numam-dpdk/drivers/net/hns3/hns3_ethdev.c
Min Hu (Connor) 8973d7c4ca net/hns3: support keeping CRC
CRC is the end of frame, which occupies 4 bytes. Keeping CRC is a
feature of MAC, which will not strip CRC field when receiving frames.
The feature can be enabled using DEV_RX_OFFLOAD_KEEP_CRC offload by
upper level application. And the feature is only supported for hns3 PF
PMD driver, not supported for hns3 VF PMD driver

Signed-off-by: Min Hu (Connor) <humin29@huawei.com>
Signed-off-by: Wei Hu (Xavier) <xavier.huwei@huawei.com>
2020-07-17 18:21:21 +02:00

5625 lines
146 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018-2019 Hisilicon Limited.
*/
#include <errno.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdint.h>
#include <inttypes.h>
#include <unistd.h>
#include <rte_atomic.h>
#include <rte_bus_pci.h>
#include <rte_common.h>
#include <rte_cycles.h>
#include <rte_dev.h>
#include <rte_eal.h>
#include <rte_ether.h>
#include <rte_ethdev_driver.h>
#include <rte_ethdev_pci.h>
#include <rte_interrupts.h>
#include <rte_io.h>
#include <rte_log.h>
#include <rte_pci.h>
#include "hns3_ethdev.h"
#include "hns3_logs.h"
#include "hns3_rxtx.h"
#include "hns3_intr.h"
#include "hns3_regs.h"
#include "hns3_dcb.h"
#include "hns3_mp.h"
#define HNS3_DEFAULT_PORT_CONF_BURST_SIZE 32
#define HNS3_DEFAULT_PORT_CONF_QUEUES_NUM 1
#define HNS3_SERVICE_INTERVAL 1000000 /* us */
#define HNS3_INVLID_PVID 0xFFFF
#define HNS3_FILTER_TYPE_VF 0
#define HNS3_FILTER_TYPE_PORT 1
#define HNS3_FILTER_FE_EGRESS_V1_B BIT(0)
#define HNS3_FILTER_FE_NIC_INGRESS_B BIT(0)
#define HNS3_FILTER_FE_NIC_EGRESS_B BIT(1)
#define HNS3_FILTER_FE_ROCE_INGRESS_B BIT(2)
#define HNS3_FILTER_FE_ROCE_EGRESS_B BIT(3)
#define HNS3_FILTER_FE_EGRESS (HNS3_FILTER_FE_NIC_EGRESS_B \
| HNS3_FILTER_FE_ROCE_EGRESS_B)
#define HNS3_FILTER_FE_INGRESS (HNS3_FILTER_FE_NIC_INGRESS_B \
| HNS3_FILTER_FE_ROCE_INGRESS_B)
/* Reset related Registers */
#define HNS3_GLOBAL_RESET_BIT 0
#define HNS3_CORE_RESET_BIT 1
#define HNS3_IMP_RESET_BIT 2
#define HNS3_FUN_RST_ING_B 0
#define HNS3_VECTOR0_IMP_RESET_INT_B 1
#define HNS3_RESET_WAIT_MS 100
#define HNS3_RESET_WAIT_CNT 200
enum hns3_evt_cause {
HNS3_VECTOR0_EVENT_RST,
HNS3_VECTOR0_EVENT_MBX,
HNS3_VECTOR0_EVENT_ERR,
HNS3_VECTOR0_EVENT_OTHER,
};
static enum hns3_reset_level hns3_get_reset_level(struct hns3_adapter *hns,
uint64_t *levels);
static int hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
static int hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid,
int on);
static int hns3_update_speed_duplex(struct rte_eth_dev *eth_dev);
static int hns3_add_mc_addr(struct hns3_hw *hw,
struct rte_ether_addr *mac_addr);
static int hns3_remove_mc_addr(struct hns3_hw *hw,
struct rte_ether_addr *mac_addr);
static void
hns3_pf_disable_irq0(struct hns3_hw *hw)
{
hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
}
static void
hns3_pf_enable_irq0(struct hns3_hw *hw)
{
hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
}
static enum hns3_evt_cause
hns3_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
{
struct hns3_hw *hw = &hns->hw;
uint32_t vector0_int_stats;
uint32_t cmdq_src_val;
uint32_t val;
enum hns3_evt_cause ret;
/* fetch the events from their corresponding regs */
vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
cmdq_src_val = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
/*
* Assumption: If by any chance reset and mailbox events are reported
* together then we will only process reset event and defer the
* processing of the mailbox events. Since, we would have not cleared
* RX CMDQ event this time we would receive again another interrupt
* from H/W just for the mailbox.
*/
if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats) { /* IMP */
rte_atomic16_set(&hw->reset.disable_cmd, 1);
hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
val = BIT(HNS3_VECTOR0_IMPRESET_INT_B);
if (clearval) {
hw->reset.stats.imp_cnt++;
hns3_warn(hw, "IMP reset detected, clear reset status");
} else {
hns3_schedule_delayed_reset(hns);
hns3_warn(hw, "IMP reset detected, don't clear reset status");
}
ret = HNS3_VECTOR0_EVENT_RST;
goto out;
}
/* Global reset */
if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats) {
rte_atomic16_set(&hw->reset.disable_cmd, 1);
hns3_atomic_set_bit(HNS3_GLOBAL_RESET, &hw->reset.pending);
val = BIT(HNS3_VECTOR0_GLOBALRESET_INT_B);
if (clearval) {
hw->reset.stats.global_cnt++;
hns3_warn(hw, "Global reset detected, clear reset status");
} else {
hns3_schedule_delayed_reset(hns);
hns3_warn(hw, "Global reset detected, don't clear reset status");
}
ret = HNS3_VECTOR0_EVENT_RST;
goto out;
}
/* check for vector0 msix event source */
if (vector0_int_stats & HNS3_VECTOR0_REG_MSIX_MASK) {
val = vector0_int_stats;
ret = HNS3_VECTOR0_EVENT_ERR;
goto out;
}
/* check for vector0 mailbox(=CMDQ RX) event source */
if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_val) {
cmdq_src_val &= ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
val = cmdq_src_val;
ret = HNS3_VECTOR0_EVENT_MBX;
goto out;
}
if (clearval && (vector0_int_stats || cmdq_src_val))
hns3_warn(hw, "surprise irq ector0_int_stats:0x%x cmdq_src_val:0x%x",
vector0_int_stats, cmdq_src_val);
val = vector0_int_stats;
ret = HNS3_VECTOR0_EVENT_OTHER;
out:
if (clearval)
*clearval = val;
return ret;
}
static void
hns3_clear_event_cause(struct hns3_hw *hw, uint32_t event_type, uint32_t regclr)
{
if (event_type == HNS3_VECTOR0_EVENT_RST)
hns3_write_dev(hw, HNS3_MISC_RESET_STS_REG, regclr);
else if (event_type == HNS3_VECTOR0_EVENT_MBX)
hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
}
static void
hns3_clear_all_event_cause(struct hns3_hw *hw)
{
uint32_t vector0_int_stats;
vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats)
hns3_warn(hw, "Probe during IMP reset interrupt");
if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats)
hns3_warn(hw, "Probe during Global reset interrupt");
hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_RST,
BIT(HNS3_VECTOR0_IMPRESET_INT_B) |
BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) |
BIT(HNS3_VECTOR0_CORERESET_INT_B));
hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_MBX, 0);
}
static void
hns3_interrupt_handler(void *param)
{
struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
enum hns3_evt_cause event_cause;
uint32_t clearval = 0;
/* Disable interrupt */
hns3_pf_disable_irq0(hw);
event_cause = hns3_check_event_cause(hns, &clearval);
/* vector 0 interrupt is shared with reset and mailbox source events. */
if (event_cause == HNS3_VECTOR0_EVENT_ERR) {
hns3_handle_msix_error(hns, &hw->reset.request);
hns3_schedule_reset(hns);
} else if (event_cause == HNS3_VECTOR0_EVENT_RST)
hns3_schedule_reset(hns);
else if (event_cause == HNS3_VECTOR0_EVENT_MBX)
hns3_dev_handle_mbx_msg(hw);
else
hns3_err(hw, "Received unknown event");
hns3_clear_event_cause(hw, event_cause, clearval);
/* Enable interrupt if it is not cause by reset */
hns3_pf_enable_irq0(hw);
}
static int
hns3_set_port_vlan_filter(struct hns3_adapter *hns, uint16_t vlan_id, int on)
{
#define HNS3_VLAN_ID_OFFSET_STEP 160
#define HNS3_VLAN_BYTE_SIZE 8
struct hns3_vlan_filter_pf_cfg_cmd *req;
struct hns3_hw *hw = &hns->hw;
uint8_t vlan_offset_byte_val;
struct hns3_cmd_desc desc;
uint8_t vlan_offset_byte;
uint8_t vlan_offset_base;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_PF_CFG, false);
vlan_offset_base = vlan_id / HNS3_VLAN_ID_OFFSET_STEP;
vlan_offset_byte = (vlan_id % HNS3_VLAN_ID_OFFSET_STEP) /
HNS3_VLAN_BYTE_SIZE;
vlan_offset_byte_val = 1 << (vlan_id % HNS3_VLAN_BYTE_SIZE);
req = (struct hns3_vlan_filter_pf_cfg_cmd *)desc.data;
req->vlan_offset = vlan_offset_base;
req->vlan_cfg = on ? 0 : 1;
req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val;
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
hns3_err(hw, "set port vlan id failed, vlan_id =%u, ret =%d",
vlan_id, ret);
return ret;
}
static void
hns3_rm_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id)
{
struct hns3_user_vlan_table *vlan_entry;
struct hns3_pf *pf = &hns->pf;
LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
if (vlan_entry->vlan_id == vlan_id) {
if (vlan_entry->hd_tbl_status)
hns3_set_port_vlan_filter(hns, vlan_id, 0);
LIST_REMOVE(vlan_entry, next);
rte_free(vlan_entry);
break;
}
}
}
static void
hns3_add_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id,
bool writen_to_tbl)
{
struct hns3_user_vlan_table *vlan_entry;
struct hns3_hw *hw = &hns->hw;
struct hns3_pf *pf = &hns->pf;
LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
if (vlan_entry->vlan_id == vlan_id)
return;
}
vlan_entry = rte_zmalloc("hns3_vlan_tbl", sizeof(*vlan_entry), 0);
if (vlan_entry == NULL) {
hns3_err(hw, "Failed to malloc hns3 vlan table");
return;
}
vlan_entry->hd_tbl_status = writen_to_tbl;
vlan_entry->vlan_id = vlan_id;
LIST_INSERT_HEAD(&pf->vlan_list, vlan_entry, next);
}
static int
hns3_restore_vlan_table(struct hns3_adapter *hns)
{
struct hns3_user_vlan_table *vlan_entry;
struct hns3_hw *hw = &hns->hw;
struct hns3_pf *pf = &hns->pf;
uint16_t vlan_id;
int ret = 0;
if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE)
return hns3_vlan_pvid_configure(hns,
hw->port_base_vlan_cfg.pvid, 1);
LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
if (vlan_entry->hd_tbl_status) {
vlan_id = vlan_entry->vlan_id;
ret = hns3_set_port_vlan_filter(hns, vlan_id, 1);
if (ret)
break;
}
}
return ret;
}
static int
hns3_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
{
struct hns3_hw *hw = &hns->hw;
bool writen_to_tbl = false;
int ret = 0;
/*
* When vlan filter is enabled, hardware regards vlan id 0 as the entry
* for normal packet, deleting vlan id 0 is not allowed.
*/
if (on == 0 && vlan_id == 0)
return 0;
/*
* When port base vlan enabled, we use port base vlan as the vlan
* filter condition. In this case, we don't update vlan filter table
* when user add new vlan or remove exist vlan, just update the
* vlan list. The vlan id in vlan list will be writen in vlan filter
* table until port base vlan disabled
*/
if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
ret = hns3_set_port_vlan_filter(hns, vlan_id, on);
writen_to_tbl = true;
}
if (ret == 0 && vlan_id) {
if (on)
hns3_add_dev_vlan_table(hns, vlan_id, writen_to_tbl);
else
hns3_rm_dev_vlan_table(hns, vlan_id);
}
return ret;
}
static int
hns3_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
int ret;
rte_spinlock_lock(&hw->lock);
ret = hns3_vlan_filter_configure(hns, vlan_id, on);
rte_spinlock_unlock(&hw->lock);
return ret;
}
static int
hns3_vlan_tpid_configure(struct hns3_adapter *hns, enum rte_vlan_type vlan_type,
uint16_t tpid)
{
struct hns3_rx_vlan_type_cfg_cmd *rx_req;
struct hns3_tx_vlan_type_cfg_cmd *tx_req;
struct hns3_hw *hw = &hns->hw;
struct hns3_cmd_desc desc;
int ret;
if ((vlan_type != ETH_VLAN_TYPE_INNER &&
vlan_type != ETH_VLAN_TYPE_OUTER)) {
hns3_err(hw, "Unsupported vlan type, vlan_type =%d", vlan_type);
return -EINVAL;
}
if (tpid != RTE_ETHER_TYPE_VLAN) {
hns3_err(hw, "Unsupported vlan tpid, vlan_type =%d", vlan_type);
return -EINVAL;
}
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_TYPE_ID, false);
rx_req = (struct hns3_rx_vlan_type_cfg_cmd *)desc.data;
if (vlan_type == ETH_VLAN_TYPE_OUTER) {
rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
} else if (vlan_type == ETH_VLAN_TYPE_INNER) {
rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
rx_req->in_fst_vlan_type = rte_cpu_to_le_16(tpid);
rx_req->in_sec_vlan_type = rte_cpu_to_le_16(tpid);
}
ret = hns3_cmd_send(hw, &desc, 1);
if (ret) {
hns3_err(hw, "Send rxvlan protocol type command fail, ret =%d",
ret);
return ret;
}
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_INSERT, false);
tx_req = (struct hns3_tx_vlan_type_cfg_cmd *)desc.data;
tx_req->ot_vlan_type = rte_cpu_to_le_16(tpid);
tx_req->in_vlan_type = rte_cpu_to_le_16(tpid);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
hns3_err(hw, "Send txvlan protocol type command fail, ret =%d",
ret);
return ret;
}
static int
hns3_vlan_tpid_set(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type,
uint16_t tpid)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
int ret;
rte_spinlock_lock(&hw->lock);
ret = hns3_vlan_tpid_configure(hns, vlan_type, tpid);
rte_spinlock_unlock(&hw->lock);
return ret;
}
static int
hns3_set_vlan_rx_offload_cfg(struct hns3_adapter *hns,
struct hns3_rx_vtag_cfg *vcfg)
{
struct hns3_vport_vtag_rx_cfg_cmd *req;
struct hns3_hw *hw = &hns->hw;
struct hns3_cmd_desc desc;
uint16_t vport_id;
uint8_t bitmap;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_RX_CFG, false);
req = (struct hns3_vport_vtag_rx_cfg_cmd *)desc.data;
hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG1_EN_B,
vcfg->strip_tag1_en ? 1 : 0);
hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG2_EN_B,
vcfg->strip_tag2_en ? 1 : 0);
hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG1_EN_B,
vcfg->vlan1_vlan_prionly ? 1 : 0);
hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG2_EN_B,
vcfg->vlan2_vlan_prionly ? 1 : 0);
/*
* In current version VF is not supported when PF is driven by DPDK
* driver, just need to configure parameters for PF vport.
*/
vport_id = HNS3_PF_FUNC_ID;
req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
req->vf_bitmap[req->vf_offset] = bitmap;
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
hns3_err(hw, "Send port rxvlan cfg command fail, ret =%d", ret);
return ret;
}
static void
hns3_update_rx_offload_cfg(struct hns3_adapter *hns,
struct hns3_rx_vtag_cfg *vcfg)
{
struct hns3_pf *pf = &hns->pf;
memcpy(&pf->vtag_config.rx_vcfg, vcfg, sizeof(pf->vtag_config.rx_vcfg));
}
static void
hns3_update_tx_offload_cfg(struct hns3_adapter *hns,
struct hns3_tx_vtag_cfg *vcfg)
{
struct hns3_pf *pf = &hns->pf;
memcpy(&pf->vtag_config.tx_vcfg, vcfg, sizeof(pf->vtag_config.tx_vcfg));
}
static int
hns3_en_hw_strip_rxvtag(struct hns3_adapter *hns, bool enable)
{
struct hns3_rx_vtag_cfg rxvlan_cfg;
struct hns3_hw *hw = &hns->hw;
int ret;
if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
rxvlan_cfg.strip_tag1_en = false;
rxvlan_cfg.strip_tag2_en = enable;
} else {
rxvlan_cfg.strip_tag1_en = enable;
rxvlan_cfg.strip_tag2_en = true;
}
rxvlan_cfg.vlan1_vlan_prionly = false;
rxvlan_cfg.vlan2_vlan_prionly = false;
rxvlan_cfg.rx_vlan_offload_en = enable;
ret = hns3_set_vlan_rx_offload_cfg(hns, &rxvlan_cfg);
if (ret) {
hns3_err(hw, "enable strip rx vtag failed, ret =%d", ret);
return ret;
}
hns3_update_rx_offload_cfg(hns, &rxvlan_cfg);
return ret;
}
static int
hns3_set_vlan_filter_ctrl(struct hns3_hw *hw, uint8_t vlan_type,
uint8_t fe_type, bool filter_en, uint8_t vf_id)
{
struct hns3_vlan_filter_ctrl_cmd *req;
struct hns3_cmd_desc desc;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_CTRL, false);
req = (struct hns3_vlan_filter_ctrl_cmd *)desc.data;
req->vlan_type = vlan_type;
req->vlan_fe = filter_en ? fe_type : 0;
req->vf_id = vf_id;
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
hns3_err(hw, "set vlan filter fail, ret =%d", ret);
return ret;
}
static int
hns3_vlan_filter_init(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
int ret;
ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_VF,
HNS3_FILTER_FE_EGRESS, false,
HNS3_PF_FUNC_ID);
if (ret) {
hns3_err(hw, "failed to init vf vlan filter, ret = %d", ret);
return ret;
}
ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
HNS3_FILTER_FE_INGRESS, false,
HNS3_PF_FUNC_ID);
if (ret)
hns3_err(hw, "failed to init port vlan filter, ret = %d", ret);
return ret;
}
static int
hns3_enable_vlan_filter(struct hns3_adapter *hns, bool enable)
{
struct hns3_hw *hw = &hns->hw;
int ret;
ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
HNS3_FILTER_FE_INGRESS, enable,
HNS3_PF_FUNC_ID);
if (ret)
hns3_err(hw, "failed to %s port vlan filter, ret = %d",
enable ? "enable" : "disable", ret);
return ret;
}
static int
hns3_vlan_offload_set(struct rte_eth_dev *dev, int mask)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
struct rte_eth_rxmode *rxmode;
unsigned int tmp_mask;
bool enable;
int ret = 0;
rte_spinlock_lock(&hw->lock);
rxmode = &dev->data->dev_conf.rxmode;
tmp_mask = (unsigned int)mask;
if (tmp_mask & ETH_VLAN_FILTER_MASK) {
/* ignore vlan filter configuration during promiscuous mode */
if (!dev->data->promiscuous) {
/* Enable or disable VLAN filter */
enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER ?
true : false;
ret = hns3_enable_vlan_filter(hns, enable);
if (ret) {
rte_spinlock_unlock(&hw->lock);
hns3_err(hw, "failed to %s rx filter, ret = %d",
enable ? "enable" : "disable", ret);
return ret;
}
}
}
if (tmp_mask & ETH_VLAN_STRIP_MASK) {
/* Enable or disable VLAN stripping */
enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP ?
true : false;
ret = hns3_en_hw_strip_rxvtag(hns, enable);
if (ret) {
rte_spinlock_unlock(&hw->lock);
hns3_err(hw, "failed to %s rx strip, ret = %d",
enable ? "enable" : "disable", ret);
return ret;
}
}
rte_spinlock_unlock(&hw->lock);
return ret;
}
static int
hns3_set_vlan_tx_offload_cfg(struct hns3_adapter *hns,
struct hns3_tx_vtag_cfg *vcfg)
{
struct hns3_vport_vtag_tx_cfg_cmd *req;
struct hns3_cmd_desc desc;
struct hns3_hw *hw = &hns->hw;
uint16_t vport_id;
uint8_t bitmap;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_TX_CFG, false);
req = (struct hns3_vport_vtag_tx_cfg_cmd *)desc.data;
req->def_vlan_tag1 = vcfg->default_tag1;
req->def_vlan_tag2 = vcfg->default_tag2;
hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG1_B,
vcfg->accept_tag1 ? 1 : 0);
hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG1_B,
vcfg->accept_untag1 ? 1 : 0);
hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG2_B,
vcfg->accept_tag2 ? 1 : 0);
hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG2_B,
vcfg->accept_untag2 ? 1 : 0);
hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG1_EN_B,
vcfg->insert_tag1_en ? 1 : 0);
hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG2_EN_B,
vcfg->insert_tag2_en ? 1 : 0);
hns3_set_bit(req->vport_vlan_cfg, HNS3_CFG_NIC_ROCE_SEL_B, 0);
/*
* In current version VF is not supported when PF is driven by DPDK
* driver, just need to configure parameters for PF vport.
