0e925aef27
Signed-off-by: Byron Marohn <byron.marohn@intel.com> Signed-off-by: Karla Saur <karla.saur@intel.com> Signed-off-by: Saikrishna Edupuganti <saikrishna.edupuganti@intel.com> Signed-off-by: Pablo de Lara <pablo.de.lara.guarch@intel.com> Acked-by: Christian Maciocco <christian.maciocco@intel.com>
408 lines
10 KiB
C
408 lines
10 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2016-2017 Intel Corporation. All rights reserved.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <inttypes.h>
|
|
|
|
#include <rte_lcore.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_random.h>
|
|
#include <rte_efd.h>
|
|
#include <rte_memcpy.h>
|
|
#include <rte_thash.h>
|
|
|
|
#include "test.h"
|
|
#define NUM_KEYSIZES 10
|
|
#define NUM_SHUFFLES 10
|
|
#define MAX_KEYSIZE 64
|
|
#define MAX_ENTRIES (1 << 19)
|
|
#define KEYS_TO_ADD (MAX_ENTRIES * 3 / 4) /* 75% table utilization */
|
|
#define NUM_LOOKUPS (KEYS_TO_ADD * 5) /* Loop among keys added, several times */
|
|
static unsigned int test_socket_id;
|
|
|
|
static inline uint8_t efd_get_all_sockets_bitmask(void)
|
|
{
|
|
uint8_t all_cpu_sockets_bitmask = 0;
|
|
unsigned int i;
|
|
unsigned int next_lcore = rte_get_master_lcore();
|
|
const int val_true = 1, val_false = 0;
|
|
for (i = 0; i < rte_lcore_count(); i++) {
|
|
all_cpu_sockets_bitmask |= 1 << rte_lcore_to_socket_id(next_lcore);
|
|
next_lcore = rte_get_next_lcore(next_lcore, val_false, val_true);
|
|
}
|
|
|
|
return all_cpu_sockets_bitmask;
|
|
}
|
|
|
|
enum operations {
|
|
ADD = 0,
|
|
LOOKUP,
|
|
LOOKUP_MULTI,
|
|
DELETE,
|
|
NUM_OPERATIONS
|
|
};
|
|
|
|
struct efd_perf_params {
|
|
struct rte_efd_table *efd_table;
|
|
uint32_t key_size;
|
|
unsigned int cycle;
|
|
};
|
|
|
|
static uint32_t hashtest_key_lens[] = {
|
|
/* standard key sizes */
|
|
4, 8, 16, 32, 48, 64,
|
|
/* IPv4 SRC + DST + protocol, unpadded */
|
|
9,
|
|
/* IPv4 5-tuple, unpadded */
|
|
13,
|
|
/* IPv6 5-tuple, unpadded */
|
|
37,
|
|
/* IPv6 5-tuple, padded to 8-byte boundary */
|
|
40
|
|
};
|
|
|
|
/* Array to store number of cycles per operation */
|
|
uint64_t cycles[NUM_KEYSIZES][NUM_OPERATIONS];
|
|
|
|
/* Array to store the data */
|
|
efd_value_t data[KEYS_TO_ADD];
|
|
|
|
/* Array to store all input keys */
|
|
uint8_t keys[KEYS_TO_ADD][MAX_KEYSIZE];
|
|
|
|
/* Shuffle the keys that have been added, so lookups will be totally random */
|
|
static void
|
|
shuffle_input_keys(struct efd_perf_params *params)
|
|
{
|
|
efd_value_t temp_data;
|
|
unsigned int i;
|
|
uint32_t swap_idx;
|
|
uint8_t temp_key[MAX_KEYSIZE];
|
|
|
|
for (i = KEYS_TO_ADD - 1; i > 0; i--) {
|
|
swap_idx = rte_rand() % i;
|
|
|
|
memcpy(temp_key, keys[i], hashtest_key_lens[params->cycle]);
|
|
temp_data = data[i];
|
|
|
|
memcpy(keys[i], keys[swap_idx], hashtest_key_lens[params->cycle]);
|
|
data[i] = data[swap_idx];
|
|
|
|
memcpy(keys[swap_idx], temp_key, hashtest_key_lens[params->cycle]);
|
|
data[swap_idx] = temp_data;
|
|
}
|
|
}
|
|
|
|
static int key_compare(const void *key1, const void *key2)
|
|
{
|
|
return memcmp(key1, key2, MAX_KEYSIZE);
|
|
}
|
|
|
|
/*
|
|
* TODO: we could "error proof" these as done in test_hash_perf.c ln 165:
|
|
*
|
|
* The current setup may give errors if too full in some cases which we check
|
|
* for. However, since EFD allows for ~99% capacity, these errors are rare for
|
|
* #"KEYS_TO_ADD" which is 75% capacity.
