 0, 1, \
R_SEC_F | TS_F | MARK_F | RSS_F) \
R(sec_ts_mark_ptype, 1, 0, 1, 1, 0, 1, 0, \
R_SEC_F | TS_F | MARK_F | PTYPE_F) \
R(sec_ts_mark_ptype_rss, 1, 0, 1, 1, 0, 1, 1, \
R_SEC_F | TS_F | MARK_F | PTYPE_F | RSS_F) \
R(sec_ts_mark_cksum, 1, 0, 1, 1, 1, 0, 0, \
R_SEC_F | TS_F | MARK_F | CKSUM_F) \
R(sec_ts_mark_cksum_rss, 1, 0, 1, 1, 1, 0, 1, \
R_SEC_F | TS_F | MARK_F | CKSUM_F | RSS_F) \
R(sec_ts_mark_cksum_ptype, 1, 0, 1, 1, 1, 1, 0, \
R_SEC_F | TS_F | MARK_F | CKSUM_F | PTYPE_F) \
R(sec_ts_mark_cksum_ptype_rss, 1, 0, 1, 1, 1, 1, 1, \
R_SEC_F | TS_F | MARK_F | CKSUM_F | PTYPE_F | RSS_F) \
R(sec_vlan, 1, 1, 0, 0, 0, 0, 0, \
R_SEC_F | RX_VLAN_F) \
R(sec_vlan_rss, 1, 1, 0, 0, 0, 0, 1, \
R_SEC_F | RX_VLAN_F | RSS_F) \
R(sec_vlan_ptype, 1, 1, 0, 0, 0, 1, 0, \
R_SEC_F | RX_VLAN_F | PTYPE_F) \
R(sec_vlan_ptype_rss, 1, 1, 0, 0, 0, 1, 1, \
R_SEC_F | RX_VLAN_F | PTYPE_F | RSS_F) \
R(sec_vlan_cksum, 1, 1, 0, 0, 1, 0, 0, \
R_SEC_F | RX_VLAN_F | CKSUM_F) \
R(sec_vlan_cksum_rss, 1, 1, 0, 0, 1, 0, 1, \
R_SEC_F | RX_VLAN_F | CKSUM_F | RSS_F) \
R(sec_vlan_cksum_ptype, 1, 1, 0, 0, 1, 1, 0, \
R_SEC_F | RX_VLAN_F | CKSUM_F | PTYPE_F) \
R(sec_vlan_cksum_ptype_rss, 1, 1, 0, 0, 1, 1, 1, \
R_SEC_F | RX_VLAN_F | CKSUM_F | PTYPE_F | RSS_F) \
R(sec_vlan_mark, 1, 1, 0, 1, 0, 0, 0, \
R_SEC_F | RX_VLAN_F | MARK_F) \
R(sec_vlan_mark_rss, 1, 1, 0, 1, 0, 0, 1, \
R_SEC_F | RX_VLAN_F | MARK_F | RSS_F) \
R(sec_vlan_mark_ptype, 1, 1, 0, 1, 0, 1, 0, \
R_SEC_F | RX_VLAN_F | MARK_F | PTYPE_F) \
R(sec_vlan_mark_ptype_rss, 1, 1, 0, 1, 0, 1, 1, \
R_SEC_F | RX_VLAN_F | MARK_F | PTYPE_F | RSS_F) \
R(sec_vlan_mark_cksum, 1, 1, 0, 1, 1, 0, 0, \
R_SEC_F | RX_VLAN_F | MARK_F | CKSUM_F) \
R(sec_vlan_mark_cksum_rss, 1, 1, 0, 1, 1, 0, 1, \
R_SEC_F | RX_VLAN_F | MARK_F | CKSUM_F | RSS_F) \
R(sec_vlan_mark_cksum_ptype, 1, 1, 0, 1, 1, 1, 0, \
R_SEC_F | RX_VLAN_F | MARK_F | CKSUM_F | PTYPE_F) \
R(sec_vlan_mark_cksum_ptype_rss, 1, 1, 0, 1, 1, 1, 1, \
R_SEC_F | RX_VLAN_F | MARK_F | CKSUM_F | PTYPE_F | RSS_F) \
R(sec_vlan_ts, 1, 1, 1, 0, 0, 0, 0, \
R_SEC_F | RX_VLAN_F | TS_F) \
R(sec_vlan_ts_rss, 1, 1, 1, 0, 0, 0, 1, \