*/
vport_id = HNS3_PF_FUNC_ID;
req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
req->vf_bitmap[req->vf_offset] = bitmap;
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
hns3_err(hw, "Send port txvlan cfg command fail, ret =%d", ret);
return ret;
}
static int
hns3_vlan_txvlan_cfg(struct hns3_adapter *hns, uint16_t port_base_vlan_state,
uint16_t pvid)
{
struct hns3_hw *hw = &hns->hw;
struct hns3_tx_vtag_cfg txvlan_cfg;
int ret;
if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_DISABLE) {
txvlan_cfg.accept_tag1 = true;
txvlan_cfg.insert_tag1_en = false;
txvlan_cfg.default_tag1 = 0;
} else {
txvlan_cfg.accept_tag1 = false;
txvlan_cfg.insert_tag1_en = true;
txvlan_cfg.default_tag1 = pvid;
}
txvlan_cfg.accept_untag1 = true;
txvlan_cfg.accept_tag2 = true;
txvlan_cfg.accept_untag2 = true;
txvlan_cfg.insert_tag2_en = false;
txvlan_cfg.default_tag2 = 0;
ret = hns3_set_vlan_tx_offload_cfg(hns, &txvlan_cfg);
if (ret) {
hns3_err(hw, "pf vlan set pvid failed, pvid =%u ,ret =%d", pvid,
ret);
return ret;
}
hns3_update_tx_offload_cfg(hns, &txvlan_cfg);
return ret;
}
static void
hns3_store_port_base_vlan_info(struct hns3_adapter *hns, uint16_t pvid, int on)
{
struct hns3_hw *hw = &hns->hw;
hw->port_base_vlan_cfg.state = on ?
HNS3_PORT_BASE_VLAN_ENABLE : HNS3_PORT_BASE_VLAN_DISABLE;
hw->port_base_vlan_cfg.pvid = pvid;
}
static void
hns3_rm_all_vlan_table(struct hns3_adapter *hns, bool is_del_list)
{
struct hns3_user_vlan_table *vlan_entry;
struct hns3_pf *pf = &hns->pf;
LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
if (vlan_entry->hd_tbl_status)
hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 0);
vlan_entry->hd_tbl_status = false;
}
if (is_del_list) {
vlan_entry = LIST_FIRST(&pf->vlan_list);
while (vlan_entry) {
LIST_REMOVE(vlan_entry, next);
rte_free(vlan_entry);
vlan_entry = LIST_FIRST(&pf->vlan_list);
}
}
}
static void
hns3_add_all_vlan_table(struct hns3_adapter *hns)
{
struct hns3_user_vlan_table *vlan_entry;
struct hns3_pf *pf = &hns->pf;
LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
if (!vlan_entry->hd_tbl_status)
hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 1);
vlan_entry->hd_tbl_status = true;
}
}
static void
hns3_remove_all_vlan_table(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
int ret;
hns3_rm_all_vlan_table(hns, true);
if (hw->port_base_vlan_cfg.pvid != HNS3_INVLID_PVID) {
ret = hns3_set_port_vlan_filter(hns,
hw->port_base_vlan_cfg.pvid, 0);
if (ret) {
hns3_err(hw, "Failed to remove all vlan table, ret =%d",
ret);
return;
}
}
}
static int
hns3_update_vlan_filter_entries(struct hns3_adapter *hns,
uint16_t port_base_vlan_state,
uint16_t new_pvid, uint16_t old_pvid)
{
struct hns3_hw *hw = &hns->hw;
int ret = 0;
if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_ENABLE) {
if (old_pvid != HNS3_INVLID_PVID && old_pvid != 0) {
ret = hns3_set_port_vlan_filter(hns, old_pvid, 0);
if (ret) {
hns3_err(hw,
"Failed to clear clear old pvid filter, ret =%d",
ret);
return ret;
}
}
hns3_rm_all_vlan_table(hns, false);
return hns3_set_port_vlan_filter(hns, new_pvid, 1);
}
if (new_pvid != 0) {
ret = hns3_set_port_vlan_filter(hns, new_pvid, 0);
if (ret) {
hns3_err(hw, "Failed to set port vlan filter, ret =%d",
ret);
return ret;
}
}
if (new_pvid == hw->port_base_vlan_cfg.pvid)
hns3_add_all_vlan_table(hns);
return ret;
}
static int
hns3_en_pvid_strip(struct hns3_adapter *hns, int on)
{
struct hns3_rx_vtag_cfg *old_cfg = &hns->pf.vtag_config.rx_vcfg;
struct hns3_rx_vtag_cfg rx_vlan_cfg;
bool rx_strip_en;
int ret;
rx_strip_en = old_cfg->rx_vlan_offload_en ? true : false;
if (on) {
rx_vlan_cfg.strip_tag1_en = rx_strip_en;
rx_vlan_cfg.strip_tag2_en = true;
} else {
rx_vlan_cfg.strip_tag1_en = false;
rx_vlan_cfg.strip_tag2_en = rx_strip_en;
}
rx_vlan_cfg.vlan1_vlan_prionly = false;
rx_vlan_cfg.vlan2_vlan_prionly = false;
rx_vlan_cfg.rx_vlan_offload_en = old_cfg->rx_vlan_offload_en;
ret = hns3_set_vlan_rx_offload_cfg(hns, &rx_vlan_cfg);
if (ret)
return ret;
hns3_update_rx_offload_cfg(hns, &rx_vlan_cfg);
return ret;
}
static int
hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid, int on)
{
struct hns3_hw *hw = &hns->hw;
uint16_t port_base_vlan_state;
uint16_t old_pvid;
int ret;
if (on == 0 && pvid != hw->port_base_vlan_cfg.pvid) {
if (hw->port_base_vlan_cfg.pvid != HNS3_INVLID_PVID)
hns3_warn(hw, "Invalid operation! As current pvid set "
"is %u, disable pvid %u is invalid",
hw->port_base_vlan_cfg.pvid, pvid);
return 0;
}
port_base_vlan_state = on ? HNS3_PORT_BASE_VLAN_ENABLE :
HNS3_PORT_BASE_VLAN_DISABLE;
ret = hns3_vlan_txvlan_cfg(hns, port_base_vlan_state, pvid);
if (ret) {
hns3_err(hw, "failed to config tx vlan for pvid, ret = %d",
ret);
return ret;
}
ret = hns3_en_pvid_strip(hns, on);
if (ret) {
hns3_err(hw, "failed to config rx vlan strip for pvid, "
"ret = %d", ret);
return ret;
}
if (pvid == HNS3_INVLID_PVID)
goto out;
old_pvid = hw->port_base_vlan_cfg.pvid;
ret = hns3_update_vlan_filter_entries(hns, port_base_vlan_state, pvid,
old_pvid);
if (ret) {
hns3_err(hw, "Failed to update vlan filter entries, ret =%d",
ret);
return ret;
}
out:
hns3_store_port_base_vlan_info(hns, pvid, on);
return ret;
}
static int
hns3_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
bool pvid_en_state_change;
uint16_t pvid_state;
int ret;
if (pvid > RTE_ETHER_MAX_VLAN_ID) {
hns3_err(hw, "Invalid vlan_id = %u > %d", pvid,
RTE_ETHER_MAX_VLAN_ID);
return -EINVAL;
}
/*
* If PVID configuration state change, should refresh the PVID
* configuration state in struct hns3_tx_queue/hns3_rx_queue.
*/
pvid_state = hw->port_base_vlan_cfg.state;
if ((on && pvid_state == HNS3_PORT_BASE_VLAN_ENABLE) ||
(!on && pvid_state == HNS3_PORT_BASE_VLAN_DISABLE))
pvid_en_state_change = false;
else
pvid_en_state_change = true;
rte_spinlock_lock(&hw->lock);
ret = hns3_vlan_pvid_configure(hns, pvid, on);
rte_spinlock_unlock(&hw->lock);
if (ret)
return ret;
if (pvid_en_state_change)
hns3_update_all_queues_pvid_state(hw);
return 0;
}
static void
init_port_base_vlan_info(struct hns3_hw *hw)
{
hw->port_base_vlan_cfg.state = HNS3_PORT_BASE_VLAN_DISABLE;
hw->port_base_vlan_cfg.pvid = HNS3_INVLID_PVID;
}
static int
hns3_default_vlan_config(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
int ret;
ret = hns3_set_port_vlan_filter(hns, 0, 1);
if (ret)
hns3_err(hw, "default vlan 0 config failed, ret =%d", ret);
return ret;
}
static int
hns3_init_vlan_config(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
int ret;
/*
* This function can be called in the initialization and reset process,
* when in reset process, it means that hardware had been reseted
* successfully and we need to restore the hardware configuration to
* ensure that the hardware configuration remains unchanged before and
* after reset.
*/
if (rte_atomic16_read(&hw->reset.resetting) == 0)
init_port_base_vlan_info(hw);
ret = hns3_vlan_filter_init(hns);
if (ret) {
hns3_err(hw, "vlan init fail in pf, ret =%d", ret);
return ret;
}
ret = hns3_vlan_tpid_configure(hns, ETH_VLAN_TYPE_INNER,
RTE_ETHER_TYPE_VLAN);
if (ret) {
hns3_err(hw, "tpid set fail in pf, ret =%d", ret);
return ret;
}
/*
* When in the reinit dev stage of the reset process, the following
* vlan-related configurations may differ from those at initialization,
* we will restore configurations to hardware in hns3_restore_vlan_table
* and hns3_restore_vlan_conf later.
*/
if (rte_atomic16_read(&hw->reset.resetting) == 0) {
ret = hns3_vlan_pvid_configure(hns, HNS3_INVLID_PVID, 0);
if (ret) {
hns3_err(hw, "pvid set fail in pf, ret =%d", ret);
return ret;
}
ret = hns3_en_hw_strip_rxvtag(hns, false);
if (ret) {
hns3_err(hw, "rx strip configure fail in pf, ret =%d",
ret);
return ret;
}
}
return hns3_default_vlan_config(hns);
}
static int
hns3_restore_vlan_conf(struct hns3_adapter *hns)
{
struct hns3_pf *pf = &hns->pf;
struct hns3_hw *hw = &hns->hw;
uint64_t offloads;
bool enable;
int ret;
if (!hw->data->promiscuous) {
/* restore vlan filter states */
offloads = hw->data->dev_conf.rxmode.offloads;
enable = offloads & DEV_RX_OFFLOAD_VLAN_FILTER ? true : false;
ret = hns3_enable_vlan_filter(hns, enable);
if (ret) {
hns3_err(hw, "failed to restore vlan rx filter conf, "
"ret = %d", ret);
return ret;
}
}
ret = hns3_set_vlan_rx_offload_cfg(hns, &pf->vtag_config.rx_vcfg);
if (ret) {
hns3_err(hw, "failed to restore vlan rx conf, ret = %d", ret);
return ret;
}
ret = hns3_set_vlan_tx_offload_cfg(hns, &pf->vtag_config.tx_vcfg);
if (ret)
hns3_err(hw, "failed to restore vlan tx conf, ret = %d", ret);
return ret;
}
static int
hns3_dev_configure_vlan(struct rte_eth_dev *dev)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct rte_eth_dev_data *data = dev->data;
struct rte_eth_txmode *txmode;
struct hns3_hw *hw = &hns->hw;
int mask;
int ret;
txmode = &data->dev_conf.txmode;
if (txmode->hw_vlan_reject_tagged || txmode->hw_vlan_reject_untagged)
hns3_warn(hw,
"hw_vlan_reject_tagged or hw_vlan_reject_untagged "
"configuration is not supported! Ignore these two "
"parameters: hw_vlan_reject_tagged(%d), "
"hw_vlan_reject_untagged(%d)",
txmode->hw_vlan_reject_tagged,
txmode->hw_vlan_reject_untagged);
/* Apply vlan offload setting */
mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK;
ret = hns3_vlan_offload_set(dev, mask);
if (ret) {
hns3_err(hw, "dev config rx vlan offload failed, ret = %d",
ret);
return ret;
}
/*
* If pvid config is not set in rte_eth_conf, driver needn't to set
* VLAN pvid related configuration to hardware.
*/
if (txmode->pvid == 0 && txmode->hw_vlan_insert_pvid == 0)
return 0;
/* Apply pvid setting */
ret = hns3_vlan_pvid_set(dev, txmode->pvid,
txmode->hw_vlan_insert_pvid);
if (ret)
hns3_err(hw, "dev config vlan pvid(%d) failed, ret = %d",
txmode->pvid, ret);
return ret;
}
static int
hns3_config_tso(struct hns3_hw *hw, unsigned int tso_mss_min,
unsigned int tso_mss_max)
{
struct hns3_cfg_tso_status_cmd *req;
struct hns3_cmd_desc desc;
uint16_t tso_mss;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TSO_GENERIC_CONFIG, false);
req = (struct hns3_cfg_tso_status_cmd *)desc.data;
tso_mss = 0;
hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
tso_mss_min);
req->tso_mss_min = rte_cpu_to_le_16(tso_mss);
tso_mss = 0;
hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
tso_mss_max);
req->tso_mss_max = rte_cpu_to_le_16(tso_mss);
return hns3_cmd_send(hw, &desc, 1);
}
static int
hns3_set_umv_space(struct hns3_hw *hw, uint16_t space_size,
uint16_t *allocated_size, bool is_alloc)
{
struct hns3_umv_spc_alc_cmd *req;
struct hns3_cmd_desc desc;
int ret;
req = (struct hns3_umv_spc_alc_cmd *)desc.data;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ALLOCATE, false);
hns3_set_bit(req->allocate, HNS3_UMV_SPC_ALC_B, is_alloc ? 0 : 1);
req->space_size = rte_cpu_to_le_32(space_size);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret) {
PMD_INIT_LOG(ERR, "%s umv space failed for cmd_send, ret =%d",
is_alloc ? "allocate" : "free", ret);
return ret;
}
if (is_alloc && allocated_size)
*allocated_size = rte_le_to_cpu_32(desc.data[1]);
return 0;
}
static int
hns3_init_umv_space(struct hns3_hw *hw)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
uint16_t allocated_size = 0;
int ret;
ret = hns3_set_umv_space(hw, pf->wanted_umv_size, &allocated_size,
true);
if (ret)
return ret;
if (allocated_size < pf->wanted_umv_size)
PMD_INIT_LOG(WARNING, "Alloc umv space failed, want %u, get %u",
pf->wanted_umv_size, allocated_size);
pf->max_umv_size = (!!allocated_size) ? allocated_size :
pf->wanted_umv_size;
pf->used_umv_size = 0;
return 0;
}
static int
hns3_uninit_umv_space(struct hns3_hw *hw)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
int ret;
if (pf->max_umv_size == 0)
return 0;
ret = hns3_set_umv_space(hw, pf->max_umv_size, NULL, false);
if (ret)
return ret;
pf->max_umv_size = 0;
return 0;
}
static bool
hns3_is_umv_space_full(struct hns3_hw *hw)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
bool is_full;
is_full = (pf->used_umv_size >= pf->max_umv_size);
return is_full;
}
static void
hns3_update_umv_space(struct hns3_hw *hw, bool is_free)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
if (is_free) {
if (pf->used_umv_size > 0)
pf->used_umv_size--;
} else
pf->used_umv_size++;
}
static void
hns3_prepare_mac_addr(struct hns3_mac_vlan_tbl_entry_cmd *new_req,
const uint8_t *addr, bool is_mc)
{
const unsigned char *mac_addr = addr;
uint32_t high_val = ((uint32_t)mac_addr[3] << 24) |
((uint32_t)mac_addr[2] << 16) |
((uint32_t)mac_addr[1] << 8) |
(uint32_t)mac_addr[0];
uint32_t low_val = ((uint32_t)mac_addr[5] << 8) | (uint32_t)mac_addr[4];
hns3_set_bit(new_req->flags, HNS3_MAC_VLAN_BIT0_EN_B, 1);
if (is_mc) {
hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT1_EN_B, 1);
hns3_set_bit(new_req->mc_mac_en, HNS3_MAC_VLAN_BIT0_EN_B, 1);
}
new_req->mac_addr_hi32 = rte_cpu_to_le_32(high_val);
new_req->mac_addr_lo16 = rte_cpu_to_le_16(low_val & 0xffff);
}
static int
hns3_get_mac_vlan_cmd_status(struct hns3_hw *hw, uint16_t cmdq_resp,
uint8_t resp_code,
enum hns3_mac_vlan_tbl_opcode op)
{
if (cmdq_resp) {
hns3_err(hw, "cmdq execute failed for get_mac_vlan_cmd_status,status=%u",
cmdq_resp);
return -EIO;
}
if (op == HNS3_MAC_VLAN_ADD) {
if (resp_code == 0 || resp_code == 1) {
return 0;
} else if (resp_code == HNS3_ADD_UC_OVERFLOW) {
hns3_err(hw, "add mac addr failed for uc_overflow");
return -ENOSPC;
} else if (resp_code == HNS3_ADD_MC_OVERFLOW) {
hns3_err(hw, "add mac addr failed for mc_overflow");
return -ENOSPC;
}
hns3_err(hw, "add mac addr failed for undefined, code=%u",
resp_code);
return -EIO;
} else if (op == HNS3_MAC_VLAN_REMOVE) {
if (resp_code == 0) {
return 0;
} else if (resp_code == 1) {
hns3_dbg(hw, "remove mac addr failed for miss");
return -ENOENT;
}
hns3_err(hw, "remove mac addr failed for undefined, code=%u",
resp_code);
return -EIO;
} else if (op == HNS3_MAC_VLAN_LKUP) {
if (resp_code == 0) {
return 0;
} else if (resp_code == 1) {
hns3_dbg(hw, "lookup mac addr failed for miss");
return -ENOENT;
}
hns3_err(hw, "lookup mac addr failed for undefined, code=%u",
resp_code);
return -EIO;
}
hns3_err(hw, "unknown opcode for get_mac_vlan_cmd_status, opcode=%u",
op);
return -EINVAL;
}
static int
hns3_lookup_mac_vlan_tbl(struct hns3_hw *hw,
struct hns3_mac_vlan_tbl_entry_cmd *req,
struct hns3_cmd_desc *desc, bool is_mc)
{
uint8_t resp_code;
uint16_t retval;
int ret;
hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_MAC_VLAN_ADD, true);
if (is_mc) {
desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
memcpy(desc[0].data, req,
sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
hns3_cmd_setup_basic_desc(&desc[1], HNS3_OPC_MAC_VLAN_ADD,
true);
desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
hns3_cmd_setup_basic_desc(&desc[2], HNS3_OPC_MAC_VLAN_ADD,
true);
ret = hns3_cmd_send(hw, desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
} else {
memcpy(desc[0].data, req,
sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
ret = hns3_cmd_send(hw, desc, 1);
}
if (ret) {
hns3_err(hw, "lookup mac addr failed for cmd_send, ret =%d.",
ret);
return ret;
}
resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff;
retval = rte_le_to_cpu_16(desc[0].retval);
return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
HNS3_MAC_VLAN_LKUP);
}
static int
hns3_add_mac_vlan_tbl(struct hns3_hw *hw,
struct hns3_mac_vlan_tbl_entry_cmd *req,
struct hns3_cmd_desc *mc_desc)
{
uint8_t resp_code;
uint16_t retval;
int cfg_status;
int ret;
if (mc_desc == NULL) {
struct hns3_cmd_desc desc;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ADD, false);
memcpy(desc.data, req,
sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
ret = hns3_cmd_send(hw, &desc, 1);
resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
retval = rte_le_to_cpu_16(desc.retval);
cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
HNS3_MAC_VLAN_ADD);
} else {
hns3_cmd_reuse_desc(&mc_desc[0], false);
mc_desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
hns3_cmd_reuse_desc(&mc_desc[1], false);
mc_desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
hns3_cmd_reuse_desc(&mc_desc[2], false);
mc_desc[2].flag &= rte_cpu_to_le_16(~HNS3_CMD_FLAG_NEXT);
memcpy(mc_desc[0].data, req,
sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
mc_desc[0].retval = 0;
ret = hns3_cmd_send(hw, mc_desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
resp_code = (rte_le_to_cpu_32(mc_desc[0].data[0]) >> 8) & 0xff;
retval = rte_le_to_cpu_16(mc_desc[0].retval);
cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
HNS3_MAC_VLAN_ADD);
}
if (ret) {
hns3_err(hw, "add mac addr failed for cmd_send, ret =%d", ret);
return ret;
}
return cfg_status;
}
static int
hns3_remove_mac_vlan_tbl(struct hns3_hw *hw,
struct hns3_mac_vlan_tbl_entry_cmd *req)
{
struct hns3_cmd_desc desc;
uint8_t resp_code;
uint16_t retval;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_REMOVE, false);
memcpy(desc.data, req, sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
ret = hns3_cmd_send(hw, &desc, 1);
if (ret) {
hns3_err(hw, "del mac addr failed for cmd_send, ret =%d", ret);
return ret;
}
resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
retval = rte_le_to_cpu_16(desc.retval);
return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
HNS3_MAC_VLAN_REMOVE);
}
static int
hns3_add_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_mac_vlan_tbl_entry_cmd req;
struct hns3_pf *pf = &hns->pf;
struct hns3_cmd_desc desc;
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
uint16_t egress_port = 0;
uint8_t vf_id;
int ret;
/* check if mac addr is valid */
if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "Add unicast mac addr err! addr(%s) invalid",
mac_str);
return -EINVAL;
}
memset(&req, 0, sizeof(req));
/*
* In current version VF is not supported when PF is driven by DPDK
* driver, just need to configure parameters for PF vport.
