numam-dpdk/drivers/net/iavf/iavf_rxtx.c
Leyi Rong 02d212ca31 net/iavf: rename remaining avf strings
This is the main patch which renames the macros, functions,
structs and any remaining strings in the iavf code.

Signed-off-by: Leyi Rong <leyi.rong@intel.com>
Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
2019-03-01 18:17:35 +01:00

1956 lines
50 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017 Intel Corporation
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <stdint.h>
#include <stdarg.h>
#include <unistd.h>
#include <inttypes.h>
#include <sys/queue.h>
#include <rte_string_fns.h>
#include <rte_memzone.h>
#include <rte_mbuf.h>
#include <rte_malloc.h>
#include <rte_ether.h>
#include <rte_ethdev_driver.h>
#include <rte_tcp.h>
#include <rte_sctp.h>
#include <rte_udp.h>
#include <rte_ip.h>
#include <rte_net.h>
#include "iavf_log.h"
#include "base/iavf_prototype.h"
#include "base/iavf_type.h"
#include "iavf.h"
#include "iavf_rxtx.h"
static inline int
check_rx_thresh(uint16_t nb_desc, uint16_t thresh)
{
/* The following constraints must be satisfied:
* thresh < rxq->nb_rx_desc
*/
if (thresh >= nb_desc) {
PMD_INIT_LOG(ERR, "rx_free_thresh (%u) must be less than %u",
thresh, nb_desc);
return -EINVAL;
}
return 0;
}
static inline int
check_tx_thresh(uint16_t nb_desc, uint16_t tx_rs_thresh,
uint16_t tx_free_thresh)
{
/* TX descriptors will have their RS bit set after tx_rs_thresh
* descriptors have been used. The TX descriptor ring will be cleaned
* after tx_free_thresh descriptors are used or if the number of
* descriptors required to transmit a packet is greater than the
* number of free TX descriptors.
*
* The following constraints must be satisfied:
* - tx_rs_thresh must be less than the size of the ring minus 2.
* - tx_free_thresh must be less than the size of the ring minus 3.
* - tx_rs_thresh must be less than or equal to tx_free_thresh.
* - tx_rs_thresh must be a divisor of the ring size.
*
* One descriptor in the TX ring is used as a sentinel to avoid a H/W
* race condition, hence the maximum threshold constraints. When set
* to zero use default values.
*/
if (tx_rs_thresh >= (nb_desc - 2)) {
PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be less than the "
"number of TX descriptors (%u) minus 2",
tx_rs_thresh, nb_desc);
return -EINVAL;
}
if (tx_free_thresh >= (nb_desc - 3)) {
PMD_INIT_LOG(ERR, "tx_free_thresh (%u) must be less than the "
"number of TX descriptors (%u) minus 3.",
tx_free_thresh, nb_desc);
return -EINVAL;
}
if (tx_rs_thresh > tx_free_thresh) {
PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be less than or "
"equal to tx_free_thresh (%u).",
tx_rs_thresh, tx_free_thresh);
return -EINVAL;
}
if ((nb_desc % tx_rs_thresh) != 0) {
PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be a divisor of the "
"number of TX descriptors (%u).",
tx_rs_thresh, nb_desc);
return -EINVAL;
}
return 0;
}
#ifdef RTE_LIBRTE_IAVF_INC_VECTOR
static inline bool
check_rx_vec_allow(struct iavf_rx_queue *rxq)
{
if (rxq->rx_free_thresh >= IAVF_VPMD_RX_MAX_BURST &&
rxq->nb_rx_desc % rxq->rx_free_thresh == 0) {
PMD_INIT_LOG(DEBUG, "Vector Rx can be enabled on this rxq.");
return TRUE;
}
PMD_INIT_LOG(DEBUG, "Vector Rx cannot be enabled on this rxq.");
return FALSE;
}
static inline bool
check_tx_vec_allow(struct iavf_tx_queue *txq)
{
if (!(txq->offloads & IAVF_NO_VECTOR_FLAGS) &&
txq->rs_thresh >= IAVF_VPMD_TX_MAX_BURST &&
txq->rs_thresh <= IAVF_VPMD_TX_MAX_FREE_BUF) {
PMD_INIT_LOG(DEBUG, "Vector tx can be enabled on this txq.");
return TRUE;
}
PMD_INIT_LOG(DEBUG, "Vector Tx cannot be enabled on this txq.");
return FALSE;
}
#endif
static inline bool
check_rx_bulk_allow(struct iavf_rx_queue *rxq)
{
int ret = TRUE;
if (!(rxq->rx_free_thresh >= IAVF_RX_MAX_BURST)) {
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
"rxq->rx_free_thresh=%d, "
"IAVF_RX_MAX_BURST=%d",
rxq->rx_free_thresh, IAVF_RX_MAX_BURST);
ret = FALSE;
} else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
"rxq->nb_rx_desc=%d, "
"rxq->rx_free_thresh=%d",
rxq->nb_rx_desc, rxq->rx_free_thresh);
ret = FALSE;
}
return ret;
}
static inline void
reset_rx_queue(struct iavf_rx_queue *rxq)
{
uint16_t len, i;
if (!rxq)
return;
len = rxq->nb_rx_desc + IAVF_RX_MAX_BURST;
for (i = 0; i < len * sizeof(union iavf_rx_desc); i++)
((volatile char *)rxq->rx_ring)[i] = 0;
memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
for (i = 0; i < IAVF_RX_MAX_BURST; i++)
rxq->sw_ring[rxq->nb_rx_desc + i] = &rxq->fake_mbuf;
/* for rx bulk */
rxq->rx_nb_avail = 0;
rxq->rx_next_avail = 0;
rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
rxq->rx_tail = 0;
rxq->nb_rx_hold = 0;
rxq->pkt_first_seg = NULL;
rxq->pkt_last_seg = NULL;
}
static inline void
reset_tx_queue(struct iavf_tx_queue *txq)
{
struct iavf_tx_entry *txe;
uint16_t i, prev, size;
if (!txq) {
PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
return;
}
txe = txq->sw_ring;
size = sizeof(struct iavf_tx_desc) * txq->nb_tx_desc;
for (i = 0; i < size; i++)
((volatile char *)txq->tx_ring)[i] = 0;
prev = (uint16_t)(txq->nb_tx_desc - 1);
for (i = 0; i < txq->nb_tx_desc; i++) {
txq->tx_ring[i].cmd_type_offset_bsz =
rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE);
txe[i].mbuf = NULL;
txe[i].last_id = i;
txe[prev].next_id = i;
prev = i;
}
txq->tx_tail = 0;
txq->nb_used = 0;
txq->last_desc_cleaned = txq->nb_tx_desc - 1;
txq->nb_free = txq->nb_tx_desc - 1;
txq->next_dd = txq->rs_thresh - 1;
txq->next_rs = txq->rs_thresh - 1;
}
static int
alloc_rxq_mbufs(struct iavf_rx_queue *rxq)
{
