numam-dpdk/drivers/net/sfc/efsys.h
Martin Harvey aa9f2e6bc9 net/sfc/base: move empty efsys definitions to EFX headers
Move empty definitions for platform-specific annotations from efsys.h
to EFX headers.

Signed-off-by: Martin Harvey <mharvey@solarflare.com>
Signed-off-by: Andrew Lee <alee@solarflare.com>
Signed-off-by: Andrew Rybchenko <arybchenko@solarflare.com>
2018-09-28 01:41:02 +02:00

736 lines
19 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 2016-2018 Solarflare Communications Inc.
* All rights reserved.
*
* This software was jointly developed between OKTET Labs (under contract
* for Solarflare) and Solarflare Communications, Inc.
*/
#ifndef _SFC_COMMON_EFSYS_H
#define _SFC_COMMON_EFSYS_H
#include <stdbool.h>
#include <rte_spinlock.h>
#include <rte_byteorder.h>
#include <rte_debug.h>
#include <rte_memzone.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_cycles.h>
#include <rte_prefetch.h>
#include <rte_common.h>
#include <rte_malloc.h>
#include <rte_log.h>
#include <rte_io.h>
#include "sfc_debug.h"
#include "sfc_log.h"
#ifdef __cplusplus
extern "C" {
#endif
#define EFSYS_HAS_UINT64 1
#define EFSYS_USE_UINT64 1
#define EFSYS_HAS_SSE2_M128 1
#if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
#define EFSYS_IS_BIG_ENDIAN 1
#define EFSYS_IS_LITTLE_ENDIAN 0
#elif RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
#define EFSYS_IS_BIG_ENDIAN 0
#define EFSYS_IS_LITTLE_ENDIAN 1
#else
#error "Cannot determine system endianness"
#endif
#include "efx_types.h"
typedef bool boolean_t;
#ifndef B_FALSE
#define B_FALSE false
#endif
#ifndef B_TRUE
#define B_TRUE true
#endif
/*
* RTE_MAX() and RTE_MIN() cannot be used since braced-group within
* expression allowed only inside a function, but MAX() is used as
* a number of elements in array.
*/
#ifndef MAX
#define MAX(v1, v2) ((v1) > (v2) ? (v1) : (v2))
#endif
#ifndef MIN
#define MIN(v1, v2) ((v1) < (v2) ? (v1) : (v2))
#endif
/* There are macros for alignment in DPDK, but we need to make a proper
* correspondence here, if we want to re-use them at all
*/
#ifndef IS_P2ALIGNED
#define IS_P2ALIGNED(v, a) ((((uintptr_t)(v)) & ((uintptr_t)(a) - 1)) == 0)
#endif
#ifndef P2ROUNDUP
#define P2ROUNDUP(x, align) (-(-(x) & -(align)))
#endif
#ifndef P2ALIGN
#define P2ALIGN(_x, _a) ((_x) & -(_a))
#endif
#ifndef IS2P
#define ISP2(x) rte_is_power_of_2(x)
#endif
#define ENOTACTIVE ENOTCONN
static inline void
prefetch_read_many(const volatile void *addr)
{
rte_prefetch0(addr);
}
static inline void
prefetch_read_once(const volatile void *addr)
{
rte_prefetch_non_temporal(addr);
}
/* Code inclusion options */
#define EFSYS_OPT_NAMES 1
