76f80881ef
Currently, the memory hotplug is locked automatically by all memory-related _walk() functions, but sometimes locking the memory subsystem outside of them is needed. There is no public API to do that, so it creates a dependency on shared memory config to be public. Fix this by introducing a new API to lock/unlock the memory hotplug subsystem. Create a new common file for all things mem config, and a new API namespace rte_mcfg_*, and search-and-replace all usages of the locks with the new API. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Acked-by: Stephen Hemminger <stephen@networkplumber.org> Acked-by: David Marchand <david.marchand@redhat.com>
1462 lines
40 KiB
C
1462 lines
40 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright 2017 6WIND S.A.
|
|
* Copyright 2017 Mellanox Technologies, Ltd
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* Memory management functions for mlx4 driver.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <errno.h>
|
|
#include <inttypes.h>
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
|
|
/* Verbs headers do not support -pedantic. */
|
|
#ifdef PEDANTIC
|
|
#pragma GCC diagnostic ignored "-Wpedantic"
|
|
#endif
|
|
#include <infiniband/verbs.h>
|
|
#ifdef PEDANTIC
|
|
#pragma GCC diagnostic error "-Wpedantic"
|
|
#endif
|
|
|
|
#include <rte_branch_prediction.h>
|
|
#include <rte_common.h>
|
|
#include <rte_errno.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_memory.h>
|
|
#include <rte_mempool.h>
|
|
#include <rte_rwlock.h>
|
|
|
|
#include "mlx4_glue.h"
|
|
#include "mlx4_mr.h"
|
|
#include "mlx4_rxtx.h"
|
|
#include "mlx4_utils.h"
|
|
|
|
struct mr_find_contig_memsegs_data {
|
|
uintptr_t addr;
|
|
uintptr_t start;
|
|
uintptr_t end;
|
|
const struct rte_memseg_list *msl;
|
|
};
|
|
|
|
struct mr_update_mp_data {
|
|
struct rte_eth_dev *dev;
|
|
struct mlx4_mr_ctrl *mr_ctrl;
|
|
int ret;
|
|
};
|
|
|
|
/**
|
|
* Expand B-tree table to a given size. Can't be called with holding
|
|
* memory_hotplug_lock or priv->mr.rwlock due to rte_realloc().
|
|
*
|
|
* @param bt
|
|
* Pointer to B-tree structure.
|
|
* @param n
|
|
* Number of entries for expansion.
|
|
*
|
|
* @return
|
|
* 0 on success, -1 on failure.
|
|
*/
|
|
static int
|
|
mr_btree_expand(struct mlx4_mr_btree *bt, int n)
|
|
{
|
|
void *mem;
|
|
int ret = 0;
|
|
|
|
if (n <= bt->size)
|
|
return ret;
|
|
/*
|
|
* Downside of directly using rte_realloc() is that SOCKET_ID_ANY is
|
|
* used inside if there's no room to expand. Because this is a quite
|
|
* rare case and a part of very slow path, it is very acceptable.
|
|
* Initially cache_bh[] will be given practically enough space and once
|
|
* it is expanded, expansion wouldn't be needed again ever.
|
|
*/
|
|
mem = rte_realloc(bt->table, n * sizeof(struct mlx4_mr_cache), 0);
|
|
if (mem == NULL) {
|
|
/* Not an error, B-tree search will be skipped. */
|
|
WARN("failed to expand MR B-tree (%p) table", (void *)bt);
|
|
ret = -1;
|
|
} else {
|
|
DEBUG("expanded MR B-tree table (size=%u)", n);
|
|
bt->table = mem;
|
|
bt->size = n;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Look up LKey from given B-tree lookup table, store the last index and return
|
|
* searched LKey.
|
|
*
|
|
* @param bt
|
|
* Pointer to B-tree structure.
|
|
* @param[out] idx
|
|
* Pointer to index. Even on search failure, returns index where it stops
|
|
* searching so that index can be used when inserting a new entry.
|
|
* @param addr
|
|
* Search key.
|
|
*
|
|
* @return
|
|
* Searched LKey on success, UINT32_MAX on no match.
|
|
*/
|
|
static uint32_t
|
|
mr_btree_lookup(struct mlx4_mr_btree *bt, uint16_t *idx, uintptr_t addr)
|
|
{
|
|
struct mlx4_mr_cache *lkp_tbl;
|
|
uint16_t n;
|
|
uint16_t base = 0;
|
|
|
|
assert(bt != NULL);
|
|
lkp_tbl = *bt->table;
|
|
n = bt->len;
|
|
/* First entry must be NULL for comparison. */
|
|
assert(bt->len > 0 || (lkp_tbl[0].start == 0 &&
|
|
lkp_tbl[0].lkey == UINT32_MAX));
|
|
/* Binary search. */
|
|
do {
|
|
register uint16_t delta = n >> 1;
|
|
|
|
if (addr < lkp_tbl[base + delta].start) {
|
|
n = delta;
|
|
} else {
|
|
base += delta;
|
|
n -= delta;
|
|
}
|
|
} while (n > 1);
|
|
assert(addr >= lkp_tbl[base].start);
|
|
*idx = base;
|
|
if (addr < lkp_tbl[base].end)
|
|
return lkp_tbl[base].lkey;
|
|
/* Not found. */
|
|
return UINT32_MAX;
|
|
}
|
|
|
|
/**
|
|
* Insert an entry to B-tree lookup table.
|
|
*
|
|
* @param bt
|
|
* Pointer to B-tree structure.
|
|
* @param entry
|
|
* Pointer to new entry to insert.
|
|
*
|
|
* @return
|
|
* 0 on success, -1 on failure.
|
|
*/
|
|
static int
|
|
mr_btree_insert(struct mlx4_mr_btree *bt, struct mlx4_mr_cache *entry)
|
|
{
|
|
struct mlx4_mr_cache *lkp_tbl;
|
|
uint16_t idx = 0;
|
|
size_t shift;
|
|
|
|
assert(bt != NULL);
|
|
assert(bt->len <= bt->size);
|
|
assert(bt->len > 0);
|
|
lkp_tbl = *bt->table;
|
|
/* Find out the slot for insertion. */
|
|
if (mr_btree_lookup(bt, &idx, entry->start) != UINT32_MAX) {
|
|
DEBUG("abort insertion to B-tree(%p): already exist at"
|
|
" idx=%u [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
|
|
(void *)bt, idx, entry->start, entry->end, entry->lkey);
|
|
/* Already exist, return. */
|
|
return 0;
|
|
}
|
|
/* If table is full, return error. */
|
|
if (unlikely(bt->len == bt->size)) {
|
|
bt->overflow = 1;
|
|
return -1;
|
|
}
|
|
/* Insert entry. */
|
|
++idx;
|
|
shift = (bt->len - idx) * sizeof(struct mlx4_mr_cache);
|
|
if (shift)
|
|
memmove(&lkp_tbl[idx + 1], &lkp_tbl[idx], shift);
|
|
lkp_tbl[idx] = *entry;
|
|
bt->len++;
|
|
DEBUG("inserted B-tree(%p)[%u],"
|
|
" [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
|
|
(void *)bt, idx, entry->start, entry->end, entry->lkey);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Initialize B-tree and allocate memory for lookup table.
|
|
*
|
|
* @param bt
|
|
* Pointer to B-tree structure.
|
|
* @param n
|
|
* Number of entries to allocate.
|
|
* @param socket
|
|
* NUMA socket on which memory must be allocated.
|
|
*
|
|
* @return
|
|
* 0 on success, a negative errno value otherwise and rte_errno is set.
