numam-dpdk/app/test-acl/main.c
Konstantin Ananyev 45da22e42e acl: add 512-bit AVX512 classify method
Introduce classify implementation that uses AVX512 specific ISA.
rte_acl_classify_avx512x32() is able to process up to 32 flows in parallel.
It uses 512-bit width registers/instructions and provides higher
performance then rte_acl_classify_avx512x16(), but can cause
frequency level change.
Note that for now only 64-bit version is supported.

Signed-off-by: Konstantin Ananyev <konstantin.ananyev@intel.com>
2020-10-14 14:23:01 +02:00

1111 lines
26 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <rte_string_fns.h>
#include <rte_acl.h>
#include <getopt.h>
#include <string.h>
#include <rte_cycles.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_ip.h>
#define PRINT_USAGE_START "%s [EAL options] --\n"
#define RTE_LOGTYPE_TESTACL RTE_LOGTYPE_USER1
#define APP_NAME "TESTACL"
#define GET_CB_FIELD(in, fd, base, lim, dlm) do { \
unsigned long val; \
char *end_fld; \
errno = 0; \
val = strtoul((in), &end_fld, (base)); \
if (errno != 0 || end_fld[0] != (dlm) || val > (lim)) \
return -EINVAL; \
(fd) = (typeof(fd))val; \
(in) = end_fld + 1; \
} while (0)
#define OPT_RULE_FILE "rulesf"
#define OPT_TRACE_FILE "tracef"
#define OPT_RULE_NUM "rulenum"
#define OPT_TRACE_NUM "tracenum"
#define OPT_TRACE_STEP "tracestep"
#define OPT_SEARCH_ALG "alg"
#define OPT_BLD_CATEGORIES "bldcat"
#define OPT_RUN_CATEGORIES "runcat"
#define OPT_MAX_SIZE "maxsize"
#define OPT_ITER_NUM "iter"
#define OPT_VERBOSE "verbose"
#define OPT_IPV6 "ipv6"
#define TRACE_DEFAULT_NUM 0x10000
#define TRACE_STEP_MAX 0x1000
#define TRACE_STEP_DEF 0x100
#define RULE_NUM 0x10000
enum {
DUMP_NONE,
DUMP_SEARCH,
DUMP_PKT,
DUMP_MAX
};
struct acl_alg {
const char *name;
enum rte_acl_classify_alg alg;
};
static const struct acl_alg acl_alg[] = {
{
.name = "scalar",
.alg = RTE_ACL_CLASSIFY_SCALAR,
},
{
.name = "sse",
.alg = RTE_ACL_CLASSIFY_SSE,
},
{
.name = "avx2",
.alg = RTE_ACL_CLASSIFY_AVX2,
},
{
.name = "neon",
.alg = RTE_ACL_CLASSIFY_NEON,
},
{
.name = "altivec",
.alg = RTE_ACL_CLASSIFY_ALTIVEC,
},
{
.name = "avx512x16",
.alg = RTE_ACL_CLASSIFY_AVX512X16,
},
{
.name = "avx512x32",
.alg = RTE_ACL_CLASSIFY_AVX512X32,
},
};
static struct {
const char *prgname;
const char *rule_file;
const char *trace_file;
size_t max_size;
uint32_t bld_categories;
uint32_t run_categories;
uint32_t nb_rules;
uint32_t nb_traces;
uint32_t trace_step;
uint32_t trace_sz;
uint32_t iter_num;
uint32_t verbose;
uint32_t ipv6;
struct acl_alg alg;
uint32_t used_traces;
void *traces;
struct rte_acl_ctx *acx;
} config = {
.bld_categories = 3,
.run_categories = 1,
.nb_rules = RULE_NUM,
.nb_traces = TRACE_DEFAULT_NUM,
.trace_step = TRACE_STEP_DEF,
.iter_num = 1,
.verbose = DUMP_MAX,
.alg = {
.name = "default",
.alg = RTE_ACL_CLASSIFY_DEFAULT,
},
.ipv6 = 0
};
static struct rte_acl_param prm = {
.name = APP_NAME,
.socket_id = SOCKET_ID_ANY,
};
/*
* Rule and trace formats definitions.