|
|
*/
|
|
static int
|
|
setup_keys_and_data(struct efd_perf_params *params, unsigned int cycle)
|
|
{
|
|
unsigned int i, j;
|
|
int num_duplicates;
|
|
|
|
params->key_size = hashtest_key_lens[cycle];
|
|
params->cycle = cycle;
|
|
|
|
/* Reset all arrays */
|
|
for (i = 0; i < params->key_size; i++)
|
|
keys[0][i] = 0;
|
|
|
|
/* Generate a list of keys, some of which may be duplicates */
|
|
for (i = 0; i < KEYS_TO_ADD; i++) {
|
|
for (j = 0; j < params->key_size; j++)
|
|
keys[i][j] = rte_rand() & 0xFF;
|
|
|
|
data[i] = rte_rand() & ((1 << RTE_EFD_VALUE_NUM_BITS) - 1);
|
|
}
|
|
|
|
/* Remove duplicates from the keys array */
|
|
do {
|
|
num_duplicates = 0;
|
|
|
|
/* Sort the list of keys to make it easier to find duplicates */
|
|
qsort(keys, KEYS_TO_ADD, MAX_KEYSIZE, key_compare);
|
|
|
|
/* Sift through the list of keys and look for duplicates */
|
|
int num_duplicates = 0;
|
|
for (i = 0; i < KEYS_TO_ADD - 1; i++) {
|
|
if (memcmp(keys[i], keys[i + 1], params->key_size) == 0) {
|
|
/* This key already exists, try again */
|
|
num_duplicates++;
|
|
for (j = 0; j < params->key_size; j++)
|
|
keys[i][j] = rte_rand() & 0xFF;
|
|
}
|
|
}
|
|
} while (num_duplicates != 0);
|
|
|
|
/* Shuffle the random values again */
|
|
shuffle_input_keys(params);
|
|
|
|
params->efd_table = rte_efd_create("test_efd_perf",
|
|
MAX_ENTRIES, params->key_size,
|
|
efd_get_all_sockets_bitmask(), test_socket_id);
|
|
TEST_ASSERT_NOT_NULL(params->efd_table, "Error creating the efd table\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
timed_adds(struct efd_perf_params *params)
|
|
{
|
|
const uint64_t start_tsc = rte_rdtsc();
|
|
unsigned int i, a;
|
|
int32_t ret;
|
|
|
|
for (i = 0; i < KEYS_TO_ADD; i++) {
|
|
ret = rte_efd_update(params->efd_table, test_socket_id, keys[i],
|
|
data[i]);
|
|
if (ret != 0) {
|
|
printf("Error %d in rte_efd_update - key=0x", ret);
|
|
for (a = 0; a < params->key_size; a++)
|
|
printf("%02x", keys[i][a]);
|
|
printf(" value=%d\n", data[i]);
|
|
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
const uint64_t end_tsc = rte_rdtsc();
|
|
const uint64_t time_taken = end_tsc - start_tsc;
|
|
|
|
cycles[params->cycle][ADD] = time_taken / KEYS_TO_ADD;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
timed_lookups(struct efd_perf_params *params)
|
|
{
|
|
unsigned int i, j, a;
|
|
const uint64_t start_tsc = rte_rdtsc();
|
|
efd_value_t ret_data;
|
|
|
|
for (i = 0; i < NUM_LOOKUPS / KEYS_TO_ADD; i++) {
|
|
for (j = 0; j < KEYS_TO_ADD; j++) {
|
|
ret_data = rte_efd_lookup(params->efd_table,
|
|
test_socket_id, keys[j]);
|
|
if (ret_data != data[j]) {
|
|
printf("Value mismatch using rte_efd_lookup: "
|
|
"key #%d (0x", i);
|
|
for (a = 0; a < params->key_size; a++)
|
|
printf("%02x", keys[i][a]);
|
|
printf(")\n");
|
|
printf(" Expected %d, got %d\n", data[i],
|
|
ret_data);
|
|
|
|
return -1;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
const uint64_t end_tsc = rte_rdtsc();
|
|
const uint64_t time_taken = end_tsc - start_tsc;
|
|
|
|
cycles[params->cycle][LOOKUP] = time_taken / NUM_LOOKUPS;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
timed_lookups_multi(struct efd_perf_params *params)
|
|
{
|
|
unsigned int i, j, k, a;
|
|
efd_value_t result[RTE_EFD_BURST_MAX] = {0};
|
|
const void *keys_burst[RTE_EFD_BURST_MAX];
|
|
const uint64_t start_tsc = rte_rdtsc();
|
|
|
|
for (i = 0; i < NUM_LOOKUPS / KEYS_TO_ADD; i++) {
|
|
for (j = 0; j < KEYS_TO_ADD / RTE_EFD_BURST_MAX; j++) {
|
|
for (k = 0; k < RTE_EFD_BURST_MAX; k++)
|
|
keys_burst[k] = keys[j * RTE_EFD_BURST_MAX + k];