|
|
*/
|
|
int
|
|
mlx4_mr_btree_init(struct mlx4_mr_btree *bt, int n, int socket)
|
|
{
|
|
if (bt == NULL) {
|
|
rte_errno = EINVAL;
|
|
return -rte_errno;
|
|
}
|
|
memset(bt, 0, sizeof(*bt));
|
|
bt->table = rte_calloc_socket("B-tree table",
|
|
n, sizeof(struct mlx4_mr_cache),
|
|
0, socket);
|
|
if (bt->table == NULL) {
|
|
rte_errno = ENOMEM;
|
|
ERROR("failed to allocate memory for btree cache on socket %d",
|
|
socket);
|
|
return -rte_errno;
|
|
}
|
|
bt->size = n;
|
|
/* First entry must be NULL for binary search. */
|
|
(*bt->table)[bt->len++] = (struct mlx4_mr_cache) {
|
|
.lkey = UINT32_MAX,
|
|
};
|
|
DEBUG("initialized B-tree %p with table %p",
|
|
(void *)bt, (void *)bt->table);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Free B-tree resources.
|
|
*
|
|
* @param bt
|
|
* Pointer to B-tree structure.
|
|
*/
|
|
void
|
|
mlx4_mr_btree_free(struct mlx4_mr_btree *bt)
|
|
{
|
|
if (bt == NULL)
|
|
return;
|
|
DEBUG("freeing B-tree %p with table %p", (void *)bt, (void *)bt->table);
|
|
rte_free(bt->table);
|
|
memset(bt, 0, sizeof(*bt));
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/**
|
|
* Dump all the entries in a B-tree
|
|
*
|
|
* @param bt
|
|
* Pointer to B-tree structure.
|
|
*/
|
|
void
|
|
mlx4_mr_btree_dump(struct mlx4_mr_btree *bt)
|
|
{
|
|
int idx;
|
|
struct mlx4_mr_cache *lkp_tbl;
|
|
|
|
if (bt == NULL)
|
|
return;
|
|
lkp_tbl = *bt->table;
|
|
for (idx = 0; idx < bt->len; ++idx) {
|
|
struct mlx4_mr_cache *entry = &lkp_tbl[idx];
|
|
|
|
DEBUG("B-tree(%p)[%u],"
|
|
" [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
|
|
(void *)bt, idx, entry->start, entry->end, entry->lkey);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* Find virtually contiguous memory chunk in a given MR.
|
|
*
|
|
* @param dev
|
|
* Pointer to MR structure.
|
|
* @param[out] entry
|
|
* Pointer to returning MR cache entry. If not found, this will not be
|
|
* updated.
|
|
* @param start_idx
|
|
* Start index of the memseg bitmap.
|
|
*
|
|
* @return
|
|
* Next index to go on lookup.
|
|
*/
|
|
static int
|
|
mr_find_next_chunk(struct mlx4_mr *mr, struct mlx4_mr_cache *entry,
|
|
int base_idx)
|
|
{
|
|
uintptr_t start = 0;
|
|
uintptr_t end = 0;
|
|
uint32_t idx = 0;
|
|
|
|
/* MR for external memory doesn't have memseg list. */
|
|
if (mr->msl == NULL) {
|
|
struct ibv_mr *ibv_mr = mr->ibv_mr;
|
|
|
|
assert(mr->ms_bmp_n == 1);
|
|
assert(mr->ms_n == 1);
|
|
assert(base_idx == 0);
|
|
/*
|
|
* Can't search it from memseg list but get it directly from
|
|
* verbs MR as there's only one chunk.
|
|
*/
|
|
entry->start = (uintptr_t)ibv_mr->addr;
|
|
entry->end = (uintptr_t)ibv_mr->addr + mr->ibv_mr->length;
|
|
entry->lkey = rte_cpu_to_be_32(mr->ibv_mr->lkey);
|
|
/* Returning 1 ends iteration. */
|
|
return 1;
|
|
}
|
|
for (idx = base_idx; idx < mr->ms_bmp_n; ++idx) {
|
|
if (rte_bitmap_get(mr->ms_bmp, idx)) {
|
|
const struct rte_memseg_list *msl;
|
|
const struct rte_memseg *ms;
|
|
|
|
msl = mr->msl;
|
|
ms = rte_fbarray_get(&msl->memseg_arr,
|
|
mr->ms_base_idx + idx);
|
|
assert(msl->page_sz == ms->hugepage_sz);
|
|
if (!start)
|
|
start = ms->addr_64;
|
|
end = ms->addr_64 + ms->hugepage_sz;
|
|
} else if (start) {
|
|
/* Passed the end of a fragment. */
|
|
break;
|
|
}
|
|
}
|
|
if (start) {
|
|
/* Found one chunk. */
|
|
entry->start = start;
|
|
entry->end = end;
|
|
entry->lkey = rte_cpu_to_be_32(mr->ibv_mr->lkey);
|
|
}
|
|
return idx;
|
|
}
|
|
|
|
/**
|
|
* Insert a MR to the global B-tree cache. It may fail due to low-on-memory.
|
|
* Then, this entry will have to be searched by mr_lookup_dev_list() in
|
|
* mlx4_mr_create() on miss.
|
|
*
|
|
* @param dev
|
|
* Pointer to Ethernet device.
|
|
* @param mr
|
|
* Pointer to MR to insert.
|
|
*
|
|
* @return
|
|
* 0 on success, -1 on failure.
|
|
*/
|
|
static int
|
|
mr_insert_dev_cache(struct rte_eth_dev *dev, struct mlx4_mr *mr)
|
|
{
|
|
struct mlx4_priv *priv = dev->data->dev_private;
|
|
unsigned int n;
|
|
|
|
DEBUG("port %u inserting MR(%p) to global cache",
|
|
dev->data->port_id, (void *)mr);
|
|
for (n = 0; n < mr->ms_bmp_n; ) {
|
|
struct mlx4_mr_cache entry;
|
|
|
|
memset(&entry, 0, sizeof(entry));
|
|
/* Find a contiguous chunk and advance the index. */
|
|
n = mr_find_next_chunk(mr, &entry, n);
|
|
if (!entry.end)
|
|
break;
|
|
if (mr_btree_insert(&priv->mr.cache, &entry) < 0) {
|
|
/*
|
|
* Overflowed, but the global table cannot be expanded
|
|
* because of deadlock.
|
|
*/
|
|
return -1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Look up address in the original global MR list.
|
|
*
|
|
* @param dev
|
|
* Pointer to Ethernet device.
|
|
* @param[out] entry
|
|
* Pointer to returning MR cache entry. If no match, this will not be updated.
|
|
* @param addr
|
|
* Search key.
|
|
*
|
|
* @return
|
|
* Found MR on match, NULL otherwise.
|
|
*/
|
|
static struct mlx4_mr *
|
|
mr_lookup_dev_list(struct rte_eth_dev *dev, struct mlx4_mr_cache *entry,
|
|
uintptr_t addr)
|
|
{
|
|
struct mlx4_priv *priv = dev->data->dev_private;
|
|
struct mlx4_mr *mr;
|
|
|
|
/* Iterate all the existing MRs. */
|
|
LIST_FOREACH(mr, &priv->mr.mr_list, mr) {
|
|
unsigned int n;
|
|
|
|
if (mr->ms_n == 0)
|
|
continue;
|
|
for (n = 0; n < mr->ms_bmp_n; ) {
|
|
struct mlx4_mr_cache ret;
|
|
|
|
memset(&ret, 0, sizeof(ret));
|
|
n = mr_find_next_chunk(mr, &ret, n);
|
|
if (addr >= ret.start && addr < ret.end) {
|
|
/* Found. */
|
|
*entry = ret;
|
|
return mr;
|
|
}
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* Look up address on device.
|
|
*
|
|
* @param dev
|
|
* Pointer to Ethernet device.