volatile union iavf_rx_desc *rxd;
struct rte_mbuf *mbuf = NULL;
uint64_t dma_addr;
uint16_t i;
for (i = 0; i < rxq->nb_rx_desc; i++) {
mbuf = rte_mbuf_raw_alloc(rxq->mp);
if (unlikely(!mbuf)) {
PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
return -ENOMEM;
}
rte_mbuf_refcnt_set(mbuf, 1);
mbuf->next = NULL;
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
mbuf->nb_segs = 1;
mbuf->port = rxq->port_id;
dma_addr =
rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
rxd = &rxq->rx_ring[i];
rxd->read.pkt_addr = dma_addr;
rxd->read.hdr_addr = 0;
#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
rxd->read.rsvd1 = 0;
rxd->read.rsvd2 = 0;
#endif
rxq->sw_ring[i] = mbuf;
}
return 0;
}
static inline void
release_rxq_mbufs(struct iavf_rx_queue *rxq)
{
uint16_t i;
if (!rxq->sw_ring)
return;
for (i = 0; i < rxq->nb_rx_desc; i++) {
if (rxq->sw_ring[i]) {
rte_pktmbuf_free_seg(rxq->sw_ring[i]);
rxq->sw_ring[i] = NULL;
}
}
/* for rx bulk */
if (rxq->rx_nb_avail == 0)
return;
for (i = 0; i < rxq->rx_nb_avail; i++) {
struct rte_mbuf *mbuf;
mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
rte_pktmbuf_free_seg(mbuf);
}
rxq->rx_nb_avail = 0;
}
static inline void
release_txq_mbufs(struct iavf_tx_queue *txq)
{
uint16_t i;
if (!txq || !txq->sw_ring) {
PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
return;
}
for (i = 0; i < txq->nb_tx_desc; i++) {
if (txq->sw_ring[i].mbuf) {
rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
txq->sw_ring[i].mbuf = NULL;
}
}
}
static const struct iavf_rxq_ops def_rxq_ops = {
.release_mbufs = release_rxq_mbufs,
};
static const struct iavf_txq_ops def_txq_ops = {
.release_mbufs = release_txq_mbufs,
};
int
iavf_dev_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
uint16_t nb_desc, unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mp)
{
struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct iavf_adapter *ad =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_rx_queue *rxq;
const struct rte_memzone *mz;
uint32_t ring_size;
uint16_t len;
uint16_t rx_free_thresh;
PMD_INIT_FUNC_TRACE();
if (nb_desc % IAVF_ALIGN_RING_DESC != 0 ||
nb_desc > IAVF_MAX_RING_DESC ||
nb_desc < IAVF_MIN_RING_DESC) {
PMD_INIT_LOG(ERR, "Number (%u) of receive descriptors is "
"invalid", nb_desc);
return -EINVAL;
}
/* Check free threshold */
rx_free_thresh = (rx_conf->rx_free_thresh == 0) ?
IAVF_DEFAULT_RX_FREE_THRESH :
rx_conf->rx_free_thresh;
if (check_rx_thresh(nb_desc, rx_free_thresh) != 0)
return -EINVAL;
/* Free memory if needed */
if (dev->data->rx_queues[queue_idx]) {
iavf_dev_rx_queue_release(dev->data->rx_queues[queue_idx]);
dev->data->rx_queues[queue_idx] = NULL;
}
/* Allocate the rx queue data structure */
rxq = rte_zmalloc_socket("iavf rxq",
sizeof(struct iavf_rx_queue),
RTE_CACHE_LINE_SIZE,
socket_id);
if (!rxq) {
PMD_INIT_LOG(ERR, "Failed to allocate memory for "
"rx queue data structure");
return -ENOMEM;
}
rxq->mp = mp;
rxq->nb_rx_desc = nb_desc;
rxq->rx_free_thresh = rx_free_thresh;
rxq->queue_id = queue_idx;
rxq->port_id = dev->data->port_id;
rxq->crc_len = 0; /* crc stripping by default */
rxq->rx_deferred_start = rx_conf->rx_deferred_start;
rxq->rx_hdr_len = 0;
len = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
rxq->rx_buf_len = RTE_ALIGN(len, (1 << IAVF_RXQ_CTX_DBUFF_SHIFT));
/* Allocate the software ring. */
len = nb_desc + IAVF_RX_MAX_BURST;
rxq->sw_ring =
rte_zmalloc_socket("iavf rx sw ring",
sizeof(struct rte_mbuf *) * len,
RTE_CACHE_LINE_SIZE,
socket_id);
if (!rxq->sw_ring) {
PMD_INIT_LOG(ERR, "Failed to allocate memory for SW ring");
rte_free(rxq);
return -ENOMEM;
}
/* Allocate the maximun number of RX ring hardware descriptor with
* a liitle more to support bulk allocate.
*/
len = IAVF_MAX_RING_DESC + IAVF_RX_MAX_BURST;
ring_size = RTE_ALIGN(len * sizeof(union iavf_rx_desc),
IAVF_DMA_MEM_ALIGN);
mz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
ring_size, IAVF_RING_BASE_ALIGN,
socket_id);
if (!mz) {
PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for RX");
rte_free(rxq->sw_ring);
rte_free(rxq);
return -ENOMEM;
}
/* Zero all the descriptors in the ring. */
memset(mz->addr, 0, ring_size);
rxq->rx_ring_phys_addr = mz->iova;
rxq->rx_ring = (union iavf_rx_desc *)mz->addr;
rxq->mz = mz;
reset_rx_queue(rxq);
rxq->q_set = TRUE;
dev->data->rx_queues[queue_idx] = rxq;
rxq->qrx_tail = hw->hw_addr + IAVF_QRX_TAIL1(rxq->queue_id);
rxq->ops = &def_rxq_ops;
if (check_rx_bulk_allow(rxq) == TRUE) {
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
"satisfied. Rx Burst Bulk Alloc function will be "
"used on port=%d, queue=%d.",
rxq->port_id, rxq->queue_id);
} else {
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
"not satisfied, Scattered Rx is requested "
"on port=%d, queue=%d.",
rxq->port_id, rxq->queue_id);
ad->rx_bulk_alloc_allowed = false;
}
#ifdef RTE_LIBRTE_IAVF_INC_VECTOR
if (check_rx_vec_allow(rxq) == FALSE)
ad->rx_vec_allowed = false;
#endif
return 0;
}
int
iavf_dev_tx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_txconf *tx_conf)
{
struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct iavf_tx_queue *txq;
const struct rte_memzone *mz;
uint32_t ring_size;
uint16_t tx_rs_thresh, tx_free_thresh;
uint64_t offloads;
PMD_INIT_FUNC_TRACE();
offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
if (nb_desc % IAVF_ALIGN_RING_DESC != 0 ||
nb_desc > IAVF_MAX_RING_DESC ||
nb_desc < IAVF_MIN_RING_DESC) {
PMD_INIT_LOG(ERR, "Number (%u) of transmit descriptors is "
"invalid", nb_desc);
return -EINVAL;
}
tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ?
tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH);
tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
check_tx_thresh(nb_desc, tx_rs_thresh, tx_rs_thresh);
/* Free memory if needed. */
if (dev->data->tx_queues[queue_idx]) {
iavf_dev_tx_queue_release(dev->data->tx_queues[queue_idx]);
dev->data->tx_queues[queue_idx] = NULL;
}
/* Allocate the TX queue data structure. */
txq = rte_zmalloc_socket("iavf txq",
sizeof(struct iavf_tx_queue),
RTE_CACHE_LINE_SIZE,
socket_id);
if (!txq) {
PMD_INIT_LOG(ERR, "Failed to allocate memory for "
"tx queue structure");
return -ENOMEM;
}
txq->nb_tx_desc = nb_desc;
txq->rs_thresh = tx_rs_thresh;
txq->free_thresh = tx_free_thresh;
txq->queue_id = queue_idx;
txq->port_id = dev->data->port_id;
txq->offloads = offloads;
txq->tx_deferred_start = tx_conf->tx_deferred_start;
/* Allocate software ring */
txq->sw_ring =
rte_zmalloc_socket("iavf tx sw ring",
sizeof(struct iavf_tx_entry) * nb_desc,
RTE_CACHE_LINE_SIZE,
socket_id);
if (!txq->sw_ring) {
PMD_INIT_LOG(ERR, "Failed to allocate memory for SW TX ring");
rte_free(txq);
return -ENOMEM;
}
/* Allocate TX hardware ring descriptors. */
ring_size = sizeof(struct iavf_tx_desc) * IAVF_MAX_RING_DESC;
ring_size = RTE_ALIGN(ring_size, IAVF_DMA_MEM_ALIGN);
mz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
ring_size, IAVF_RING_BASE_ALIGN,
socket_id);
if (!mz) {
PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for TX");
rte_free(txq->sw_ring);
rte_free(txq);
return -ENOMEM;
}
txq->tx_ring_phys_addr = mz->iova;
txq->tx_ring = (struct iavf_tx_desc *)mz->addr;
txq->mz = mz;
reset_tx_queue(txq);
txq->q_set = TRUE;
dev->data->tx_queues[queue_idx] = txq;
txq->qtx_tail = hw->hw_addr + IAVF_QTX_TAIL1(queue_idx);
txq->ops = &def_txq_ops;
#ifdef RTE_LIBRTE_IAVF_INC_VECTOR
if (check_tx_vec_allow(txq) == FALSE) {
struct iavf_adapter *ad =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
ad->tx_vec_allowed = false;
}
#endif
return 0;
}
int
iavf_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct iavf_rx_queue *rxq;
int err = 0;
PMD_DRV_FUNC_TRACE();
if (rx_queue_id >= dev->data->nb_rx_queues)
return -EINVAL;
rxq = dev->data->rx_queues[rx_queue_id];
err = alloc_rxq_mbufs(rxq);
if (err) {
PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
return err;
}
rte_wmb();
/* Init the RX tail register. */
IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
IAVF_WRITE_FLUSH(hw);
/* Ready to switch the queue on */
err = iavf_switch_queue(adapter, rx_queue_id, TRUE, TRUE);
if (err)
PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
rx_queue_id);
else
dev->data->rx_queue_state[rx_queue_id] =
RTE_ETH_QUEUE_STATE_STARTED;
return err;
}
int
iavf_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct iavf_tx_queue *txq;
int err = 0;
PMD_DRV_FUNC_TRACE();
if (tx_queue_id >= dev->data->nb_tx_queues)
return -EINVAL;
txq = dev->data->tx_queues[tx_queue_id];
/* Init the RX tail register. */
IAVF_PCI_REG_WRITE(txq->qtx_tail, 0);
IAVF_WRITE_FLUSH(hw);
/* Ready to switch the queue on */
err = iavf_switch_queue(adapter, tx_queue_id, FALSE, TRUE);
if (err)
PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
tx_queue_id);
else
dev->data->tx_queue_state[tx_queue_id] =
RTE_ETH_QUEUE_STATE_STARTED;
return err;
}
int
iavf_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_rx_queue *rxq;
int err;
PMD_DRV_FUNC_TRACE();
if (rx_queue_id >= dev->data->nb_rx_queues)
return -EINVAL;
err = iavf_switch_queue(adapter, rx_queue_id, TRUE, FALSE);
if (err) {
PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
rx_queue_id);
return err;
}
rxq = dev->data->rx_queues[rx_queue_id];
rxq->ops->release_mbufs(rxq);
reset_rx_queue(rxq);
dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
return 0;
}
int
iavf_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_tx_queue *txq;
int err;
PMD_DRV_FUNC_TRACE();
if (tx_queue_id >= dev->data->nb_tx_queues)
return -EINVAL;
err = iavf_switch_queue(adapter, tx_queue_id, FALSE, FALSE);
if (err) {
PMD_DRV_LOG(ERR, "Failed to switch TX queue %u off",
tx_queue_id);
return err;
}
txq = dev->data->tx_queues[tx_queue_id];
txq->ops->release_mbufs(txq);
reset_tx_queue(txq);
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
return 0;
}
void
iavf_dev_rx_queue_release(void *rxq)
{
struct iavf_rx_queue *q = (struct iavf_rx_queue *)rxq;
if (!q)
return;
q->ops->release_mbufs(q);
rte_free(q->sw_ring);
rte_memzone_free(q->mz);
rte_free(q);
}
void
iavf_dev_tx_queue_release(void *txq)
{
struct iavf_tx_queue *q = (struct iavf_tx_queue *)txq;
if (!q)
return;
q->ops->release_mbufs(q);
rte_free(q->sw_ring);
rte_memzone_free(q->mz);
rte_free(q);
}
void
iavf_stop_queues(struct rte_eth_dev *dev)
{
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_rx_queue *rxq;
struct iavf_tx_queue *txq;
int ret, i;
/* Stop All queues */
ret = iavf_disable_queues(adapter);
if (ret)
PMD_DRV_LOG(WARNING, "Fail to stop queues");
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txq = dev->data->tx_queues[i];
if (!txq)
continue;
txq->ops->release_mbufs(txq);
reset_tx_queue(txq);
dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
}
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
if (!rxq)
continue;
rxq->ops->release_mbufs(rxq);
reset_rx_queue(rxq);
dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
}
}
static inline void
iavf_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union iavf_rx_desc *rxdp)
{
if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
(1 << IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
mb->vlan_tci =
rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
} else {
mb->vlan_tci = 0;
}
}
/* Translate the rx descriptor status and error fields to pkt flags */
static inline uint64_t
iavf_rxd_to_pkt_flags(uint64_t qword)
{
uint64_t flags;
uint64_t error_bits = (qword >> IAVF_RXD_QW1_ERROR_SHIFT);
#define IAVF_RX_ERR_BITS 0x3f
/* Check if RSS_HASH */
flags = (((qword >> IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT) &
IAVF_RX_DESC_FLTSTAT_RSS_HASH) ==
IAVF_RX_DESC_FLTSTAT_RSS_HASH) ? PKT_RX_RSS_HASH : 0;
if (likely((error_bits & IAVF_RX_ERR_BITS) == 0)) {
flags |= (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD);
return flags;
}
if (unlikely(error_bits & (1 << IAVF_RX_DESC_ERROR_IPE_SHIFT)))
flags |= PKT_RX_IP_CKSUM_BAD;
else
flags |= PKT_RX_IP_CKSUM_GOOD;
if (unlikely(error_bits & (1 << IAVF_RX_DESC_ERROR_L4E_SHIFT)))
flags |= PKT_RX_L4_CKSUM_BAD;
else
flags |= PKT_RX_L4_CKSUM_GOOD;
/* TODO: Oversize error bit is not processed here */
return flags;
}
/* implement recv_pkts */
uint16_t
iavf_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
volatile union iavf_rx_desc *rx_ring;
volatile union iavf_rx_desc *rxdp;
struct iavf_rx_queue *rxq;
union iavf_rx_desc rxd;
struct rte_mbuf *rxe;
struct rte_eth_dev *dev;
struct rte_mbuf *rxm;
struct rte_mbuf *nmb;
uint16_t nb_rx;
uint32_t rx_status;
uint64_t qword1;
uint16_t rx_packet_len;
uint16_t rx_id, nb_hold;
uint64_t dma_addr;
uint64_t pkt_flags;
static const uint32_t ptype_tbl[UINT8_MAX + 1] __rte_cache_aligned = {
/* [0] reserved */
[1] = RTE_PTYPE_L2_ETHER,
/* [2] - [21] reserved */
[22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG,
[23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_NONFRAG,
[24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
/* [25] reserved */
[26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP,
[27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_SCTP,
[28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_ICMP,
/* All others reserved */
};
nb_rx = 0;
nb_hold = 0;
rxq = rx_queue;
rx_id = rxq->rx_tail;
rx_ring = rxq->rx_ring;
while (nb_rx < nb_pkts) {
rxdp = &rx_ring[rx_id];
qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
IAVF_RXD_QW1_STATUS_SHIFT;
/* Check the DD bit first */
if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
break;
IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
nmb = rte_mbuf_raw_alloc(rxq->mp);
if (unlikely(!nmb)) {
dev = &rte_eth_devices[rxq->port_id];
dev->data->rx_mbuf_alloc_failed++;
PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
"queue_id=%u", rxq->port_id, rxq->queue_id);
break;
}
rxd = *rxdp;
nb_hold++;
rxe = rxq->sw_ring[rx_id];
rx_id++;
if (unlikely(rx_id == rxq->nb_rx_desc))
rx_id = 0;
/* Prefetch next mbuf */
rte_prefetch0(rxq->sw_ring[rx_id]);
/* When next RX descriptor is on a cache line boundary,
* prefetch the next 4 RX descriptors and next 8 pointers
* to mbufs.
