numam-dpdk/drivers/net/e1000/em_ethdev.c
Jon DeVree 1be847dd45 e1000: fix PCI device info with secondary process
This fixes a bug added to em and igb drivers which causes the pci info
seen by the primary process to become invalidated by secondary process
startup.
This call was added after the process type check in the other drivers.

Fixes: eeefe73f0a ("drivers: copy PCI device info to ethdev data")

Signed-off-by: Jon DeVree <nuxi@vault24.org>
Acked-by: Bernard Iremonger <bernard.iremonger@intel.com>
2015-11-23 23:51:14 +01:00

1746 lines
48 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/queue.h>
#include <stdio.h>
#include <errno.h>
#include <stdint.h>
#include <stdarg.h>
#include <rte_common.h>
#include <rte_interrupts.h>
#include <rte_byteorder.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_pci.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_eal.h>
#include <rte_atomic.h>
#include <rte_malloc.h>
#include <rte_dev.h>
#include "e1000_logs.h"
#include "base/e1000_api.h"
#include "e1000_ethdev.h"
#define EM_EIAC 0x000DC
#define PMD_ROUNDUP(x,y) (((x) + (y) - 1)/(y) * (y))
static int eth_em_configure(struct rte_eth_dev *dev);
static int eth_em_start(struct rte_eth_dev *dev);
static void eth_em_stop(struct rte_eth_dev *dev);
static void eth_em_close(struct rte_eth_dev *dev);
static void eth_em_promiscuous_enable(struct rte_eth_dev *dev);
static void eth_em_promiscuous_disable(struct rte_eth_dev *dev);
static void eth_em_allmulticast_enable(struct rte_eth_dev *dev);
static void eth_em_allmulticast_disable(struct rte_eth_dev *dev);
static int eth_em_link_update(struct rte_eth_dev *dev,
int wait_to_complete);
static void eth_em_stats_get(struct rte_eth_dev *dev,
struct rte_eth_stats *rte_stats);
static void eth_em_stats_reset(struct rte_eth_dev *dev);
static void eth_em_infos_get(struct rte_eth_dev *dev,
struct rte_eth_dev_info *dev_info);
static int eth_em_flow_ctrl_get(struct rte_eth_dev *dev,
struct rte_eth_fc_conf *fc_conf);
static int eth_em_flow_ctrl_set(struct rte_eth_dev *dev,
struct rte_eth_fc_conf *fc_conf);
static int eth_em_interrupt_setup(struct rte_eth_dev *dev);
static int eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev);
static int eth_em_interrupt_get_status(struct rte_eth_dev *dev);
static int eth_em_interrupt_action(struct rte_eth_dev *dev);
static void eth_em_interrupt_handler(struct rte_intr_handle *handle,
void *param);
static int em_hw_init(struct e1000_hw *hw);
static int em_hardware_init(struct e1000_hw *hw);
static void em_hw_control_acquire(struct e1000_hw *hw);
static void em_hw_control_release(struct e1000_hw *hw);
static void em_init_manageability(struct e1000_hw *hw);
static void em_release_manageability(struct e1000_hw *hw);
static int eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
static int eth_em_vlan_filter_set(struct rte_eth_dev *dev,
uint16_t vlan_id, int on);
static void eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask);
static void em_vlan_hw_filter_enable(struct rte_eth_dev *dev);
static void em_vlan_hw_filter_disable(struct rte_eth_dev *dev);
static void em_vlan_hw_strip_enable(struct rte_eth_dev *dev);
static void em_vlan_hw_strip_disable(struct rte_eth_dev *dev);
/*
static void eth_em_vlan_filter_set(struct rte_eth_dev *dev,
uint16_t vlan_id, int on);
*/