/* Disable SFN5xxx/SFN6xxx since it requires specific support in the PMD */
#define EFSYS_OPT_SIENA 0
/* Enable SFN7xxx support */
#define EFSYS_OPT_HUNTINGTON 1
/* Enable SFN8xxx support */
#define EFSYS_OPT_MEDFORD 1
/* Enable SFN2xxx support */
#define EFSYS_OPT_MEDFORD2 1
#ifdef RTE_LIBRTE_SFC_EFX_DEBUG
#define EFSYS_OPT_CHECK_REG 1
#else
#define EFSYS_OPT_CHECK_REG 0
#endif
/* MCDI is required for SFN7xxx and SFN8xx */
#define EFSYS_OPT_MCDI 1
#define EFSYS_OPT_MCDI_LOGGING 1
#define EFSYS_OPT_MCDI_PROXY_AUTH 1
#define EFSYS_OPT_MAC_STATS 1
#define EFSYS_OPT_LOOPBACK 1
#define EFSYS_OPT_MON_MCDI 0
#define EFSYS_OPT_MON_STATS 0
#define EFSYS_OPT_PHY_STATS 0
#define EFSYS_OPT_BIST 0
#define EFSYS_OPT_PHY_LED_CONTROL 0
#define EFSYS_OPT_PHY_FLAGS 0
#define EFSYS_OPT_VPD 0
#define EFSYS_OPT_NVRAM 0
#define EFSYS_OPT_BOOTCFG 0
#define EFSYS_OPT_IMAGE_LAYOUT 0
#define EFSYS_OPT_DIAG 0
#define EFSYS_OPT_RX_SCALE 1
#define EFSYS_OPT_QSTATS 0
/* Filters support is required for SFN7xxx and SFN8xx */
#define EFSYS_OPT_FILTER 1
#define EFSYS_OPT_RX_SCATTER 0
#define EFSYS_OPT_EV_PREFETCH 0
#define EFSYS_OPT_DECODE_INTR_FATAL 0
#define EFSYS_OPT_LICENSING 0
#define EFSYS_OPT_ALLOW_UNCONFIGURED_NIC 0
#define EFSYS_OPT_RX_PACKED_STREAM 0
#define EFSYS_OPT_RX_ES_SUPER_BUFFER 1
#define EFSYS_OPT_TUNNEL 1
#define EFSYS_OPT_FW_SUBVARIANT_AWARE 1
/* ID */
typedef struct __efsys_identifier_s efsys_identifier_t;
#define EFSYS_PROBE(_name) \
do { } while (0)
#define EFSYS_PROBE1(_name, _type1, _arg1) \
do { } while (0)
#define EFSYS_PROBE2(_name, _type1, _arg1, _type2, _arg2) \
do { } while (0)
#define EFSYS_PROBE3(_name, _type1, _arg1, _type2, _arg2, \
_type3, _arg3) \
do { } while (0)
#define EFSYS_PROBE4(_name, _type1, _arg1, _type2, _arg2, \
_type3, _arg3, _type4, _arg4) \
do { } while (0)
#define EFSYS_PROBE5(_name, _type1, _arg1, _type2, _arg2, \
_type3, _arg3, _type4, _arg4, _type5, _arg5) \
do { } while (0)
#define EFSYS_PROBE6(_name, _type1, _arg1, _type2, _arg2, \
_type3, _arg3, _type4, _arg4, _type5, _arg5, \
_type6, _arg6) \
do { } while (0)
#define EFSYS_PROBE7(_name, _type1, _arg1, _type2, _arg2, \
_type3, _arg3, _type4, _arg4, _type5, _arg5, \
_type6, _arg6, _type7, _arg7) \
do { } while (0)
/* DMA */
typedef rte_iova_t efsys_dma_addr_t;
typedef struct efsys_mem_s {
const struct rte_memzone *esm_mz;
/*
* Ideally it should have volatile qualifier to denote that
* the memory may be updated by someone else. However, it adds
* qualifier discard warnings when the pointer or its derivative
* is passed to memset() or rte_mov16().
* So, skip the qualifier here, but make sure that it is added
* below in access macros.