R_SEC_F | RX_VLAN_F | TS_F | RSS_F) \
R(sec_vlan_ts_ptype, 1, 1, 1, 0, 0, 1, 0, \
R_SEC_F | RX_VLAN_F | TS_F | PTYPE_F) \
R(sec_vlan_ts_ptype_rss, 1, 1, 1, 0, 0, 1, 1, \
R_SEC_F | RX_VLAN_F | TS_F | PTYPE_F | RSS_F) \
R(sec_vlan_ts_cksum, 1, 1, 1, 0, 1, 0, 0, \
R_SEC_F | RX_VLAN_F | TS_F | CKSUM_F) \
R(sec_vlan_ts_cksum_rss, 1, 1, 1, 0, 1, 0, 1, \
R_SEC_F | RX_VLAN_F | TS_F | CKSUM_F | RSS_F) \
R(sec_vlan_ts_cksum_ptype, 1, 1, 1, 0, 1, 1, 0, \
R_SEC_F | RX_VLAN_F | TS_F | CKSUM_F | PTYPE_F) \
R(sec_vlan_ts_cksum_ptype_rss, 1, 1, 1, 0, 1, 1, 1, \
R_SEC_F | RX_VLAN_F | TS_F | CKSUM_F | PTYPE_F | RSS_F) \
R(sec_vlan_ts_mark, 1, 1, 1, 1, 0, 0, 0, \
R_SEC_F | RX_VLAN_F | TS_F | MARK_F) \
R(sec_vlan_ts_mark_rss, 1, 1, 1, 1, 0, 0, 1, \
R_SEC_F | RX_VLAN_F | TS_F | MARK_F | RSS_F) \
R(sec_vlan_ts_mark_ptype, 1, 1, 1, 1, 0, 1, 0, \
R_SEC_F | RX_VLAN_F | TS_F | MARK_F | PTYPE_F) \
R(sec_vlan_ts_mark_ptype_rss, 1, 1, 1, 1, 0, 1, 1, \
R_SEC_F | RX_VLAN_F | TS_F | MARK_F | PTYPE_F | RSS_F) \
R(sec_vlan_ts_mark_cksum, 1, 1, 1, 1, 1, 0, 0, \
R_SEC_F | RX_VLAN_F | TS_F | MARK_F | CKSUM_F) \
R(sec_vlan_ts_mark_cksum_rss, 1, 1, 1, 1, 1, 0, 1, \
R_SEC_F | RX_VLAN_F | TS_F | MARK_F | CKSUM_F | RSS_F) \
R(sec_vlan_ts_mark_cksum_ptype, 1, 1, 1, 1, 1, 1, 0, \
R_SEC_F | RX_VLAN_F | TS_F | MARK_F | CKSUM_F | PTYPE_F) \
R(sec_vlan_ts_mark_cksum_ptype_rss, 1, 1, 1, 1, 1, 1, 1, \
R_SEC_F | RX_VLAN_F | TS_F | MARK_F | CKSUM_F | PTYPE_F | RSS_F)
#define R(name, f6, f5, f4, f3, f2, f1, f0, flags) \
uint16_t __rte_noinline __rte_hot cn10k_nix_recv_pkts_##name( \
void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t pkts); \
\
uint16_t __rte_noinline __rte_hot cn10k_nix_recv_pkts_mseg_##name( \
void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t pkts); \
\
uint16_t __rte_noinline __rte_hot cn10k_nix_recv_pkts_vec_##name( \
void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t pkts); \
\
uint16_t __rte_noinline __rte_hot cn10k_nix_recv_pkts_vec_mseg_##name( \
void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t pkts);
NIX_RX_FASTPATH_MODES
#undef R
#endif /* __CN10K_RX_H__ */