|
|
* @param[out] entry
|
|
* Pointer to returning MR cache entry. If no match, this will not be updated.
|
|
* @param addr
|
|
* Search key.
|
|
*
|
|
* @return
|
|
* Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
|
|
*/
|
|
static uint32_t
|
|
mr_lookup_dev(struct rte_eth_dev *dev, struct mlx4_mr_cache *entry,
|
|
uintptr_t addr)
|
|
{
|
|
struct mlx4_priv *priv = dev->data->dev_private;
|
|
uint16_t idx;
|
|
uint32_t lkey = UINT32_MAX;
|
|
struct mlx4_mr *mr;
|
|
|
|
/*
|
|
* If the global cache has overflowed since it failed to expand the
|
|
* B-tree table, it can't have all the existing MRs. Then, the address
|
|
* has to be searched by traversing the original MR list instead, which
|
|
* is very slow path. Otherwise, the global cache is all inclusive.
|
|
*/
|
|
if (!unlikely(priv->mr.cache.overflow)) {
|
|
lkey = mr_btree_lookup(&priv->mr.cache, &idx, addr);
|
|
if (lkey != UINT32_MAX)
|
|
*entry = (*priv->mr.cache.table)[idx];
|
|
} else {
|
|
/* Falling back to the slowest path. */
|
|
mr = mr_lookup_dev_list(dev, entry, addr);
|
|
if (mr != NULL)
|
|
lkey = entry->lkey;
|
|
}
|
|
assert(lkey == UINT32_MAX || (addr >= entry->start &&
|
|
addr < entry->end));
|
|
return lkey;
|
|
}
|
|
|
|
/**
|
|
* Free MR resources. MR lock must not be held to avoid a deadlock. rte_free()
|
|
* can raise memory free event and the callback function will spin on the lock.
|
|
*
|
|
* @param mr
|
|
* Pointer to MR to free.
|
|
*/
|
|
static void
|
|
mr_free(struct mlx4_mr *mr)
|
|
{
|
|
if (mr == NULL)
|
|
return;
|
|
DEBUG("freeing MR(%p):", (void *)mr);
|
|
if (mr->ibv_mr != NULL)
|
|
claim_zero(mlx4_glue->dereg_mr(mr->ibv_mr));
|
|
if (mr->ms_bmp != NULL)
|
|
rte_bitmap_free(mr->ms_bmp);
|
|
rte_free(mr);
|
|
}
|
|
|
|
/**
|
|
* Release resources of detached MR having no online entry.
|
|
*
|
|
* @param dev
|
|
* Pointer to Ethernet device.
|
|
*/
|
|
static void
|
|
mlx4_mr_garbage_collect(struct rte_eth_dev *dev)
|
|
{
|
|
struct mlx4_priv *priv = dev->data->dev_private;
|
|
struct mlx4_mr *mr_next;
|
|
struct mlx4_mr_list free_list = LIST_HEAD_INITIALIZER(free_list);
|
|
|
|
/* Must be called from the primary process. */
|
|
assert(rte_eal_process_type() == RTE_PROC_PRIMARY);
|
|
/*
|
|
* MR can't be freed with holding the lock because rte_free() could call
|
|
* memory free callback function. This will be a deadlock situation.
|
|
*/
|
|
rte_rwlock_write_lock(&priv->mr.rwlock);
|
|
/* Detach the whole free list and release it after unlocking. */
|
|
free_list = priv->mr.mr_free_list;
|
|
LIST_INIT(&priv->mr.mr_free_list);
|
|
rte_rwlock_write_unlock(&priv->mr.rwlock);
|
|
/* Release resources. */
|
|
mr_next = LIST_FIRST(&free_list);
|
|
while (mr_next != NULL) {
|
|
struct mlx4_mr *mr = mr_next;
|
|
|
|
mr_next = LIST_NEXT(mr, mr);
|
|
mr_free(mr);
|
|
}
|
|
}
|
|
|
|
/* Called during rte_memseg_contig_walk() by mlx4_mr_create(). */
|
|
static int
|
|
mr_find_contig_memsegs_cb(const struct rte_memseg_list *msl,
|
|
const struct rte_memseg *ms, size_t len, void *arg)
|
|
{
|
|
struct mr_find_contig_memsegs_data *data = arg;
|
|
|
|
if (data->addr < ms->addr_64 || data->addr >= ms->addr_64 + len)
|
|
return 0;
|
|
/* Found, save it and stop walking. */
|
|
data->start = ms->addr_64;
|
|
data->end = ms->addr_64 + len;
|
|
data->msl = msl;
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Create a new global Memory Region (MR) for a missing virtual address.
|
|
* This API should be called on a secondary process, then a request is sent to
|
|
* the primary process in order to create a MR for the address. As the global MR
|
|
* list is on the shared memory, following LKey lookup should succeed unless the
|
|
* request fails.
|
|
*
|
|
* @param dev
|
|
* Pointer to Ethernet device.
|
|
* @param[out] entry
|
|
* Pointer to returning MR cache entry, found in the global cache or newly
|
|
* created. If failed to create one, this will not be updated.
|
|
* @param addr
|
|
* Target virtual address to register.
|
|
*
|
|
* @return
|
|
* Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
|
|
*/
|
|
static uint32_t
|
|
mlx4_mr_create_secondary(struct rte_eth_dev *dev, struct mlx4_mr_cache *entry,
|
|
uintptr_t addr)
|
|
{
|
|
struct mlx4_priv *priv = dev->data->dev_private;
|
|
int ret;
|
|
|
|
DEBUG("port %u requesting MR creation for address (%p)",
|
|
dev->data->port_id, (void *)addr);
|
|
ret = mlx4_mp_req_mr_create(dev, addr);
|
|
if (ret) {
|
|
DEBUG("port %u fail to request MR creation for address (%p)",
|
|
dev->data->port_id, (void *)addr);
|
|
return UINT32_MAX;
|
|
}
|
|
rte_rwlock_read_lock(&priv->mr.rwlock);
|
|
/* Fill in output data. */
|
|
mr_lookup_dev(dev, entry, addr);
|
|
/* Lookup can't fail. */
|
|
assert(entry->lkey != UINT32_MAX);
|
|
rte_rwlock_read_unlock(&priv->mr.rwlock);
|
|
DEBUG("port %u MR CREATED by primary process for %p:\n"
|
|
" [0x%" PRIxPTR ", 0x%" PRIxPTR "), lkey=0x%x",
|
|
dev->data->port_id, (void *)addr,
|
|
entry->start, entry->end, entry->lkey);
|
|
return entry->lkey;
|
|
}
|
|
|
|
/**
|
|
* Create a new global Memory Region (MR) for a missing virtual address.
|
|
* Register entire virtually contiguous memory chunk around the address.
|
|
* This must be called from the primary process.
|
|
*
|
|
* @param dev
|
|
* Pointer to Ethernet device.
|
|
* @param[out] entry
|
|
* Pointer to returning MR cache entry, found in the global cache or newly
|
|
* created. If failed to create one, this will not be updated.
|
|
* @param addr
|
|
* Target virtual address to register.