static int eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id);
static int eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id);
static void em_lsc_intr_disable(struct e1000_hw *hw);
static void em_rxq_intr_enable(struct e1000_hw *hw);
static void em_rxq_intr_disable(struct e1000_hw *hw);
static int eth_em_led_on(struct rte_eth_dev *dev);
static int eth_em_led_off(struct rte_eth_dev *dev);
static int em_get_rx_buffer_size(struct e1000_hw *hw);
static void eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
uint32_t index, uint32_t pool);
static void eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index);
static int eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
struct ether_addr *mc_addr_set,
uint32_t nb_mc_addr);
#define EM_FC_PAUSE_TIME 0x0680
#define EM_LINK_UPDATE_CHECK_TIMEOUT 90 /* 9s */
#define EM_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
static enum e1000_fc_mode em_fc_setting = e1000_fc_full;
/*
* The set of PCI devices this driver supports
*/
static const struct rte_pci_id pci_id_em_map[] = {
#define RTE_PCI_DEV_ID_DECL_EM(vend, dev) {RTE_PCI_DEVICE(vend, dev)},
#include "rte_pci_dev_ids.h"
{0},
};
static const struct eth_dev_ops eth_em_ops = {
.dev_configure = eth_em_configure,
.dev_start = eth_em_start,
.dev_stop = eth_em_stop,
.dev_close = eth_em_close,
.promiscuous_enable = eth_em_promiscuous_enable,
.promiscuous_disable = eth_em_promiscuous_disable,
.allmulticast_enable = eth_em_allmulticast_enable,
.allmulticast_disable = eth_em_allmulticast_disable,
.link_update = eth_em_link_update,
.stats_get = eth_em_stats_get,
.stats_reset = eth_em_stats_reset,
.dev_infos_get = eth_em_infos_get,
.mtu_set = eth_em_mtu_set,
.vlan_filter_set = eth_em_vlan_filter_set,
.vlan_offload_set = eth_em_vlan_offload_set,
.rx_queue_setup = eth_em_rx_queue_setup,
.rx_queue_release = eth_em_rx_queue_release,
.rx_queue_count = eth_em_rx_queue_count,
.rx_descriptor_done = eth_em_rx_descriptor_done,
.tx_queue_setup = eth_em_tx_queue_setup,
.tx_queue_release = eth_em_tx_queue_release,
.rx_queue_intr_enable = eth_em_rx_queue_intr_enable,
.rx_queue_intr_disable = eth_em_rx_queue_intr_disable,
.dev_led_on = eth_em_led_on,
.dev_led_off = eth_em_led_off,
.flow_ctrl_get = eth_em_flow_ctrl_get,
.flow_ctrl_set = eth_em_flow_ctrl_set,
.mac_addr_add = eth_em_rar_set,
.mac_addr_remove = eth_em_rar_clear,
.set_mc_addr_list = eth_em_set_mc_addr_list,
.rxq_info_get = em_rxq_info_get,
.txq_info_get = em_txq_info_get,
};
/**
* Atomically reads the link status information from global
* structure rte_eth_dev.
*
* @param dev
* - Pointer to the structure rte_eth_dev to read from.
* - Pointer to the buffer to be saved with the link status.
*
* @return
* - On success, zero.
* - On failure, negative value.
*/
static inline int
rte_em_dev_atomic_read_link_status(struct rte_eth_dev *dev,
struct rte_eth_link *link)
{
struct rte_eth_link *dst = link;
struct rte_eth_link *src = &(dev->data->dev_link);
if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
*(uint64_t *)src) == 0)
return -1;
return 0;
}
/**
* Atomically writes the link status information into global
* structure rte_eth_dev.
*
* @param dev
* - Pointer to the structure rte_eth_dev to read from.
* - Pointer to the buffer to be saved with the link status.
*
* @return
* - On success, zero.
* - On failure, negative value.