*/
vf_id = HNS3_PF_FUNC_ID;
hns3_set_field(egress_port, HNS3_MAC_EPORT_VFID_M,
HNS3_MAC_EPORT_VFID_S, vf_id);
req.egress_port = rte_cpu_to_le_16(egress_port);
hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
/*
* Lookup the mac address in the mac_vlan table, and add
* it if the entry is inexistent. Repeated unicast entry
* is not allowed in the mac vlan table.
*/
ret = hns3_lookup_mac_vlan_tbl(hw, &req, &desc, false);
if (ret == -ENOENT) {
if (!hns3_is_umv_space_full(hw)) {
ret = hns3_add_mac_vlan_tbl(hw, &req, NULL);
if (!ret)
hns3_update_umv_space(hw, false);
return ret;
}
hns3_err(hw, "UC MAC table full(%u)", pf->used_umv_size);
return -ENOSPC;
}
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr);
/* check if we just hit the duplicate */
if (ret == 0) {
hns3_dbg(hw, "mac addr(%s) has been in the MAC table", mac_str);
return 0;
}
hns3_err(hw, "PF failed to add unicast entry(%s) in the MAC table",
mac_str);
return ret;
}
static int
hns3_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
{
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
struct rte_ether_addr *addr;
int ret;
int i;
for (i = 0; i < hw->mc_addrs_num; i++) {
addr = &hw->mc_addrs[i];
/* Check if there are duplicate addresses */
if (rte_is_same_ether_addr(addr, mac_addr)) {
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
addr);
hns3_err(hw, "failed to add mc mac addr, same addrs"
"(%s) is added by the set_mc_mac_addr_list "
"API", mac_str);
return -EINVAL;
}
}
ret = hns3_add_mc_addr(hw, mac_addr);
if (ret) {
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
mac_str, ret);
}
return ret;
}
static int
hns3_remove_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
{
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
int ret;
ret = hns3_remove_mc_addr(hw, mac_addr);
if (ret) {
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "failed to remove mc mac addr(%s), ret = %d",
mac_str, ret);
}
return ret;
}
static int
hns3_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
uint32_t idx, __rte_unused uint32_t pool)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
int ret;
rte_spinlock_lock(&hw->lock);
/*
* In hns3 network engine adding UC and MC mac address with different
* commands with firmware. We need to determine whether the input
* address is a UC or a MC address to call different commands.
* By the way, it is recommended calling the API function named
* rte_eth_dev_set_mc_addr_list to set the MC mac address, because
* using the rte_eth_dev_mac_addr_add API function to set MC mac address
* may affect the specifications of UC mac addresses.
*/
if (rte_is_multicast_ether_addr(mac_addr))
ret = hns3_add_mc_addr_common(hw, mac_addr);
else
ret = hns3_add_uc_addr_common(hw, mac_addr);
if (ret) {
rte_spinlock_unlock(&hw->lock);
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
ret);
return ret;
}
if (idx == 0)
hw->mac.default_addr_setted = true;
rte_spinlock_unlock(&hw->lock);
return ret;
}
static int
hns3_remove_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
{
struct hns3_mac_vlan_tbl_entry_cmd req;
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
int ret;
/* check if mac addr is valid */
if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "remove unicast mac addr err! addr(%s) invalid",
mac_str);
return -EINVAL;
}
memset(&req, 0, sizeof(req));
hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
ret = hns3_remove_mac_vlan_tbl(hw, &req);
if (ret == -ENOENT) /* mac addr isn't existent in the mac vlan table. */
return 0;
else if (ret == 0)
hns3_update_umv_space(hw, true);
return ret;
}
static void
hns3_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* index will be checked by upper level rte interface */
struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
int ret;
rte_spinlock_lock(&hw->lock);
if (rte_is_multicast_ether_addr(mac_addr))
ret = hns3_remove_mc_addr_common(hw, mac_addr);
else
ret = hns3_remove_uc_addr_common(hw, mac_addr);
rte_spinlock_unlock(&hw->lock);
if (ret) {
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "failed to remove mac addr(%s), ret = %d", mac_str,
ret);
}
}
static int
hns3_set_default_mac_addr(struct rte_eth_dev *dev,
struct rte_ether_addr *mac_addr)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_ether_addr *oaddr;
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
bool default_addr_setted;
bool rm_succes = false;
int ret, ret_val;
/*
* It has been guaranteed that input parameter named mac_addr is valid
* address in the rte layer of DPDK framework.
*/
oaddr = (struct rte_ether_addr *)hw->mac.mac_addr;
default_addr_setted = hw->mac.default_addr_setted;
if (default_addr_setted && !!rte_is_same_ether_addr(mac_addr, oaddr))
return 0;
rte_spinlock_lock(&hw->lock);
if (default_addr_setted) {
ret = hns3_remove_uc_addr_common(hw, oaddr);
if (ret) {
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
oaddr);
hns3_warn(hw, "Remove old uc mac address(%s) fail: %d",
mac_str, ret);
rm_succes = false;
} else
rm_succes = true;
}
ret = hns3_add_uc_addr_common(hw, mac_addr);
if (ret) {
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "Failed to set mac addr(%s): %d", mac_str, ret);
goto err_add_uc_addr;
}
ret = hns3_pause_addr_cfg(hw, mac_addr->addr_bytes);
if (ret) {
hns3_err(hw, "Failed to configure mac pause address: %d", ret);
goto err_pause_addr_cfg;
}
rte_ether_addr_copy(mac_addr,
(struct rte_ether_addr *)hw->mac.mac_addr);
hw->mac.default_addr_setted = true;
rte_spinlock_unlock(&hw->lock);
return 0;
err_pause_addr_cfg:
ret_val = hns3_remove_uc_addr_common(hw, mac_addr);
if (ret_val) {
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_warn(hw,
"Failed to roll back to del setted mac addr(%s): %d",
mac_str, ret_val);
}
err_add_uc_addr:
if (rm_succes) {
ret_val = hns3_add_uc_addr_common(hw, oaddr);
if (ret_val) {
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
oaddr);
hns3_warn(hw,
"Failed to restore old uc mac addr(%s): %d",
mac_str, ret_val);
hw->mac.default_addr_setted = false;
}
}
rte_spinlock_unlock(&hw->lock);
return ret;
}
static int
hns3_configure_all_mac_addr(struct hns3_adapter *hns, bool del)
{
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
struct hns3_hw *hw = &hns->hw;
struct rte_ether_addr *addr;
int err = 0;
int ret;
int i;
for (i = 0; i < HNS3_UC_MACADDR_NUM; i++) {
addr = &hw->data->mac_addrs[i];
if (rte_is_zero_ether_addr(addr))
continue;
if (rte_is_multicast_ether_addr(addr))
ret = del ? hns3_remove_mc_addr(hw, addr) :
hns3_add_mc_addr(hw, addr);
else
ret = del ? hns3_remove_uc_addr_common(hw, addr) :
hns3_add_uc_addr_common(hw, addr);
if (ret) {
err = ret;
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
addr);
hns3_err(hw, "failed to %s mac addr(%s) index:%d "
"ret = %d.", del ? "remove" : "restore",
mac_str, i, ret);
}
}
return err;
}
static void
hns3_update_desc_vfid(struct hns3_cmd_desc *desc, uint8_t vfid, bool clr)
{
#define HNS3_VF_NUM_IN_FIRST_DESC 192
uint8_t word_num;
uint8_t bit_num;
if (vfid < HNS3_VF_NUM_IN_FIRST_DESC) {
word_num = vfid / 32;
bit_num = vfid % 32;
if (clr)
desc[1].data[word_num] &=
rte_cpu_to_le_32(~(1UL << bit_num));
else
desc[1].data[word_num] |=
rte_cpu_to_le_32(1UL << bit_num);
} else {
word_num = (vfid - HNS3_VF_NUM_IN_FIRST_DESC) / 32;
bit_num = vfid % 32;
if (clr)
desc[2].data[word_num] &=
rte_cpu_to_le_32(~(1UL << bit_num));
else
desc[2].data[word_num] |=
rte_cpu_to_le_32(1UL << bit_num);
}
}
static int
hns3_add_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
{
struct hns3_mac_vlan_tbl_entry_cmd req;
struct hns3_cmd_desc desc[3];
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
uint8_t vf_id;
int ret;
/* Check if mac addr is valid */
if (!rte_is_multicast_ether_addr(mac_addr)) {
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "failed to add mc mac addr, addr(%s) invalid",
mac_str);
return -EINVAL;
}
memset(&req, 0, sizeof(req));
hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
if (ret) {
/* This mac addr do not exist, add new entry for it */
memset(desc[0].data, 0, sizeof(desc[0].data));
memset(desc[1].data, 0, sizeof(desc[0].data));
memset(desc[2].data, 0, sizeof(desc[0].data));
}
/*
* In current version VF is not supported when PF is driven by DPDK
* driver, just need to configure parameters for PF vport.
*/
vf_id = HNS3_PF_FUNC_ID;
hns3_update_desc_vfid(desc, vf_id, false);
ret = hns3_add_mac_vlan_tbl(hw, &req, desc);
if (ret) {
if (ret == -ENOSPC)
hns3_err(hw, "mc mac vlan table is full");
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "failed to add mc mac addr(%s): %d", mac_str, ret);
}
return ret;
}
static int
hns3_remove_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
{
struct hns3_mac_vlan_tbl_entry_cmd req;
struct hns3_cmd_desc desc[3];
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
uint8_t vf_id;
int ret;
/* Check if mac addr is valid */
if (!rte_is_multicast_ether_addr(mac_addr)) {
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "Failed to rm mc mac addr, addr(%s) invalid",
mac_str);
return -EINVAL;
}
memset(&req, 0, sizeof(req));
hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
if (ret == 0) {
/*
* This mac addr exist, remove this handle's VFID for it.
* In current version VF is not supported when PF is driven by
* DPDK driver, just need to configure parameters for PF vport.
*/
vf_id = HNS3_PF_FUNC_ID;
hns3_update_desc_vfid(desc, vf_id, true);
/* All the vfid is zero, so need to delete this entry */
ret = hns3_remove_mac_vlan_tbl(hw, &req);
} else if (ret == -ENOENT) {
/* This mac addr doesn't exist. */
return 0;
}
if (ret) {
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "Failed to rm mc mac addr(%s): %d", mac_str, ret);
}
return ret;
}
static int
hns3_set_mc_addr_chk_param(struct hns3_hw *hw,
struct rte_ether_addr *mc_addr_set,
uint32_t nb_mc_addr)
{
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
struct rte_ether_addr *addr;
uint32_t i;
uint32_t j;
if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%d) "
"invalid. valid range: 0~%d",
nb_mc_addr, HNS3_MC_MACADDR_NUM);
return -EINVAL;
}
/* Check if input mac addresses are valid */
for (i = 0; i < nb_mc_addr; i++) {
addr = &mc_addr_set[i];
if (!rte_is_multicast_ether_addr(addr)) {
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
addr);
hns3_err(hw,
"failed to set mc mac addr, addr(%s) invalid.",
mac_str);
return -EINVAL;
}
/* Check if there are duplicate addresses */
for (j = i + 1; j < nb_mc_addr; j++) {
if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
rte_ether_format_addr(mac_str,
RTE_ETHER_ADDR_FMT_SIZE,
addr);
hns3_err(hw, "failed to set mc mac addr, "
"addrs invalid. two same addrs(%s).",
mac_str);
return -EINVAL;
}
}
/*
* Check if there are duplicate addresses between mac_addrs
* and mc_addr_set
*/
for (j = 0; j < HNS3_UC_MACADDR_NUM; j++) {
if (rte_is_same_ether_addr(addr,
&hw->data->mac_addrs[j])) {
rte_ether_format_addr(mac_str,
RTE_ETHER_ADDR_FMT_SIZE,
addr);
hns3_err(hw, "failed to set mc mac addr, "
"addrs invalid. addrs(%s) has already "
"configured in mac_addr add API",
mac_str);
return -EINVAL;
}
}
}
return 0;
}
static void
hns3_set_mc_addr_calc_addr(struct hns3_hw *hw,
struct rte_ether_addr *mc_addr_set,
int mc_addr_num,
struct rte_ether_addr *reserved_addr_list,
int *reserved_addr_num,
struct rte_ether_addr *add_addr_list,
int *add_addr_num,
struct rte_ether_addr *rm_addr_list,
int *rm_addr_num)
{
struct rte_ether_addr *addr;
int current_addr_num;
int reserved_num = 0;
int add_num = 0;
int rm_num = 0;
int num;
int i;
int j;
bool same_addr;
/* Calculate the mc mac address list that should be removed */
current_addr_num = hw->mc_addrs_num;
for (i = 0; i < current_addr_num; i++) {
addr = &hw->mc_addrs[i];
same_addr = false;
for (j = 0; j < mc_addr_num; j++) {
if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
same_addr = true;
break;
}
}
if (!same_addr) {
rte_ether_addr_copy(addr, &rm_addr_list[rm_num]);
rm_num++;
} else {
rte_ether_addr_copy(addr,
&reserved_addr_list[reserved_num]);
reserved_num++;
}
}
/* Calculate the mc mac address list that should be added */
for (i = 0; i < mc_addr_num; i++) {
addr = &mc_addr_set[i];
same_addr = false;
for (j = 0; j < current_addr_num; j++) {
if (rte_is_same_ether_addr(addr, &hw->mc_addrs[j])) {
same_addr = true;
break;
}
}
if (!same_addr) {
rte_ether_addr_copy(addr, &add_addr_list[add_num]);
add_num++;
}
}
/* Reorder the mc mac address list maintained by driver */
for (i = 0; i < reserved_num; i++)
rte_ether_addr_copy(&reserved_addr_list[i], &hw->mc_addrs[i]);
for (i = 0; i < rm_num; i++) {
num = reserved_num + i;
rte_ether_addr_copy(&rm_addr_list[i], &hw->mc_addrs[num]);
}
*reserved_addr_num = reserved_num;
*add_addr_num = add_num;
*rm_addr_num = rm_num;
}
static int
hns3_set_mc_mac_addr_list(struct rte_eth_dev *dev,
struct rte_ether_addr *mc_addr_set,
uint32_t nb_mc_addr)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_ether_addr reserved_addr_list[HNS3_MC_MACADDR_NUM];
struct rte_ether_addr add_addr_list[HNS3_MC_MACADDR_NUM];
struct rte_ether_addr rm_addr_list[HNS3_MC_MACADDR_NUM];
struct rte_ether_addr *addr;
int reserved_addr_num;
int add_addr_num;
int rm_addr_num;
int mc_addr_num;
int num;
int ret;
int i;
/* Check if input parameters are valid */
ret = hns3_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
if (ret)
return ret;
rte_spinlock_lock(&hw->lock);
/*
* Calculate the mc mac address lists those should be removed and be
* added, Reorder the mc mac address list maintained by driver.