*/
struct ipv4_5tuple {
uint8_t proto;
uint32_t ip_src;
uint32_t ip_dst;
uint16_t port_src;
uint16_t port_dst;
};
enum {
PROTO_FIELD_IPV4,
SRC_FIELD_IPV4,
DST_FIELD_IPV4,
SRCP_FIELD_IPV4,
DSTP_FIELD_IPV4,
NUM_FIELDS_IPV4
};
/*
* That effectively defines order of IPV4VLAN classifications:
* - PROTO
* - VLAN (TAG and DOMAIN)
* - SRC IP ADDRESS
* - DST IP ADDRESS
* - PORTS (SRC and DST)
*/
enum {
RTE_ACL_IPV4VLAN_PROTO,
RTE_ACL_IPV4VLAN_VLAN,
RTE_ACL_IPV4VLAN_SRC,
RTE_ACL_IPV4VLAN_DST,
RTE_ACL_IPV4VLAN_PORTS,
RTE_ACL_IPV4VLAN_NUM
};
struct rte_acl_field_def ipv4_defs[NUM_FIELDS_IPV4] = {
{
.type = RTE_ACL_FIELD_TYPE_BITMASK,
.size = sizeof(uint8_t),
.field_index = PROTO_FIELD_IPV4,
.input_index = RTE_ACL_IPV4VLAN_PROTO,
.offset = offsetof(struct ipv4_5tuple, proto),
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
.field_index = SRC_FIELD_IPV4,
.input_index = RTE_ACL_IPV4VLAN_SRC,
.offset = offsetof(struct ipv4_5tuple, ip_src),
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
.field_index = DST_FIELD_IPV4,
.input_index = RTE_ACL_IPV4VLAN_DST,
.offset = offsetof(struct ipv4_5tuple, ip_dst),
},
{
.type = RTE_ACL_FIELD_TYPE_RANGE,
.size = sizeof(uint16_t),
.field_index = SRCP_FIELD_IPV4,
.input_index = RTE_ACL_IPV4VLAN_PORTS,
.offset = offsetof(struct ipv4_5tuple, port_src),
},
{
.type = RTE_ACL_FIELD_TYPE_RANGE,
.size = sizeof(uint16_t),
.field_index = DSTP_FIELD_IPV4,
.input_index = RTE_ACL_IPV4VLAN_PORTS,
.offset = offsetof(struct ipv4_5tuple, port_dst),
},
};
#define IPV6_ADDR_LEN 16
#define IPV6_ADDR_U16 (IPV6_ADDR_LEN / sizeof(uint16_t))
#define IPV6_ADDR_U32 (IPV6_ADDR_LEN / sizeof(uint32_t))
struct ipv6_5tuple {
uint8_t proto;
uint32_t ip_src[IPV6_ADDR_U32];
uint32_t ip_dst[IPV6_ADDR_U32];
uint16_t port_src;
uint16_t port_dst;
};
enum {
PROTO_FIELD_IPV6,
SRC1_FIELD_IPV6,
SRC2_FIELD_IPV6,
SRC3_FIELD_IPV6,
SRC4_FIELD_IPV6,
DST1_FIELD_IPV6,
DST2_FIELD_IPV6,
DST3_FIELD_IPV6,
DST4_FIELD_IPV6,
SRCP_FIELD_IPV6,
DSTP_FIELD_IPV6,
NUM_FIELDS_IPV6
};
struct rte_acl_field_def ipv6_defs[NUM_FIELDS_IPV6] = {
{
.type = RTE_ACL_FIELD_TYPE_BITMASK,
.size = sizeof(uint8_t),
.field_index = PROTO_FIELD_IPV6,
.input_index = PROTO_FIELD_IPV6,
.offset = offsetof(struct ipv6_5tuple, proto),
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
.field_index = SRC1_FIELD_IPV6,
.input_index = SRC1_FIELD_IPV6,
.offset = offsetof(struct ipv6_5tuple, ip_src[0]),
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
.field_index = SRC2_FIELD_IPV6,
.input_index = SRC2_FIELD_IPV6,
.offset = offsetof(struct ipv6_5tuple, ip_src[1]),
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
.field_index = SRC3_FIELD_IPV6,
.input_index = SRC3_FIELD_IPV6,
.offset = offsetof(struct ipv6_5tuple, ip_src[2]),
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
.field_index = SRC4_FIELD_IPV6,
.input_index = SRC4_FIELD_IPV6,
.offset = offsetof(struct ipv6_5tuple, ip_src[3]),
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
.field_index = DST1_FIELD_IPV6,
.input_index = DST1_FIELD_IPV6,
.offset = offsetof(struct ipv6_5tuple, ip_dst[0]),
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
.field_index = DST2_FIELD_IPV6,
.input_index = DST2_FIELD_IPV6,
.offset = offsetof(struct ipv6_5tuple, ip_dst[1]),
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
.field_index = DST3_FIELD_IPV6,
.input_index = DST3_FIELD_IPV6,