|
|
*
|
|
* @return
|
|
* Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
|
|
*/
|
|
uint32_t
|
|
mlx4_mr_create_primary(struct rte_eth_dev *dev, struct mlx4_mr_cache *entry,
|
|
uintptr_t addr)
|
|
{
|
|
struct mlx4_priv *priv = dev->data->dev_private;
|
|
const struct rte_memseg_list *msl;
|
|
const struct rte_memseg *ms;
|
|
struct mlx4_mr *mr = NULL;
|
|
size_t len;
|
|
uint32_t ms_n;
|
|
uint32_t bmp_size;
|
|
void *bmp_mem;
|
|
int ms_idx_shift = -1;
|
|
unsigned int n;
|
|
struct mr_find_contig_memsegs_data data = {
|
|
.addr = addr,
|
|
};
|
|
struct mr_find_contig_memsegs_data data_re;
|
|
|
|
DEBUG("port %u creating a MR using address (%p)",
|
|
dev->data->port_id, (void *)addr);
|
|
/*
|
|
* Release detached MRs if any. This can't be called with holding either
|
|
* memory_hotplug_lock or priv->mr.rwlock. MRs on the free list have
|
|
* been detached by the memory free event but it couldn't be released
|
|
* inside the callback due to deadlock. As a result, releasing resources
|
|
* is quite opportunistic.
|
|
*/
|
|
mlx4_mr_garbage_collect(dev);
|
|
/*
|
|
* If enabled, find out a contiguous virtual address chunk in use, to
|
|
* which the given address belongs, in order to register maximum range.
|
|
* In the best case where mempools are not dynamically recreated and
|
|
* '--socket-mem' is specified as an EAL option, it is very likely to
|
|
* have only one MR(LKey) per a socket and per a hugepage-size even
|
|
* though the system memory is highly fragmented. As the whole memory
|
|
* chunk will be pinned by kernel, it can't be reused unless entire
|
|
* chunk is freed from EAL.
|
|
*
|
|
* If disabled, just register one memseg (page). Then, memory
|
|
* consumption will be minimized but it may drop performance if there
|
|
* are many MRs to lookup on the datapath.
|
|
*/
|
|
if (!priv->mr_ext_memseg_en) {
|
|
data.msl = rte_mem_virt2memseg_list((void *)addr);
|
|
data.start = RTE_ALIGN_FLOOR(addr, data.msl->page_sz);
|
|
data.end = data.start + data.msl->page_sz;
|
|
} else if (!rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data)) {
|
|
WARN("port %u unable to find virtually contiguous"
|
|
" chunk for address (%p)."
|
|
" rte_memseg_contig_walk() failed.",
|
|
dev->data->port_id, (void *)addr);
|
|
rte_errno = ENXIO;
|
|
goto err_nolock;
|
|
}
|
|
alloc_resources:
|
|
/* Addresses must be page-aligned. */
|
|
assert(rte_is_aligned((void *)data.start, data.msl->page_sz));
|
|
assert(rte_is_aligned((void *)data.end, data.msl->page_sz));
|
|
msl = data.msl;
|
|
ms = rte_mem_virt2memseg((void *)data.start, msl);
|
|
len = data.end - data.start;
|
|
assert(msl->page_sz == ms->hugepage_sz);
|
|
/* Number of memsegs in the range. */
|
|
ms_n = len / msl->page_sz;
|
|
DEBUG("port %u extending %p to [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
|
|
" page_sz=0x%" PRIx64 ", ms_n=%u",
|
|
dev->data->port_id, (void *)addr,
|
|
data.start, data.end, msl->page_sz, ms_n);
|
|
/* Size of memory for bitmap. */
|
|
bmp_size = rte_bitmap_get_memory_footprint(ms_n);
|
|
mr = rte_zmalloc_socket(NULL,
|
|
RTE_ALIGN_CEIL(sizeof(*mr),
|
|
RTE_CACHE_LINE_SIZE) +
|
|
bmp_size,
|
|
RTE_CACHE_LINE_SIZE, msl->socket_id);
|
|
if (mr == NULL) {
|
|
WARN("port %u unable to allocate memory for a new MR of"
|
|
" address (%p).",
|
|
dev->data->port_id, (void *)addr);
|
|
rte_errno = ENOMEM;
|
|
goto err_nolock;
|
|
}
|
|
mr->msl = msl;
|
|
/*
|
|
* Save the index of the first memseg and initialize memseg bitmap. To
|
|
* see if a memseg of ms_idx in the memseg-list is still valid, check:
|
|
* rte_bitmap_get(mr->bmp, ms_idx - mr->ms_base_idx)
|
|
*/
|
|
mr->ms_base_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
|
|
bmp_mem = RTE_PTR_ALIGN_CEIL(mr + 1, RTE_CACHE_LINE_SIZE);
|
|
mr->ms_bmp = rte_bitmap_init(ms_n, bmp_mem, bmp_size);
|
|
if (mr->ms_bmp == NULL) {
|
|
WARN("port %u unable to initialize bitmap for a new MR of"
|
|
" address (%p).",
|
|
dev->data->port_id, (void *)addr);
|
|
rte_errno = EINVAL;
|
|
goto err_nolock;
|
|
}
|
|
/*
|
|
* Should recheck whether the extended contiguous chunk is still valid.
|
|
* Because memory_hotplug_lock can't be held if there's any memory
|
|
* related calls in a critical path, resource allocation above can't be
|
|
* locked. If the memory has been changed at this point, try again with
|
|
* just single page. If not, go on with the big chunk atomically from
|
|
* here.
|
|
*/
|
|
rte_mcfg_mem_read_lock();
|
|
data_re = data;
|
|
if (len > msl->page_sz &&
|
|
!rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data_re)) {
|
|
WARN("port %u unable to find virtually contiguous"
|
|
" chunk for address (%p)."
|
|
" rte_memseg_contig_walk() failed.",
|
|
dev->data->port_id, (void *)addr);
|
|
rte_errno = ENXIO;
|
|
goto err_memlock;
|
|
}
|
|
if (data.start != data_re.start || data.end != data_re.end) {
|
|
/*
|
|
* The extended contiguous chunk has been changed. Try again
|
|
* with single memseg instead.
|
|
*/
|
|
data.start = RTE_ALIGN_FLOOR(addr, msl->page_sz);
|
|
data.end = data.start + msl->page_sz;
|
|
rte_mcfg_mem_read_unlock();
|
|
mr_free(mr);
|
|
goto alloc_resources;
|
|
}
|
|
assert(data.msl == data_re.msl);
|
|
rte_rwlock_write_lock(&priv->mr.rwlock);
|
|
/*
|
|
* Check the address is really missing. If other thread already created
|
|
* one or it is not found due to overflow, abort and return.
|
|
*/
|
|
if (mr_lookup_dev(dev, entry, addr) != UINT32_MAX) {
|
|
/*
|
|
* Insert to the global cache table. It may fail due to
|
|
* low-on-memory. Then, this entry will have to be searched
|
|
* here again.
|
|
*/
|
|
mr_btree_insert(&priv->mr.cache, entry);
|
|
DEBUG("port %u found MR for %p on final lookup, abort",
|
|
dev->data->port_id, (void *)addr);
|
|
rte_rwlock_write_unlock(&priv->mr.rwlock);
|
|
rte_mcfg_mem_read_unlock();
|
|
/*
|
|
* Must be unlocked before calling rte_free() because
|
|
* mlx4_mr_mem_event_free_cb() can be called inside.
|
|
*/
|
|
mr_free(mr);
|
|
return entry->lkey;
|
|
}
|
|
/*
|
|
* Trim start and end addresses for verbs MR. Set bits for registering
|
|
* memsegs but exclude already registered ones. Bitmap can be
|
|
* fragmented.
|
|
*/
|
|
for (n = 0; n < ms_n; ++n) {
|
|
uintptr_t start;
|
|
struct mlx4_mr_cache ret;
|
|
|
|
memset(&ret, 0, sizeof(ret));
|
|
start = data_re.start + n * msl->page_sz;
|
|
/* Exclude memsegs already registered by other MRs. */
|
|
if (mr_lookup_dev(dev, &ret, start) == UINT32_MAX) {
|
|
/*
|
|
* Start from the first unregistered memseg in the
|
|
* extended range.