*/
mc_addr_num = (int)nb_mc_addr;
hns3_set_mc_addr_calc_addr(hw, mc_addr_set, mc_addr_num,
reserved_addr_list, &reserved_addr_num,
add_addr_list, &add_addr_num,
rm_addr_list, &rm_addr_num);
/* Remove mc mac addresses */
for (i = 0; i < rm_addr_num; i++) {
num = rm_addr_num - i - 1;
addr = &rm_addr_list[num];
ret = hns3_remove_mc_addr(hw, addr);
if (ret) {
rte_spinlock_unlock(&hw->lock);
return ret;
}
hw->mc_addrs_num--;
}
/* Add mc mac addresses */
for (i = 0; i < add_addr_num; i++) {
addr = &add_addr_list[i];
ret = hns3_add_mc_addr(hw, addr);
if (ret) {
rte_spinlock_unlock(&hw->lock);
return ret;
}
num = reserved_addr_num + i;
rte_ether_addr_copy(addr, &hw->mc_addrs[num]);
hw->mc_addrs_num++;
}
rte_spinlock_unlock(&hw->lock);
return 0;
}
static int
hns3_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
{
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
struct hns3_hw *hw = &hns->hw;
struct rte_ether_addr *addr;
int err = 0;
int ret;
int i;
for (i = 0; i < hw->mc_addrs_num; i++) {
addr = &hw->mc_addrs[i];
if (!rte_is_multicast_ether_addr(addr))
continue;
if (del)
ret = hns3_remove_mc_addr(hw, addr);
else
ret = hns3_add_mc_addr(hw, addr);
if (ret) {
err = ret;
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
addr);
hns3_dbg(hw, "%s mc mac addr: %s failed for pf: ret = %d",
del ? "Remove" : "Restore", mac_str, ret);
}
}
return err;
}
static int
hns3_check_mq_mode(struct rte_eth_dev *dev)
{
enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct rte_eth_dcb_rx_conf *dcb_rx_conf;
struct rte_eth_dcb_tx_conf *dcb_tx_conf;
uint8_t num_tc;
int max_tc = 0;
int i;
dcb_rx_conf = &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
dcb_tx_conf = &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB_RSS) {
hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB_RSS is not supported. "
"rx_mq_mode = %d", rx_mq_mode);
return -EINVAL;
}
if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB ||
tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) {
hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB and ETH_MQ_TX_VMDQ_DCB "
"is not supported. rx_mq_mode = %d, tx_mq_mode = %d",
rx_mq_mode, tx_mq_mode);
return -EINVAL;
}
if (rx_mq_mode == ETH_MQ_RX_DCB_RSS) {
if (dcb_rx_conf->nb_tcs > pf->tc_max) {
hns3_err(hw, "nb_tcs(%u) > max_tc(%u) driver supported.",
dcb_rx_conf->nb_tcs, pf->tc_max);
return -EINVAL;
}
if (!(dcb_rx_conf->nb_tcs == HNS3_4_TCS ||
dcb_rx_conf->nb_tcs == HNS3_8_TCS)) {
hns3_err(hw, "on ETH_MQ_RX_DCB_RSS mode, "
"nb_tcs(%d) != %d or %d in rx direction.",
dcb_rx_conf->nb_tcs, HNS3_4_TCS, HNS3_8_TCS);
return -EINVAL;
}
if (dcb_rx_conf->nb_tcs != dcb_tx_conf->nb_tcs) {
hns3_err(hw, "num_tcs(%d) of tx is not equal to rx(%d)",
dcb_tx_conf->nb_tcs, dcb_rx_conf->nb_tcs);
return -EINVAL;
}
for (i = 0; i < HNS3_MAX_USER_PRIO; i++) {
if (dcb_rx_conf->dcb_tc[i] != dcb_tx_conf->dcb_tc[i]) {
hns3_err(hw, "dcb_tc[%d] = %d in rx direction, "
"is not equal to one in tx direction.",
i, dcb_rx_conf->dcb_tc[i]);
return -EINVAL;
}
if (dcb_rx_conf->dcb_tc[i] > max_tc)
max_tc = dcb_rx_conf->dcb_tc[i];
}
num_tc = max_tc + 1;
if (num_tc > dcb_rx_conf->nb_tcs) {
hns3_err(hw, "max num_tc(%u) mapped > nb_tcs(%u)",
num_tc, dcb_rx_conf->nb_tcs);
return -EINVAL;
}
}
return 0;
}
static int
hns3_check_dcb_cfg(struct rte_eth_dev *dev)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (!hns3_dev_dcb_supported(hw)) {
hns3_err(hw, "this port does not support dcb configurations.");
return -EOPNOTSUPP;
}
if (hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE) {
hns3_err(hw, "MAC pause enabled, cannot config dcb info.");
return -EOPNOTSUPP;
}
/* Check multiple queue mode */
return hns3_check_mq_mode(dev);
}
static int
hns3_bind_ring_with_vector(struct hns3_hw *hw, uint8_t vector_id, bool mmap,
enum hns3_ring_type queue_type, uint16_t queue_id)
{
struct hns3_cmd_desc desc;
struct hns3_ctrl_vector_chain_cmd *req =
(struct hns3_ctrl_vector_chain_cmd *)desc.data;
enum hns3_cmd_status status;
enum hns3_opcode_type op;
uint16_t tqp_type_and_id = 0;
const char *op_str;
uint16_t type;
uint16_t gl;
op = mmap ? HNS3_OPC_ADD_RING_TO_VECTOR : HNS3_OPC_DEL_RING_TO_VECTOR;
hns3_cmd_setup_basic_desc(&desc, op, false);
req->int_vector_id = vector_id;
if (queue_type == HNS3_RING_TYPE_RX)
gl = HNS3_RING_GL_RX;
else
gl = HNS3_RING_GL_TX;
type = queue_type;
hns3_set_field(tqp_type_and_id, HNS3_INT_TYPE_M, HNS3_INT_TYPE_S,
type);
hns3_set_field(tqp_type_and_id, HNS3_TQP_ID_M, HNS3_TQP_ID_S, queue_id);
hns3_set_field(tqp_type_and_id, HNS3_INT_GL_IDX_M, HNS3_INT_GL_IDX_S,
gl);
req->tqp_type_and_id[0] = rte_cpu_to_le_16(tqp_type_and_id);
req->int_cause_num = 1;
op_str = mmap ? "Map" : "Unmap";
status = hns3_cmd_send(hw, &desc, 1);
if (status) {
hns3_err(hw, "%s TQP %d fail, vector_id is %d, status is %d.",
op_str, queue_id, req->int_vector_id, status);
return status;
}
return 0;
}
static int
hns3_init_ring_with_vector(struct hns3_hw *hw)
{
uint8_t vec;
int ret;
int i;
/*
* In hns3 network engine, vector 0 is always the misc interrupt of this
* function, vector 1~N can be used respectively for the queues of the
* function. Tx and Rx queues with the same number share the interrupt
* vector. In the initialization clearing the all hardware mapping
* relationship configurations between queues and interrupt vectors is
* needed, so some error caused by the residual configurations, such as
* the unexpected Tx interrupt, can be avoid. Because of the hardware
* constraints in hns3 hardware engine, we have to implement clearing
* the mapping relationship configurations by binding all queues to the
* last interrupt vector and reserving the last interrupt vector. This
* method results in a decrease of the maximum queues when upper
* applications call the rte_eth_dev_configure API function to enable
* Rx interrupt.
*/
vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
/* vec - 1: the last interrupt is reserved */
hw->intr_tqps_num = vec > hw->tqps_num ? hw->tqps_num : vec - 1;
for (i = 0; i < hw->intr_tqps_num; i++) {
/*
* Set gap limiter and rate limiter configuration of queue's
* interrupt.
*/
hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
HNS3_TQP_INTR_GL_DEFAULT);
hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
HNS3_TQP_INTR_GL_DEFAULT);
hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
ret = hns3_bind_ring_with_vector(hw, vec, false,
HNS3_RING_TYPE_TX, i);
if (ret) {
PMD_INIT_LOG(ERR, "PF fail to unbind TX ring(%d) with "
"vector: %d, ret=%d", i, vec, ret);
return ret;
}
ret = hns3_bind_ring_with_vector(hw, vec, false,
HNS3_RING_TYPE_RX, i);
if (ret) {
PMD_INIT_LOG(ERR, "PF fail to unbind RX ring(%d) with "
"vector: %d, ret=%d", i, vec, ret);
return ret;
}
}
return 0;
}
static int
hns3_dev_configure(struct rte_eth_dev *dev)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct rte_eth_conf *conf = &dev->data->dev_conf;
enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
struct hns3_hw *hw = &hns->hw;
struct hns3_rss_conf *rss_cfg = &hw->rss_info;
uint16_t nb_rx_q = dev->data->nb_rx_queues;
uint16_t nb_tx_q = dev->data->nb_tx_queues;
struct rte_eth_rss_conf rss_conf;
uint16_t mtu;
bool gro_en;
int ret;
/*
* Hardware does not support individually enable/disable/reset the Tx or
* Rx queue in hns3 network engine. Driver must enable/disable/reset Tx
* and Rx queues at the same time. When the numbers of Tx queues
* allocated by upper applications are not equal to the numbers of Rx
* queues, driver needs to setup fake Tx or Rx queues to adjust numbers
* of Tx/Rx queues. otherwise, network engine can not work as usual. But
* these fake queues are imperceptible, and can not be used by upper
* applications.
*/
ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
if (ret) {
hns3_err(hw, "Failed to set rx/tx fake queues: %d", ret);
return ret;
}
hw->adapter_state = HNS3_NIC_CONFIGURING;
if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
hns3_err(hw, "setting link speed/duplex not supported");
ret = -EINVAL;
goto cfg_err;
}
if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG) {
ret = hns3_check_dcb_cfg(dev);
if (ret)
goto cfg_err;
}
/* When RSS is not configured, redirect the packet queue 0 */
if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
rss_conf = conf->rx_adv_conf.rss_conf;
if (rss_conf.rss_key == NULL) {
rss_conf.rss_key = rss_cfg->key;
rss_conf.rss_key_len = HNS3_RSS_KEY_SIZE;
}
ret = hns3_dev_rss_hash_update(dev, &rss_conf);
if (ret)
goto cfg_err;
}
/*
* If jumbo frames are enabled, MTU needs to be refreshed
* according to the maximum RX packet length.
*/
if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
/*
* Security of max_rx_pkt_len is guaranteed in dpdk frame.
* Maximum value of max_rx_pkt_len is HNS3_MAX_FRAME_LEN, so it
* can safely assign to "uint16_t" type variable.
*/
mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(conf->rxmode.max_rx_pkt_len);
ret = hns3_dev_mtu_set(dev, mtu);
if (ret)
goto cfg_err;
dev->data->mtu = mtu;
}
ret = hns3_dev_configure_vlan(dev);
if (ret)
goto cfg_err;
/* config hardware GRO */
gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
ret = hns3_config_gro(hw, gro_en);
if (ret)
goto cfg_err;
hw->adapter_state = HNS3_NIC_CONFIGURED;
return 0;
cfg_err:
(void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
hw->adapter_state = HNS3_NIC_INITIALIZED;
return ret;
}
static int
hns3_set_mac_mtu(struct hns3_hw *hw, uint16_t new_mps)
{
struct hns3_config_max_frm_size_cmd *req;
struct hns3_cmd_desc desc;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAX_FRM_SIZE, false);
req = (struct hns3_config_max_frm_size_cmd *)desc.data;
req->max_frm_size = rte_cpu_to_le_16(new_mps);
req->min_frm_size = RTE_ETHER_MIN_LEN;
return hns3_cmd_send(hw, &desc, 1);
}
static int
hns3_config_mtu(struct hns3_hw *hw, uint16_t mps)
{
int ret;
ret = hns3_set_mac_mtu(hw, mps);
if (ret) {
hns3_err(hw, "Failed to set mtu, ret = %d", ret);
return ret;
}
ret = hns3_buffer_alloc(hw);
if (ret)
hns3_err(hw, "Failed to allocate buffer, ret = %d", ret);
return ret;
}
static int
hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
{
struct hns3_adapter *hns = dev->data->dev_private;
uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
struct hns3_hw *hw = &hns->hw;
bool is_jumbo_frame;
int ret;
if (dev->data->dev_started) {
hns3_err(hw, "Failed to set mtu, port %u must be stopped "
"before configuration", dev->data->port_id);
return -EBUSY;
}
rte_spinlock_lock(&hw->lock);
is_jumbo_frame = frame_size > RTE_ETHER_MAX_LEN ? true : false;
frame_size = RTE_MAX(frame_size, HNS3_DEFAULT_FRAME_LEN);
/*
* Maximum value of frame_size is HNS3_MAX_FRAME_LEN, so it can safely
* assign to "uint16_t" type variable.
*/
ret = hns3_config_mtu(hw, (uint16_t)frame_size);
if (ret) {
rte_spinlock_unlock(&hw->lock);
hns3_err(hw, "Failed to set mtu, port %u mtu %u: %d",
dev->data->port_id, mtu, ret);
return ret;
}
hns->pf.mps = (uint16_t)frame_size;
if (is_jumbo_frame)
dev->data->dev_conf.rxmode.offloads |=
DEV_RX_OFFLOAD_JUMBO_FRAME;
else
dev->data->dev_conf.rxmode.offloads &=
~DEV_RX_OFFLOAD_JUMBO_FRAME;
dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
rte_spinlock_unlock(&hw->lock);
return 0;
}
static int
hns3_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
{
struct hns3_adapter *hns = eth_dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
uint16_t queue_num = hw->tqps_num;
/*
* In interrupt mode, 'max_rx_queues' is set based on the number of
* MSI-X interrupt resources of the hardware.
*/
if (hw->data->dev_conf.intr_conf.rxq == 1)
queue_num = hw->intr_tqps_num;
info->max_rx_queues = queue_num;
info->max_tx_queues = hw->tqps_num;
info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
info->max_mac_addrs = HNS3_UC_MACADDR_NUM;
info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
DEV_RX_OFFLOAD_TCP_CKSUM |
DEV_RX_OFFLOAD_UDP_CKSUM |
DEV_RX_OFFLOAD_SCTP_CKSUM |
DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
DEV_RX_OFFLOAD_KEEP_CRC |
DEV_RX_OFFLOAD_SCATTER |
DEV_RX_OFFLOAD_VLAN_STRIP |
DEV_RX_OFFLOAD_VLAN_FILTER |
DEV_RX_OFFLOAD_JUMBO_FRAME |
DEV_RX_OFFLOAD_RSS_HASH |
DEV_RX_OFFLOAD_TCP_LRO);
info->tx_queue_offload_capa = DEV_TX_OFFLOAD_MBUF_FAST_FREE;
info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM |
DEV_TX_OFFLOAD_UDP_CKSUM |
DEV_TX_OFFLOAD_SCTP_CKSUM |
DEV_TX_OFFLOAD_MULTI_SEGS |
DEV_TX_OFFLOAD_TCP_TSO |
DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
DEV_TX_OFFLOAD_GRE_TNL_TSO |
DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
info->tx_queue_offload_capa |
hns3_txvlan_cap_get(hw));
info->rx_desc_lim = (struct rte_eth_desc_lim) {
.nb_max = HNS3_MAX_RING_DESC,
.nb_min = HNS3_MIN_RING_DESC,
.nb_align = HNS3_ALIGN_RING_DESC,
};
info->tx_desc_lim = (struct rte_eth_desc_lim) {
.nb_max = HNS3_MAX_RING_DESC,
.nb_min = HNS3_MIN_RING_DESC,
.nb_align = HNS3_ALIGN_RING_DESC,
.nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
.nb_mtu_seg_max = HNS3_MAX_NON_TSO_BD_PER_PKT,
};
info->vmdq_queue_num = 0;
info->reta_size = HNS3_RSS_IND_TBL_SIZE;
info->hash_key_size = HNS3_RSS_KEY_SIZE;
info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
info->default_rxportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
info->default_txportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
info->default_rxportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
info->default_txportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
return 0;
}
static int
hns3_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
size_t fw_size)
{
struct hns3_adapter *hns = eth_dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
uint32_t version = hw->fw_version;
int ret;
ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
HNS3_FW_VERSION_BYTE3_S),
hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
HNS3_FW_VERSION_BYTE2_S),
hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
HNS3_FW_VERSION_BYTE1_S),
hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
HNS3_FW_VERSION_BYTE0_S));
ret += 1; /* add the size of '\0' */
if (fw_size < (uint32_t)ret)
return ret;
else
return 0;
}
static int
hns3_dev_link_update(struct rte_eth_dev *eth_dev,
__rte_unused int wait_to_complete)
{
struct hns3_adapter *hns = eth_dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
struct hns3_mac *mac = &hw->mac;
struct rte_eth_link new_link;
if (!hns3_is_reset_pending(hns)) {
hns3_update_speed_duplex(eth_dev);
hns3_update_link_status(hw);
}
memset(&new_link, 0, sizeof(new_link));
switch (mac->link_speed) {
case ETH_SPEED_NUM_10M:
case ETH_SPEED_NUM_100M:
case ETH_SPEED_NUM_1G:
case ETH_SPEED_NUM_10G:
case ETH_SPEED_NUM_25G:
case ETH_SPEED_NUM_40G:
case ETH_SPEED_NUM_50G:
case ETH_SPEED_NUM_100G:
case ETH_SPEED_NUM_200G:
new_link.link_speed = mac->link_speed;
break;
default:
new_link.link_speed = ETH_SPEED_NUM_100M;
break;
}
new_link.link_duplex = mac->link_duplex;
new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
new_link.link_autoneg =
!(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
return rte_eth_linkstatus_set(eth_dev, &new_link);
}
static int
hns3_parse_func_status(struct hns3_hw *hw, struct hns3_func_status_cmd *status)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
if (!(status->pf_state & HNS3_PF_STATE_DONE))
return -EINVAL;
pf->is_main_pf = (status->pf_state & HNS3_PF_STATE_MAIN) ? true : false;
return 0;
}
static int
hns3_query_function_status(struct hns3_hw *hw)
{
#define HNS3_QUERY_MAX_CNT 10
#define HNS3_QUERY_SLEEP_MSCOEND 1
struct hns3_func_status_cmd *req;
struct hns3_cmd_desc desc;
int timeout = 0;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_FUNC_STATUS, true);
req = (struct hns3_func_status_cmd *)desc.data;
do {
ret = hns3_cmd_send(hw, &desc, 1);
if (ret) {
PMD_INIT_LOG(ERR, "query function status failed %d",
ret);
return ret;
}
/* Check pf reset is done */
if (req->pf_state)
break;
rte_delay_ms(HNS3_QUERY_SLEEP_MSCOEND);
} while (timeout++ < HNS3_QUERY_MAX_CNT);
return hns3_parse_func_status(hw, req);
}
static int
hns3_query_pf_resource(struct hns3_hw *hw)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
struct hns3_pf_res_cmd *req;
struct hns3_cmd_desc desc;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_PF_RSRC, true);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret) {
PMD_INIT_LOG(ERR, "query pf resource failed %d", ret);
return ret;
}
req = (struct hns3_pf_res_cmd *)desc.data;
hw->total_tqps_num = rte_le_to_cpu_16(req->tqp_num);
pf->pkt_buf_size = rte_le_to_cpu_16(req->buf_size) << HNS3_BUF_UNIT_S;
hw->tqps_num = RTE_MIN(hw->total_tqps_num, HNS3_MAX_TQP_NUM_PER_FUNC);
pf->func_num = rte_le_to_cpu_16(req->pf_own_fun_number);
if (req->tx_buf_size)
pf->tx_buf_size =
rte_le_to_cpu_16(req->tx_buf_size) << HNS3_BUF_UNIT_S;
else
pf->tx_buf_size = HNS3_DEFAULT_TX_BUF;
pf->tx_buf_size = roundup(pf->tx_buf_size, HNS3_BUF_SIZE_UNIT);
if (req->dv_buf_size)
pf->dv_buf_size =
rte_le_to_cpu_16(req->dv_buf_size) << HNS3_BUF_UNIT_S;
else
pf->dv_buf_size = HNS3_DEFAULT_DV;
pf->dv_buf_size = roundup(pf->dv_buf_size, HNS3_BUF_SIZE_UNIT);
hw->num_msi =
hns3_get_field(rte_le_to_cpu_16(req->pf_intr_vector_number),
HNS3_VEC_NUM_M, HNS3_VEC_NUM_S);
return 0;
}
static void
hns3_parse_cfg(struct hns3_cfg *cfg, struct hns3_cmd_desc *desc)
{
struct hns3_cfg_param_cmd *req;
uint64_t mac_addr_tmp_high;
uint64_t mac_addr_tmp;
uint32_t i;
req = (struct hns3_cfg_param_cmd *)desc[0].data;
/* get the configuration */
cfg->vmdq_vport_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
HNS3_CFG_VMDQ_M, HNS3_CFG_VMDQ_S);
cfg->tc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
HNS3_CFG_TC_NUM_M, HNS3_CFG_TC_NUM_S);
cfg->tqp_desc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
HNS3_CFG_TQP_DESC_N_M,
HNS3_CFG_TQP_DESC_N_S);
cfg->phy_addr = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
HNS3_CFG_PHY_ADDR_M,
HNS3_CFG_PHY_ADDR_S);
cfg->media_type = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
HNS3_CFG_MEDIA_TP_M,
HNS3_CFG_MEDIA_TP_S);
cfg->rx_buf_len = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
HNS3_CFG_RX_BUF_LEN_M,
HNS3_CFG_RX_BUF_LEN_S);
/* get mac address */
mac_addr_tmp = rte_le_to_cpu_32(req->param[2]);
mac_addr_tmp_high = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