.offset = offsetof(struct ipv6_5tuple, ip_dst[2]),
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
.field_index = DST4_FIELD_IPV6,
.input_index = DST4_FIELD_IPV6,
.offset = offsetof(struct ipv6_5tuple, ip_dst[3]),
},
{
.type = RTE_ACL_FIELD_TYPE_RANGE,
.size = sizeof(uint16_t),
.field_index = SRCP_FIELD_IPV6,
.input_index = SRCP_FIELD_IPV6,
.offset = offsetof(struct ipv6_5tuple, port_src),
},
{
.type = RTE_ACL_FIELD_TYPE_RANGE,
.size = sizeof(uint16_t),
.field_index = DSTP_FIELD_IPV6,
.input_index = SRCP_FIELD_IPV6,
.offset = offsetof(struct ipv6_5tuple, port_dst),
},
};
enum {
CB_FLD_SRC_ADDR,
CB_FLD_DST_ADDR,
CB_FLD_SRC_PORT_LOW,
CB_FLD_SRC_PORT_DLM,
CB_FLD_SRC_PORT_HIGH,
CB_FLD_DST_PORT_LOW,
CB_FLD_DST_PORT_DLM,
CB_FLD_DST_PORT_HIGH,
CB_FLD_PROTO,
CB_FLD_NUM,
};
enum {
CB_TRC_SRC_ADDR,
CB_TRC_DST_ADDR,
CB_TRC_SRC_PORT,
CB_TRC_DST_PORT,
CB_TRC_PROTO,
CB_TRC_NUM,
};
RTE_ACL_RULE_DEF(acl_rule, RTE_ACL_MAX_FIELDS);
static const char cb_port_delim[] = ":";
static char line[LINE_MAX];
#define dump_verbose(lvl, fh, fmt, args...) do { \
if ((lvl) <= (int32_t)config.verbose) \
fprintf(fh, fmt, ##args); \
} while (0)
/*
* Parse ClassBench input trace (test vectors and expected results) file.
* Expected format:
* <src_ipv4_addr> <space> <dst_ipv4_addr> <space> \
* <src_port> <space> <dst_port> <space> <proto>
*/
static int
parse_cb_ipv4_trace(char *str, struct ipv4_5tuple *v)
{
int i;
char *s, *sp, *in[CB_TRC_NUM];
static const char *dlm = " \t\n";
s = str;
for (i = 0; i != RTE_DIM(in); i++) {
in[i] = strtok_r(s, dlm, &sp);
if (in[i] == NULL)
return -EINVAL;
s = NULL;
}
GET_CB_FIELD(in[CB_TRC_SRC_ADDR], v->ip_src, 0, UINT32_MAX, 0);
GET_CB_FIELD(in[CB_TRC_DST_ADDR], v->ip_dst, 0, UINT32_MAX, 0);
GET_CB_FIELD(in[CB_TRC_SRC_PORT], v->port_src, 0, UINT16_MAX, 0);
GET_CB_FIELD(in[CB_TRC_DST_PORT], v->port_dst, 0, UINT16_MAX, 0);
GET_CB_FIELD(in[CB_TRC_PROTO], v->proto, 0, UINT8_MAX, 0);
/* convert to network byte order. */
v->ip_src = rte_cpu_to_be_32(v->ip_src);
v->ip_dst = rte_cpu_to_be_32(v->ip_dst);
v->port_src = rte_cpu_to_be_16(v->port_src);
v->port_dst = rte_cpu_to_be_16(v->port_dst);
return 0;
}
/*
* Parses IPV6 address, exepcts the following format:
* XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX (where X - is a hexedecimal digit).
*/
static int
parse_ipv6_addr(const char *in, const char **end, uint32_t v[IPV6_ADDR_U32],
char dlm)
{
uint32_t addr[IPV6_ADDR_U16];
GET_CB_FIELD(in, addr[0], 16, UINT16_MAX, ':');
GET_CB_FIELD(in, addr[1], 16, UINT16_MAX, ':');
GET_CB_FIELD(in, addr[2], 16, UINT16_MAX, ':');
GET_CB_FIELD(in, addr[3], 16, UINT16_MAX, ':');
GET_CB_FIELD(in, addr[4], 16, UINT16_MAX, ':');
GET_CB_FIELD(in, addr[5], 16, UINT16_MAX, ':');
GET_CB_FIELD(in, addr[6], 16, UINT16_MAX, ':');
GET_CB_FIELD(in, addr[7], 16, UINT16_MAX, dlm);
*end = in;
v[0] = (addr[0] << 16) + addr[1];
v[1] = (addr[2] << 16) + addr[3];
v[2] = (addr[4] << 16) + addr[5];
v[3] = (addr[6] << 16) + addr[7];
return 0;
}
static int
parse_cb_ipv6_addr_trace(const char *in, uint32_t v[IPV6_ADDR_U32])
{
int32_t rc;
const char *end;
rc = parse_ipv6_addr(in, &end, v, 0);
if (rc != 0)
return rc;
v[0] = rte_cpu_to_be_32(v[0]);
v[1] = rte_cpu_to_be_32(v[1]);
v[2] = rte_cpu_to_be_32(v[2]);
v[3] = rte_cpu_to_be_32(v[3]);
return 0;
}
/*
* Parse ClassBench input trace (test vectors and expected results) file.