|
|
*/
|
|
if (ms_idx_shift == -1) {
|
|
mr->ms_base_idx += n;
|
|
data.start = start;
|
|
ms_idx_shift = n;
|
|
}
|
|
data.end = start + msl->page_sz;
|
|
rte_bitmap_set(mr->ms_bmp, n - ms_idx_shift);
|
|
++mr->ms_n;
|
|
}
|
|
}
|
|
len = data.end - data.start;
|
|
mr->ms_bmp_n = len / msl->page_sz;
|
|
assert(ms_idx_shift + mr->ms_bmp_n <= ms_n);
|
|
/*
|
|
* Finally create a verbs MR for the memory chunk. ibv_reg_mr() can be
|
|
* called with holding the memory lock because it doesn't use
|
|
* mlx4_alloc_buf_extern() which eventually calls rte_malloc_socket()
|
|
* through mlx4_alloc_verbs_buf().
|
|
*/
|
|
mr->ibv_mr = mlx4_glue->reg_mr(priv->pd, (void *)data.start, len,
|
|
IBV_ACCESS_LOCAL_WRITE);
|
|
if (mr->ibv_mr == NULL) {
|
|
WARN("port %u fail to create a verbs MR for address (%p)",
|
|
dev->data->port_id, (void *)addr);
|
|
rte_errno = EINVAL;
|
|
goto err_mrlock;
|
|
}
|
|
assert((uintptr_t)mr->ibv_mr->addr == data.start);
|
|
assert(mr->ibv_mr->length == len);
|
|
LIST_INSERT_HEAD(&priv->mr.mr_list, mr, mr);
|
|
DEBUG("port %u MR CREATED (%p) for %p:\n"
|
|
" [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
|
|
" lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u",
|
|
dev->data->port_id, (void *)mr, (void *)addr,
|
|
data.start, data.end, rte_cpu_to_be_32(mr->ibv_mr->lkey),
|
|
mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n);
|
|
/* Insert to the global cache table. */
|
|
mr_insert_dev_cache(dev, mr);
|
|
/* Fill in output data. */
|
|
mr_lookup_dev(dev, entry, addr);
|
|
/* Lookup can't fail. */
|
|
assert(entry->lkey != UINT32_MAX);
|
|
rte_rwlock_write_unlock(&priv->mr.rwlock);
|
|
rte_mcfg_mem_read_unlock();
|
|
return entry->lkey;
|
|
err_mrlock:
|
|
rte_rwlock_write_unlock(&priv->mr.rwlock);
|
|
err_memlock:
|
|
rte_mcfg_mem_read_unlock();
|
|
err_nolock:
|
|
/*
|
|
* In case of error, as this can be called in a datapath, a warning
|
|
* message per an error is preferable instead. Must be unlocked before
|
|
* calling rte_free() because mlx4_mr_mem_event_free_cb() can be called
|
|
* inside.
|
|
*/
|
|
mr_free(mr);
|
|
return UINT32_MAX;
|
|
}
|
|
|
|
/**
|
|
* Create a new global Memory Region (MR) for a missing virtual address.
|
|
* This can be called from primary and secondary process.
|
|
*
|
|
* @param dev
|
|
* Pointer to Ethernet device.
|
|
* @param[out] entry
|
|
* Pointer to returning MR cache entry, found in the global cache or newly
|
|
* created. If failed to create one, this will not be updated.
|
|
* @param addr
|
|
* Target virtual address to register.
|
|
*
|
|
* @return
|
|
* Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
|
|
*/
|
|
static uint32_t
|
|
mlx4_mr_create(struct rte_eth_dev *dev, struct mlx4_mr_cache *entry,
|
|
uintptr_t addr)
|
|
{
|
|
uint32_t ret = 0;
|
|
|
|
switch (rte_eal_process_type()) {
|
|
case RTE_PROC_PRIMARY:
|
|
ret = mlx4_mr_create_primary(dev, entry, addr);
|
|
break;
|
|
case RTE_PROC_SECONDARY:
|
|
ret = mlx4_mr_create_secondary(dev, entry, addr);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Rebuild the global B-tree cache of device from the original MR list.
|
|
*
|
|
* @param dev
|
|
* Pointer to Ethernet device.
|
|
*/
|
|
static void
|
|
mr_rebuild_dev_cache(struct rte_eth_dev *dev)
|
|
{
|
|
struct mlx4_priv *priv = dev->data->dev_private;
|
|
struct mlx4_mr *mr;
|
|
|
|
DEBUG("port %u rebuild dev cache[]", dev->data->port_id);
|
|
/* Flush cache to rebuild. */
|
|
priv->mr.cache.len = 1;
|
|
priv->mr.cache.overflow = 0;
|
|
/* Iterate all the existing MRs. */
|
|
LIST_FOREACH(mr, &priv->mr.mr_list, mr)
|
|
if (mr_insert_dev_cache(dev, mr) < 0)
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* Callback for memory free event. Iterate freed memsegs and check whether it
|
|
* belongs to an existing MR. If found, clear the bit from bitmap of MR. As a
|
|
* result, the MR would be fragmented. If it becomes empty, the MR will be freed
|
|
* later by mlx4_mr_garbage_collect().
|
|
*
|
|
* The global cache must be rebuilt if there's any change and this event has to
|
|
* be propagated to dataplane threads to flush the local caches.
|
|
*
|
|
* @param dev
|
|
* Pointer to Ethernet device.
|
|
* @param addr
|
|
* Address of freed memory.
|
|
* @param len
|
|
* Size of freed memory.
|
|
*/
|
|
static void
|
|
mlx4_mr_mem_event_free_cb(struct rte_eth_dev *dev, const void *addr, size_t len)
|
|
{
|
|
struct mlx4_priv *priv = dev->data->dev_private;
|
|
const struct rte_memseg_list *msl;
|
|
struct mlx4_mr *mr;
|
|
int ms_n;
|
|
int i;
|
|
int rebuild = 0;
|
|
|
|
DEBUG("port %u free callback: addr=%p, len=%zu",
|
|
dev->data->port_id, addr, len);
|
|
msl = rte_mem_virt2memseg_list(addr);
|
|
/* addr and len must be page-aligned. */
|
|
assert((uintptr_t)addr == RTE_ALIGN((uintptr_t)addr, msl->page_sz));
|
|
assert(len == RTE_ALIGN(len, msl->page_sz));
|
|
ms_n = len / msl->page_sz;
|
|
rte_rwlock_write_lock(&priv->mr.rwlock);
|
|
/* Clear bits of freed memsegs from MR. */
|
|
for (i = 0; i < ms_n; ++i) {
|
|
const struct rte_memseg *ms;
|
|
struct mlx4_mr_cache entry;
|
|
uintptr_t start;
|
|
int ms_idx;
|
|
uint32_t pos;
|
|
|
|
/* Find MR having this memseg. */
|
|
start = (uintptr_t)addr + i * msl->page_sz;
|
|
mr = mr_lookup_dev_list(dev, &entry, start);
|
|
if (mr == NULL)
|
|
continue;
|
|
assert(mr->msl); /* Can't be external memory. */
|
|
ms = rte_mem_virt2memseg((void *)start, msl);
|
|
assert(ms != NULL);
|
|
assert(msl->page_sz == ms->hugepage_sz);
|
|
ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
|
|
pos = ms_idx - mr->ms_base_idx;
|
|
assert(rte_bitmap_get(mr->ms_bmp, pos));
|
|
assert(pos < mr->ms_bmp_n);
|
|
DEBUG("port %u MR(%p): clear bitmap[%u] for addr %p",
|
|
dev->data->port_id, (void *)mr, pos, (void *)start);
|
|
rte_bitmap_clear(mr->ms_bmp, pos);
|
|
if (--mr->ms_n == 0) {
|
|
LIST_REMOVE(mr, mr);
|
|
LIST_INSERT_HEAD(&priv->mr.mr_free_list, mr, mr);
|
|
DEBUG("port %u remove MR(%p) from list",
|
|
dev->data->port_id, (void *)mr);
|
|
}
|
|
/*
|
|
* MR is fragmented or will be freed. the global cache must be
|
|
* rebuilt.