*/
static inline int
rte_em_dev_atomic_write_link_status(struct rte_eth_dev *dev,
struct rte_eth_link *link)
{
struct rte_eth_link *dst = &(dev->data->dev_link);
struct rte_eth_link *src = link;
if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
*(uint64_t *)src) == 0)
return -1;
return 0;
}
static int
eth_em_dev_init(struct rte_eth_dev *eth_dev)
{
struct rte_pci_device *pci_dev;
struct e1000_adapter *adapter =
E1000_DEV_PRIVATE(eth_dev->data->dev_private);
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
struct e1000_vfta * shadow_vfta =
E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
pci_dev = eth_dev->pci_dev;
eth_dev->dev_ops = &eth_em_ops;
eth_dev->rx_pkt_burst = (eth_rx_burst_t)&eth_em_recv_pkts;
eth_dev->tx_pkt_burst = (eth_tx_burst_t)&eth_em_xmit_pkts;
/* for secondary processes, we don't initialise any further as primary
* has already done this work. Only check we don't need a different
* RX function */
if (rte_eal_process_type() != RTE_PROC_PRIMARY){
if (eth_dev->data->scattered_rx)
eth_dev->rx_pkt_burst =
(eth_rx_burst_t)&eth_em_recv_scattered_pkts;
return 0;
}
rte_eth_copy_pci_info(eth_dev, pci_dev);
hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
hw->device_id = pci_dev->id.device_id;
adapter->stopped = 0;
/* For ICH8 support we'll need to map the flash memory BAR */
if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS ||
em_hw_init(hw) != 0) {
PMD_INIT_LOG(ERR, "port_id %d vendorID=0x%x deviceID=0x%x: "
"failed to init HW",
eth_dev->data->port_id, pci_dev->id.vendor_id,
pci_dev->id.device_id);
return -(ENODEV);
}
/* Allocate memory for storing MAC addresses */
eth_dev->data->mac_addrs = rte_zmalloc("e1000", ETHER_ADDR_LEN *
hw->mac.rar_entry_count, 0);
if (eth_dev->data->mac_addrs == NULL) {
PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
"store MAC addresses",
ETHER_ADDR_LEN * hw->mac.rar_entry_count);
return -(ENOMEM);
}
/* Copy the permanent MAC address */
ether_addr_copy((struct ether_addr *) hw->mac.addr,
eth_dev->data->mac_addrs);
/* initialize the vfta */
memset(shadow_vfta, 0, sizeof(*shadow_vfta));
PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
eth_dev->data->port_id, pci_dev->id.vendor_id,
pci_dev->id.device_id);
rte_intr_callback_register(&(pci_dev->intr_handle),
eth_em_interrupt_handler, (void *)eth_dev);
return (0);
}
static int
eth_em_dev_uninit(struct rte_eth_dev *eth_dev)
{
struct rte_pci_device *pci_dev;
struct e1000_adapter *adapter =
E1000_DEV_PRIVATE(eth_dev->data->dev_private);
PMD_INIT_FUNC_TRACE();
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return -EPERM;
pci_dev = eth_dev->pci_dev;
if (adapter->stopped == 0)
eth_em_close(eth_dev);
eth_dev->dev_ops = NULL;
eth_dev->rx_pkt_burst = NULL;
eth_dev->tx_pkt_burst = NULL;
rte_free(eth_dev->data->mac_addrs);
eth_dev->data->mac_addrs = NULL;
/* disable uio intr before callback unregister */
rte_intr_disable(&(pci_dev->intr_handle));
rte_intr_callback_unregister(&(pci_dev->intr_handle),
eth_em_interrupt_handler, (void *)eth_dev);
return 0;
}
static struct eth_driver rte_em_pmd = {
.pci_drv = {
.name = "rte_em_pmd",
.id_table = pci_id_em_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
RTE_PCI_DRV_DETACHABLE,
},
.eth_dev_init = eth_em_dev_init,
.eth_dev_uninit = eth_em_dev_uninit,
.dev_private_size = sizeof(struct e1000_adapter),
};
static int
rte_em_pmd_init(const char *name __rte_unused, const char *params __rte_unused)
{
rte_eth_driver_register(&rte_em_pmd);
return 0;
}
static int
em_hw_init(struct e1000_hw *hw)
{
int diag;
diag = hw->mac.ops.init_params(hw);
if (diag != 0) {
PMD_INIT_LOG(ERR, "MAC Initialization Error");
return diag;
}
diag = hw->nvm.ops.init_params(hw);
if (diag != 0) {
PMD_INIT_LOG(ERR, "NVM Initialization Error");
return diag;
}
diag = hw->phy.ops.init_params(hw);
if (diag != 0) {
PMD_INIT_LOG(ERR, "PHY Initialization Error");
return diag;
}
(void) e1000_get_bus_info(hw);
hw->mac.autoneg = 1;
hw->phy.autoneg_wait_to_complete = 0;
hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
e1000_init_script_state_82541(hw, TRUE);
e1000_set_tbi_compatibility_82543(hw, TRUE);
/* Copper options */
if (hw->phy.media_type == e1000_media_type_copper) {
hw->phy.mdix = 0; /* AUTO_ALL_MODES */
hw->phy.disable_polarity_correction = 0;
hw->phy.ms_type = e1000_ms_hw_default;
}
/*
* Start from a known state, this is important in reading the nvm
* and mac from that.