* Expected format:
* <src_ipv6_addr> <space> <dst_ipv6_addr> <space> \
* <src_port> <space> <dst_port> <space> <proto>
*/
static int
parse_cb_ipv6_trace(char *str, struct ipv6_5tuple *v)
{
int32_t i, rc;
char *s, *sp, *in[CB_TRC_NUM];
static const char *dlm = " \t\n";
s = str;
for (i = 0; i != RTE_DIM(in); i++) {
in[i] = strtok_r(s, dlm, &sp);
if (in[i] == NULL)
return -EINVAL;
s = NULL;
}
/* get ip6 src address. */
rc = parse_cb_ipv6_addr_trace(in[CB_TRC_SRC_ADDR], v->ip_src);
if (rc != 0)
return rc;
/* get ip6 dst address. */
rc = parse_cb_ipv6_addr_trace(in[CB_TRC_DST_ADDR], v->ip_dst);
if (rc != 0)
return rc;
GET_CB_FIELD(in[CB_TRC_SRC_PORT], v->port_src, 0, UINT16_MAX, 0);
GET_CB_FIELD(in[CB_TRC_DST_PORT], v->port_dst, 0, UINT16_MAX, 0);
GET_CB_FIELD(in[CB_TRC_PROTO], v->proto, 0, UINT8_MAX, 0);
/* convert to network byte order. */
v->port_src = rte_cpu_to_be_16(v->port_src);
v->port_dst = rte_cpu_to_be_16(v->port_dst);
return 0;
}
static void
tracef_init(void)
{
static const char name[] = APP_NAME;
FILE *f;
size_t sz;
uint32_t n;
struct ipv4_5tuple *v;
struct ipv6_5tuple *w;
sz = config.nb_traces * (config.ipv6 ? sizeof(*w) : sizeof(*v));
config.traces = rte_zmalloc_socket(name, sz, RTE_CACHE_LINE_SIZE,
SOCKET_ID_ANY);
if (config.traces == NULL)
rte_exit(EXIT_FAILURE, "Cannot allocate %zu bytes for "
"requested %u number of trace records\n",
sz, config.nb_traces);
f = fopen(config.trace_file, "r");
if (f == NULL)
rte_exit(-EINVAL, "failed to open file: %s\n",
config.trace_file);
v = config.traces;
w = config.traces;
for (n = 0; n != config.nb_traces; n++) {
if (fgets(line, sizeof(line), f) == NULL)
break;
if (config.ipv6) {
if (parse_cb_ipv6_trace(line, w + n) != 0)
rte_exit(EXIT_FAILURE,
"%s: failed to parse ipv6 trace "
"record at line %u\n",
config.trace_file, n + 1);
} else {
if (parse_cb_ipv4_trace(line, v + n) != 0)
rte_exit(EXIT_FAILURE,
"%s: failed to parse ipv4 trace "
"record at line %u\n",
config.trace_file, n + 1);
}
}
config.used_traces = n;
fclose(f);
}
static int
parse_ipv6_net(const char *in, struct rte_acl_field field[4])
{
int32_t rc;
const char *mp;
uint32_t i, m, v[4];
const uint32_t nbu32 = sizeof(uint32_t) * CHAR_BIT;
/* get address. */
rc = parse_ipv6_addr(in, &mp, v, '/');
if (rc != 0)
return rc;
/* get mask. */
GET_CB_FIELD(mp, m, 0, CHAR_BIT * sizeof(v), 0);
/* put all together. */
for (i = 0; i != RTE_DIM(v); i++) {
if (m >= (i + 1) * nbu32)
field[i].mask_range.u32 = nbu32;
else
field[i].mask_range.u32 = m > (i * nbu32) ?