|
|
*/
|
|
rebuild = 1;
|
|
}
|
|
if (rebuild) {
|
|
mr_rebuild_dev_cache(dev);
|
|
/*
|
|
* Flush local caches by propagating invalidation across cores.
|
|
* rte_smp_wmb() is enough to synchronize this event. If one of
|
|
* freed memsegs is seen by other core, that means the memseg
|
|
* has been allocated by allocator, which will come after this
|
|
* free call. Therefore, this store instruction (incrementing
|
|
* generation below) will be guaranteed to be seen by other core
|
|
* before the core sees the newly allocated memory.
|
|
*/
|
|
++priv->mr.dev_gen;
|
|
DEBUG("broadcasting local cache flush, gen=%d",
|
|
priv->mr.dev_gen);
|
|
rte_smp_wmb();
|
|
}
|
|
rte_rwlock_write_unlock(&priv->mr.rwlock);
|
|
#ifndef NDEBUG
|
|
if (rebuild)
|
|
mlx4_mr_dump_dev(dev);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Callback for memory event.
|
|
*
|
|
* @param event_type
|
|
* Memory event type.
|
|
* @param addr
|
|
* Address of memory.
|
|
* @param len
|
|
* Size of memory.
|
|
*/
|
|
void
|
|
mlx4_mr_mem_event_cb(enum rte_mem_event event_type, const void *addr,
|
|
size_t len, void *arg __rte_unused)
|
|
{
|
|
struct mlx4_priv *priv;
|
|
struct mlx4_dev_list *dev_list = &mlx4_shared_data->mem_event_cb_list;
|
|
|
|
/* Must be called from the primary process. */
|
|
assert(rte_eal_process_type() == RTE_PROC_PRIMARY);
|
|
switch (event_type) {
|
|
case RTE_MEM_EVENT_FREE:
|
|
rte_rwlock_read_lock(&mlx4_shared_data->mem_event_rwlock);
|
|
/* Iterate all the existing mlx4 devices. */
|
|
LIST_FOREACH(priv, dev_list, mem_event_cb)
|
|
mlx4_mr_mem_event_free_cb(ETH_DEV(priv), addr, len);
|
|
rte_rwlock_read_unlock(&mlx4_shared_data->mem_event_rwlock);
|
|
break;
|
|
case RTE_MEM_EVENT_ALLOC:
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Look up address in the global MR cache table. If not found, create a new MR.
|
|
* Insert the found/created entry to local bottom-half cache table.
|
|
*
|
|
* @param dev
|
|
* Pointer to Ethernet device.
|
|
* @param mr_ctrl
|
|
* Pointer to per-queue MR control structure.
|
|
* @param[out] entry
|
|
* Pointer to returning MR cache entry, found in the global cache or newly
|
|
* created. If failed to create one, this is not written.
|
|
* @param addr
|
|
* Search key.
|
|
*
|
|
* @return
|
|
* Searched LKey on success, UINT32_MAX on no match.
|
|
*/
|
|
static uint32_t
|
|
mlx4_mr_lookup_dev(struct rte_eth_dev *dev, struct mlx4_mr_ctrl *mr_ctrl,
|
|
struct mlx4_mr_cache *entry, uintptr_t addr)
|
|
{
|
|
struct mlx4_priv *priv = dev->data->dev_private;
|
|
struct mlx4_mr_btree *bt = &mr_ctrl->cache_bh;
|
|
uint16_t idx;
|
|
uint32_t lkey;
|
|
|
|
/* If local cache table is full, try to double it. */
|
|
if (unlikely(bt->len == bt->size))
|
|
mr_btree_expand(bt, bt->size << 1);
|
|
/* Look up in the global cache. */
|
|
rte_rwlock_read_lock(&priv->mr.rwlock);
|
|
lkey = mr_btree_lookup(&priv->mr.cache, &idx, addr);
|
|
if (lkey != UINT32_MAX) {
|
|
/* Found. */
|
|
*entry = (*priv->mr.cache.table)[idx];
|
|
rte_rwlock_read_unlock(&priv->mr.rwlock);
|
|
/*
|
|
* Update local cache. Even if it fails, return the found entry
|
|
* to update top-half cache. Next time, this entry will be found
|
|
* in the global cache.
|
|
*/
|
|
mr_btree_insert(bt, entry);
|
|
return lkey;
|
|
}
|
|
rte_rwlock_read_unlock(&priv->mr.rwlock);
|
|
/* First time to see the address? Create a new MR. */
|
|
lkey = mlx4_mr_create(dev, entry, addr);
|
|
/*
|
|
* Update the local cache if successfully created a new global MR. Even
|
|
* if failed to create one, there's no action to take in this datapath
|
|
* code. As returning LKey is invalid, this will eventually make HW
|
|
* fail.
|
|
*/
|
|
if (lkey != UINT32_MAX)
|
|
mr_btree_insert(bt, entry);
|
|
return lkey;
|
|
}
|
|
|
|
/**
|
|
* Bottom-half of LKey search on datapath. Firstly search in cache_bh[] and if
|
|
* misses, search in the global MR cache table and update the new entry to
|
|
* per-queue local caches.
|
|
*
|
|
* @param dev
|
|
* Pointer to Ethernet device.
|
|
* @param mr_ctrl
|
|
* Pointer to per-queue MR control structure.
|
|
* @param addr
|
|
* Search key.
|
|
*
|
|
* @return
|
|
* Searched LKey on success, UINT32_MAX on no match.
|
|
*/
|
|
static uint32_t
|
|
mlx4_mr_addr2mr_bh(struct rte_eth_dev *dev, struct mlx4_mr_ctrl *mr_ctrl,
|
|
uintptr_t addr)
|
|
{
|
|
uint32_t lkey;
|
|
uint16_t bh_idx = 0;
|
|
/* Victim in top-half cache to replace with new entry. */
|
|
struct mlx4_mr_cache *repl = &mr_ctrl->cache[mr_ctrl->head];
|
|
|
|
/* Binary-search MR translation table. */
|
|
lkey = mr_btree_lookup(&mr_ctrl->cache_bh, &bh_idx, addr);
|
|
/* Update top-half cache. */
|
|
if (likely(lkey != UINT32_MAX)) {
|
|
*repl = (*mr_ctrl->cache_bh.table)[bh_idx];
|
|
} else {
|
|
/*
|
|
* If missed in local lookup table, search in the global cache
|
|
* and local cache_bh[] will be updated inside if possible.
|
|
* Top-half cache entry will also be updated.
|
|
*/
|
|
lkey = mlx4_mr_lookup_dev(dev, mr_ctrl, repl, addr);
|
|
if (unlikely(lkey == UINT32_MAX))
|
|
return UINT32_MAX;
|
|
}
|
|
/* Update the most recently used entry. */
|
|
mr_ctrl->mru = mr_ctrl->head;
|
|
/* Point to the next victim, the oldest. */
|
|
mr_ctrl->head = (mr_ctrl->head + 1) % MLX4_MR_CACHE_N;
|
|
return lkey;
|
|
}
|
|
|
|
/**
|
|
* Bottom-half of LKey search on Rx.
|
|
*
|
|
* @param rxq
|
|
* Pointer to Rx queue structure.
|
|
* @param addr
|
|
* Search key.
|
|
*
|
|
* @return
|
|
* Searched LKey on success, UINT32_MAX on no match.