HNS3_CFG_MAC_ADDR_H_M,
HNS3_CFG_MAC_ADDR_H_S);
mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1;
cfg->default_speed = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
HNS3_CFG_DEFAULT_SPEED_M,
HNS3_CFG_DEFAULT_SPEED_S);
cfg->rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
HNS3_CFG_RSS_SIZE_M,
HNS3_CFG_RSS_SIZE_S);
for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff;
req = (struct hns3_cfg_param_cmd *)desc[1].data;
cfg->numa_node_map = rte_le_to_cpu_32(req->param[0]);
cfg->speed_ability = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
HNS3_CFG_SPEED_ABILITY_M,
HNS3_CFG_SPEED_ABILITY_S);
cfg->umv_space = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
HNS3_CFG_UMV_TBL_SPACE_M,
HNS3_CFG_UMV_TBL_SPACE_S);
if (!cfg->umv_space)
cfg->umv_space = HNS3_DEFAULT_UMV_SPACE_PER_PF;
}
/* hns3_get_board_cfg: query the static parameter from NCL_config file in flash
* @hw: pointer to struct hns3_hw
* @hcfg: the config structure to be getted
*/
static int
hns3_get_board_cfg(struct hns3_hw *hw, struct hns3_cfg *hcfg)
{
struct hns3_cmd_desc desc[HNS3_PF_CFG_DESC_NUM];
struct hns3_cfg_param_cmd *req;
uint32_t offset;
uint32_t i;
int ret;
for (i = 0; i < HNS3_PF_CFG_DESC_NUM; i++) {
offset = 0;
req = (struct hns3_cfg_param_cmd *)desc[i].data;
hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_CFG_PARAM,
true);
hns3_set_field(offset, HNS3_CFG_OFFSET_M, HNS3_CFG_OFFSET_S,
i * HNS3_CFG_RD_LEN_BYTES);
/* Len should be divided by 4 when send to hardware */
hns3_set_field(offset, HNS3_CFG_RD_LEN_M, HNS3_CFG_RD_LEN_S,
HNS3_CFG_RD_LEN_BYTES / HNS3_CFG_RD_LEN_UNIT);
req->offset = rte_cpu_to_le_32(offset);
}
ret = hns3_cmd_send(hw, desc, HNS3_PF_CFG_DESC_NUM);
if (ret) {
PMD_INIT_LOG(ERR, "get config failed %d.", ret);
return ret;
}
hns3_parse_cfg(hcfg, desc);
return 0;
}
static int
hns3_parse_speed(int speed_cmd, uint32_t *speed)
{
switch (speed_cmd) {
case HNS3_CFG_SPEED_10M:
*speed = ETH_SPEED_NUM_10M;
break;
case HNS3_CFG_SPEED_100M:
*speed = ETH_SPEED_NUM_100M;
break;
case HNS3_CFG_SPEED_1G:
*speed = ETH_SPEED_NUM_1G;
break;
case HNS3_CFG_SPEED_10G:
*speed = ETH_SPEED_NUM_10G;
break;
case HNS3_CFG_SPEED_25G:
*speed = ETH_SPEED_NUM_25G;
break;
case HNS3_CFG_SPEED_40G:
*speed = ETH_SPEED_NUM_40G;
break;
case HNS3_CFG_SPEED_50G:
*speed = ETH_SPEED_NUM_50G;
break;
case HNS3_CFG_SPEED_100G:
*speed = ETH_SPEED_NUM_100G;
break;
case HNS3_CFG_SPEED_200G:
*speed = ETH_SPEED_NUM_200G;
break;
default:
return -EINVAL;
}
return 0;
}
static int
hns3_get_capability(struct hns3_hw *hw)
{
struct rte_pci_device *pci_dev;
struct rte_eth_dev *eth_dev;
uint16_t device_id;
uint8_t revision;
int ret;
eth_dev = &rte_eth_devices[hw->data->port_id];
pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
device_id = pci_dev->id.device_id;
if (device_id == HNS3_DEV_ID_25GE_RDMA ||
device_id == HNS3_DEV_ID_50GE_RDMA ||
device_id == HNS3_DEV_ID_100G_RDMA_MACSEC ||
device_id == HNS3_DEV_ID_200G_RDMA)
hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_DCB_B, 1);
/* Get PCI revision id */
ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
HNS3_PCI_REVISION_ID);
if (ret != HNS3_PCI_REVISION_ID_LEN) {
PMD_INIT_LOG(ERR, "failed to read pci revision id: %d", ret);
return -EIO;
}
hw->revision = revision;
if (revision >= PCI_REVISION_ID_HIP09_A)
hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_COPPER_B, 1);
return 0;
}
static int
hns3_get_board_configuration(struct hns3_hw *hw)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
struct hns3_cfg cfg;
int ret;
ret = hns3_get_board_cfg(hw, &cfg);
if (ret) {
PMD_INIT_LOG(ERR, "get board config failed %d", ret);
return ret;
}
if (cfg.media_type == HNS3_MEDIA_TYPE_COPPER &&
!hns3_dev_copper_supported(hw)) {
PMD_INIT_LOG(ERR, "media type is copper, not supported.");
return -EOPNOTSUPP;
}
hw->mac.media_type = cfg.media_type;
hw->rss_size_max = cfg.rss_size_max;
hw->rss_dis_flag = false;
memcpy(hw->mac.mac_addr, cfg.mac_addr, RTE_ETHER_ADDR_LEN);
hw->mac.phy_addr = cfg.phy_addr;
hw->mac.default_addr_setted = false;
hw->num_tx_desc = cfg.tqp_desc_num;
hw->num_rx_desc = cfg.tqp_desc_num;
hw->dcb_info.num_pg = 1;
hw->dcb_info.hw_pfc_map = 0;
ret = hns3_parse_speed(cfg.default_speed, &hw->mac.link_speed);
if (ret) {
PMD_INIT_LOG(ERR, "Get wrong speed %d, ret = %d",
cfg.default_speed, ret);
return ret;
}
pf->tc_max = cfg.tc_num;
if (pf->tc_max > HNS3_MAX_TC_NUM || pf->tc_max < 1) {
PMD_INIT_LOG(WARNING,
"Get TC num(%u) from flash, set TC num to 1",
pf->tc_max);
pf->tc_max = 1;
}
/* Dev does not support DCB */
if (!hns3_dev_dcb_supported(hw)) {
pf->tc_max = 1;
pf->pfc_max = 0;
} else
pf->pfc_max = pf->tc_max;
hw->dcb_info.num_tc = 1;
hw->alloc_rss_size = RTE_MIN(hw->rss_size_max,
hw->tqps_num / hw->dcb_info.num_tc);
hns3_set_bit(hw->hw_tc_map, 0, 1);
pf->tx_sch_mode = HNS3_FLAG_TC_BASE_SCH_MODE;
pf->wanted_umv_size = cfg.umv_space;
return ret;
}
static int
hns3_get_configuration(struct hns3_hw *hw)
{
int ret;
ret = hns3_query_function_status(hw);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to query function status: %d.", ret);
return ret;
}
/* Get device capability */
ret = hns3_get_capability(hw);
if (ret) {
PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
return ret;
}
/* Get pf resource */
ret = hns3_query_pf_resource(hw);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to query pf resource: %d", ret);
return ret;
}
ret = hns3_get_board_configuration(hw);
if (ret)
PMD_INIT_LOG(ERR, "Failed to get board configuration: %d", ret);
return ret;
}
static int
hns3_map_tqps_to_func(struct hns3_hw *hw, uint16_t func_id, uint16_t tqp_pid,
uint16_t tqp_vid, bool is_pf)
{
struct hns3_tqp_map_cmd *req;
struct hns3_cmd_desc desc;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SET_TQP_MAP, false);
req = (struct hns3_tqp_map_cmd *)desc.data;
req->tqp_id = rte_cpu_to_le_16(tqp_pid);
req->tqp_vf = func_id;
req->tqp_flag = 1 << HNS3_TQP_MAP_EN_B;
if (!is_pf)
req->tqp_flag |= (1 << HNS3_TQP_MAP_TYPE_B);
req->tqp_vid = rte_cpu_to_le_16(tqp_vid);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
PMD_INIT_LOG(ERR, "TQP map failed %d", ret);
return ret;
}
static int
hns3_map_tqp(struct hns3_hw *hw)
{
uint16_t tqps_num = hw->total_tqps_num;
uint16_t func_id;
uint16_t tqp_id;
bool is_pf;
int num;
int ret;
int i;
/*
* In current version VF is not supported when PF is driven by DPDK
* driver, so we allocate tqps to PF as much as possible.
*/
tqp_id = 0;
num = DIV_ROUND_UP(hw->total_tqps_num, HNS3_MAX_TQP_NUM_PER_FUNC);
for (func_id = HNS3_PF_FUNC_ID; func_id < num; func_id++) {
is_pf = func_id == HNS3_PF_FUNC_ID ? true : false;
for (i = 0;
i < HNS3_MAX_TQP_NUM_PER_FUNC && tqp_id < tqps_num; i++) {
ret = hns3_map_tqps_to_func(hw, func_id, tqp_id++, i,
is_pf);
if (ret)
return ret;
}
}
return 0;
}
static int
hns3_cfg_mac_speed_dup_hw(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
{
struct hns3_config_mac_speed_dup_cmd *req;
struct hns3_cmd_desc desc;
int ret;
req = (struct hns3_config_mac_speed_dup_cmd *)desc.data;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_SPEED_DUP, false);
hns3_set_bit(req->speed_dup, HNS3_CFG_DUPLEX_B, !!duplex ? 1 : 0);
switch (speed) {
case ETH_SPEED_NUM_10M:
hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10M);
break;
case ETH_SPEED_NUM_100M:
hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100M);
break;
case ETH_SPEED_NUM_1G:
hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_1G);
break;
case ETH_SPEED_NUM_10G:
hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10G);
break;
case ETH_SPEED_NUM_25G:
hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_25G);
break;
case ETH_SPEED_NUM_40G:
hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_40G);
break;
case ETH_SPEED_NUM_50G:
hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_50G);
break;
case ETH_SPEED_NUM_100G:
hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100G);
break;
case ETH_SPEED_NUM_200G:
hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_200G);
break;
default:
PMD_INIT_LOG(ERR, "invalid speed (%u)", speed);
return -EINVAL;
}
hns3_set_bit(req->mac_change_fec_en, HNS3_CFG_MAC_SPEED_CHANGE_EN_B, 1);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
PMD_INIT_LOG(ERR, "mac speed/duplex config cmd failed %d", ret);
return ret;
}
static int
hns3_tx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
struct hns3_priv_buf *priv;
uint32_t i, total_size;
total_size = pf->pkt_buf_size;
/* alloc tx buffer for all enabled tc */
for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
priv = &buf_alloc->priv_buf[i];
if (hw->hw_tc_map & BIT(i)) {
if (total_size < pf->tx_buf_size)
return -ENOMEM;
priv->tx_buf_size = pf->tx_buf_size;
} else
priv->tx_buf_size = 0;
total_size -= priv->tx_buf_size;
}
return 0;
}
static int
hns3_tx_buffer_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
{
/* TX buffer size is unit by 128 byte */
#define HNS3_BUF_SIZE_UNIT_SHIFT 7
#define HNS3_BUF_SIZE_UPDATE_EN_MSK BIT(15)
struct hns3_tx_buff_alloc_cmd *req;
struct hns3_cmd_desc desc;
uint32_t buf_size;
uint32_t i;
int ret;
req = (struct hns3_tx_buff_alloc_cmd *)desc.data;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TX_BUFF_ALLOC, 0);
for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
buf_size = buf_alloc->priv_buf[i].tx_buf_size;
buf_size = buf_size >> HNS3_BUF_SIZE_UNIT_SHIFT;
req->tx_pkt_buff[i] = rte_cpu_to_le_16(buf_size |
HNS3_BUF_SIZE_UPDATE_EN_MSK);
}
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
PMD_INIT_LOG(ERR, "tx buffer alloc cmd failed %d", ret);
return ret;
}
static int
hns3_get_tc_num(struct hns3_hw *hw)
{
int cnt = 0;
uint8_t i;
for (i = 0; i < HNS3_MAX_TC_NUM; i++)
if (hw->hw_tc_map & BIT(i))
cnt++;
return cnt;
}
static uint32_t
hns3_get_rx_priv_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
{
struct hns3_priv_buf *priv;
uint32_t rx_priv = 0;
int i;
for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
priv = &buf_alloc->priv_buf[i];
if (priv->enable)
rx_priv += priv->buf_size;
}
return rx_priv;
}
static uint32_t
hns3_get_tx_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
{
uint32_t total_tx_size = 0;
uint32_t i;
for (i = 0; i < HNS3_MAX_TC_NUM; i++)
total_tx_size += buf_alloc->priv_buf[i].tx_buf_size;
return total_tx_size;
}
/* Get the number of pfc enabled TCs, which have private buffer */
static int
hns3_get_pfc_priv_num(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
{
struct hns3_priv_buf *priv;
int cnt = 0;
uint8_t i;
for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
priv = &buf_alloc->priv_buf[i];
if ((hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
cnt++;
}
return cnt;
}
/* Get the number of pfc disabled TCs, which have private buffer */
static int
hns3_get_no_pfc_priv_num(struct hns3_hw *hw,
struct hns3_pkt_buf_alloc *buf_alloc)
{
struct hns3_priv_buf *priv;
int cnt = 0;
uint8_t i;
for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
priv = &buf_alloc->priv_buf[i];
if (hw->hw_tc_map & BIT(i) &&
!(hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
cnt++;
}
return cnt;
}
static bool
hns3_is_rx_buf_ok(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc,
uint32_t rx_all)
{
uint32_t shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd;
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
uint32_t shared_buf, aligned_mps;
uint32_t rx_priv;
uint8_t tc_num;
uint8_t i;
tc_num = hns3_get_tc_num(hw);
aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
if (hns3_dev_dcb_supported(hw))
shared_buf_min = HNS3_BUF_MUL_BY * aligned_mps +
pf->dv_buf_size;
else
shared_buf_min = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF
+ pf->dv_buf_size;
shared_buf_tc = tc_num * aligned_mps + aligned_mps;
shared_std = roundup(max_t(uint32_t, shared_buf_min, shared_buf_tc),
HNS3_BUF_SIZE_UNIT);
rx_priv = hns3_get_rx_priv_buff_alloced(buf_alloc);
if (rx_all < rx_priv + shared_std)
return false;
shared_buf = rounddown(rx_all - rx_priv, HNS3_BUF_SIZE_UNIT);
buf_alloc->s_buf.buf_size = shared_buf;
if (hns3_dev_dcb_supported(hw)) {
buf_alloc->s_buf.self.high = shared_buf - pf->dv_buf_size;
buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high
- roundup(aligned_mps / HNS3_BUF_DIV_BY,
HNS3_BUF_SIZE_UNIT);
} else {
buf_alloc->s_buf.self.high =
aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
buf_alloc->s_buf.self.low = aligned_mps;
}
if (hns3_dev_dcb_supported(hw)) {
hi_thrd = shared_buf - pf->dv_buf_size;
if (tc_num <= NEED_RESERVE_TC_NUM)
hi_thrd = hi_thrd * BUF_RESERVE_PERCENT
/ BUF_MAX_PERCENT;
if (tc_num)
hi_thrd = hi_thrd / tc_num;
hi_thrd = max_t(uint32_t, hi_thrd,
HNS3_BUF_MUL_BY * aligned_mps);
hi_thrd = rounddown(hi_thrd, HNS3_BUF_SIZE_UNIT);
lo_thrd = hi_thrd - aligned_mps / HNS3_BUF_DIV_BY;
} else {
hi_thrd = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
lo_thrd = aligned_mps;
}
for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
buf_alloc->s_buf.tc_thrd[i].low = lo_thrd;
buf_alloc->s_buf.tc_thrd[i].high = hi_thrd;
}
return true;
}
static bool
hns3_rx_buf_calc_all(struct hns3_hw *hw, bool max,
struct hns3_pkt_buf_alloc *buf_alloc)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
struct hns3_priv_buf *priv;
uint32_t aligned_mps;
uint32_t rx_all;
uint8_t i;
rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
priv = &buf_alloc->priv_buf[i];
priv->enable = 0;
priv->wl.low = 0;
priv->wl.high = 0;
priv->buf_size = 0;
if (!(hw->hw_tc_map & BIT(i)))
continue;
priv->enable = 1;
if (hw->dcb_info.hw_pfc_map & BIT(i)) {
priv->wl.low = max ? aligned_mps : HNS3_BUF_SIZE_UNIT;
priv->wl.high = roundup(priv->wl.low + aligned_mps,
HNS3_BUF_SIZE_UNIT);
} else {
priv->wl.low = 0;
priv->wl.high = max ? (aligned_mps * HNS3_BUF_MUL_BY) :
aligned_mps;
}
priv->buf_size = priv->wl.high + pf->dv_buf_size;
}
return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
}
static bool
hns3_drop_nopfc_buf_till_fit(struct hns3_hw *hw,
struct hns3_pkt_buf_alloc *buf_alloc)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
struct hns3_priv_buf *priv;
int no_pfc_priv_num;
uint32_t rx_all;
uint8_t mask;
int i;
rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
no_pfc_priv_num = hns3_get_no_pfc_priv_num(hw, buf_alloc);
/* let the last to be cleared first */
for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
priv = &buf_alloc->priv_buf[i];
mask = BIT((uint8_t)i);
if (hw->hw_tc_map & mask &&
!(hw->dcb_info.hw_pfc_map & mask)) {
/* Clear the no pfc TC private buffer */
priv->wl.low = 0;
priv->wl.high = 0;
priv->buf_size = 0;
priv->enable = 0;
no_pfc_priv_num--;
}
if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
no_pfc_priv_num == 0)
break;
}
return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
}
static bool
hns3_drop_pfc_buf_till_fit(struct hns3_hw *hw,
struct hns3_pkt_buf_alloc *buf_alloc)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
struct hns3_priv_buf *priv;
uint32_t rx_all;
int pfc_priv_num;
uint8_t mask;
int i;
rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
pfc_priv_num = hns3_get_pfc_priv_num(hw, buf_alloc);
/* let the last to be cleared first */
for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
priv = &buf_alloc->priv_buf[i];
mask = BIT((uint8_t)i);
if (hw->hw_tc_map & mask &&
hw->dcb_info.hw_pfc_map & mask) {
/* Reduce the number of pfc TC with private buffer */
priv->wl.low = 0;
priv->enable = 0;
priv->wl.high = 0;
priv->buf_size = 0;
pfc_priv_num--;
}
if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
pfc_priv_num == 0)
break;
}
return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
}
static bool
hns3_only_alloc_priv_buff(struct hns3_hw *hw,
struct hns3_pkt_buf_alloc *buf_alloc)
{
#define COMPENSATE_BUFFER 0x3C00
#define COMPENSATE_HALF_MPS_NUM 5
#define PRIV_WL_GAP 0x1800
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
uint32_t tc_num = hns3_get_tc_num(hw);
uint32_t half_mps = pf->mps >> 1;
struct hns3_priv_buf *priv;
uint32_t min_rx_priv;
uint32_t rx_priv;
uint8_t i;
rx_priv = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
if (tc_num)
rx_priv = rx_priv / tc_num;
if (tc_num <= NEED_RESERVE_TC_NUM)
rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT;
/*
* Minimum value of private buffer in rx direction (min_rx_priv) is
* equal to "DV + 2.5 * MPS + 15KB". Driver only allocates rx private
* buffer if rx_priv is greater than min_rx_priv.
*/
min_rx_priv = pf->dv_buf_size + COMPENSATE_BUFFER +
COMPENSATE_HALF_MPS_NUM * half_mps;
min_rx_priv = roundup(min_rx_priv, HNS3_BUF_SIZE_UNIT);
rx_priv = rounddown(rx_priv, HNS3_BUF_SIZE_UNIT);
if (rx_priv < min_rx_priv)
return false;
for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
priv = &buf_alloc->priv_buf[i];
priv->enable = 0;
priv->wl.low = 0;
priv->wl.high = 0;
priv->buf_size = 0;
if (!(hw->hw_tc_map & BIT(i)))
continue;
priv->enable = 1;
priv->buf_size = rx_priv;
priv->wl.high = rx_priv - pf->dv_buf_size;
priv->wl.low = priv->wl.high - PRIV_WL_GAP;
}
buf_alloc->s_buf.buf_size = 0;
return true;
}
/*
* hns3_rx_buffer_calc: calculate the rx private buffer size for all TCs
* @hw: pointer to struct hns3_hw
* @buf_alloc: pointer to buffer calculation data
* @return: 0: calculate sucessful, negative: fail
*/
static int
hns3_rx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
{
/* When DCB is not supported, rx private buffer is not allocated. */
if (!hns3_dev_dcb_supported(hw)) {
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
uint32_t rx_all = pf->pkt_buf_size;
rx_all -= hns3_get_tx_buff_alloced(buf_alloc);
if (!hns3_is_rx_buf_ok(hw, buf_alloc, rx_all))
return -ENOMEM;
return 0;
}
/*
* Try to allocate privated packet buffer for all TCs without share
* buffer.
*/
if (hns3_only_alloc_priv_buff(hw, buf_alloc))
return 0;
/*
* Try to allocate privated packet buffer for all TCs with share
* buffer.
*/
if (hns3_rx_buf_calc_all(hw, true, buf_alloc))
return 0;
/*
* For different application scenes, the enabled port number, TC number
* and no_drop TC number are different. In order to obtain the better
* performance, software could allocate the buffer size and configure
* the waterline by tring to decrease the private buffer size according
* to the order, namely, waterline of valided tc, pfc disabled tc, pfc
* enabled tc.