m - (i * 32) : 0;
field[i].value.u32 = v[i];
}
return 0;
}
static int
parse_cb_ipv6_rule(char *str, struct acl_rule *v)
{
int i, rc;
char *s, *sp, *in[CB_FLD_NUM];
static const char *dlm = " \t\n";
/*
* Skip leading '@'
*/
if (strchr(str, '@') != str)
return -EINVAL;
s = str + 1;
for (i = 0; i != RTE_DIM(in); i++) {
in[i] = strtok_r(s, dlm, &sp);
if (in[i] == NULL)
return -EINVAL;
s = NULL;
}
rc = parse_ipv6_net(in[CB_FLD_SRC_ADDR], v->field + SRC1_FIELD_IPV6);
if (rc != 0) {
RTE_LOG(ERR, TESTACL,
"failed to read source address/mask: %s\n",
in[CB_FLD_SRC_ADDR]);
return rc;
}
rc = parse_ipv6_net(in[CB_FLD_DST_ADDR], v->field + DST1_FIELD_IPV6);
if (rc != 0) {
RTE_LOG(ERR, TESTACL,
"failed to read destination address/mask: %s\n",
in[CB_FLD_DST_ADDR]);
return rc;
}
/* source port. */
GET_CB_FIELD(in[CB_FLD_SRC_PORT_LOW],
v->field[SRCP_FIELD_IPV6].value.u16,
0, UINT16_MAX, 0);
GET_CB_FIELD(in[CB_FLD_SRC_PORT_HIGH],
v->field[SRCP_FIELD_IPV6].mask_range.u16,
0, UINT16_MAX, 0);
if (strncmp(in[CB_FLD_SRC_PORT_DLM], cb_port_delim,
sizeof(cb_port_delim)) != 0)
return -EINVAL;
/* destination port. */
GET_CB_FIELD(in[CB_FLD_DST_PORT_LOW],
v->field[DSTP_FIELD_IPV6].value.u16,
0, UINT16_MAX, 0);
GET_CB_FIELD(in[CB_FLD_DST_PORT_HIGH],
v->field[DSTP_FIELD_IPV6].mask_range.u16,
0, UINT16_MAX, 0);
if (strncmp(in[CB_FLD_DST_PORT_DLM], cb_port_delim,
sizeof(cb_port_delim)) != 0)
return -EINVAL;
GET_CB_FIELD(in[CB_FLD_PROTO], v->field[PROTO_FIELD_IPV6].value.u8,
0, UINT8_MAX, '/');
GET_CB_FIELD(in[CB_FLD_PROTO], v->field[PROTO_FIELD_IPV6].mask_range.u8,
0, UINT8_MAX, 0);
return 0;
}
static int
parse_ipv4_net(const char *in, uint32_t *addr, uint32_t *mask_len)
{
uint8_t a, b, c, d, m;
GET_CB_FIELD(in, a, 0, UINT8_MAX, '.');
GET_CB_FIELD(in, b, 0, UINT8_MAX, '.');
GET_CB_FIELD(in, c, 0, UINT8_MAX, '.');
GET_CB_FIELD(in, d, 0, UINT8_MAX, '/');
GET_CB_FIELD(in, m, 0, sizeof(uint32_t) * CHAR_BIT, 0);
addr[0] = RTE_IPV4(a, b, c, d);
mask_len[0] = m;
return 0;
}
/*
* Parse ClassBench rules file.
* Expected format:
* '@'<src_ipv4_addr>'/'<masklen> <space> \
* <dst_ipv4_addr>'/'<masklen> <space> \
* <src_port_low> <space> ":" <src_port_high> <space> \
* <dst_port_low> <space> ":" <dst_port_high> <space> \
* <proto>'/'<mask>
*/
static int
parse_cb_ipv4_rule(char *str, struct acl_rule *v)
{
int i, rc;
char *s, *sp, *in[CB_FLD_NUM];
static const char *dlm = " \t\n";
/*
* Skip leading '@'
*/
if (strchr(str, '@') != str)
return -EINVAL;
s = str + 1;
for (i = 0; i != RTE_DIM(in); i++) {
in[i] = strtok_r(s, dlm, &sp);
if (in[i] == NULL)
return -EINVAL;
s = NULL;
}
rc = parse_ipv4_net(in[CB_FLD_SRC_ADDR],
&v->field[SRC_FIELD_IPV4].value.u32,
&v->field[SRC_FIELD_IPV4].mask_range.u32);
if (rc != 0) {
RTE_LOG(ERR, TESTACL,
"failed to read source address/mask: %s\n",
in[CB_FLD_SRC_ADDR]);
return rc;
}
rc = parse_ipv4_net(in[CB_FLD_DST_ADDR],
&v->field[DST_FIELD_IPV4].value.u32,
&v->field[DST_FIELD_IPV4].mask_range.u32);
if (rc != 0) {
RTE_LOG(ERR, TESTACL,
"failed to read destination address/mask: %s\n",
in[CB_FLD_DST_ADDR]);
return rc;
}
/* source port. */
GET_CB_FIELD(in[CB_FLD_SRC_PORT_LOW],
v->field[SRCP_FIELD_IPV4].value.u16,
0, UINT16_MAX, 0);
GET_CB_FIELD(in[CB_FLD_SRC_PORT_HIGH],
v->field[SRCP_FIELD_IPV4].mask_range.u16,
0, UINT16_MAX, 0);
if (strncmp(in[CB_FLD_SRC_PORT_DLM], cb_port_delim,