*/
e1000_reset_hw(hw);
/* Make sure we have a good EEPROM before we read from it */
if (e1000_validate_nvm_checksum(hw) < 0) {
/*
* Some PCI-E parts fail the first check due to
* the link being in sleep state, call it again,
* if it fails a second time its a real issue.
*/
diag = e1000_validate_nvm_checksum(hw);
if (diag < 0) {
PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
goto error;
}
}
/* Read the permanent MAC address out of the EEPROM */
diag = e1000_read_mac_addr(hw);
if (diag != 0) {
PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
goto error;
}
/* Now initialize the hardware */
diag = em_hardware_init(hw);
if (diag != 0) {
PMD_INIT_LOG(ERR, "Hardware initialization failed");
goto error;
}
hw->mac.get_link_status = 1;
/* Indicate SOL/IDER usage */
diag = e1000_check_reset_block(hw);
if (diag < 0) {
PMD_INIT_LOG(ERR, "PHY reset is blocked due to "
"SOL/IDER session");
}
return (0);
error:
em_hw_control_release(hw);
return (diag);
}
static int
eth_em_configure(struct rte_eth_dev *dev)
{
struct e1000_interrupt *intr =
E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
PMD_INIT_FUNC_TRACE();
intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
PMD_INIT_FUNC_TRACE();
return (0);
}
static void
em_set_pba(struct e1000_hw *hw)
{
uint32_t pba;
/*
* Packet Buffer Allocation (PBA)
* Writing PBA sets the receive portion of the buffer
* the remainder is used for the transmit buffer.
* Devices before the 82547 had a Packet Buffer of 64K.
* After the 82547 the buffer was reduced to 40K.
*/
switch (hw->mac.type) {
case e1000_82547:
case e1000_82547_rev_2:
/* 82547: Total Packet Buffer is 40K */
pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
break;
case e1000_82571:
case e1000_82572:
case e1000_80003es2lan:
pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
break;
case e1000_82573: /* 82573: Total Packet Buffer is 32K */
pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
break;
case e1000_82574:
case e1000_82583:
pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
break;
case e1000_ich8lan:
pba = E1000_PBA_8K;
break;
case e1000_ich9lan:
case e1000_ich10lan:
pba = E1000_PBA_10K;
break;
case e1000_pchlan:
case e1000_pch2lan:
pba = E1000_PBA_26K;
break;
default:
pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
}
E1000_WRITE_REG(hw, E1000_PBA, pba);
}
static int
eth_em_start(struct rte_eth_dev *dev)
{
struct e1000_adapter *adapter =
E1000_DEV_PRIVATE(dev->data->dev_private);
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_intr_handle *intr_handle = &dev->pci_dev->intr_handle;
int ret, mask;
uint32_t intr_vector = 0;
PMD_INIT_FUNC_TRACE();
eth_em_stop(dev);
e1000_power_up_phy(hw);
/* Set default PBA value */
em_set_pba(hw);
/* Put the address into the Receive Address Array */
e1000_rar_set(hw, hw->mac.addr, 0);
/*
* With the 82571 adapter, RAR[0] may be overwritten
* when the other port is reset, we make a duplicate
* in RAR[14] for that eventuality, this assures
* the interface continues to function.