*/
if ((rx_id & 0x3) == 0) {
rte_prefetch0(&rx_ring[rx_id]);
rte_prefetch0(rxq->sw_ring[rx_id]);
}
rxm = rxe;
rxe = nmb;
dma_addr =
rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
rxdp->read.hdr_addr = 0;
rxdp->read.pkt_addr = dma_addr;
rx_packet_len = ((qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
IAVF_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
rxm->data_off = RTE_PKTMBUF_HEADROOM;
rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
rxm->nb_segs = 1;
rxm->next = NULL;
rxm->pkt_len = rx_packet_len;
rxm->data_len = rx_packet_len;
rxm->port = rxq->port_id;
rxm->ol_flags = 0;
iavf_rxd_to_vlan_tci(rxm, &rxd);
pkt_flags = iavf_rxd_to_pkt_flags(qword1);
rxm->packet_type =
ptype_tbl[(uint8_t)((qword1 &
IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT)];
if (pkt_flags & PKT_RX_RSS_HASH)
rxm->hash.rss =
rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
rxm->ol_flags |= pkt_flags;
rx_pkts[nb_rx++] = rxm;
}
rxq->rx_tail = rx_id;
/* If the number of free RX descriptors is greater than the RX free
* threshold of the queue, advance the receive tail register of queue.
* Update that register with the value of the last processed RX
* descriptor minus 1.
*/
nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
if (nb_hold > rxq->rx_free_thresh) {
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
"nb_hold=%u nb_rx=%u",
rxq->port_id, rxq->queue_id,
rx_id, nb_hold, nb_rx);
rx_id = (uint16_t)((rx_id == 0) ?
(rxq->nb_rx_desc - 1) : (rx_id - 1));
IAVF_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
nb_hold = 0;
}
rxq->nb_rx_hold = nb_hold;
return nb_rx;
}
/* implement recv_scattered_pkts */
uint16_t
iavf_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct iavf_rx_queue *rxq = rx_queue;
union iavf_rx_desc rxd;
struct rte_mbuf *rxe;
struct rte_mbuf *first_seg = rxq->pkt_first_seg;
struct rte_mbuf *last_seg = rxq->pkt_last_seg;
struct rte_mbuf *nmb, *rxm;
uint16_t rx_id = rxq->rx_tail;
uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
struct rte_eth_dev *dev;
uint32_t rx_status;
uint64_t qword1;
uint64_t dma_addr;
uint64_t pkt_flags;
volatile union iavf_rx_desc *rx_ring = rxq->rx_ring;
volatile union iavf_rx_desc *rxdp;
static const uint32_t ptype_tbl[UINT8_MAX + 1] __rte_cache_aligned = {
/* [0] reserved */
[1] = RTE_PTYPE_L2_ETHER,
/* [2] - [21] reserved */
[22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG,
[23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_NONFRAG,
[24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
/* [25] reserved */
[26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP,
[27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_SCTP,
[28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_ICMP,
/* All others reserved */
};
while (nb_rx < nb_pkts) {
rxdp = &rx_ring[rx_id];
qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
IAVF_RXD_QW1_STATUS_SHIFT;
/* Check the DD bit */
if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
break;
IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
nmb = rte_mbuf_raw_alloc(rxq->mp);
if (unlikely(!nmb)) {
PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
"queue_id=%u", rxq->port_id, rxq->queue_id);
dev = &rte_eth_devices[rxq->port_id];
dev->data->rx_mbuf_alloc_failed++;
break;
}
rxd = *rxdp;
nb_hold++;
rxe = rxq->sw_ring[rx_id];
rx_id++;
if (rx_id == rxq->nb_rx_desc)
rx_id = 0;
/* Prefetch next mbuf */
rte_prefetch0(rxq->sw_ring[rx_id]);
/* When next RX descriptor is on a cache line boundary,
* prefetch the next 4 RX descriptors and next 8 pointers
* to mbufs.
*/
if ((rx_id & 0x3) == 0) {
rte_prefetch0(&rx_ring[rx_id]);
rte_prefetch0(rxq->sw_ring[rx_id]);
}
rxm = rxe;
rxe = nmb;
dma_addr =
rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
/* Set data buffer address and data length of the mbuf */
rxdp->read.hdr_addr = 0;
rxdp->read.pkt_addr = dma_addr;
rx_packet_len = (qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
IAVF_RXD_QW1_LENGTH_PBUF_SHIFT;
rxm->data_len = rx_packet_len;
rxm->data_off = RTE_PKTMBUF_HEADROOM;
/* If this is the first buffer of the received packet, set the
* pointer to the first mbuf of the packet and initialize its
* context. Otherwise, update the total length and the number
* of segments of the current scattered packet, and update the
* pointer to the last mbuf of the current packet.
*/
if (!first_seg) {
first_seg = rxm;
first_seg->nb_segs = 1;
first_seg->pkt_len = rx_packet_len;
} else {
first_seg->pkt_len =
(uint16_t)(first_seg->pkt_len +
rx_packet_len);
first_seg->nb_segs++;
last_seg->next = rxm;
}
/* If this is not the last buffer of the received packet,
* update the pointer to the last mbuf of the current scattered
* packet and continue to parse the RX ring.