sizeof(cb_port_delim)) != 0)
return -EINVAL;
/* destination port. */
GET_CB_FIELD(in[CB_FLD_DST_PORT_LOW],
v->field[DSTP_FIELD_IPV4].value.u16,
0, UINT16_MAX, 0);
GET_CB_FIELD(in[CB_FLD_DST_PORT_HIGH],
v->field[DSTP_FIELD_IPV4].mask_range.u16,
0, UINT16_MAX, 0);
if (strncmp(in[CB_FLD_DST_PORT_DLM], cb_port_delim,
sizeof(cb_port_delim)) != 0)
return -EINVAL;
GET_CB_FIELD(in[CB_FLD_PROTO], v->field[PROTO_FIELD_IPV4].value.u8,
0, UINT8_MAX, '/');
GET_CB_FIELD(in[CB_FLD_PROTO], v->field[PROTO_FIELD_IPV4].mask_range.u8,
0, UINT8_MAX, 0);
return 0;
}
typedef int (*parse_5tuple)(char *text, struct acl_rule *rule);
static int
add_cb_rules(FILE *f, struct rte_acl_ctx *ctx)
{
int rc;
uint32_t n;
struct acl_rule v;
parse_5tuple parser;
memset(&v, 0, sizeof(v));
parser = (config.ipv6 != 0) ? parse_cb_ipv6_rule : parse_cb_ipv4_rule;
for (n = 1; fgets(line, sizeof(line), f) != NULL; n++) {
rc = parser(line, &v);
if (rc != 0) {
RTE_LOG(ERR, TESTACL, "line %u: parse_cb_ipv4vlan_rule"
" failed, error code: %d (%s)\n",
n, rc, strerror(-rc));
return rc;
}
v.data.category_mask = RTE_LEN2MASK(RTE_ACL_MAX_CATEGORIES,
typeof(v.data.category_mask));
v.data.priority = RTE_ACL_MAX_PRIORITY - n;
v.data.userdata = n;
rc = rte_acl_add_rules(ctx, (struct rte_acl_rule *)&v, 1);
if (rc != 0) {
RTE_LOG(ERR, TESTACL, "line %u: failed to add rules "
"into ACL context, error code: %d (%s)\n",
n, rc, strerror(-rc));
return rc;
}
}
return 0;
}
static void
acx_init(void)
{
int ret;
FILE *f;
struct rte_acl_config cfg;
memset(&cfg, 0, sizeof(cfg));
/* setup ACL build config. */
if (config.ipv6) {
cfg.num_fields = RTE_DIM(ipv6_defs);
memcpy(&cfg.defs, ipv6_defs, sizeof(ipv6_defs));
} else {
cfg.num_fields = RTE_DIM(ipv4_defs);
memcpy(&cfg.defs, ipv4_defs, sizeof(ipv4_defs));
}
cfg.num_categories = config.bld_categories;
cfg.max_size = config.max_size;
/* setup ACL creation parameters. */
prm.rule_size = RTE_ACL_RULE_SZ(cfg.num_fields);
prm.max_rule_num = config.nb_rules;
config.acx = rte_acl_create(&prm);
if (config.acx == NULL)
rte_exit(rte_errno, "failed to create ACL context\n");
/* set default classify method for this context. */
if (config.alg.alg != RTE_ACL_CLASSIFY_DEFAULT) {
ret = rte_acl_set_ctx_classify(config.acx, config.alg.alg);
if (ret != 0)
rte_exit(ret, "failed to setup %s method "
"for ACL context\n", config.alg.name);
}
/* add ACL rules. */
f = fopen(config.rule_file, "r");
if (f == NULL)
rte_exit(-EINVAL, "failed to open file %s\n",
config.rule_file);
ret = add_cb_rules(f, config.acx);
if (ret != 0)
rte_exit(ret, "failed to add rules into ACL context\n");
fclose(f);
/* perform build. */
ret = rte_acl_build(config.acx, &cfg);
dump_verbose(DUMP_NONE, stdout,
"rte_acl_build(%u) finished with %d\n",
config.bld_categories, ret);
rte_acl_dump(config.acx);
if (ret != 0)
rte_exit(ret, "failed to build search context\n");
}
static uint32_t
search_ip5tuples_once(uint32_t categories, uint32_t step, const char *alg)
{
int ret;
uint32_t i, j, k, n, r;
const uint8_t *data[step], *v;
uint32_t results[step * categories];
v = config.traces;
for (i = 0; i != config.used_traces; i += n) {
n = RTE_MIN(step, config.used_traces - i);
for (j = 0; j != n; j++) {
data[j] = v;
v += config.trace_sz;
}
ret = rte_acl_classify(config.acx, data, results,