|
|
|
|
rte_efd_lookup_bulk(params->efd_table, test_socket_id,
|
|
RTE_EFD_BURST_MAX,
|
|
keys_burst, result);
|
|
|
|
for (k = 0; k < RTE_EFD_BURST_MAX; k++) {
|
|
uint32_t data_idx = j * RTE_EFD_BURST_MAX + k;
|
|
if (result[k] != data[data_idx]) {
|
|
printf("Value mismatch using "
|
|
"rte_efd_lookup_bulk: key #%d "
|
|
"(0x", i);
|
|
for (a = 0; a < params->key_size; a++)
|
|
printf("%02x",
|
|
keys[data_idx][a]);
|
|
printf(")\n");
|
|
printf(" Expected %d, got %d\n",
|
|
data[data_idx], result[k]);
|
|
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
const uint64_t end_tsc = rte_rdtsc();
|
|
const uint64_t time_taken = end_tsc - start_tsc;
|
|
|
|
cycles[params->cycle][LOOKUP_MULTI] = time_taken / NUM_LOOKUPS;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
timed_deletes(struct efd_perf_params *params)
|
|
{
|
|
unsigned int i, a;
|
|
const uint64_t start_tsc = rte_rdtsc();
|
|
int32_t ret;
|
|
|
|
for (i = 0; i < KEYS_TO_ADD; i++) {
|
|
ret = rte_efd_delete(params->efd_table, test_socket_id, keys[i],
|
|
NULL);
|
|
|
|
if (ret != 0) {
|
|
printf("Error %d in rte_efd_delete - key=0x", ret);
|
|
for (a = 0; a < params->key_size; a++)
|
|
printf("%02x", keys[i][a]);
|
|
printf("\n");
|
|
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
const uint64_t end_tsc = rte_rdtsc();
|
|
const uint64_t time_taken = end_tsc - start_tsc;
|
|
|
|
cycles[params->cycle][DELETE] = time_taken / KEYS_TO_ADD;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
perform_frees(struct efd_perf_params *params)
|
|
{
|
|
if (params->efd_table != NULL) {
|
|
rte_efd_free(params->efd_table);
|
|
params->efd_table = NULL;
|
|
}
|
|
}
|
|
|
|
static int
|
|
exit_with_fail(const char *testname, struct efd_perf_params *params,
|
|
unsigned int i)
|
|
{
|
|
|
|
printf("<<<<<Test %s failed at keysize %d iteration %d >>>>>\n",
|
|
testname, hashtest_key_lens[params->cycle], i);
|
|
perform_frees(params);
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
run_all_tbl_perf_tests(void)
|
|
{
|
|
unsigned int i, j;
|
|
struct efd_perf_params params;
|
|
|
|
printf("Measuring performance, please wait\n");
|
|
fflush(stdout);
|
|
|
|
test_socket_id = rte_socket_id();
|
|
|
|
for (i = 0; i < NUM_KEYSIZES; i++) {
|
|
|
|
if (setup_keys_and_data(¶ms, i) < 0) {
|
|
printf("Could not create keys/data/table\n");
|
|
return -1;
|
|
}
|
|
|
|
if (timed_adds(¶ms) < 0)
|
|
return exit_with_fail("timed_adds", ¶ms, i);
|
|
|
|
for (j = 0; j < NUM_SHUFFLES; j++)
|
|
shuffle_input_keys(¶ms);
|
|
|
|
if (timed_lookups(¶ms) < 0)
|
|
return exit_with_fail("timed_lookups", ¶ms, i);
|
|
|
|
if (timed_lookups_multi(¶ms) < 0)
|
|
return exit_with_fail("timed_lookups_multi", ¶ms, i);
|
|
|
|
if (timed_deletes(¶ms) < 0)
|
|
return exit_with_fail("timed_deletes", ¶ms, i);
|
|
|
|
/* Print a dot to show progress on operations */
|
|
printf(".");
|
|
fflush(stdout);
|
|
|
|
perform_frees(¶ms);
|
|
}
|
|
|
|
printf("\nResults (in CPU cycles/operation)\n");
|
|
printf("-----------------------------------\n");
|
|
printf("\n%-18s%-18s%-18s%-18s%-18s\n",
|
|
"Keysize", "Add", "Lookup", "Lookup_bulk", "Delete");
|
|
for (i = 0; i < NUM_KEYSIZES; i++) {
|
|
printf("%-18d", hashtest_key_lens[i]);
|
|
for (j = 0; j < NUM_OPERATIONS; j++)
|
|
printf("%-18"PRIu64, cycles[i][j]);
|
|
printf("\n");
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
test_efd_perf(void)
|
|
{
|
|
|
|
if (run_all_tbl_perf_tests() < 0)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
REGISTER_TEST_COMMAND(efd_perf_autotest, test_efd_perf);
|