|
|
*/
|
|
uint32_t
|
|
mlx4_rx_addr2mr_bh(struct rxq *rxq, uintptr_t addr)
|
|
{
|
|
struct mlx4_mr_ctrl *mr_ctrl = &rxq->mr_ctrl;
|
|
struct mlx4_priv *priv = rxq->priv;
|
|
|
|
return mlx4_mr_addr2mr_bh(ETH_DEV(priv), mr_ctrl, addr);
|
|
}
|
|
|
|
/**
|
|
* Bottom-half of LKey search on Tx.
|
|
*
|
|
* @param txq
|
|
* Pointer to Tx queue structure.
|
|
* @param addr
|
|
* Search key.
|
|
*
|
|
* @return
|
|
* Searched LKey on success, UINT32_MAX on no match.
|
|
*/
|
|
static uint32_t
|
|
mlx4_tx_addr2mr_bh(struct txq *txq, uintptr_t addr)
|
|
{
|
|
struct mlx4_mr_ctrl *mr_ctrl = &txq->mr_ctrl;
|
|
struct mlx4_priv *priv = txq->priv;
|
|
|
|
return mlx4_mr_addr2mr_bh(ETH_DEV(priv), mr_ctrl, addr);
|
|
}
|
|
|
|
/**
|
|
* Bottom-half of LKey search on Tx. If it can't be searched in the memseg
|
|
* list, register the mempool of the mbuf as externally allocated memory.
|
|
*
|
|
* @param txq
|
|
* Pointer to Tx queue structure.
|
|
* @param mb
|
|
* Pointer to mbuf.
|
|
*
|
|
* @return
|
|
* Searched LKey on success, UINT32_MAX on no match.
|
|
*/
|
|
uint32_t
|
|
mlx4_tx_mb2mr_bh(struct txq *txq, struct rte_mbuf *mb)
|
|
{
|
|
uintptr_t addr = (uintptr_t)mb->buf_addr;
|
|
uint32_t lkey;
|
|
|
|
lkey = mlx4_tx_addr2mr_bh(txq, addr);
|
|
if (lkey == UINT32_MAX && rte_errno == ENXIO) {
|
|
/* Mempool may have externally allocated memory. */
|
|
return mlx4_tx_update_ext_mp(txq, addr, mlx4_mb2mp(mb));
|
|
}
|
|
return lkey;
|
|
}
|
|
|
|
/**
|
|
* Flush all of the local cache entries.
|
|
*
|
|
* @param mr_ctrl
|
|
* Pointer to per-queue MR control structure.
|
|
*/
|
|
void
|
|
mlx4_mr_flush_local_cache(struct mlx4_mr_ctrl *mr_ctrl)
|
|
{
|
|
/* Reset the most-recently-used index. */
|
|
mr_ctrl->mru = 0;
|
|
/* Reset the linear search array. */
|
|
mr_ctrl->head = 0;
|
|
memset(mr_ctrl->cache, 0, sizeof(mr_ctrl->cache));
|
|
/* Reset the B-tree table. */
|
|
mr_ctrl->cache_bh.len = 1;
|
|
mr_ctrl->cache_bh.overflow = 0;
|
|
/* Update the generation number. */
|
|
mr_ctrl->cur_gen = *mr_ctrl->dev_gen_ptr;
|
|
DEBUG("mr_ctrl(%p): flushed, cur_gen=%d",
|
|
(void *)mr_ctrl, mr_ctrl->cur_gen);
|
|
}
|
|
|
|
/**
|
|
* Called during rte_mempool_mem_iter() by mlx4_mr_update_ext_mp().
|
|
*
|
|
* Externally allocated chunk is registered and a MR is created for the chunk.
|
|
* The MR object is added to the global list. If memseg list of a MR object
|
|
* (mr->msl) is null, the MR object can be regarded as externally allocated
|
|
* memory.
|
|
*
|
|
* Once external memory is registered, it should be static. If the memory is
|
|
* freed and the virtual address range has different physical memory mapped
|
|
* again, it may cause crash on device due to the wrong translation entry. PMD
|
|
* can't track the free event of the external memory for now.
|
|
*/
|
|
static void
|
|
mlx4_mr_update_ext_mp_cb(struct rte_mempool *mp, void *opaque,
|
|
struct rte_mempool_memhdr *memhdr,
|
|
unsigned mem_idx __rte_unused)
|
|
{
|
|
struct mr_update_mp_data *data = opaque;
|
|
struct rte_eth_dev *dev = data->dev;
|
|
struct mlx4_priv *priv = dev->data->dev_private;
|
|
struct mlx4_mr_ctrl *mr_ctrl = data->mr_ctrl;
|
|
struct mlx4_mr *mr = NULL;
|
|
uintptr_t addr = (uintptr_t)memhdr->addr;
|
|
size_t len = memhdr->len;
|
|
struct mlx4_mr_cache entry;
|
|
uint32_t lkey;
|
|
|
|
assert(rte_eal_process_type() == RTE_PROC_PRIMARY);
|
|
/* If already registered, it should return. */
|
|
rte_rwlock_read_lock(&priv->mr.rwlock);
|
|
lkey = mr_lookup_dev(dev, &entry, addr);
|
|
rte_rwlock_read_unlock(&priv->mr.rwlock);
|
|
if (lkey != UINT32_MAX)
|
|
return;
|
|
mr = rte_zmalloc_socket(NULL,
|
|
RTE_ALIGN_CEIL(sizeof(*mr),
|
|
RTE_CACHE_LINE_SIZE),
|
|
RTE_CACHE_LINE_SIZE, mp->socket_id);
|
|
if (mr == NULL) {
|
|
WARN("port %u unable to allocate memory for a new MR of"
|
|
" mempool (%s).",
|
|
dev->data->port_id, mp->name);
|
|
data->ret = -1;
|
|
return;
|
|
}
|
|
DEBUG("port %u register MR for chunk #%d of mempool (%s)",
|
|
dev->data->port_id, mem_idx, mp->name);
|
|
mr->ibv_mr = mlx4_glue->reg_mr(priv->pd, (void *)addr, len,
|
|
IBV_ACCESS_LOCAL_WRITE);
|
|
if (mr->ibv_mr == NULL) {
|
|
WARN("port %u fail to create a verbs MR for address (%p)",
|
|
dev->data->port_id, (void *)addr);
|
|
rte_free(mr);
|
|
data->ret = -1;
|
|
return;
|
|
}
|
|
mr->msl = NULL; /* Mark it is external memory. */
|
|
mr->ms_bmp = NULL;
|
|
mr->ms_n = 1;
|
|
mr->ms_bmp_n = 1;
|
|
rte_rwlock_write_lock(&priv->mr.rwlock);
|
|
LIST_INSERT_HEAD(&priv->mr.mr_list, mr, mr);
|
|
DEBUG("port %u MR CREATED (%p) for external memory %p:\n"
|
|
" [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
|
|
" lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u",
|
|
dev->data->port_id, (void *)mr, (void *)addr,
|
|
addr, addr + len, rte_cpu_to_be_32(mr->ibv_mr->lkey),
|
|
mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n);
|
|
/* Insert to the global cache table. */
|
|
mr_insert_dev_cache(dev, mr);
|
|
rte_rwlock_write_unlock(&priv->mr.rwlock);
|
|
/* Insert to the local cache table */
|
|
mlx4_mr_addr2mr_bh(dev, mr_ctrl, addr);
|
|
}
|
|
|
|
/**
|
|
* Register MR for entire memory chunks in a Mempool having externally allocated
|
|
* memory and fill in local cache.
|
|
*
|
|
* @param dev
|
|
* Pointer to Ethernet device.
|
|
* @param mr_ctrl
|
|
* Pointer to per-queue MR control structure.