*/
void *esm_base;
efsys_dma_addr_t esm_addr;
} efsys_mem_t;
#define EFSYS_MEM_ZERO(_esmp, _size) \
do { \
(void)memset((void *)(_esmp)->esm_base, 0, (_size)); \
\
_NOTE(CONSTANTCONDITION); \
} while (B_FALSE)
#define EFSYS_MEM_READD(_esmp, _offset, _edp) \
do { \
volatile uint8_t *_base = (_esmp)->esm_base; \
volatile uint32_t *_addr; \
\
_NOTE(CONSTANTCONDITION); \
SFC_ASSERT(IS_P2ALIGNED(_offset, sizeof(efx_dword_t))); \
\
_addr = (volatile uint32_t *)(_base + (_offset)); \
(_edp)->ed_u32[0] = _addr[0]; \
\
EFSYS_PROBE2(mem_readl, unsigned int, (_offset), \
uint32_t, (_edp)->ed_u32[0]); \
\
_NOTE(CONSTANTCONDITION); \
} while (B_FALSE)
#define EFSYS_MEM_READQ(_esmp, _offset, _eqp) \
do { \
volatile uint8_t *_base = (_esmp)->esm_base; \
volatile uint64_t *_addr; \
\
_NOTE(CONSTANTCONDITION); \
SFC_ASSERT(IS_P2ALIGNED(_offset, sizeof(efx_qword_t))); \
\
_addr = (volatile uint64_t *)(_base + (_offset)); \
(_eqp)->eq_u64[0] = _addr[0]; \
\
EFSYS_PROBE3(mem_readq, unsigned int, (_offset), \
uint32_t, (_eqp)->eq_u32[1], \
uint32_t, (_eqp)->eq_u32[0]); \
\
_NOTE(CONSTANTCONDITION); \
} while (B_FALSE)
#define EFSYS_MEM_READO(_esmp, _offset, _eop) \
do { \
volatile uint8_t *_base = (_esmp)->esm_base; \
volatile __m128i *_addr; \
\
_NOTE(CONSTANTCONDITION); \
SFC_ASSERT(IS_P2ALIGNED(_offset, sizeof(efx_oword_t))); \
\
_addr = (volatile __m128i *)(_base + (_offset)); \
(_eop)->eo_u128[0] = _addr[0]; \
\
EFSYS_PROBE5(mem_reado, unsigned int, (_offset), \
uint32_t, (_eop)->eo_u32[3], \
uint32_t, (_eop)->eo_u32[2], \
uint32_t, (_eop)->eo_u32[1], \
uint32_t, (_eop)->eo_u32[0]); \
\
_NOTE(CONSTANTCONDITION); \
} while (B_FALSE)
#define EFSYS_MEM_WRITED(_esmp, _offset, _edp) \
do { \
volatile uint8_t *_base = (_esmp)->esm_base; \
volatile uint32_t *_addr; \
\
_NOTE(CONSTANTCONDITION); \
SFC_ASSERT(IS_P2ALIGNED(_offset, sizeof(efx_dword_t))); \
\
EFSYS_PROBE2(mem_writed, unsigned int, (_offset), \
uint32_t, (_edp)->ed_u32[0]); \
\
_addr = (volatile uint32_t *)(_base + (_offset)); \
_addr[0] = (_edp)->ed_u32[0]; \
\
_NOTE(CONSTANTCONDITION); \
} while (B_FALSE)
#define EFSYS_MEM_WRITEQ(_esmp, _offset, _eqp) \
do { \
volatile uint8_t *_base = (_esmp)->esm_base; \
volatile uint64_t *_addr; \
\
_NOTE(CONSTANTCONDITION); \
SFC_ASSERT(IS_P2ALIGNED(_offset, sizeof(efx_qword_t))); \
\
EFSYS_PROBE3(mem_writeq, unsigned int, (_offset), \
uint32_t, (_eqp)->eq_u32[1], \
uint32_t, (_eqp)->eq_u32[0]); \
\
_addr = (volatile uint64_t *)(_base + (_offset)); \