*/
if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_EOF_SHIFT))) {
last_seg = rxm;
continue;
}
/* This is the last buffer of the received packet. If the CRC
* is not stripped by the hardware:
* - Subtract the CRC length from the total packet length.
* - If the last buffer only contains the whole CRC or a part
* of it, free the mbuf associated to the last buffer. If part
* of the CRC is also contained in the previous mbuf, subtract
* the length of that CRC part from the data length of the
* previous mbuf.
*/
rxm->next = NULL;
if (unlikely(rxq->crc_len > 0)) {
first_seg->pkt_len -= ETHER_CRC_LEN;
if (rx_packet_len <= ETHER_CRC_LEN) {
rte_pktmbuf_free_seg(rxm);
first_seg->nb_segs--;
last_seg->data_len =
(uint16_t)(last_seg->data_len -
(ETHER_CRC_LEN - rx_packet_len));
last_seg->next = NULL;
} else
rxm->data_len = (uint16_t)(rx_packet_len -
ETHER_CRC_LEN);
}
first_seg->port = rxq->port_id;
first_seg->ol_flags = 0;
iavf_rxd_to_vlan_tci(first_seg, &rxd);
pkt_flags = iavf_rxd_to_pkt_flags(qword1);
first_seg->packet_type =
ptype_tbl[(uint8_t)((qword1 &
IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT)];
if (pkt_flags & PKT_RX_RSS_HASH)
first_seg->hash.rss =
rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
first_seg->ol_flags |= pkt_flags;
/* Prefetch data of first segment, if configured to do so. */
rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
first_seg->data_off));
rx_pkts[nb_rx++] = first_seg;
first_seg = NULL;
}
/* Record index of the next RX descriptor to probe. */
rxq->rx_tail = rx_id;
rxq->pkt_first_seg = first_seg;
rxq->pkt_last_seg = last_seg;
/* If the number of free RX descriptors is greater than the RX free
* threshold of the queue, advance the Receive Descriptor Tail (RDT)
* register. Update the RDT with the value of the last processed RX
* descriptor minus 1, to guarantee that the RDT register is never
* equal to the RDH register, which creates a "full" ring situtation
* from the hardware point of view.
*/
nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
if (nb_hold > rxq->rx_free_thresh) {
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
"nb_hold=%u nb_rx=%u",
rxq->port_id, rxq->queue_id,
rx_id, nb_hold, nb_rx);
rx_id = (uint16_t)(rx_id == 0 ?
(rxq->nb_rx_desc - 1) : (rx_id - 1));
IAVF_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
nb_hold = 0;
}
rxq->nb_rx_hold = nb_hold;
return nb_rx;
}
#define IAVF_LOOK_AHEAD 8
static inline int
iavf_rx_scan_hw_ring(struct iavf_rx_queue *rxq)
{
volatile union iavf_rx_desc *rxdp;
struct rte_mbuf **rxep;
struct rte_mbuf *mb;
uint16_t pkt_len;
uint64_t qword1;
uint32_t rx_status;
int32_t s[IAVF_LOOK_AHEAD], nb_dd;
int32_t i, j, nb_rx = 0;
uint64_t pkt_flags;
static const uint32_t ptype_tbl[UINT8_MAX + 1] __rte_cache_aligned = {
/* [0] reserved */
[1] = RTE_PTYPE_L2_ETHER,
/* [2] - [21] reserved */
[22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG,
[23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_NONFRAG,
[24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
/* [25] reserved */
[26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP,
[27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_SCTP,
[28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_ICMP,
/* All others reserved */
};
rxdp = &rxq->rx_ring[rxq->rx_tail];
rxep = &rxq->sw_ring[rxq->rx_tail];
qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
IAVF_RXD_QW1_STATUS_SHIFT;
/* Make sure there is at least 1 packet to receive */
if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
return 0;
/* Scan LOOK_AHEAD descriptors at a time to determine which
* descriptors reference packets that are ready to be received.
*/
for (i = 0; i < IAVF_RX_MAX_BURST; i += IAVF_LOOK_AHEAD,
rxdp += IAVF_LOOK_AHEAD, rxep += IAVF_LOOK_AHEAD) {
/* Read desc statuses backwards to avoid race condition */
for (j = IAVF_LOOK_AHEAD - 1; j >= 0; j--) {
qword1 = rte_le_to_cpu_64(
rxdp[j].wb.qword1.status_error_len);
s[j] = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
IAVF_RXD_QW1_STATUS_SHIFT;
}
rte_smp_rmb();
/* Compute how many status bits were set */
for (j = 0, nb_dd = 0; j < IAVF_LOOK_AHEAD; j++)
nb_dd += s[j] & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT);
nb_rx += nb_dd;
/* Translate descriptor info to mbuf parameters */
for (j = 0; j < nb_dd; j++) {
IAVF_DUMP_RX_DESC(rxq, &rxdp[j],
rxq->rx_tail + i * IAVF_LOOK_AHEAD + j);
mb = rxep[j];
qword1 = rte_le_to_cpu_64
(rxdp[j].wb.qword1.status_error_len);
pkt_len = ((qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
IAVF_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
mb->data_len = pkt_len;
mb->pkt_len = pkt_len;
mb->ol_flags = 0;
iavf_rxd_to_vlan_tci(mb, &rxdp[j]);
pkt_flags = iavf_rxd_to_pkt_flags(qword1);
mb->packet_type =
ptype_tbl[(uint8_t)((qword1 &
IAVF_RXD_QW1_PTYPE_MASK) >>
IAVF_RXD_QW1_PTYPE_SHIFT)];
if (pkt_flags & PKT_RX_RSS_HASH)
mb->hash.rss = rte_le_to_cpu_32(
rxdp[j].wb.qword0.hi_dword.rss);
mb->ol_flags |= pkt_flags;
}
for (j = 0; j < IAVF_LOOK_AHEAD; j++)
rxq->rx_stage[i + j] = rxep[j];
if (nb_dd != IAVF_LOOK_AHEAD)
break;
}
/* Clear software ring entries */
for (i = 0; i < nb_rx; i++)
rxq->sw_ring[rxq->rx_tail + i] = NULL;
return nb_rx;
}
static inline uint16_t
iavf_rx_fill_from_stage(struct iavf_rx_queue *rxq,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
uint16_t i;
struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
for (i = 0; i < nb_pkts; i++)
rx_pkts[i] = stage[i];
rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
return nb_pkts;
}
static inline int
iavf_rx_alloc_bufs(struct iavf_rx_queue *rxq)
{
volatile union iavf_rx_desc *rxdp;
struct rte_mbuf **rxep;
struct rte_mbuf *mb;
uint16_t alloc_idx, i;
uint64_t dma_addr;
int diag;
/* Allocate buffers in bulk */
alloc_idx = (uint16_t)(rxq->rx_free_trigger -