|
|
* @param mp
|
|
* Pointer to registering Mempool.
|
|
*
|
|
* @return
|
|
* 0 on success, -1 on failure.
|
|
*/
|
|
static uint32_t
|
|
mlx4_mr_update_ext_mp(struct rte_eth_dev *dev, struct mlx4_mr_ctrl *mr_ctrl,
|
|
struct rte_mempool *mp)
|
|
{
|
|
struct mr_update_mp_data data = {
|
|
.dev = dev,
|
|
.mr_ctrl = mr_ctrl,
|
|
.ret = 0,
|
|
};
|
|
|
|
rte_mempool_mem_iter(mp, mlx4_mr_update_ext_mp_cb, &data);
|
|
return data.ret;
|
|
}
|
|
|
|
/**
|
|
* Register MR entire memory chunks in a Mempool having externally allocated
|
|
* memory and search LKey of the address to return.
|
|
*
|
|
* @param dev
|
|
* Pointer to Ethernet device.
|
|
* @param addr
|
|
* Search key.
|
|
* @param mp
|
|
* Pointer to registering Mempool where addr belongs.
|
|
*
|
|
* @return
|
|
* LKey for address on success, UINT32_MAX on failure.
|
|
*/
|
|
uint32_t
|
|
mlx4_tx_update_ext_mp(struct txq *txq, uintptr_t addr, struct rte_mempool *mp)
|
|
{
|
|
struct mlx4_mr_ctrl *mr_ctrl = &txq->mr_ctrl;
|
|
struct mlx4_priv *priv = txq->priv;
|
|
|
|
if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
|
|
WARN("port %u using address (%p) from unregistered mempool"
|
|
" having externally allocated memory"
|
|
" in secondary process, please create mempool"
|
|
" prior to rte_eth_dev_start()",
|
|
PORT_ID(priv), (void *)addr);
|
|
return UINT32_MAX;
|
|
}
|
|
mlx4_mr_update_ext_mp(ETH_DEV(priv), mr_ctrl, mp);
|
|
return mlx4_tx_addr2mr_bh(txq, addr);
|
|
}
|
|
|
|
/* Called during rte_mempool_mem_iter() by mlx4_mr_update_mp(). */
|
|
static void
|
|
mlx4_mr_update_mp_cb(struct rte_mempool *mp __rte_unused, void *opaque,
|
|
struct rte_mempool_memhdr *memhdr,
|
|
unsigned mem_idx __rte_unused)
|
|
{
|
|
struct mr_update_mp_data *data = opaque;
|
|
uint32_t lkey;
|
|
|
|
/* Stop iteration if failed in the previous walk. */
|
|
if (data->ret < 0)
|
|
return;
|
|
/* Register address of the chunk and update local caches. */
|
|
lkey = mlx4_mr_addr2mr_bh(data->dev, data->mr_ctrl,
|
|
(uintptr_t)memhdr->addr);
|
|
if (lkey == UINT32_MAX)
|
|
data->ret = -1;
|
|
}
|
|
|
|
/**
|
|
* Register entire memory chunks in a Mempool.
|
|
*
|
|
* @param dev
|
|
* Pointer to Ethernet device.
|
|
* @param mr_ctrl
|
|
* Pointer to per-queue MR control structure.
|
|
* @param mp
|
|
* Pointer to registering Mempool.
|
|
*
|
|
* @return
|
|
* 0 on success, -1 on failure.
|
|
*/
|
|
int
|
|
mlx4_mr_update_mp(struct rte_eth_dev *dev, struct mlx4_mr_ctrl *mr_ctrl,
|
|
struct rte_mempool *mp)
|
|
{
|
|
struct mr_update_mp_data data = {
|
|
.dev = dev,
|
|
.mr_ctrl = mr_ctrl,
|
|
.ret = 0,
|
|
};
|
|
|
|
rte_mempool_mem_iter(mp, mlx4_mr_update_mp_cb, &data);
|
|
if (data.ret < 0 && rte_errno == ENXIO) {
|
|
/* Mempool may have externally allocated memory. */
|
|
return mlx4_mr_update_ext_mp(dev, mr_ctrl, mp);
|
|
}
|
|
return data.ret;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/**
|
|
* Dump all the created MRs and the global cache entries.
|
|
*
|
|
* @param dev
|
|
* Pointer to Ethernet device.
|
|
*/
|
|
void
|
|
mlx4_mr_dump_dev(struct rte_eth_dev *dev)
|
|
{
|
|
struct mlx4_priv *priv = dev->data->dev_private;
|
|
struct mlx4_mr *mr;
|
|
int mr_n = 0;
|
|
int chunk_n = 0;
|
|
|
|
rte_rwlock_read_lock(&priv->mr.rwlock);
|
|
/* Iterate all the existing MRs. */
|
|
LIST_FOREACH(mr, &priv->mr.mr_list, mr) {
|
|
unsigned int n;
|
|
|
|
DEBUG("port %u MR[%u], LKey = 0x%x, ms_n = %u, ms_bmp_n = %u",
|
|
dev->data->port_id, mr_n++,
|
|
rte_cpu_to_be_32(mr->ibv_mr->lkey),
|
|
mr->ms_n, mr->ms_bmp_n);
|
|
if (mr->ms_n == 0)
|
|
continue;
|
|
for (n = 0; n < mr->ms_bmp_n; ) {
|
|
struct mlx4_mr_cache ret;
|
|
|
|
memset(&ret, 0, sizeof(ret));
|
|
n = mr_find_next_chunk(mr, &ret, n);
|
|
if (!ret.end)
|
|
break;
|
|
DEBUG(" chunk[%u], [0x%" PRIxPTR ", 0x%" PRIxPTR ")",
|
|
chunk_n++, ret.start, ret.end);
|
|
}
|
|
}
|
|
DEBUG("port %u dumping global cache", dev->data->port_id);
|
|
mlx4_mr_btree_dump(&priv->mr.cache);
|
|
rte_rwlock_read_unlock(&priv->mr.rwlock);
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* Release all the created MRs and resources. Remove device from memory callback
|
|
* list.
|
|
*
|
|
* @param dev
|
|
* Pointer to Ethernet device.
|
|
*/
|
|
void
|
|
mlx4_mr_release(struct rte_eth_dev *dev)
|
|
{
|
|
struct mlx4_priv *priv = dev->data->dev_private;
|
|
struct mlx4_mr *mr_next;
|
|
|
|
/* Remove from memory callback device list. */
|
|
rte_rwlock_write_lock(&mlx4_shared_data->mem_event_rwlock);
|
|
LIST_REMOVE(priv, mem_event_cb);
|
|
rte_rwlock_write_unlock(&mlx4_shared_data->mem_event_rwlock);
|
|
#ifndef NDEBUG
|
|
mlx4_mr_dump_dev(dev);
|
|
#endif
|
|
rte_rwlock_write_lock(&priv->mr.rwlock);
|
|
/* Detach from MR list and move to free list. */
|
|
mr_next = LIST_FIRST(&priv->mr.mr_list);
|
|
while (mr_next != NULL) {
|
|
struct mlx4_mr *mr = mr_next;
|
|
|
|
mr_next = LIST_NEXT(mr, mr);
|
|
LIST_REMOVE(mr, mr);
|
|
LIST_INSERT_HEAD(&priv->mr.mr_free_list, mr, mr);
|
|
}
|
|
LIST_INIT(&priv->mr.mr_list);
|
|
/* Free global cache. */
|
|
mlx4_mr_btree_free(&priv->mr.cache);
|
|
rte_rwlock_write_unlock(&priv->mr.rwlock);
|
|
/* Free all remaining MRs. */
|
|
mlx4_mr_garbage_collect(dev);
|
|
}
|