_addr[0] = (_eqp)->eq_u64[0]; \
\
_NOTE(CONSTANTCONDITION); \
} while (B_FALSE)
#define EFSYS_MEM_WRITEO(_esmp, _offset, _eop) \
do { \
volatile uint8_t *_base = (_esmp)->esm_base; \
volatile __m128i *_addr; \
\
_NOTE(CONSTANTCONDITION); \
SFC_ASSERT(IS_P2ALIGNED(_offset, sizeof(efx_oword_t))); \
\
\
EFSYS_PROBE5(mem_writeo, unsigned int, (_offset), \
uint32_t, (_eop)->eo_u32[3], \
uint32_t, (_eop)->eo_u32[2], \
uint32_t, (_eop)->eo_u32[1], \
uint32_t, (_eop)->eo_u32[0]); \
\
_addr = (volatile __m128i *)(_base + (_offset)); \
_addr[0] = (_eop)->eo_u128[0]; \
\
_NOTE(CONSTANTCONDITION); \
} while (B_FALSE)
#define EFSYS_MEM_SIZE(_esmp) \
((_esmp)->esm_mz->len)
#define EFSYS_MEM_ADDR(_esmp) \
((_esmp)->esm_addr)
#define EFSYS_MEM_IS_NULL(_esmp) \
((_esmp)->esm_base == NULL)
#define EFSYS_MEM_PREFETCH(_esmp, _offset) \
do { \
volatile uint8_t *_base = (_esmp)->esm_base; \
\
rte_prefetch0(_base + (_offset)); \
} while (0)
/* BAR */
typedef struct efsys_bar_s {
rte_spinlock_t esb_lock;
int esb_rid;
struct rte_pci_device *esb_dev;
/*
* Ideally it should have volatile qualifier to denote that
* the memory may be updated by someone else. However, it adds
* qualifier discard warnings when the pointer or its derivative
* is passed to memset() or rte_mov16().
* So, skip the qualifier here, but make sure that it is added
* below in access macros.
*/
void *esb_base;
} efsys_bar_t;
#define SFC_BAR_LOCK_INIT(_esbp, _ifname) \
do { \
rte_spinlock_init(&(_esbp)->esb_lock); \
_NOTE(CONSTANTCONDITION); \
} while (B_FALSE)
#define SFC_BAR_LOCK_DESTROY(_esbp) ((void)0)
#define SFC_BAR_LOCK(_esbp) rte_spinlock_lock(&(_esbp)->esb_lock)
#define SFC_BAR_UNLOCK(_esbp) rte_spinlock_unlock(&(_esbp)->esb_lock)
#define EFSYS_BAR_READD(_esbp, _offset, _edp, _lock) \
do { \
volatile uint8_t *_base = (_esbp)->esb_base; \
volatile uint32_t *_addr; \
\
_NOTE(CONSTANTCONDITION); \
SFC_ASSERT(IS_P2ALIGNED(_offset, sizeof(efx_dword_t))); \
_NOTE(CONSTANTCONDITION); \
if (_lock) \
SFC_BAR_LOCK(_esbp); \
\
_addr = (volatile uint32_t *)(_base + (_offset)); \
rte_rmb(); \
(_edp)->ed_u32[0] = rte_read32_relaxed(_addr); \
\
EFSYS_PROBE2(bar_readd, unsigned int, (_offset), \
uint32_t, (_edp)->ed_u32[0]); \
\
_NOTE(CONSTANTCONDITION); \
if (_lock) \
SFC_BAR_UNLOCK(_esbp); \
_NOTE(CONSTANTCONDITION); \
} while (B_FALSE)
#define EFSYS_BAR_READQ(_esbp, _offset, _eqp) \
do { \
volatile uint8_t *_base = (_esbp)->esb_base; \
volatile uint64_t *_addr; \
\
_NOTE(CONSTANTCONDITION); \