*/
if (hns3_rx_buf_calc_all(hw, false, buf_alloc))
return 0;
if (hns3_drop_nopfc_buf_till_fit(hw, buf_alloc))
return 0;
if (hns3_drop_pfc_buf_till_fit(hw, buf_alloc))
return 0;
return -ENOMEM;
}
static int
hns3_rx_priv_buf_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
{
struct hns3_rx_priv_buff_cmd *req;
struct hns3_cmd_desc desc;
uint32_t buf_size;
int ret;
int i;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_PRIV_BUFF_ALLOC, false);
req = (struct hns3_rx_priv_buff_cmd *)desc.data;
/* Alloc private buffer TCs */
for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
struct hns3_priv_buf *priv = &buf_alloc->priv_buf[i];
req->buf_num[i] =
rte_cpu_to_le_16(priv->buf_size >> HNS3_BUF_UNIT_S);
req->buf_num[i] |= rte_cpu_to_le_16(1 << HNS3_TC0_PRI_BUF_EN_B);
}
buf_size = buf_alloc->s_buf.buf_size;
req->shared_buf = rte_cpu_to_le_16((buf_size >> HNS3_BUF_UNIT_S) |
(1 << HNS3_TC0_PRI_BUF_EN_B));
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
PMD_INIT_LOG(ERR, "rx private buffer alloc cmd failed %d", ret);
return ret;
}
static int
hns3_rx_priv_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
{
#define HNS3_RX_PRIV_WL_ALLOC_DESC_NUM 2
struct hns3_rx_priv_wl_buf *req;
struct hns3_priv_buf *priv;
struct hns3_cmd_desc desc[HNS3_RX_PRIV_WL_ALLOC_DESC_NUM];
int i, j;
int ret;
for (i = 0; i < HNS3_RX_PRIV_WL_ALLOC_DESC_NUM; i++) {
hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_PRIV_WL_ALLOC,
false);
req = (struct hns3_rx_priv_wl_buf *)desc[i].data;
/* The first descriptor set the NEXT bit to 1 */
if (i == 0)
desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
else
desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
uint32_t idx = i * HNS3_TC_NUM_ONE_DESC + j;
priv = &buf_alloc->priv_buf[idx];
req->tc_wl[j].high = rte_cpu_to_le_16(priv->wl.high >>
HNS3_BUF_UNIT_S);
req->tc_wl[j].high |=
rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
req->tc_wl[j].low = rte_cpu_to_le_16(priv->wl.low >>
HNS3_BUF_UNIT_S);
req->tc_wl[j].low |=
rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
}
}
/* Send 2 descriptor at one time */
ret = hns3_cmd_send(hw, desc, HNS3_RX_PRIV_WL_ALLOC_DESC_NUM);
if (ret)
PMD_INIT_LOG(ERR, "rx private waterline config cmd failed %d",
ret);
return ret;
}
static int
hns3_common_thrd_config(struct hns3_hw *hw,
struct hns3_pkt_buf_alloc *buf_alloc)
{
#define HNS3_RX_COM_THRD_ALLOC_DESC_NUM 2
struct hns3_shared_buf *s_buf = &buf_alloc->s_buf;
struct hns3_rx_com_thrd *req;
struct hns3_cmd_desc desc[HNS3_RX_COM_THRD_ALLOC_DESC_NUM];
struct hns3_tc_thrd *tc;
int tc_idx;
int i, j;
int ret;
for (i = 0; i < HNS3_RX_COM_THRD_ALLOC_DESC_NUM; i++) {
hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_COM_THRD_ALLOC,
false);
req = (struct hns3_rx_com_thrd *)&desc[i].data;
/* The first descriptor set the NEXT bit to 1 */
if (i == 0)
desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
else
desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
tc_idx = i * HNS3_TC_NUM_ONE_DESC + j;
tc = &s_buf->tc_thrd[tc_idx];
req->com_thrd[j].high =
rte_cpu_to_le_16(tc->high >> HNS3_BUF_UNIT_S);
req->com_thrd[j].high |=
rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
req->com_thrd[j].low =
rte_cpu_to_le_16(tc->low >> HNS3_BUF_UNIT_S);
req->com_thrd[j].low |=
rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
}
}
/* Send 2 descriptors at one time */
ret = hns3_cmd_send(hw, desc, HNS3_RX_COM_THRD_ALLOC_DESC_NUM);
if (ret)
PMD_INIT_LOG(ERR, "common threshold config cmd failed %d", ret);
return ret;
}
static int
hns3_common_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
{
struct hns3_shared_buf *buf = &buf_alloc->s_buf;
struct hns3_rx_com_wl *req;
struct hns3_cmd_desc desc;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_COM_WL_ALLOC, false);
req = (struct hns3_rx_com_wl *)desc.data;
req->com_wl.high = rte_cpu_to_le_16(buf->self.high >> HNS3_BUF_UNIT_S);
req->com_wl.high |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
req->com_wl.low = rte_cpu_to_le_16(buf->self.low >> HNS3_BUF_UNIT_S);
req->com_wl.low |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
PMD_INIT_LOG(ERR, "common waterline config cmd failed %d", ret);
return ret;
}
int
hns3_buffer_alloc(struct hns3_hw *hw)
{
struct hns3_pkt_buf_alloc pkt_buf;
int ret;
memset(&pkt_buf, 0, sizeof(pkt_buf));
ret = hns3_tx_buffer_calc(hw, &pkt_buf);
if (ret) {
PMD_INIT_LOG(ERR,
"could not calc tx buffer size for all TCs %d",
ret);
return ret;
}
ret = hns3_tx_buffer_alloc(hw, &pkt_buf);
if (ret) {
PMD_INIT_LOG(ERR, "could not alloc tx buffers %d", ret);
return ret;
}
ret = hns3_rx_buffer_calc(hw, &pkt_buf);
if (ret) {
PMD_INIT_LOG(ERR,
"could not calc rx priv buffer size for all TCs %d",
ret);
return ret;
}
ret = hns3_rx_priv_buf_alloc(hw, &pkt_buf);
if (ret) {
PMD_INIT_LOG(ERR, "could not alloc rx priv buffer %d", ret);
return ret;
}
if (hns3_dev_dcb_supported(hw)) {
ret = hns3_rx_priv_wl_config(hw, &pkt_buf);
if (ret) {
PMD_INIT_LOG(ERR,
"could not configure rx private waterline %d",
ret);
return ret;
}
ret = hns3_common_thrd_config(hw, &pkt_buf);
if (ret) {
PMD_INIT_LOG(ERR,
"could not configure common threshold %d",
ret);
return ret;
}
}
ret = hns3_common_wl_config(hw, &pkt_buf);
if (ret)
PMD_INIT_LOG(ERR, "could not configure common waterline %d",
ret);
return ret;
}
static int
hns3_mac_init(struct hns3_hw *hw)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_mac *mac = &hw->mac;
struct hns3_pf *pf = &hns->pf;
int ret;
pf->support_sfp_query = true;
mac->link_duplex = ETH_LINK_FULL_DUPLEX;
ret = hns3_cfg_mac_speed_dup_hw(hw, mac->link_speed, mac->link_duplex);
if (ret) {
PMD_INIT_LOG(ERR, "Config mac speed dup fail ret = %d", ret);
return ret;
}
mac->link_status = ETH_LINK_DOWN;
return hns3_config_mtu(hw, pf->mps);
}
static int
hns3_get_mac_ethertype_cmd_status(uint16_t cmdq_resp, uint8_t resp_code)
{
#define HNS3_ETHERTYPE_SUCCESS_ADD 0
#define HNS3_ETHERTYPE_ALREADY_ADD 1
#define HNS3_ETHERTYPE_MGR_TBL_OVERFLOW 2
#define HNS3_ETHERTYPE_KEY_CONFLICT 3
int return_status;
if (cmdq_resp) {
PMD_INIT_LOG(ERR,
"cmdq execute failed for get_mac_ethertype_cmd_status, status=%d.\n",
cmdq_resp);
return -EIO;
}
switch (resp_code) {
case HNS3_ETHERTYPE_SUCCESS_ADD:
case HNS3_ETHERTYPE_ALREADY_ADD:
return_status = 0;
break;
case HNS3_ETHERTYPE_MGR_TBL_OVERFLOW:
PMD_INIT_LOG(ERR,
"add mac ethertype failed for manager table overflow.");
return_status = -EIO;
break;
case HNS3_ETHERTYPE_KEY_CONFLICT:
PMD_INIT_LOG(ERR, "add mac ethertype failed for key conflict.");
return_status = -EIO;
break;
default:
PMD_INIT_LOG(ERR,
"add mac ethertype failed for undefined, code=%d.",
resp_code);
return_status = -EIO;
break;
}
return return_status;
}
static int
hns3_add_mgr_tbl(struct hns3_hw *hw,
const struct hns3_mac_mgr_tbl_entry_cmd *req)
{
struct hns3_cmd_desc desc;
uint8_t resp_code;
uint16_t retval;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_ETHTYPE_ADD, false);
memcpy(desc.data, req, sizeof(struct hns3_mac_mgr_tbl_entry_cmd));
ret = hns3_cmd_send(hw, &desc, 1);
if (ret) {
PMD_INIT_LOG(ERR,
"add mac ethertype failed for cmd_send, ret =%d.",
ret);
return ret;
}
resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
retval = rte_le_to_cpu_16(desc.retval);
return hns3_get_mac_ethertype_cmd_status(retval, resp_code);
}
static void
hns3_prepare_mgr_tbl(struct hns3_mac_mgr_tbl_entry_cmd *mgr_table,
int *table_item_num)
{
struct hns3_mac_mgr_tbl_entry_cmd *tbl;
/*
* In current version, we add one item in management table as below:
* 0x0180C200000E -- LLDP MC address
*/
tbl = mgr_table;
tbl->flags = HNS3_MAC_MGR_MASK_VLAN_B;
tbl->ethter_type = rte_cpu_to_le_16(HNS3_MAC_ETHERTYPE_LLDP);
tbl->mac_addr_hi32 = rte_cpu_to_le_32(htonl(0x0180C200));
tbl->mac_addr_lo16 = rte_cpu_to_le_16(htons(0x000E));
tbl->i_port_bitmap = 0x1;
*table_item_num = 1;
}
static int
hns3_init_mgr_tbl(struct hns3_hw *hw)
{
#define HNS_MAC_MGR_TBL_MAX_SIZE 16
struct hns3_mac_mgr_tbl_entry_cmd mgr_table[HNS_MAC_MGR_TBL_MAX_SIZE];
int table_item_num;
int ret;
int i;
memset(mgr_table, 0, sizeof(mgr_table));
hns3_prepare_mgr_tbl(mgr_table, &table_item_num);
for (i = 0; i < table_item_num; i++) {
ret = hns3_add_mgr_tbl(hw, &mgr_table[i]);
if (ret) {
PMD_INIT_LOG(ERR, "add mac ethertype failed, ret =%d",
ret);
return ret;
}
}
return 0;
}
static void
hns3_promisc_param_init(struct hns3_promisc_param *param, bool en_uc,
bool en_mc, bool en_bc, int vport_id)
{
if (!param)
return;
memset(param, 0, sizeof(struct hns3_promisc_param));
if (en_uc)
param->enable = HNS3_PROMISC_EN_UC;
if (en_mc)
param->enable |= HNS3_PROMISC_EN_MC;
if (en_bc)
param->enable |= HNS3_PROMISC_EN_BC;
param->vf_id = vport_id;
}
static int
hns3_cmd_set_promisc_mode(struct hns3_hw *hw, struct hns3_promisc_param *param)
{
struct hns3_promisc_cfg_cmd *req;
struct hns3_cmd_desc desc;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_PROMISC_MODE, false);
req = (struct hns3_promisc_cfg_cmd *)desc.data;
req->vf_id = param->vf_id;
req->flag = (param->enable << HNS3_PROMISC_EN_B) |
HNS3_PROMISC_TX_EN_B | HNS3_PROMISC_RX_EN_B;
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
PMD_INIT_LOG(ERR, "Set promisc mode fail, ret = %d", ret);
return ret;
}
static int
hns3_set_promisc_mode(struct hns3_hw *hw, bool en_uc_pmc, bool en_mc_pmc)
{
struct hns3_promisc_param param;
bool en_bc_pmc = true;
uint8_t vf_id;
/*
* In current version VF is not supported when PF is driven by DPDK
* driver, just need to configure parameters for PF vport.
*/
vf_id = HNS3_PF_FUNC_ID;
hns3_promisc_param_init(&param, en_uc_pmc, en_mc_pmc, en_bc_pmc, vf_id);
return hns3_cmd_set_promisc_mode(hw, &param);
}
static int
hns3_promisc_init(struct hns3_hw *hw)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
struct hns3_promisc_param param;
uint16_t func_id;
int ret;
ret = hns3_set_promisc_mode(hw, false, false);
if (ret) {
PMD_INIT_LOG(ERR, "failed to set promisc mode, ret = %d", ret);
return ret;
}
/*
* In current version VFs are not supported when PF is driven by DPDK
* driver. After PF has been taken over by DPDK, the original VF will
* be invalid. So, there is a possibility of entry residues. It should
* clear VFs's promisc mode to avoid unnecessary bandwidth usage
* during init.
*/
for (func_id = HNS3_1ST_VF_FUNC_ID; func_id < pf->func_num; func_id++) {
hns3_promisc_param_init(&param, false, false, false, func_id);
ret = hns3_cmd_set_promisc_mode(hw, &param);
if (ret) {
PMD_INIT_LOG(ERR, "failed to clear vf:%d promisc mode,"
" ret = %d", func_id, ret);
return ret;
}
}
return 0;
}
static void
hns3_promisc_uninit(struct hns3_hw *hw)
{
struct hns3_promisc_param param;
uint16_t func_id;
int ret;
func_id = HNS3_PF_FUNC_ID;
/*
* In current version VFs are not supported when PF is driven by
* DPDK driver, and VFs' promisc mode status has been cleared during
* init and their status will not change. So just clear PF's promisc
* mode status during uninit.
*/
hns3_promisc_param_init(&param, false, false, false, func_id);
ret = hns3_cmd_set_promisc_mode(hw, &param);
if (ret)
PMD_INIT_LOG(ERR, "failed to clear promisc status during"
" uninit, ret = %d", ret);
}
static int
hns3_dev_promiscuous_enable(struct rte_eth_dev *dev)
{
bool allmulti = dev->data->all_multicast ? true : false;
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
uint64_t offloads;
int err;
int ret;
rte_spinlock_lock(&hw->lock);
ret = hns3_set_promisc_mode(hw, true, true);
if (ret) {
rte_spinlock_unlock(&hw->lock);
hns3_err(hw, "failed to enable promiscuous mode, ret = %d",
ret);
return ret;
}
/*
* When promiscuous mode was enabled, disable the vlan filter to let
* all packets coming in in the receiving direction.
*/
offloads = dev->data->dev_conf.rxmode.offloads;
if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
ret = hns3_enable_vlan_filter(hns, false);
if (ret) {
hns3_err(hw, "failed to enable promiscuous mode due to "
"failure to disable vlan filter, ret = %d",
ret);
err = hns3_set_promisc_mode(hw, false, allmulti);
if (err)
hns3_err(hw, "failed to restore promiscuous "
"status after disable vlan filter "
"failed during enabling promiscuous "
"mode, ret = %d", ret);
}
}
rte_spinlock_unlock(&hw->lock);
return ret;
}
static int
hns3_dev_promiscuous_disable(struct rte_eth_dev *dev)
{
bool allmulti = dev->data->all_multicast ? true : false;
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
uint64_t offloads;
int err;
int ret;
/* If now in all_multicast mode, must remain in all_multicast mode. */
rte_spinlock_lock(&hw->lock);
ret = hns3_set_promisc_mode(hw, false, allmulti);
if (ret) {
rte_spinlock_unlock(&hw->lock);
hns3_err(hw, "failed to disable promiscuous mode, ret = %d",
ret);
return ret;
}
/* when promiscuous mode was disabled, restore the vlan filter status */
offloads = dev->data->dev_conf.rxmode.offloads;
if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
ret = hns3_enable_vlan_filter(hns, true);
if (ret) {
hns3_err(hw, "failed to disable promiscuous mode due to"
" failure to restore vlan filter, ret = %d",
ret);
err = hns3_set_promisc_mode(hw, true, true);
if (err)
hns3_err(hw, "failed to restore promiscuous "
"status after enabling vlan filter "
"failed during disabling promiscuous "
"mode, ret = %d", ret);
}
}
rte_spinlock_unlock(&hw->lock);
return ret;
}
static int
hns3_dev_allmulticast_enable(struct rte_eth_dev *dev)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
int ret;
if (dev->data->promiscuous)
return 0;
rte_spinlock_lock(&hw->lock);
ret = hns3_set_promisc_mode(hw, false, true);
rte_spinlock_unlock(&hw->lock);
if (ret)
hns3_err(hw, "failed to enable allmulticast mode, ret = %d",
ret);
return ret;
}
static int
hns3_dev_allmulticast_disable(struct rte_eth_dev *dev)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
int ret;
/* If now in promiscuous mode, must remain in all_multicast mode. */
if (dev->data->promiscuous)
return 0;
rte_spinlock_lock(&hw->lock);
ret = hns3_set_promisc_mode(hw, false, false);
rte_spinlock_unlock(&hw->lock);
if (ret)
hns3_err(hw, "failed to disable allmulticast mode, ret = %d",
ret);
return ret;
}
static int
hns3_dev_promisc_restore(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
bool allmulti = hw->data->all_multicast ? true : false;
int ret;
if (hw->data->promiscuous) {
ret = hns3_set_promisc_mode(hw, true, true);
if (ret)
hns3_err(hw, "failed to restore promiscuous mode, "
"ret = %d", ret);
return ret;
}
ret = hns3_set_promisc_mode(hw, false, allmulti);
if (ret)
hns3_err(hw, "failed to restore allmulticast mode, ret = %d",
ret);
return ret;
}
static int
hns3_get_sfp_speed(struct hns3_hw *hw, uint32_t *speed)
{
struct hns3_sfp_speed_cmd *resp;
struct hns3_cmd_desc desc;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SFP_GET_SPEED, true);
resp = (struct hns3_sfp_speed_cmd *)desc.data;
ret = hns3_cmd_send(hw, &desc, 1);
if (ret == -EOPNOTSUPP) {
hns3_err(hw, "IMP do not support get SFP speed %d", ret);
return ret;
} else if (ret) {
hns3_err(hw, "get sfp speed failed %d", ret);
return ret;
}
*speed = resp->sfp_speed;
return 0;
}
static uint8_t
hns3_check_speed_dup(uint8_t duplex, uint32_t speed)
{
if (!(speed == ETH_SPEED_NUM_10M || speed == ETH_SPEED_NUM_100M))
duplex = ETH_LINK_FULL_DUPLEX;
return duplex;
}
static int
hns3_cfg_mac_speed_dup(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
{
struct hns3_mac *mac = &hw->mac;
int ret;
duplex = hns3_check_speed_dup(duplex, speed);
if (mac->link_speed == speed && mac->link_duplex == duplex)
return 0;
ret = hns3_cfg_mac_speed_dup_hw(hw, speed, duplex);
if (ret)
return ret;
mac->link_speed = speed;
mac->link_duplex = duplex;
return 0;
}
static int
hns3_update_speed_duplex(struct rte_eth_dev *eth_dev)
{
struct hns3_adapter *hns = eth_dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
struct hns3_pf *pf = &hns->pf;
uint32_t speed;
int ret;
/* If IMP do not support get SFP/qSFP speed, return directly */
if (!pf->support_sfp_query)
return 0;
ret = hns3_get_sfp_speed(hw, &speed);
if (ret == -EOPNOTSUPP) {
pf->support_sfp_query = false;
return ret;
} else if (ret)
return ret;
if (speed == ETH_SPEED_NUM_NONE)
return 0; /* do nothing if no SFP */
/* Config full duplex for SFP */
return hns3_cfg_mac_speed_dup(hw, speed, ETH_LINK_FULL_DUPLEX);
}
static int
hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable)
{
struct hns3_config_mac_mode_cmd *req;
struct hns3_cmd_desc desc;
uint32_t loop_en = 0;
uint8_t val = 0;
int ret;
req = (struct hns3_config_mac_mode_cmd *)desc.data;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAC_MODE, false);
if (enable)
val = 1;
hns3_set_bit(loop_en, HNS3_MAC_TX_EN_B, val);
hns3_set_bit(loop_en, HNS3_MAC_RX_EN_B, val);
hns3_set_bit(loop_en, HNS3_MAC_PAD_TX_B, val);
hns3_set_bit(loop_en, HNS3_MAC_PAD_RX_B, val);
hns3_set_bit(loop_en, HNS3_MAC_1588_TX_B, 0);
hns3_set_bit(loop_en, HNS3_MAC_1588_RX_B, 0);
hns3_set_bit(loop_en, HNS3_MAC_APP_LP_B, 0);
hns3_set_bit(loop_en, HNS3_MAC_LINE_LP_B, 0);
hns3_set_bit(loop_en, HNS3_MAC_FCS_TX_B, val);
hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_B, val);
/*
* If DEV_RX_OFFLOAD_KEEP_CRC offload is set, MAC will not strip CRC
* when receiving frames. Otherwise, CRC will be stripped.