*/
if (hw->mac.type == e1000_82571) {
e1000_set_laa_state_82571(hw, TRUE);
e1000_rar_set(hw, hw->mac.addr, E1000_RAR_ENTRIES - 1);
}
/* Initialize the hardware */
if (em_hardware_init(hw)) {
PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
return (-EIO);
}
E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN);
/* Configure for OS presence */
em_init_manageability(hw);
if (dev->data->dev_conf.intr_conf.rxq != 0) {
intr_vector = dev->data->nb_rx_queues;
if (rte_intr_efd_enable(intr_handle, intr_vector))
return -1;
}
if (rte_intr_dp_is_en(intr_handle)) {
intr_handle->intr_vec =
rte_zmalloc("intr_vec",
dev->data->nb_rx_queues * sizeof(int), 0);
if (intr_handle->intr_vec == NULL) {
PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
" intr_vec\n", dev->data->nb_rx_queues);
return -ENOMEM;
}
/* enable rx interrupt */
em_rxq_intr_enable(hw);
}
eth_em_tx_init(dev);
ret = eth_em_rx_init(dev);
if (ret) {
PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
em_dev_clear_queues(dev);
return ret;
}
e1000_clear_hw_cntrs_base_generic(hw);
mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
ETH_VLAN_EXTEND_MASK;
eth_em_vlan_offload_set(dev, mask);
/* Set Interrupt Throttling Rate to maximum allowed value. */
E1000_WRITE_REG(hw, E1000_ITR, UINT16_MAX);
/* Setup link speed and duplex */
switch (dev->data->dev_conf.link_speed) {
case ETH_LINK_SPEED_AUTONEG:
if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
else if (dev->data->dev_conf.link_duplex ==
ETH_LINK_HALF_DUPLEX)
hw->phy.autoneg_advertised = E1000_ALL_HALF_DUPLEX;
else if (dev->data->dev_conf.link_duplex ==
ETH_LINK_FULL_DUPLEX)
hw->phy.autoneg_advertised = E1000_ALL_FULL_DUPLEX;
else
goto error_invalid_config;
break;
case ETH_LINK_SPEED_10:
if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
hw->phy.autoneg_advertised = E1000_ALL_10_SPEED;
else if (dev->data->dev_conf.link_duplex ==
ETH_LINK_HALF_DUPLEX)
hw->phy.autoneg_advertised = ADVERTISE_10_HALF;
else if (dev->data->dev_conf.link_duplex ==
ETH_LINK_FULL_DUPLEX)
hw->phy.autoneg_advertised = ADVERTISE_10_FULL;
else
goto error_invalid_config;
break;
case ETH_LINK_SPEED_100:
if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
hw->phy.autoneg_advertised = E1000_ALL_100_SPEED;
else if (dev->data->dev_conf.link_duplex ==
ETH_LINK_HALF_DUPLEX)
hw->phy.autoneg_advertised = ADVERTISE_100_HALF;
else if (dev->data->dev_conf.link_duplex ==
ETH_LINK_FULL_DUPLEX)
hw->phy.autoneg_advertised = ADVERTISE_100_FULL;
else
goto error_invalid_config;
break;
case ETH_LINK_SPEED_1000:
if ((dev->data->dev_conf.link_duplex ==
ETH_LINK_AUTONEG_DUPLEX) ||
(dev->data->dev_conf.link_duplex ==
ETH_LINK_FULL_DUPLEX))
hw->phy.autoneg_advertised = ADVERTISE_1000_FULL;
else
goto error_invalid_config;
break;
case ETH_LINK_SPEED_10000:
default:
goto error_invalid_config;
}
e1000_setup_link(hw);
if (rte_intr_allow_others(intr_handle)) {
/* check if lsc interrupt is enabled */
if (dev->data->dev_conf.intr_conf.lsc != 0)
ret = eth_em_interrupt_setup(dev);
if (ret) {
PMD_INIT_LOG(ERR, "Unable to setup interrupts");
em_dev_clear_queues(dev);
return ret;
}
} else {
rte_intr_callback_unregister(intr_handle,
eth_em_interrupt_handler,
(void *)dev);
if (dev->data->dev_conf.intr_conf.lsc != 0)
PMD_INIT_LOG(INFO, "lsc won't enable because of"
" no intr multiplex\n");
}
/* check if rxq interrupt is enabled */
if (dev->data->dev_conf.intr_conf.rxq != 0)
eth_em_rxq_interrupt_setup(dev);
rte_intr_enable(intr_handle);
adapter->stopped = 0;
PMD_INIT_LOG(DEBUG, "<<");
return (0);
error_invalid_config:
PMD_INIT_LOG(ERR, "Invalid link_speed/link_duplex (%u/%u) for port %u",
dev->data->dev_conf.link_speed,
dev->data->dev_conf.link_duplex, dev->data->port_id);
em_dev_clear_queues(dev);
return (-EINVAL);
}
/*********************************************************************
*
* This routine disables all traffic on the adapter by issuing a
* global reset on the MAC.