n, categories);
if (ret != 0)
rte_exit(ret, "classify for ipv%c_5tuples returns %d\n",
config.ipv6 ? '6' : '4', ret);
for (r = 0, j = 0; j != n; j++) {
for (k = 0; k != categories; k++, r++) {
dump_verbose(DUMP_PKT, stdout,
"ipv%c_5tuple: %u, category: %u, "
"result: %u\n",
config.ipv6 ? '6' : '4',
i + j + 1, k, results[r] - 1);
}
}
}
dump_verbose(DUMP_SEARCH, stdout,
"%s(%u, %u, %s) returns %u\n", __func__,
categories, step, alg, i);
return i;
}
static int
search_ip5tuples(__rte_unused void *arg)
{
uint64_t pkt, start, tm;
uint32_t i, lcore;
long double st;
lcore = rte_lcore_id();
start = rte_rdtsc_precise();
pkt = 0;
for (i = 0; i != config.iter_num; i++) {
pkt += search_ip5tuples_once(config.run_categories,
config.trace_step, config.alg.name);
}
tm = rte_rdtsc_precise() - start;
st = (long double)tm / rte_get_timer_hz();
dump_verbose(DUMP_NONE, stdout,
"%s @lcore %u: %" PRIu32 " iterations, %" PRIu64 " pkts, %"
PRIu32 " categories, %" PRIu64 " cycles (%.2Lf sec), "
"%.2Lf cycles/pkt, %.2Lf pkt/sec\n",
__func__, lcore, i, pkt,
config.run_categories, tm, st,
(pkt == 0) ? 0 : (long double)tm / pkt, pkt / st);
return 0;
}
static unsigned long
get_ulong_opt(const char *opt, const char *name, size_t min, size_t max)
{
unsigned long val;
char *end;
errno = 0;
val = strtoul(opt, &end, 0);
if (errno != 0 || end[0] != 0 || val > max || val < min)
rte_exit(-EINVAL, "invalid value: \"%s\" for option: %s\n",
opt, name);
return val;
}
static void
get_alg_opt(const char *opt, const char *name)
{
uint32_t i;
for (i = 0; i != RTE_DIM(acl_alg); i++) {
if (strcmp(opt, acl_alg[i].name) == 0) {
config.alg = acl_alg[i];
return;
}
}
rte_exit(-EINVAL, "invalid value: \"%s\" for option: %s\n",
opt, name);
}
static void
print_usage(const char *prgname)
{
uint32_t i, n, rc;
char buf[PATH_MAX];
n = 0;
buf[0] = 0;
for (i = 0; i < RTE_DIM(acl_alg) - 1; i++) {
rc = snprintf(buf + n, sizeof(buf) - n, "%s|",
acl_alg[i].name);
if (rc > sizeof(buf) - n)
break;
n += rc;
}
strlcpy(buf + n, acl_alg[i].name, sizeof(buf) - n);
fprintf(stdout,
PRINT_USAGE_START
"--" OPT_RULE_FILE "=<rules set file>\n"
"[--" OPT_TRACE_FILE "=<input traces file>]\n"
"[--" OPT_RULE_NUM
"=<maximum number of rules for ACL context>]\n"
"[--" OPT_TRACE_NUM
"=<number of traces to read binary file in>]\n"
"[--" OPT_TRACE_STEP
"=<number of traces to classify per one call>]\n"
"[--" OPT_BLD_CATEGORIES
"=<number of categories to build with>]\n"
"[--" OPT_RUN_CATEGORIES
"=<number of categories to run with> "
"should be either 1 or multiple of %zu, "
"but not greater then %u]\n"
"[--" OPT_MAX_SIZE
"=<size limit (in bytes) for runtime ACL strucutures> "
"leave 0 for default behaviour]\n"
"[--" OPT_ITER_NUM "=<number of iterations to perform>]\n"
"[--" OPT_VERBOSE "=<verbose level>]\n"
"[--" OPT_SEARCH_ALG "=%s]\n"
"[--" OPT_IPV6 "=<IPv6 rules and trace files>]\n",
prgname, RTE_ACL_RESULTS_MULTIPLIER,
(uint32_t)RTE_ACL_MAX_CATEGORIES,
buf);
}
static void
dump_config(FILE *f)
{
fprintf(f, "%s:\n", __func__);
fprintf(f, "%s:%s\n", OPT_RULE_FILE, config.rule_file);
fprintf(f, "%s:%s\n", OPT_TRACE_FILE, config.trace_file);
fprintf(f, "%s:%u\n", OPT_RULE_NUM, config.nb_rules);
fprintf(f, "%s:%u\n", OPT_TRACE_NUM, config.nb_traces);
fprintf(f, "%s:%u\n", OPT_TRACE_STEP, config.trace_step);