SFC_ASSERT(IS_P2ALIGNED(_offset, sizeof(efx_qword_t))); \
\
SFC_BAR_LOCK(_esbp); \
\
_addr = (volatile uint64_t *)(_base + (_offset)); \
rte_rmb(); \
(_eqp)->eq_u64[0] = rte_read64_relaxed(_addr); \
\
EFSYS_PROBE3(bar_readq, unsigned int, (_offset), \
uint32_t, (_eqp)->eq_u32[1], \
uint32_t, (_eqp)->eq_u32[0]); \
\
SFC_BAR_UNLOCK(_esbp); \
_NOTE(CONSTANTCONDITION); \
} while (B_FALSE)
#define EFSYS_BAR_READO(_esbp, _offset, _eop, _lock) \
do { \
volatile uint8_t *_base = (_esbp)->esb_base; \
volatile __m128i *_addr; \
\
_NOTE(CONSTANTCONDITION); \
SFC_ASSERT(IS_P2ALIGNED(_offset, sizeof(efx_oword_t))); \
\
_NOTE(CONSTANTCONDITION); \
if (_lock) \
SFC_BAR_LOCK(_esbp); \
\
_addr = (volatile __m128i *)(_base + (_offset)); \
rte_rmb(); \
/* There is no rte_read128_relaxed() yet */ \
(_eop)->eo_u128[0] = _addr[0]; \
\
EFSYS_PROBE5(bar_reado, unsigned int, (_offset), \
uint32_t, (_eop)->eo_u32[3], \
uint32_t, (_eop)->eo_u32[2], \
uint32_t, (_eop)->eo_u32[1], \
uint32_t, (_eop)->eo_u32[0]); \
\
_NOTE(CONSTANTCONDITION); \
if (_lock) \
SFC_BAR_UNLOCK(_esbp); \
_NOTE(CONSTANTCONDITION); \
} while (B_FALSE)
#define EFSYS_BAR_WRITED(_esbp, _offset, _edp, _lock) \
do { \
volatile uint8_t *_base = (_esbp)->esb_base; \
volatile uint32_t *_addr; \
\
_NOTE(CONSTANTCONDITION); \
SFC_ASSERT(IS_P2ALIGNED(_offset, sizeof(efx_dword_t))); \
\
_NOTE(CONSTANTCONDITION); \
if (_lock) \
SFC_BAR_LOCK(_esbp); \
\
EFSYS_PROBE2(bar_writed, unsigned int, (_offset), \
uint32_t, (_edp)->ed_u32[0]); \
\
_addr = (volatile uint32_t *)(_base + (_offset)); \
rte_write32_relaxed((_edp)->ed_u32[0], _addr); \
rte_wmb(); \
\
_NOTE(CONSTANTCONDITION); \
if (_lock) \
SFC_BAR_UNLOCK(_esbp); \
_NOTE(CONSTANTCONDITION); \
} while (B_FALSE)
#define EFSYS_BAR_WRITEQ(_esbp, _offset, _eqp) \
do { \
volatile uint8_t *_base = (_esbp)->esb_base; \
volatile uint64_t *_addr; \
\
_NOTE(CONSTANTCONDITION); \
SFC_ASSERT(IS_P2ALIGNED(_offset, sizeof(efx_qword_t))); \
\
SFC_BAR_LOCK(_esbp); \
\
EFSYS_PROBE3(bar_writeq, unsigned int, (_offset), \
uint32_t, (_eqp)->eq_u32[1], \
uint32_t, (_eqp)->eq_u32[0]); \
\
_addr = (volatile uint64_t *)(_base + (_offset)); \
rte_write64_relaxed((_eqp)->eq_u64[0], _addr); \
rte_wmb(); \
\
SFC_BAR_UNLOCK(_esbp); \
_NOTE(CONSTANTCONDITION); \
} while (B_FALSE)
/*
* Guarantees 64bit aligned 64bit writes to write combined BAR mapping
* (required by PIO hardware).
*
* Neither VFIO, nor UIO, nor NIC UIO (on FreeBSD) support
* write-combined memory mapped to user-land, so just abort if used.