*/
if (hw->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, 0);
else
hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, val);
hns3_set_bit(loop_en, HNS3_MAC_TX_OVERSIZE_TRUNCATE_B, val);
hns3_set_bit(loop_en, HNS3_MAC_RX_OVERSIZE_TRUNCATE_B, val);
hns3_set_bit(loop_en, HNS3_MAC_TX_UNDER_MIN_ERR_B, val);
req->txrx_pad_fcs_loop_en = rte_cpu_to_le_32(loop_en);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
PMD_INIT_LOG(ERR, "mac enable fail, ret =%d.", ret);
return ret;
}
static int
hns3_get_mac_link_status(struct hns3_hw *hw)
{
struct hns3_link_status_cmd *req;
struct hns3_cmd_desc desc;
int link_status;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_LINK_STATUS, true);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret) {
hns3_err(hw, "get link status cmd failed %d", ret);
return ETH_LINK_DOWN;
}
req = (struct hns3_link_status_cmd *)desc.data;
link_status = req->status & HNS3_LINK_STATUS_UP_M;
return !!link_status;
}
void
hns3_update_link_status(struct hns3_hw *hw)
{
int state;
state = hns3_get_mac_link_status(hw);
if (state != hw->mac.link_status) {
hw->mac.link_status = state;
hns3_warn(hw, "Link status change to %s!", state ? "up" : "down");
}
}
static void
hns3_service_handler(void *param)
{
struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
struct hns3_adapter *hns = eth_dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
if (!hns3_is_reset_pending(hns)) {
hns3_update_speed_duplex(eth_dev);
hns3_update_link_status(hw);
} else
hns3_warn(hw, "Cancel the query when reset is pending");
rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, eth_dev);
}
static int
hns3_init_hardware(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
int ret;
ret = hns3_map_tqp(hw);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to map tqp: %d", ret);
return ret;
}
ret = hns3_init_umv_space(hw);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to init umv space: %d", ret);
return ret;
}
ret = hns3_mac_init(hw);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to init MAC: %d", ret);
goto err_mac_init;
}
ret = hns3_init_mgr_tbl(hw);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to init manager table: %d", ret);
goto err_mac_init;
}
ret = hns3_promisc_init(hw);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to init promisc: %d",
ret);
goto err_mac_init;
}
ret = hns3_init_vlan_config(hns);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to init vlan: %d", ret);
goto err_mac_init;
}
ret = hns3_dcb_init(hw);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to init dcb: %d", ret);
goto err_mac_init;
}
ret = hns3_init_fd_config(hns);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to init flow director: %d", ret);
goto err_mac_init;
}
ret = hns3_config_tso(hw, HNS3_TSO_MSS_MIN, HNS3_TSO_MSS_MAX);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to config tso: %d", ret);
goto err_mac_init;
}
ret = hns3_config_gro(hw, false);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
goto err_mac_init;
}
/*
* In the initialization clearing the all hardware mapping relationship
* configurations between queues and interrupt vectors is needed, so
* some error caused by the residual configurations, such as the
* unexpected interrupt, can be avoid.
*/
ret = hns3_init_ring_with_vector(hw);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
goto err_mac_init;
}
return 0;
err_mac_init:
hns3_uninit_umv_space(hw);
return ret;
}
static int
hns3_clear_hw(struct hns3_hw *hw)
{
struct hns3_cmd_desc desc;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_HW_STATE, false);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret && ret != -EOPNOTSUPP)
return ret;
return 0;
}
static int
hns3_init_pf(struct rte_eth_dev *eth_dev)
{
struct rte_device *dev = eth_dev->device;
struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
struct hns3_adapter *hns = eth_dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
int ret;
PMD_INIT_FUNC_TRACE();
/* Get hardware io base address from pcie BAR2 IO space */
hw->io_base = pci_dev->mem_resource[2].addr;
/* Firmware command queue initialize */
ret = hns3_cmd_init_queue(hw);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
goto err_cmd_init_queue;
}
hns3_clear_all_event_cause(hw);
/* Firmware command initialize */
ret = hns3_cmd_init(hw);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
goto err_cmd_init;
}
/*
* To ensure that the hardware environment is clean during
* initialization, the driver actively clear the hardware environment
* during initialization, including PF and corresponding VFs' vlan, mac,
* flow table configurations, etc.
*/
ret = hns3_clear_hw(hw);
if (ret) {
PMD_INIT_LOG(ERR, "failed to clear hardware: %d", ret);
goto err_cmd_init;
}
ret = rte_intr_callback_register(&pci_dev->intr_handle,
hns3_interrupt_handler,
eth_dev);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
goto err_intr_callback_register;
}
/* Enable interrupt */
rte_intr_enable(&pci_dev->intr_handle);
hns3_pf_enable_irq0(hw);
/* Get configuration */
ret = hns3_get_configuration(hw);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
goto err_get_config;
}
ret = hns3_init_hardware(hns);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to init hardware: %d", ret);
goto err_get_config;
}
/* Initialize flow director filter list & hash */
ret = hns3_fdir_filter_init(hns);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to alloc hashmap for fdir: %d", ret);
goto err_hw_init;
}
hns3_set_default_rss_args(hw);
ret = hns3_enable_hw_error_intr(hns, true);
if (ret) {
PMD_INIT_LOG(ERR, "fail to enable hw error interrupts: %d",
ret);
goto err_fdir;
}
return 0;
err_fdir:
hns3_fdir_filter_uninit(hns);
err_hw_init:
hns3_uninit_umv_space(hw);
err_get_config:
hns3_pf_disable_irq0(hw);
rte_intr_disable(&pci_dev->intr_handle);
hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
eth_dev);
err_intr_callback_register:
err_cmd_init:
hns3_cmd_uninit(hw);
hns3_cmd_destroy_queue(hw);
err_cmd_init_queue:
hw->io_base = NULL;
return ret;
}
static void
hns3_uninit_pf(struct rte_eth_dev *eth_dev)
{
struct hns3_adapter *hns = eth_dev->data->dev_private;
struct rte_device *dev = eth_dev->device;
struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
struct hns3_hw *hw = &hns->hw;
PMD_INIT_FUNC_TRACE();
hns3_enable_hw_error_intr(hns, false);
hns3_rss_uninit(hns);
(void)hns3_config_gro(hw, false);
hns3_promisc_uninit(hw);
hns3_fdir_filter_uninit(hns);
hns3_uninit_umv_space(hw);
hns3_pf_disable_irq0(hw);
rte_intr_disable(&pci_dev->intr_handle);
hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
eth_dev);
hns3_cmd_uninit(hw);
hns3_cmd_destroy_queue(hw);
hw->io_base = NULL;
}
static int
hns3_do_start(struct hns3_adapter *hns, bool reset_queue)
{
struct hns3_hw *hw = &hns->hw;
int ret;
ret = hns3_dcb_cfg_update(hns);
if (ret)
return ret;
/* Enable queues */
ret = hns3_start_queues(hns, reset_queue);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to start queues: %d", ret);
return ret;
}
/* Enable MAC */
ret = hns3_cfg_mac_mode(hw, true);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to enable MAC: %d", ret);
goto err_config_mac_mode;
}
return 0;
err_config_mac_mode:
hns3_stop_queues(hns, true);
return ret;
}
static int
hns3_map_rx_interrupt(struct rte_eth_dev *dev)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
uint32_t intr_vector;
uint16_t q_id;
int ret;
if (dev->data->dev_conf.intr_conf.rxq == 0)
return 0;
/* disable uio/vfio intr/eventfd mapping */
rte_intr_disable(intr_handle);
/* check and configure queue intr-vector mapping */
if (rte_intr_cap_multiple(intr_handle) ||
!RTE_ETH_DEV_SRIOV(dev).active) {
intr_vector = hw->used_rx_queues;
/* creates event fd for each intr vector when MSIX is used */
if (rte_intr_efd_enable(intr_handle, intr_vector))
return -EINVAL;
}
if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
intr_handle->intr_vec =
rte_zmalloc("intr_vec",
hw->used_rx_queues * sizeof(int), 0);
if (intr_handle->intr_vec == NULL) {
hns3_err(hw, "Failed to allocate %d rx_queues"
" intr_vec", hw->used_rx_queues);
ret = -ENOMEM;
goto alloc_intr_vec_error;
}
}
if (rte_intr_allow_others(intr_handle)) {
vec = RTE_INTR_VEC_RXTX_OFFSET;
base = RTE_INTR_VEC_RXTX_OFFSET;
}
if (rte_intr_dp_is_en(intr_handle)) {
for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
ret = hns3_bind_ring_with_vector(hw, vec, true,
HNS3_RING_TYPE_RX,
q_id);
if (ret)
goto bind_vector_error;
intr_handle->intr_vec[q_id] = vec;
if (vec < base + intr_handle->nb_efd - 1)
vec++;
}
}
rte_intr_enable(intr_handle);
return 0;
bind_vector_error:
rte_intr_efd_disable(intr_handle);
if (intr_handle->intr_vec) {
free(intr_handle->intr_vec);
intr_handle->intr_vec = NULL;
}
return ret;
alloc_intr_vec_error:
rte_intr_efd_disable(intr_handle);
return ret;
}
static int
hns3_restore_rx_interrupt(struct hns3_hw *hw)
{
struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
uint16_t q_id;
int ret;
if (dev->data->dev_conf.intr_conf.rxq == 0)
return 0;
if (rte_intr_dp_is_en(intr_handle)) {
for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
ret = hns3_bind_ring_with_vector(hw,
intr_handle->intr_vec[q_id], true,
HNS3_RING_TYPE_RX, q_id);
if (ret)
return ret;
}
}
return 0;
}
static void
hns3_restore_filter(struct rte_eth_dev *dev)
{
hns3_restore_rss_filter(dev);
}
static int
hns3_dev_start(struct rte_eth_dev *dev)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
int ret;
PMD_INIT_FUNC_TRACE();
if (rte_atomic16_read(&hw->reset.resetting))
return -EBUSY;
rte_spinlock_lock(&hw->lock);
hw->adapter_state = HNS3_NIC_STARTING;
ret = hns3_do_start(hns, true);
if (ret) {
hw->adapter_state = HNS3_NIC_CONFIGURED;
rte_spinlock_unlock(&hw->lock);
return ret;
}
ret = hns3_map_rx_interrupt(dev);
if (ret) {
hw->adapter_state = HNS3_NIC_CONFIGURED;
rte_spinlock_unlock(&hw->lock);
return ret;
}
hw->adapter_state = HNS3_NIC_STARTED;
rte_spinlock_unlock(&hw->lock);
hns3_set_rxtx_function(dev);
hns3_mp_req_start_rxtx(dev);
rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, dev);
hns3_restore_filter(dev);
/* Enable interrupt of all rx queues before enabling queues */
hns3_dev_all_rx_queue_intr_enable(hw, true);
/*
* When finished the initialization, enable queues to receive/transmit
* packets.
*/
hns3_enable_all_queues(hw, true);
hns3_info(hw, "hns3 dev start successful!");
return 0;
}
static int
hns3_do_stop(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
bool reset_queue;
int ret;
ret = hns3_cfg_mac_mode(hw, false);
if (ret)
return ret;
hw->mac.link_status = ETH_LINK_DOWN;
if (rte_atomic16_read(&hw->reset.disable_cmd) == 0) {
hns3_configure_all_mac_addr(hns, true);
reset_queue = true;
} else
reset_queue = false;
hw->mac.default_addr_setted = false;
return hns3_stop_queues(hns, reset_queue);
}
static void
hns3_unmap_rx_interrupt(struct rte_eth_dev *dev)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
uint16_t q_id;
if (dev->data->dev_conf.intr_conf.rxq == 0)
return;
/* unmap the ring with vector */
if (rte_intr_allow_others(intr_handle)) {
vec = RTE_INTR_VEC_RXTX_OFFSET;
base = RTE_INTR_VEC_RXTX_OFFSET;
}
if (rte_intr_dp_is_en(intr_handle)) {
for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
(void)hns3_bind_ring_with_vector(hw, vec, false,
HNS3_RING_TYPE_RX,
q_id);
if (vec < base + intr_handle->nb_efd - 1)
vec++;
}
}
/* Clean datapath event and queue/vec mapping */
rte_intr_efd_disable(intr_handle);
if (intr_handle->intr_vec) {
rte_free(intr_handle->intr_vec);
intr_handle->intr_vec = NULL;
}
}
static void
hns3_dev_stop(struct rte_eth_dev *dev)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
PMD_INIT_FUNC_TRACE();
hw->adapter_state = HNS3_NIC_STOPPING;
hns3_set_rxtx_function(dev);
rte_wmb();
/* Disable datapath on secondary process. */
hns3_mp_req_stop_rxtx(dev);
/* Prevent crashes when queues are still in use. */
rte_delay_ms(hw->tqps_num);
rte_spinlock_lock(&hw->lock);
if (rte_atomic16_read(&hw->reset.resetting) == 0) {
hns3_do_stop(hns);
hns3_unmap_rx_interrupt(dev);
hns3_dev_release_mbufs(hns);
hw->adapter_state = HNS3_NIC_CONFIGURED;
}
rte_eal_alarm_cancel(hns3_service_handler, dev);
rte_spinlock_unlock(&hw->lock);
}
static void
hns3_dev_close(struct rte_eth_dev *eth_dev)
{
struct hns3_adapter *hns = eth_dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
rte_free(eth_dev->process_private);
eth_dev->process_private = NULL;
return;
}
if (hw->adapter_state == HNS3_NIC_STARTED)
hns3_dev_stop(eth_dev);
hw->adapter_state = HNS3_NIC_CLOSING;
hns3_reset_abort(hns);
hw->adapter_state = HNS3_NIC_CLOSED;
hns3_configure_all_mc_mac_addr(hns, true);
hns3_remove_all_vlan_table(hns);
hns3_vlan_txvlan_cfg(hns, HNS3_PORT_BASE_VLAN_DISABLE, 0);
hns3_uninit_pf(eth_dev);
hns3_free_all_queues(eth_dev);
rte_free(hw->reset.wait_data);
rte_free(eth_dev->process_private);
eth_dev->process_private = NULL;
hns3_mp_uninit_primary();
hns3_warn(hw, "Close port %d finished", hw->data->port_id);
}
static int
hns3_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
fc_conf->pause_time = pf->pause_time;
/* return fc current mode */
switch (hw->current_mode) {
case HNS3_FC_FULL:
fc_conf->mode = RTE_FC_FULL;
break;
case HNS3_FC_TX_PAUSE:
fc_conf->mode = RTE_FC_TX_PAUSE;
break;
case HNS3_FC_RX_PAUSE:
fc_conf->mode = RTE_FC_RX_PAUSE;
break;
case HNS3_FC_NONE:
default:
fc_conf->mode = RTE_FC_NONE;
break;
}
return 0;
}
static void
hns3_get_fc_mode(struct hns3_hw *hw, enum rte_eth_fc_mode mode)
{
switch (mode) {
case RTE_FC_NONE:
hw->requested_mode = HNS3_FC_NONE;
break;
case RTE_FC_RX_PAUSE:
hw->requested_mode = HNS3_FC_RX_PAUSE;
break;
case RTE_FC_TX_PAUSE:
hw->requested_mode = HNS3_FC_TX_PAUSE;
break;
case RTE_FC_FULL:
hw->requested_mode = HNS3_FC_FULL;
break;
default:
hw->requested_mode = HNS3_FC_NONE;
hns3_warn(hw, "fc_mode(%u) exceeds member scope and is "
"configured to RTE_FC_NONE", mode);
break;
}
}
static int
hns3_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
int ret;
if (fc_conf->high_water || fc_conf->low_water ||
fc_conf->send_xon || fc_conf->mac_ctrl_frame_fwd) {
hns3_err(hw, "Unsupported flow control settings specified, "
"high_water(%u), low_water(%u), send_xon(%u) and "
"mac_ctrl_frame_fwd(%u) must be set to '0'",
fc_conf->high_water, fc_conf->low_water,
fc_conf->send_xon, fc_conf->mac_ctrl_frame_fwd);
return -EINVAL;
}
if (fc_conf->autoneg) {
hns3_err(hw, "Unsupported fc auto-negotiation setting.");
return -EINVAL;
}
if (!fc_conf->pause_time) {
hns3_err(hw, "Invalid pause time %d setting.",
fc_conf->pause_time);
return -EINVAL;
}
if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE)) {
hns3_err(hw, "PFC is enabled. Cannot set MAC pause. "
"current_fc_status = %d", hw->current_fc_status);
return -EOPNOTSUPP;
}
hns3_get_fc_mode(hw, fc_conf->mode);
if (hw->requested_mode == hw->current_mode &&
pf->pause_time == fc_conf->pause_time)
return 0;
rte_spinlock_lock(&hw->lock);
ret = hns3_fc_enable(dev, fc_conf);
rte_spinlock_unlock(&hw->lock);
return ret;
}
static int
hns3_priority_flow_ctrl_set(struct rte_eth_dev *dev,
struct rte_eth_pfc_conf *pfc_conf)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
uint8_t priority;
int ret;
if (!hns3_dev_dcb_supported(hw)) {
hns3_err(hw, "This port does not support dcb configurations.");
return -EOPNOTSUPP;
}
if (pfc_conf->fc.high_water || pfc_conf->fc.low_water ||
pfc_conf->fc.send_xon || pfc_conf->fc.mac_ctrl_frame_fwd) {
hns3_err(hw, "Unsupported flow control settings specified, "
"high_water(%u), low_water(%u), send_xon(%u) and "
"mac_ctrl_frame_fwd(%u) must be set to '0'",
pfc_conf->fc.high_water, pfc_conf->fc.low_water,
pfc_conf->fc.send_xon,
pfc_conf->fc.mac_ctrl_frame_fwd);
return -EINVAL;
}
if (pfc_conf->fc.autoneg) {
hns3_err(hw, "Unsupported fc auto-negotiation setting.");
return -EINVAL;
}
if (pfc_conf->fc.pause_time == 0) {
hns3_err(hw, "Invalid pause time %d setting.",
pfc_conf->fc.pause_time);
return -EINVAL;
}
if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
hw->current_fc_status == HNS3_FC_STATUS_PFC)) {
hns3_err(hw, "MAC pause is enabled. Cannot set PFC."