fprintf(f, "%s:%u\n", OPT_BLD_CATEGORIES, config.bld_categories);
fprintf(f, "%s:%u\n", OPT_RUN_CATEGORIES, config.run_categories);
fprintf(f, "%s:%zu\n", OPT_MAX_SIZE, config.max_size);
fprintf(f, "%s:%u\n", OPT_ITER_NUM, config.iter_num);
fprintf(f, "%s:%u\n", OPT_VERBOSE, config.verbose);
fprintf(f, "%s:%u(%s)\n", OPT_SEARCH_ALG, config.alg.alg,
config.alg.name);
fprintf(f, "%s:%u\n", OPT_IPV6, config.ipv6);
}
static void
check_config(void)
{
if (config.rule_file == NULL) {
print_usage(config.prgname);
rte_exit(-EINVAL, "mandatory option %s is not specified\n",
OPT_RULE_FILE);
}
}
static void
get_input_opts(int argc, char **argv)
{
static struct option lgopts[] = {
{OPT_RULE_FILE, 1, 0, 0},
{OPT_TRACE_FILE, 1, 0, 0},
{OPT_TRACE_NUM, 1, 0, 0},
{OPT_RULE_NUM, 1, 0, 0},
{OPT_MAX_SIZE, 1, 0, 0},
{OPT_TRACE_STEP, 1, 0, 0},
{OPT_BLD_CATEGORIES, 1, 0, 0},
{OPT_RUN_CATEGORIES, 1, 0, 0},
{OPT_ITER_NUM, 1, 0, 0},
{OPT_VERBOSE, 1, 0, 0},
{OPT_SEARCH_ALG, 1, 0, 0},
{OPT_IPV6, 0, 0, 0},
{NULL, 0, 0, 0}
};
int opt, opt_idx;
while ((opt = getopt_long(argc, argv, "", lgopts, &opt_idx)) != EOF) {
if (opt != 0) {
print_usage(config.prgname);
rte_exit(-EINVAL, "unknown option: %c", opt);
}
if (strcmp(lgopts[opt_idx].name, OPT_RULE_FILE) == 0) {
config.rule_file = optarg;
} else if (strcmp(lgopts[opt_idx].name, OPT_TRACE_FILE) == 0) {
config.trace_file = optarg;
} else if (strcmp(lgopts[opt_idx].name, OPT_RULE_NUM) == 0) {
config.nb_rules = get_ulong_opt(optarg,
lgopts[opt_idx].name, 1, RTE_ACL_MAX_INDEX + 1);
} else if (strcmp(lgopts[opt_idx].name, OPT_MAX_SIZE) == 0) {
config.max_size = get_ulong_opt(optarg,
lgopts[opt_idx].name, 0, SIZE_MAX);
} else if (strcmp(lgopts[opt_idx].name, OPT_TRACE_NUM) == 0) {
config.nb_traces = get_ulong_opt(optarg,
lgopts[opt_idx].name, 1, UINT32_MAX);
} else if (strcmp(lgopts[opt_idx].name, OPT_TRACE_STEP) == 0) {
config.trace_step = get_ulong_opt(optarg,
lgopts[opt_idx].name, 1, TRACE_STEP_MAX);
} else if (strcmp(lgopts[opt_idx].name,
OPT_BLD_CATEGORIES) == 0) {
config.bld_categories = get_ulong_opt(optarg,
lgopts[opt_idx].name, 1,
RTE_ACL_MAX_CATEGORIES);
} else if (strcmp(lgopts[opt_idx].name,
OPT_RUN_CATEGORIES) == 0) {
config.run_categories = get_ulong_opt(optarg,
lgopts[opt_idx].name, 1,
RTE_ACL_MAX_CATEGORIES);
} else if (strcmp(lgopts[opt_idx].name, OPT_ITER_NUM) == 0) {
config.iter_num = get_ulong_opt(optarg,
lgopts[opt_idx].name, 1, INT32_MAX);
} else if (strcmp(lgopts[opt_idx].name, OPT_VERBOSE) == 0) {
config.verbose = get_ulong_opt(optarg,
lgopts[opt_idx].name, DUMP_NONE, DUMP_MAX);
} else if (strcmp(lgopts[opt_idx].name,
OPT_SEARCH_ALG) == 0) {
get_alg_opt(optarg, lgopts[opt_idx].name);
} else if (strcmp(lgopts[opt_idx].name, OPT_IPV6) == 0) {
config.ipv6 = 1;
}
}
config.trace_sz = config.ipv6 ? sizeof(struct ipv6_5tuple) :
sizeof(struct ipv4_5tuple);
}
int
main(int argc, char **argv)
{
int ret;
uint32_t lcore;
ret = rte_eal_init(argc, argv);
if (ret < 0)
rte_panic("Cannot init EAL\n");
argc -= ret;
argv += ret;
config.prgname = argv[0];
get_input_opts(argc, argv);
dump_config(stdout);
check_config();
acx_init();
if (config.trace_file != NULL)
tracef_init();
RTE_LCORE_FOREACH_SLAVE(lcore)
rte_eal_remote_launch(search_ip5tuples, NULL, lcore);
search_ip5tuples(NULL);
rte_eal_mp_wait_lcore();
rte_acl_free(config.acx);
return 0;
}