(rxq->rx_free_thresh - 1));
rxep = &rxq->sw_ring[alloc_idx];
diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
rxq->rx_free_thresh);
if (unlikely(diag != 0)) {
PMD_RX_LOG(ERR, "Failed to get mbufs in bulk");
return -ENOMEM;
}
rxdp = &rxq->rx_ring[alloc_idx];
for (i = 0; i < rxq->rx_free_thresh; i++) {
if (likely(i < (rxq->rx_free_thresh - 1)))
/* Prefetch next mbuf */
rte_prefetch0(rxep[i + 1]);
mb = rxep[i];
rte_mbuf_refcnt_set(mb, 1);
mb->next = NULL;
mb->data_off = RTE_PKTMBUF_HEADROOM;
mb->nb_segs = 1;
mb->port = rxq->port_id;
dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
rxdp[i].read.hdr_addr = 0;
rxdp[i].read.pkt_addr = dma_addr;
}
/* Update rx tail register */
rte_wmb();
IAVF_PCI_REG_WRITE_RELAXED(rxq->qrx_tail, rxq->rx_free_trigger);
rxq->rx_free_trigger =
(uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
return 0;
}
static inline uint16_t
rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
struct iavf_rx_queue *rxq = (struct iavf_rx_queue *)rx_queue;
uint16_t nb_rx = 0;
if (!nb_pkts)
return 0;
if (rxq->rx_nb_avail)
return iavf_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
nb_rx = (uint16_t)iavf_rx_scan_hw_ring(rxq);
rxq->rx_next_avail = 0;
rxq->rx_nb_avail = nb_rx;
rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
if (rxq->rx_tail > rxq->rx_free_trigger) {
if (iavf_rx_alloc_bufs(rxq) != 0) {
uint16_t i, j;
/* TODO: count rx_mbuf_alloc_failed here */
rxq->rx_nb_avail = 0;
rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
rxq->sw_ring[j] = rxq->rx_stage[i];
return 0;
}
}
if (rxq->rx_tail >= rxq->nb_rx_desc)
rxq->rx_tail = 0;
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u, nb_rx=%u",
rxq->port_id, rxq->queue_id,
rxq->rx_tail, nb_rx);
if (rxq->rx_nb_avail)
return iavf_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
return 0;
}
static uint16_t
iavf_recv_pkts_bulk_alloc(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
uint16_t nb_rx = 0, n, count;
if (unlikely(nb_pkts == 0))
return 0;
if (likely(nb_pkts <= IAVF_RX_MAX_BURST))
return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
while (nb_pkts) {
n = RTE_MIN(nb_pkts, IAVF_RX_MAX_BURST);
count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
nb_rx = (uint16_t)(nb_rx + count);
nb_pkts = (uint16_t)(nb_pkts - count);
if (count < n)
break;
}
return nb_rx;
}
static inline int
iavf_xmit_cleanup(struct iavf_tx_queue *txq)
{
struct iavf_tx_entry *sw_ring = txq->sw_ring;
uint16_t last_desc_cleaned = txq->last_desc_cleaned;
uint16_t nb_tx_desc = txq->nb_tx_desc;
uint16_t desc_to_clean_to;
uint16_t nb_tx_to_clean;
volatile struct iavf_tx_desc *txd = txq->tx_ring;
desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->rs_thresh);
if (desc_to_clean_to >= nb_tx_desc)
desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
if ((txd[desc_to_clean_to].cmd_type_offset_bsz &
rte_cpu_to_le_64(IAVF_TXD_QW1_DTYPE_MASK)) !=
rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE)) {
PMD_TX_FREE_LOG(DEBUG, "TX descriptor %4u is not done "
"(port=%d queue=%d)", desc_to_clean_to,
txq->port_id, txq->queue_id);
return -1;
}
if (last_desc_cleaned > desc_to_clean_to)
nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
desc_to_clean_to);
else
nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
last_desc_cleaned);
txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
txq->last_desc_cleaned = desc_to_clean_to;
txq->nb_free = (uint16_t)(txq->nb_free + nb_tx_to_clean);
return 0;
}
/* Check if the context descriptor is needed for TX offloading */
static inline uint16_t
iavf_calc_context_desc(uint64_t flags)
{
static uint64_t mask = PKT_TX_TCP_SEG;
return (flags & mask) ? 1 : 0;
}
static inline void
iavf_txd_enable_checksum(uint64_t ol_flags,
uint32_t *td_cmd,
uint32_t *td_offset,
union iavf_tx_offload tx_offload)
{
/* Set MACLEN */
*td_offset |= (tx_offload.l2_len >> 1) <<
IAVF_TX_DESC_LENGTH_MACLEN_SHIFT;
/* Enable L3 checksum offloads */
if (ol_flags & PKT_TX_IP_CKSUM) {
*td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM;
*td_offset |= (tx_offload.l3_len >> 2) <<
IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
} else if (ol_flags & PKT_TX_IPV4) {
*td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV4;
*td_offset |= (tx_offload.l3_len >> 2) <<
IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
} else if (ol_flags & PKT_TX_IPV6) {
*td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV6;
*td_offset |= (tx_offload.l3_len >> 2) <<
IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
}
if (ol_flags & PKT_TX_TCP_SEG) {
*td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
*td_offset |= (tx_offload.l4_len >> 2) <<
IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
return;
}
/* Enable L4 checksum offloads */
switch (ol_flags & PKT_TX_L4_MASK) {
case PKT_TX_TCP_CKSUM:
*td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
*td_offset |= (sizeof(struct tcp_hdr) >> 2) <<
IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
break;
case PKT_TX_SCTP_CKSUM:
*td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP;
*td_offset |= (sizeof(struct sctp_hdr) >> 2) <<
IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
break;
case PKT_TX_UDP_CKSUM:
*td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP;
*td_offset |= (sizeof(struct udp_hdr) >> 2) <<
IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
break;
default:
break;
}
}
/* set TSO context descriptor
* support IP -> L4 and IP -> IP -> L4
*/
static inline uint64_t
iavf_set_tso_ctx(struct rte_mbuf *mbuf, union iavf_tx_offload tx_offload)
{
uint64_t ctx_desc = 0;
uint32_t cd_cmd, hdr_len, cd_tso_len;
if (!tx_offload.l4_len) {
PMD_TX_LOG(DEBUG, "L4 length set to 0");
return ctx_desc;
}
/* in case of non tunneling packet, the outer_l2_len and
* outer_l3_len must be 0.