*/
#define EFSYS_BAR_WC_WRITEQ(_esbp, _offset, _eqp) \
do { \
rte_panic("Write-combined BAR access not supported"); \
} while (B_FALSE)
#define EFSYS_BAR_WRITEO(_esbp, _offset, _eop, _lock) \
do { \
volatile uint8_t *_base = (_esbp)->esb_base; \
volatile __m128i *_addr; \
\
_NOTE(CONSTANTCONDITION); \
SFC_ASSERT(IS_P2ALIGNED(_offset, sizeof(efx_oword_t))); \
\
_NOTE(CONSTANTCONDITION); \
if (_lock) \
SFC_BAR_LOCK(_esbp); \
\
EFSYS_PROBE5(bar_writeo, unsigned int, (_offset), \
uint32_t, (_eop)->eo_u32[3], \
uint32_t, (_eop)->eo_u32[2], \
uint32_t, (_eop)->eo_u32[1], \
uint32_t, (_eop)->eo_u32[0]); \
\
_addr = (volatile __m128i *)(_base + (_offset)); \
/* There is no rte_write128_relaxed() yet */ \
_addr[0] = (_eop)->eo_u128[0]; \
rte_wmb(); \
\
_NOTE(CONSTANTCONDITION); \
if (_lock) \
SFC_BAR_UNLOCK(_esbp); \
_NOTE(CONSTANTCONDITION); \
} while (B_FALSE)
/* Use the standard octo-word write for doorbell writes */
#define EFSYS_BAR_DOORBELL_WRITEO(_esbp, _offset, _eop) \
do { \
EFSYS_BAR_WRITEO((_esbp), (_offset), (_eop), B_FALSE); \
_NOTE(CONSTANTCONDITION); \
} while (B_FALSE)
/* SPIN */
#define EFSYS_SPIN(_us) \
do { \
rte_delay_us(_us); \
_NOTE(CONSTANTCONDITION); \
} while (B_FALSE)
#define EFSYS_SLEEP EFSYS_SPIN
/* BARRIERS */
#define EFSYS_MEM_READ_BARRIER() rte_rmb()
#define EFSYS_PIO_WRITE_BARRIER() rte_io_wmb()
/* DMA SYNC */
/*
* DPDK does not provide any DMA syncing API, and no PMD drivers
* have any traces of explicit DMA syncing.
* DMA mapping is assumed to be coherent.
*/
#define EFSYS_DMA_SYNC_FOR_KERNEL(_esmp, _offset, _size) ((void)0)
/* Just avoid store and compiler (impliciltly) reordering */
#define EFSYS_DMA_SYNC_FOR_DEVICE(_esmp, _offset, _size) rte_wmb()
/* TIMESTAMP */
typedef uint64_t efsys_timestamp_t;
#define EFSYS_TIMESTAMP(_usp) \
do { \
*(_usp) = rte_get_timer_cycles() * 1000000 / \
rte_get_timer_hz(); \
_NOTE(CONSTANTCONDITION); \
} while (B_FALSE)
/* KMEM */
#define EFSYS_KMEM_ALLOC(_esip, _size, _p) \
do { \
(_esip) = (_esip); \
(_p) = rte_zmalloc("sfc", (_size), 0); \
_NOTE(CONSTANTCONDITION); \
} while (B_FALSE)
#define EFSYS_KMEM_FREE(_esip, _size, _p) \
do { \
(void)(_esip); \
(void)(_size); \
rte_free((_p)); \
_NOTE(CONSTANTCONDITION); \
} while (B_FALSE)
/* LOCK */
typedef rte_spinlock_t efsys_lock_t;
#define SFC_EFSYS_LOCK_INIT(_eslp, _ifname, _label) \
rte_spinlock_init((_eslp))
#define SFC_EFSYS_LOCK_DESTROY(_eslp) ((void)0)
#define SFC_EFSYS_LOCK(_eslp) \
rte_spinlock_lock((_eslp))
#define SFC_EFSYS_UNLOCK(_eslp) \