"current_fc_status = %d", hw->current_fc_status);
return -EOPNOTSUPP;
}
priority = pfc_conf->priority;
hns3_get_fc_mode(hw, pfc_conf->fc.mode);
if (hw->dcb_info.pfc_en & BIT(priority) &&
hw->requested_mode == hw->current_mode &&
pfc_conf->fc.pause_time == pf->pause_time)
return 0;
rte_spinlock_lock(&hw->lock);
ret = hns3_dcb_pfc_enable(dev, pfc_conf);
rte_spinlock_unlock(&hw->lock);
return ret;
}
static int
hns3_get_dcb_info(struct rte_eth_dev *dev, struct rte_eth_dcb_info *dcb_info)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
enum rte_eth_rx_mq_mode mq_mode = dev->data->dev_conf.rxmode.mq_mode;
int i;
rte_spinlock_lock(&hw->lock);
if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG)
dcb_info->nb_tcs = pf->local_max_tc;
else
dcb_info->nb_tcs = 1;
for (i = 0; i < HNS3_MAX_USER_PRIO; i++)
dcb_info->prio_tc[i] = hw->dcb_info.prio_tc[i];
for (i = 0; i < dcb_info->nb_tcs; i++)
dcb_info->tc_bws[i] = hw->dcb_info.pg_info[0].tc_dwrr[i];
for (i = 0; i < hw->num_tc; i++) {
dcb_info->tc_queue.tc_rxq[0][i].base = hw->alloc_rss_size * i;
dcb_info->tc_queue.tc_txq[0][i].base =
hw->tc_queue[i].tqp_offset;
dcb_info->tc_queue.tc_rxq[0][i].nb_queue = hw->alloc_rss_size;
dcb_info->tc_queue.tc_txq[0][i].nb_queue =
hw->tc_queue[i].tqp_count;
}
rte_spinlock_unlock(&hw->lock);
return 0;
}
static int
hns3_reinit_dev(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
int ret;
ret = hns3_cmd_init(hw);
if (ret) {
hns3_err(hw, "Failed to init cmd: %d", ret);
return ret;
}
ret = hns3_reset_all_queues(hns);
if (ret) {
hns3_err(hw, "Failed to reset all queues: %d", ret);
return ret;
}
ret = hns3_init_hardware(hns);
if (ret) {
hns3_err(hw, "Failed to init hardware: %d", ret);
return ret;
}
ret = hns3_enable_hw_error_intr(hns, true);
if (ret) {
hns3_err(hw, "fail to enable hw error interrupts: %d",
ret);
return ret;
}
hns3_info(hw, "Reset done, driver initialization finished.");
return 0;
}
static bool
is_pf_reset_done(struct hns3_hw *hw)
{
uint32_t val, reg, reg_bit;
switch (hw->reset.level) {
case HNS3_IMP_RESET:
reg = HNS3_GLOBAL_RESET_REG;
reg_bit = HNS3_IMP_RESET_BIT;
break;
case HNS3_GLOBAL_RESET:
reg = HNS3_GLOBAL_RESET_REG;
reg_bit = HNS3_GLOBAL_RESET_BIT;
break;
case HNS3_FUNC_RESET:
reg = HNS3_FUN_RST_ING;
reg_bit = HNS3_FUN_RST_ING_B;
break;
case HNS3_FLR_RESET:
default:
hns3_err(hw, "Wait for unsupported reset level: %d",
hw->reset.level);
return true;
}
val = hns3_read_dev(hw, reg);
if (hns3_get_bit(val, reg_bit))
return false;
else
return true;
}
bool
hns3_is_reset_pending(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
enum hns3_reset_level reset;
hns3_check_event_cause(hns, NULL);
reset = hns3_get_reset_level(hns, &hw->reset.pending);
if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
hns3_warn(hw, "High level reset %d is pending", reset);
return true;
}
reset = hns3_get_reset_level(hns, &hw->reset.request);
if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
hns3_warn(hw, "High level reset %d is request", reset);
return true;
}
return false;
}
static int
hns3_wait_hardware_ready(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
struct hns3_wait_data *wait_data = hw->reset.wait_data;
struct timeval tv;
if (wait_data->result == HNS3_WAIT_SUCCESS)
return 0;
else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
gettimeofday(&tv, NULL);
hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
tv.tv_sec, tv.tv_usec);
return -ETIME;
} else if (wait_data->result == HNS3_WAIT_REQUEST)
return -EAGAIN;
wait_data->hns = hns;
wait_data->check_completion = is_pf_reset_done;
wait_data->end_ms = (uint64_t)HNS3_RESET_WAIT_CNT *
HNS3_RESET_WAIT_MS + get_timeofday_ms();
wait_data->interval = HNS3_RESET_WAIT_MS * USEC_PER_MSEC;
wait_data->count = HNS3_RESET_WAIT_CNT;
wait_data->result = HNS3_WAIT_REQUEST;
rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
return -EAGAIN;
}
static int
hns3_func_reset_cmd(struct hns3_hw *hw, int func_id)
{
struct hns3_cmd_desc desc;
struct hns3_reset_cmd *req = (struct hns3_reset_cmd *)desc.data;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_RST_TRIGGER, false);
hns3_set_bit(req->mac_func_reset, HNS3_CFG_RESET_FUNC_B, 1);
req->fun_reset_vfid = func_id;
return hns3_cmd_send(hw, &desc, 1);
}
static int
hns3_imp_reset_cmd(struct hns3_hw *hw)
{
struct hns3_cmd_desc desc;
hns3_cmd_setup_basic_desc(&desc, 0xFFFE, false);
desc.data[0] = 0xeedd;
return hns3_cmd_send(hw, &desc, 1);
}
static void
hns3_msix_process(struct hns3_adapter *hns, enum hns3_reset_level reset_level)
{
struct hns3_hw *hw = &hns->hw;
struct timeval tv;
uint32_t val;
gettimeofday(&tv, NULL);
if (hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG) ||
hns3_read_dev(hw, HNS3_FUN_RST_ING)) {
hns3_warn(hw, "Don't process msix during resetting time=%ld.%.6ld",
tv.tv_sec, tv.tv_usec);
return;
}
switch (reset_level) {
case HNS3_IMP_RESET:
hns3_imp_reset_cmd(hw);
hns3_warn(hw, "IMP Reset requested time=%ld.%.6ld",
tv.tv_sec, tv.tv_usec);
break;
case HNS3_GLOBAL_RESET:
val = hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG);
hns3_set_bit(val, HNS3_GLOBAL_RESET_BIT, 1);
hns3_write_dev(hw, HNS3_GLOBAL_RESET_REG, val);
hns3_warn(hw, "Global Reset requested time=%ld.%.6ld",
tv.tv_sec, tv.tv_usec);
break;
case HNS3_FUNC_RESET:
hns3_warn(hw, "PF Reset requested time=%ld.%.6ld",
tv.tv_sec, tv.tv_usec);
/* schedule again to check later */
hns3_atomic_set_bit(HNS3_FUNC_RESET, &hw->reset.pending);
hns3_schedule_reset(hns);
break;
default:
hns3_warn(hw, "Unsupported reset level: %d", reset_level);
return;
}
hns3_atomic_clear_bit(reset_level, &hw->reset.request);
}
static enum hns3_reset_level
hns3_get_reset_level(struct hns3_adapter *hns, uint64_t *levels)
{
struct hns3_hw *hw = &hns->hw;
enum hns3_reset_level reset_level = HNS3_NONE_RESET;
/* Return the highest priority reset level amongst all */
if (hns3_atomic_test_bit(HNS3_IMP_RESET, levels))
reset_level = HNS3_IMP_RESET;
else if (hns3_atomic_test_bit(HNS3_GLOBAL_RESET, levels))
reset_level = HNS3_GLOBAL_RESET;
else if (hns3_atomic_test_bit(HNS3_FUNC_RESET, levels))
reset_level = HNS3_FUNC_RESET;
else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
reset_level = HNS3_FLR_RESET;
if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
return HNS3_NONE_RESET;
return reset_level;
}
static int
hns3_prepare_reset(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
uint32_t reg_val;
int ret;
switch (hw->reset.level) {
case HNS3_FUNC_RESET:
ret = hns3_func_reset_cmd(hw, HNS3_PF_FUNC_ID);
if (ret)
return ret;
/*
* After performaning pf reset, it is not necessary to do the
* mailbox handling or send any command to firmware, because
* any mailbox handling or command to firmware is only valid
* after hns3_cmd_init is called.
*/
rte_atomic16_set(&hw->reset.disable_cmd, 1);
hw->reset.stats.request_cnt++;
break;
case HNS3_IMP_RESET:
reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val |
BIT(HNS3_VECTOR0_IMP_RESET_INT_B));
break;
default:
break;
}
return 0;
}
static int
hns3_set_rst_done(struct hns3_hw *hw)
{
struct hns3_pf_rst_done_cmd *req;
struct hns3_cmd_desc desc;
req = (struct hns3_pf_rst_done_cmd *)desc.data;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_PF_RST_DONE, false);
req->pf_rst_done |= HNS3_PF_RESET_DONE_BIT;
return hns3_cmd_send(hw, &desc, 1);
}
static int
hns3_stop_service(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
struct rte_eth_dev *eth_dev;
eth_dev = &rte_eth_devices[hw->data->port_id];
if (hw->adapter_state == HNS3_NIC_STARTED)
rte_eal_alarm_cancel(hns3_service_handler, eth_dev);
hw->mac.link_status = ETH_LINK_DOWN;
hns3_set_rxtx_function(eth_dev);
rte_wmb();
/* Disable datapath on secondary process. */
hns3_mp_req_stop_rxtx(eth_dev);
rte_delay_ms(hw->tqps_num);
rte_spinlock_lock(&hw->lock);
if (hns->hw.adapter_state == HNS3_NIC_STARTED ||
hw->adapter_state == HNS3_NIC_STOPPING) {
hns3_do_stop(hns);
hw->reset.mbuf_deferred_free = true;
} else
hw->reset.mbuf_deferred_free = false;
/*
* It is cumbersome for hardware to pick-and-choose entries for deletion
* from table space. Hence, for function reset software intervention is
* required to delete the entries
*/
if (rte_atomic16_read(&hw->reset.disable_cmd) == 0)
hns3_configure_all_mc_mac_addr(hns, true);
rte_spinlock_unlock(&hw->lock);
return 0;
}
static int
hns3_start_service(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
struct rte_eth_dev *eth_dev;
if (hw->reset.level == HNS3_IMP_RESET ||
hw->reset.level == HNS3_GLOBAL_RESET)
hns3_set_rst_done(hw);
eth_dev = &rte_eth_devices[hw->data->port_id];
hns3_set_rxtx_function(eth_dev);
hns3_mp_req_start_rxtx(eth_dev);
if (hw->adapter_state == HNS3_NIC_STARTED) {
hns3_service_handler(eth_dev);
/* Enable interrupt of all rx queues before enabling queues */
hns3_dev_all_rx_queue_intr_enable(hw, true);
/*
* When finished the initialization, enable queues to receive
* and transmit packets.
*/
hns3_enable_all_queues(hw, true);
}
return 0;
}
static int
hns3_restore_conf(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
int ret;
ret = hns3_configure_all_mac_addr(hns, false);
if (ret)
return ret;
ret = hns3_configure_all_mc_mac_addr(hns, false);
if (ret)
goto err_mc_mac;
ret = hns3_dev_promisc_restore(hns);
if (ret)
goto err_promisc;
ret = hns3_restore_vlan_table(hns);
if (ret)
goto err_promisc;
ret = hns3_restore_vlan_conf(hns);
if (ret)
goto err_promisc;
ret = hns3_restore_all_fdir_filter(hns);
if (ret)
goto err_promisc;
ret = hns3_restore_rx_interrupt(hw);
if (ret)
goto err_promisc;
ret = hns3_restore_gro_conf(hw);
if (ret)
goto err_promisc;
if (hns->hw.adapter_state == HNS3_NIC_STARTED) {
ret = hns3_do_start(hns, false);
if (ret)
goto err_promisc;
hns3_info(hw, "hns3 dev restart successful!");
} else if (hw->adapter_state == HNS3_NIC_STOPPING)
hw->adapter_state = HNS3_NIC_CONFIGURED;
return 0;
err_promisc:
hns3_configure_all_mc_mac_addr(hns, true);
err_mc_mac:
hns3_configure_all_mac_addr(hns, true);
return ret;
}
static void
hns3_reset_service(void *param)
{
struct hns3_adapter *hns = (struct hns3_adapter *)param;
struct hns3_hw *hw = &hns->hw;
enum hns3_reset_level reset_level;
struct timeval tv_delta;
struct timeval tv_start;
struct timeval tv;
uint64_t msec;
int ret;
/*
* The interrupt is not triggered within the delay time.
* The interrupt may have been lost. It is necessary to handle
* the interrupt to recover from the error.
*/
if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_DEFERRED) {
rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_REQUESTED);
hns3_err(hw, "Handling interrupts in delayed tasks");
hns3_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
if (reset_level == HNS3_NONE_RESET) {
hns3_err(hw, "No reset level is set, try IMP reset");
hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
}
}
rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_NONE);
/*
* Check if there is any ongoing reset in the hardware. This status can
* be checked from reset_pending. If there is then, we need to wait for
* hardware to complete reset.
* a. If we are able to figure out in reasonable time that hardware
* has fully resetted then, we can proceed with driver, client
* reset.
* b. else, we can come back later to check this status so re-sched
* now.
*/
reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
if (reset_level != HNS3_NONE_RESET) {
gettimeofday(&tv_start, NULL);
ret = hns3_reset_process(hns, reset_level);
gettimeofday(&tv, NULL);
timersub(&tv, &tv_start, &tv_delta);
msec = tv_delta.tv_sec * MSEC_PER_SEC +
tv_delta.tv_usec / USEC_PER_MSEC;
if (msec > HNS3_RESET_PROCESS_MS)
hns3_err(hw, "%d handle long time delta %" PRIx64
" ms time=%ld.%.6ld",
hw->reset.level, msec,
tv.tv_sec, tv.tv_usec);
if (ret == -EAGAIN)
return;
}
/* Check if we got any *new* reset requests to be honored */
reset_level = hns3_get_reset_level(hns, &hw->reset.request);
if (reset_level != HNS3_NONE_RESET)
hns3_msix_process(hns, reset_level);
}
static const struct eth_dev_ops hns3_eth_dev_ops = {
.dev_start = hns3_dev_start,
.dev_stop = hns3_dev_stop,
.dev_close = hns3_dev_close,
.promiscuous_enable = hns3_dev_promiscuous_enable,
.promiscuous_disable = hns3_dev_promiscuous_disable,
.allmulticast_enable = hns3_dev_allmulticast_enable,
.allmulticast_disable = hns3_dev_allmulticast_disable,
.mtu_set = hns3_dev_mtu_set,
.stats_get = hns3_stats_get,
.stats_reset = hns3_stats_reset,
.xstats_get = hns3_dev_xstats_get,
.xstats_get_names = hns3_dev_xstats_get_names,
.xstats_reset = hns3_dev_xstats_reset,
.xstats_get_by_id = hns3_dev_xstats_get_by_id,
.xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
.dev_infos_get = hns3_dev_infos_get,
.fw_version_get = hns3_fw_version_get,
.rx_queue_setup = hns3_rx_queue_setup,
.tx_queue_setup = hns3_tx_queue_setup,
.rx_queue_release = hns3_dev_rx_queue_release,
.tx_queue_release = hns3_dev_tx_queue_release,
.rx_queue_intr_enable = hns3_dev_rx_queue_intr_enable,
.rx_queue_intr_disable = hns3_dev_rx_queue_intr_disable,
.dev_configure = hns3_dev_configure,
.flow_ctrl_get = hns3_flow_ctrl_get,
.flow_ctrl_set = hns3_flow_ctrl_set,
.priority_flow_ctrl_set = hns3_priority_flow_ctrl_set,
.mac_addr_add = hns3_add_mac_addr,
.mac_addr_remove = hns3_remove_mac_addr,
.mac_addr_set = hns3_set_default_mac_addr,
.set_mc_addr_list = hns3_set_mc_mac_addr_list,
.link_update = hns3_dev_link_update,
.rss_hash_update = hns3_dev_rss_hash_update,
.rss_hash_conf_get = hns3_dev_rss_hash_conf_get,
.reta_update = hns3_dev_rss_reta_update,
.reta_query = hns3_dev_rss_reta_query,
.filter_ctrl = hns3_dev_filter_ctrl,
.vlan_filter_set = hns3_vlan_filter_set,
.vlan_tpid_set = hns3_vlan_tpid_set,
.vlan_offload_set = hns3_vlan_offload_set,
.vlan_pvid_set = hns3_vlan_pvid_set,
.get_reg = hns3_get_regs,
.get_dcb_info = hns3_get_dcb_info,
.dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
};
static const struct hns3_reset_ops hns3_reset_ops = {
.reset_service = hns3_reset_service,
.stop_service = hns3_stop_service,
.prepare_reset = hns3_prepare_reset,
.wait_hardware_ready = hns3_wait_hardware_ready,
.reinit_dev = hns3_reinit_dev,
.restore_conf = hns3_restore_conf,
.start_service = hns3_start_service,
};
static int
hns3_dev_init(struct rte_eth_dev *eth_dev)
{
struct hns3_adapter *hns = eth_dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
int ret;
PMD_INIT_FUNC_TRACE();
eth_dev->process_private = (struct hns3_process_private *)
rte_zmalloc_socket("hns3_filter_list",
sizeof(struct hns3_process_private),
RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
if (eth_dev->process_private == NULL) {
PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
return -ENOMEM;
}
/* initialize flow filter lists */
hns3_filterlist_init(eth_dev);
hns3_set_rxtx_function(eth_dev);
eth_dev->dev_ops = &hns3_eth_dev_ops;
if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
ret = hns3_mp_init_secondary();
if (ret) {
PMD_INIT_LOG(ERR, "Failed to init for secondary "
"process, ret = %d", ret);
goto err_mp_init_secondary;
}
hw->secondary_cnt++;
return 0;
}
ret = hns3_mp_init_primary();
if (ret) {
PMD_INIT_LOG(ERR,
"Failed to init for primary process, ret = %d",
ret);
goto err_mp_init_primary;
}
hw->adapter_state = HNS3_NIC_UNINITIALIZED;
hns->is_vf = false;
hw->data = eth_dev->data;
/*
* Set default max packet size according to the mtu
* default vale in DPDK frame.
*/
hns->pf.mps = hw->data->mtu + HNS3_ETH_OVERHEAD;
ret = hns3_reset_init(hw);
if (ret)
goto err_init_reset;
hw->reset.ops = &hns3_reset_ops;
ret = hns3_init_pf(eth_dev);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to init pf: %d", ret);
goto err_init_pf;
}
/* Allocate memory for storing MAC addresses */
eth_dev->data->mac_addrs = rte_zmalloc("hns3-mac",
sizeof(struct rte_ether_addr) *
HNS3_UC_MACADDR_NUM, 0);
if (eth_dev->data->mac_addrs == NULL) {
PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
"to store MAC addresses",
sizeof(struct rte_ether_addr) *
HNS3_UC_MACADDR_NUM);
ret = -ENOMEM;
goto err_rte_zmalloc;
}
rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
&eth_dev->data->mac_addrs[0]);
hw->adapter_state = HNS3_NIC_INITIALIZED;
/*
* Pass the information to the rte_eth_dev_close() that it should also
* release the private port resources.
*/
eth_dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_PENDING) {
hns3_err(hw, "Reschedule reset service after dev_init");
hns3_schedule_reset(hns);
} else {
/* IMP will wait ready flag before reset */
hns3_notify_reset_ready(hw, false);
}
hns3_info(hw, "hns3 dev initialization successful!");
return 0;
err_rte_zmalloc:
hns3_uninit_pf(eth_dev);
err_init_pf:
rte_free(hw->reset.wait_data);
err_init_reset:
hns3_mp_uninit_primary();
err_mp_init_primary:
err_mp_init_secondary:
eth_dev->dev_ops = NULL;
eth_dev->rx_pkt_burst = NULL;
eth_dev->tx_pkt_burst = NULL;
eth_dev->tx_pkt_prepare = NULL;
rte_free(eth_dev->process_private);
eth_dev->process_private = NULL;
return ret;
}
static int
hns3_dev_uninit(struct rte_eth_dev *eth_dev)
{
struct hns3_adapter *hns = eth_dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
PMD_INIT_FUNC_TRACE();
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return -EPERM;
eth_dev->dev_ops = NULL;
eth_dev->rx_pkt_burst = NULL;
eth_dev->tx_pkt_burst = NULL;
eth_dev->tx_pkt_prepare = NULL;
if (hw->adapter_state < HNS3_NIC_CLOSING)
hns3_dev_close(eth_dev);
hw->adapter_state = HNS3_NIC_REMOVED;
return 0;
}
static int
eth_hns3_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_probe(pci_dev,
sizeof(struct hns3_adapter),
hns3_dev_init);
}
static int
eth_hns3_pci_remove(struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_remove(pci_dev, hns3_dev_uninit);
}
static const struct rte_pci_id pci_id_hns3_map[] = {
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_GE) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE_RDMA) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_50GE_RDMA) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_MACSEC) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_200G_RDMA) },
{ .vendor_id = 0, /* sentinel */ },
};
static struct rte_pci_driver rte_hns3_pmd = {
.id_table = pci_id_hns3_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING,
.probe = eth_hns3_pci_probe,
.remove = eth_hns3_pci_remove,
};
RTE_PMD_REGISTER_PCI(net_hns3, rte_hns3_pmd);
RTE_PMD_REGISTER_PCI_TABLE(net_hns3, pci_id_hns3_map);
RTE_PMD_REGISTER_KMOD_DEP(net_hns3, "* igb_uio | vfio-pci");
RTE_LOG_REGISTER(hns3_logtype_init, pmd.net.hns3.init, NOTICE);
RTE_LOG_REGISTER(hns3_logtype_driver, pmd.net.hns3.driver, NOTICE);