*/
hdr_len = tx_offload.l2_len +
tx_offload.l3_len +
tx_offload.l4_len;
cd_cmd = IAVF_TX_CTX_DESC_TSO;
cd_tso_len = mbuf->pkt_len - hdr_len;
ctx_desc |= ((uint64_t)cd_cmd << IAVF_TXD_CTX_QW1_CMD_SHIFT) |
((uint64_t)cd_tso_len << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) |
((uint64_t)mbuf->tso_segsz << IAVF_TXD_CTX_QW1_MSS_SHIFT);
return ctx_desc;
}
/* Construct the tx flags */
static inline uint64_t
iavf_build_ctob(uint32_t td_cmd, uint32_t td_offset, unsigned int size,
uint32_t td_tag)
{
return rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DATA |
((uint64_t)td_cmd << IAVF_TXD_QW1_CMD_SHIFT) |
((uint64_t)td_offset <<
IAVF_TXD_QW1_OFFSET_SHIFT) |
((uint64_t)size <<
IAVF_TXD_QW1_TX_BUF_SZ_SHIFT) |
((uint64_t)td_tag <<
IAVF_TXD_QW1_L2TAG1_SHIFT));
}
/* TX function */
uint16_t
iavf_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
volatile struct iavf_tx_desc *txd;
volatile struct iavf_tx_desc *txr;
struct iavf_tx_queue *txq;
struct iavf_tx_entry *sw_ring;
struct iavf_tx_entry *txe, *txn;
struct rte_mbuf *tx_pkt;
struct rte_mbuf *m_seg;
uint16_t tx_id;
uint16_t nb_tx;
uint32_t td_cmd;
uint32_t td_offset;
uint32_t td_tag;
uint64_t ol_flags;
uint16_t nb_used;
uint16_t nb_ctx;
uint16_t tx_last;
uint16_t slen;
uint64_t buf_dma_addr;
union iavf_tx_offload tx_offload = {0};
txq = tx_queue;
sw_ring = txq->sw_ring;
txr = txq->tx_ring;
tx_id = txq->tx_tail;
txe = &sw_ring[tx_id];
/* Check if the descriptor ring needs to be cleaned. */
if (txq->nb_free < txq->free_thresh)
iavf_xmit_cleanup(txq);
for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
td_cmd = 0;
td_tag = 0;
td_offset = 0;
tx_pkt = *tx_pkts++;
RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
ol_flags = tx_pkt->ol_flags;
tx_offload.l2_len = tx_pkt->l2_len;
tx_offload.l3_len = tx_pkt->l3_len;
tx_offload.l4_len = tx_pkt->l4_len;
tx_offload.tso_segsz = tx_pkt->tso_segsz;
/* Calculate the number of context descriptors needed. */
nb_ctx = iavf_calc_context_desc(ol_flags);
/* The number of descriptors that must be allocated for
* a packet equals to the number of the segments of that
* packet plus 1 context descriptor if needed.
*/
nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
tx_last = (uint16_t)(tx_id + nb_used - 1);
/* Circular ring */
if (tx_last >= txq->nb_tx_desc)
tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u"
" tx_first=%u tx_last=%u",
txq->port_id, txq->queue_id, tx_id, tx_last);
if (nb_used > txq->nb_free) {
if (iavf_xmit_cleanup(txq)) {
if (nb_tx == 0)
return 0;
goto end_of_tx;
}
if (unlikely(nb_used > txq->rs_thresh)) {
while (nb_used > txq->nb_free) {
if (iavf_xmit_cleanup(txq)) {
if (nb_tx == 0)
return 0;
goto end_of_tx;
}
}
}
}
/* Descriptor based VLAN insertion */
if (ol_flags & PKT_TX_VLAN_PKT) {
td_cmd |= IAVF_TX_DESC_CMD_IL2TAG1;
td_tag = tx_pkt->vlan_tci;
}
/* According to datasheet, the bit2 is reserved and must be
* set to 1.
*/
td_cmd |= 0x04;
/* Enable checksum offloading */
if (ol_flags & IAVF_TX_CKSUM_OFFLOAD_MASK)
iavf_txd_enable_checksum(ol_flags, &td_cmd,
&td_offset, tx_offload);
if (nb_ctx) {
/* Setup TX context descriptor if required */
uint64_t cd_type_cmd_tso_mss =
IAVF_TX_DESC_DTYPE_CONTEXT;
txn = &sw_ring[txe->next_id];
RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
if (txe->mbuf) {
rte_pktmbuf_free_seg(txe->mbuf);
txe->mbuf = NULL;
}
/* TSO enabled */
if (ol_flags & PKT_TX_TCP_SEG)
cd_type_cmd_tso_mss |=
iavf_set_tso_ctx(tx_pkt, tx_offload);
IAVF_DUMP_TX_DESC(txq, &txr[tx_id], tx_id);
txe->last_id = tx_last;
tx_id = txe->next_id;
txe = txn;
}
m_seg = tx_pkt;
do {
txd = &txr[tx_id];
txn = &sw_ring[txe->next_id];
if (txe->mbuf)
rte_pktmbuf_free_seg(txe->mbuf);
txe->mbuf = m_seg;
/* Setup TX Descriptor */
slen = m_seg->data_len;
buf_dma_addr = rte_mbuf_data_iova(m_seg);
txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
txd->cmd_type_offset_bsz = iavf_build_ctob(td_cmd,
td_offset,
slen,
td_tag);
IAVF_DUMP_TX_DESC(txq, txd, tx_id);
txe->last_id = tx_last;
tx_id = txe->next_id;
txe = txn;
m_seg = m_seg->next;
} while (m_seg);
/* The last packet data descriptor needs End Of Packet (EOP) */
td_cmd |= IAVF_TX_DESC_CMD_EOP;
txq->nb_used = (uint16_t)(txq->nb_used + nb_used);
txq->nb_free = (uint16_t)(txq->nb_free - nb_used);
if (txq->nb_used >= txq->rs_thresh) {
PMD_TX_LOG(DEBUG, "Setting RS bit on TXD id="
"%4u (port=%d queue=%d)",
tx_last, txq->port_id, txq->queue_id);
td_cmd |= IAVF_TX_DESC_CMD_RS;
/* Update txq RS bit counters */
txq->nb_used = 0;
}
txd->cmd_type_offset_bsz |=
rte_cpu_to_le_64(((uint64_t)td_cmd) <<
IAVF_TXD_QW1_CMD_SHIFT);
IAVF_DUMP_TX_DESC(txq, txd, tx_id);
}
end_of_tx:
rte_wmb();
PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
txq->port_id, txq->queue_id, tx_id, nb_tx);
IAVF_PCI_REG_WRITE_RELAXED(txq->qtx_tail, tx_id);
txq->tx_tail = tx_id;
return nb_tx;
}
static uint16_t
iavf_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
uint16_t nb_tx = 0;
struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue;
while (nb_pkts) {
uint16_t ret, num;
num = (uint16_t)RTE_MIN(nb_pkts, txq->rs_thresh);
ret = iavf_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx], num);
nb_tx += ret;
nb_pkts -= ret;
if (ret < num)
break;
}
return nb_tx;
}
/* TX prep functions */
uint16_t
iavf_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
int i, ret;
uint64_t ol_flags;
struct rte_mbuf *m;
for (i = 0; i < nb_pkts; i++) {
m = tx_pkts[i];
ol_flags = m->ol_flags;
/* Check condition for nb_segs > IAVF_TX_MAX_MTU_SEG. */
if (!(ol_flags & PKT_TX_TCP_SEG)) {
if (m->nb_segs > IAVF_TX_MAX_MTU_SEG) {
rte_errno = -EINVAL;
return i;
}
} else if ((m->tso_segsz < IAVF_MIN_TSO_MSS) ||
(m->tso_segsz > IAVF_MAX_TSO_MSS)) {
/* MSS outside the range are considered malicious */