rte_spinlock_unlock((_eslp))
#define SFC_EFSYS_LOCK_ASSERT_OWNED(_eslp) \
SFC_ASSERT(rte_spinlock_is_locked((_eslp)))
typedef int efsys_lock_state_t;
#define EFSYS_LOCK_MAGIC 0x000010c4
#define EFSYS_LOCK(_lockp, _state) \
do { \
SFC_EFSYS_LOCK(_lockp); \
(_state) = EFSYS_LOCK_MAGIC; \
_NOTE(CONSTANTCONDITION); \
} while (B_FALSE)
#define EFSYS_UNLOCK(_lockp, _state) \
do { \
SFC_ASSERT((_state) == EFSYS_LOCK_MAGIC); \
SFC_EFSYS_UNLOCK(_lockp); \
_NOTE(CONSTANTCONDITION); \
} while (B_FALSE)
/* STAT */
typedef uint64_t efsys_stat_t;
#define EFSYS_STAT_INCR(_knp, _delta) \
do { \
*(_knp) += (_delta); \
_NOTE(CONSTANTCONDITION); \
} while (B_FALSE)
#define EFSYS_STAT_DECR(_knp, _delta) \
do { \
*(_knp) -= (_delta); \
_NOTE(CONSTANTCONDITION); \
} while (B_FALSE)
#define EFSYS_STAT_SET(_knp, _val) \
do { \
*(_knp) = (_val); \
_NOTE(CONSTANTCONDITION); \
} while (B_FALSE)
#define EFSYS_STAT_SET_QWORD(_knp, _valp) \
do { \
*(_knp) = rte_le_to_cpu_64((_valp)->eq_u64[0]); \
_NOTE(CONSTANTCONDITION); \
} while (B_FALSE)
#define EFSYS_STAT_SET_DWORD(_knp, _valp) \
do { \
*(_knp) = rte_le_to_cpu_32((_valp)->ed_u32[0]); \
_NOTE(CONSTANTCONDITION); \
} while (B_FALSE)
#define EFSYS_STAT_INCR_QWORD(_knp, _valp) \
do { \
*(_knp) += rte_le_to_cpu_64((_valp)->eq_u64[0]); \
_NOTE(CONSTANTCONDITION); \
} while (B_FALSE)
#define EFSYS_STAT_SUBR_QWORD(_knp, _valp) \
do { \
*(_knp) -= rte_le_to_cpu_64((_valp)->eq_u64[0]); \
_NOTE(CONSTANTCONDITION); \
} while (B_FALSE)
/* ERR */
#if EFSYS_OPT_DECODE_INTR_FATAL
#define EFSYS_ERR(_esip, _code, _dword0, _dword1) \
do { \
(void)(_esip); \
SFC_GENERIC_LOG(ERR, "FATAL ERROR #%u (0x%08x%08x)", \
(_code), (_dword0), (_dword1)); \
_NOTE(CONSTANTCONDITION); \
} while (B_FALSE)
#endif
/* ASSERT */
/* RTE_VERIFY from DPDK treats expressions with % operator incorrectly,
* so we re-implement it here
*/
#ifdef RTE_LIBRTE_SFC_EFX_DEBUG
#define EFSYS_ASSERT(_exp) \
do { \
if (unlikely(!(_exp))) \
rte_panic("line %d\tassert \"%s\" failed\n", \
__LINE__, (#_exp)); \
} while (0)
#else
#define EFSYS_ASSERT(_exp) (void)(_exp)
#endif
#define EFSYS_ASSERT3(_x, _op, _y, _t) EFSYS_ASSERT((_t)(_x) _op (_t)(_y))
#define EFSYS_ASSERT3U(_x, _op, _y) EFSYS_ASSERT3(_x, _op, _y, uint64_t)
#define EFSYS_ASSERT3S(_x, _op, _y) EFSYS_ASSERT3(_x, _op, _y, int64_t)
#define EFSYS_ASSERT3P(_x, _op, _y) EFSYS_ASSERT3(_x, _op, _y, uintptr_t)
/* ROTATE */
#define EFSYS_HAS_ROTL_DWORD 0
#ifdef __cplusplus
}
#endif
#endif /* _SFC_COMMON_EFSYS_H */