rte_errno = -EINVAL;
return i;
}
if (ol_flags & IAVF_TX_OFFLOAD_NOTSUP_MASK) {
rte_errno = -ENOTSUP;
return i;
}
#ifdef RTE_LIBRTE_ETHDEV_DEBUG
ret = rte_validate_tx_offload(m);
if (ret != 0) {
rte_errno = ret;
return i;
}
#endif
ret = rte_net_intel_cksum_prepare(m);
if (ret != 0) {
rte_errno = ret;
return i;
}
}
return i;
}
/* choose rx function*/
void
iavf_set_rx_function(struct rte_eth_dev *dev)
{
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_rx_queue *rxq;
int i;
if (adapter->rx_vec_allowed) {
if (dev->data->scattered_rx) {
PMD_DRV_LOG(DEBUG, "Using Vector Scattered Rx callback"
" (port=%d).", dev->data->port_id);
dev->rx_pkt_burst = iavf_recv_scattered_pkts_vec;
} else {
PMD_DRV_LOG(DEBUG, "Using Vector Rx callback"
" (port=%d).", dev->data->port_id);
dev->rx_pkt_burst = iavf_recv_pkts_vec;
}
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
if (!rxq)
continue;
iavf_rxq_vec_setup(rxq);
}
} else if (dev->data->scattered_rx) {
PMD_DRV_LOG(DEBUG, "Using a Scattered Rx callback (port=%d).",
dev->data->port_id);
dev->rx_pkt_burst = iavf_recv_scattered_pkts;
} else if (adapter->rx_bulk_alloc_allowed) {
PMD_DRV_LOG(DEBUG, "Using bulk Rx callback (port=%d).",
dev->data->port_id);
dev->rx_pkt_burst = iavf_recv_pkts_bulk_alloc;
} else {
PMD_DRV_LOG(DEBUG, "Using Basic Rx callback (port=%d).",
dev->data->port_id);
dev->rx_pkt_burst = iavf_recv_pkts;
}
}
/* choose tx function*/
void
iavf_set_tx_function(struct rte_eth_dev *dev)
{
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_tx_queue *txq;
int i;
if (adapter->tx_vec_allowed) {
PMD_DRV_LOG(DEBUG, "Using Vector Tx callback (port=%d).",
dev->data->port_id);
dev->tx_pkt_burst = iavf_xmit_pkts_vec;
dev->tx_pkt_prepare = NULL;
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txq = dev->data->tx_queues[i];
if (!txq)
continue;
iavf_txq_vec_setup(txq);
}
} else {
PMD_DRV_LOG(DEBUG, "Using Basic Tx callback (port=%d).",
dev->data->port_id);
dev->tx_pkt_burst = iavf_xmit_pkts;
dev->tx_pkt_prepare = iavf_prep_pkts;
}
}
void
iavf_dev_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
struct rte_eth_rxq_info *qinfo)
{
struct iavf_rx_queue *rxq;
rxq = dev->data->rx_queues[queue_id];
qinfo->mp = rxq->mp;
qinfo->scattered_rx = dev->data->scattered_rx;
qinfo->nb_desc = rxq->nb_rx_desc;
qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
qinfo->conf.rx_drop_en = TRUE;
qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
}
void
iavf_dev_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
struct rte_eth_txq_info *qinfo)
{
struct iavf_tx_queue *txq;
txq = dev->data->tx_queues[queue_id];
qinfo->nb_desc = txq->nb_tx_desc;
qinfo->conf.tx_free_thresh = txq->free_thresh;
qinfo->conf.tx_rs_thresh = txq->rs_thresh;
qinfo->conf.offloads = txq->offloads;
qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
}
/* Get the number of used descriptors of a rx queue */
uint32_t
iavf_dev_rxq_count(struct rte_eth_dev *dev, uint16_t queue_id)
{
#define IAVF_RXQ_SCAN_INTERVAL 4
volatile union iavf_rx_desc *rxdp;
struct iavf_rx_queue *rxq;
uint16_t desc = 0;
rxq = dev->data->rx_queues[queue_id];
rxdp = &rxq->rx_ring[rxq->rx_tail];
while ((desc < rxq->nb_rx_desc) &&
((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
IAVF_RXD_QW1_STATUS_MASK) >> IAVF_RXD_QW1_STATUS_SHIFT) &
(1 << IAVF_RX_DESC_STATUS_DD_SHIFT)) {
/* Check the DD bit of a rx descriptor of each 4 in a group,
* to avoid checking too frequently and downgrading performance
* too much.
*/
desc += IAVF_RXQ_SCAN_INTERVAL;
rxdp += IAVF_RXQ_SCAN_INTERVAL;
if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
rxdp = &(rxq->rx_ring[rxq->rx_tail +
desc - rxq->nb_rx_desc]);
}
return desc;
}
int
iavf_dev_rx_desc_status(void *rx_queue, uint16_t offset)
{
struct iavf_rx_queue *rxq = rx_queue;
volatile uint64_t *status;
uint64_t mask;
uint32_t desc;
if (unlikely(offset >= rxq->nb_rx_desc))
return -EINVAL;
if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
return RTE_ETH_RX_DESC_UNAVAIL;
desc = rxq->rx_tail + offset;
if (desc >= rxq->nb_rx_desc)
desc -= rxq->nb_rx_desc;
status = &rxq->rx_ring[desc].wb.qword1.status_error_len;
mask = rte_le_to_cpu_64((1ULL << IAVF_RX_DESC_STATUS_DD_SHIFT)
<< IAVF_RXD_QW1_STATUS_SHIFT);
if (*status & mask)
return RTE_ETH_RX_DESC_DONE;
return RTE_ETH_RX_DESC_AVAIL;
}
int
iavf_dev_tx_desc_status(void *tx_queue, uint16_t offset)
{
struct iavf_tx_queue *txq = tx_queue;
volatile uint64_t *status;
uint64_t mask, expect;
uint32_t desc;
if (unlikely(offset >= txq->nb_tx_desc))
return -EINVAL;
desc = txq->tx_tail + offset;
/* go to next desc that has the RS bit */
desc = ((desc + txq->rs_thresh - 1) / txq->rs_thresh) *
txq->rs_thresh;
if (desc >= txq->nb_tx_desc) {
desc -= txq->nb_tx_desc;
if (desc >= txq->nb_tx_desc)
desc -= txq->nb_tx_desc;
}
status = &txq->tx_ring[desc].cmd_type_offset_bsz;
mask = rte_le_to_cpu_64(IAVF_TXD_QW1_DTYPE_MASK);
expect = rte_cpu_to_le_64(
IAVF_TX_DESC_DTYPE_DESC_DONE << IAVF_TXD_QW1_DTYPE_SHIFT);
if ((*status & mask) == expect)
return RTE_ETH_TX_DESC_DONE;
return RTE_ETH_TX_DESC_FULL;
}
__rte_weak uint16_t
iavf_recv_pkts_vec(__rte_unused void *rx_queue,
__rte_unused struct rte_mbuf **rx_pkts,
__rte_unused uint16_t nb_pkts)
{
return 0;
}
__rte_weak uint16_t
iavf_recv_scattered_pkts_vec(__rte_unused void *rx_queue,
__rte_unused struct rte_mbuf **rx_pkts,
__rte_unused uint16_t nb_pkts)
{
return 0;
}
__rte_weak uint16_t
iavf_xmit_fixed_burst_vec(__rte_unused void *tx_queue,
__rte_unused struct rte_mbuf **tx_pkts,
__rte_unused uint16_t nb_pkts)
{
return 0;
}
__rte_weak int
iavf_rxq_vec_setup(__rte_unused struct iavf_rx_queue *rxq)
{
return -1;
}
__rte_weak int
iavf_txq_vec_setup(__rte_unused struct iavf_tx_queue *txq)
{
return -1;
}