*
**********************************************************************/
static void
eth_em_stop(struct rte_eth_dev *dev)
{
struct rte_eth_link link;
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_intr_handle *intr_handle = &dev->pci_dev->intr_handle;
em_rxq_intr_disable(hw);
em_lsc_intr_disable(hw);
e1000_reset_hw(hw);
if (hw->mac.type >= e1000_82544)
E1000_WRITE_REG(hw, E1000_WUC, 0);
/* Power down the phy. Needed to make the link go down */
e1000_power_down_phy(hw);
em_dev_clear_queues(dev);
/* clear the recorded link status */
memset(&link, 0, sizeof(link));
rte_em_dev_atomic_write_link_status(dev, &link);
if (!rte_intr_allow_others(intr_handle))
/* resume to the default handler */
rte_intr_callback_register(intr_handle,
eth_em_interrupt_handler,
(void *)dev);
/* Clean datapath event and queue/vec mapping */
rte_intr_efd_disable(intr_handle);
if (intr_handle->intr_vec != NULL) {
rte_free(intr_handle->intr_vec);
intr_handle->intr_vec = NULL;
}
}
static void
eth_em_close(struct rte_eth_dev *dev)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_adapter *adapter =
E1000_DEV_PRIVATE(dev->data->dev_private);
eth_em_stop(dev);
adapter->stopped = 1;
em_dev_free_queues(dev);
e1000_phy_hw_reset(hw);
em_release_manageability(hw);
em_hw_control_release(hw);
}
static int
em_get_rx_buffer_size(struct e1000_hw *hw)
{
uint32_t rx_buf_size;
rx_buf_size = ((E1000_READ_REG(hw, E1000_PBA) & UINT16_MAX) << 10);
return rx_buf_size;
}
/*********************************************************************
*
* Initialize the hardware
*
**********************************************************************/
static int
em_hardware_init(struct e1000_hw *hw)
{
uint32_t rx_buf_size;
int diag;
/* Issue a global reset */
e1000_reset_hw(hw);
/* Let the firmware know the OS is in control */
em_hw_control_acquire(hw);
/*
* These parameters control the automatic generation (Tx) and
* response (Rx) to Ethernet PAUSE frames.
* - High water mark should allow for at least two standard size (1518)
* frames to be received after sending an XOFF.
* - Low water mark works best when it is very near the high water mark.
* This allows the receiver to restart by sending XON when it has
* drained a bit. Here we use an arbitrary value of 1500 which will
* restart after one full frame is pulled from the buffer. There
* could be several smaller frames in the buffer and if so they will
* not trigger the XON until their total number reduces the buffer
* by 1500.
* - The pause time is fairly large at 1000 x 512ns = 512 usec.
*/
rx_buf_size = em_get_rx_buffer_size(hw);
hw->fc.high_water = rx_buf_size - PMD_ROUNDUP(ETHER_MAX_LEN * 2, 1024);
hw->fc.low_water = hw->fc.high_water - 1500;
if (hw->mac.type == e1000_80003es2lan)
hw->fc.pause_time = UINT16_MAX;
else
hw->fc.pause_time = EM_FC_PAUSE_TIME;
hw->fc.send_xon = 1;
/* Set Flow control, use the tunable location if sane */
if (em_fc_setting <= e1000_fc_full)
hw->fc.requested_mode = em_fc_setting;
else
hw->fc.requested_mode = e1000_fc_none;
/* Workaround: no TX flow ctrl for PCH */
if (hw->mac.type == e1000_pchlan)
hw->fc.requested_mode = e1000_fc_rx_pause;
/* Override - settings for PCH2LAN, ya its magic :) */
if (hw->mac.type == e1000_pch2lan) {
hw->fc.high_water = 0x5C20;
hw->fc.low_water = 0x5048;
hw->fc.pause_time = 0x0650;
hw->fc.refresh_time = 0x0400;
}
diag = e1000_init_hw(hw);
if (diag < 0)
return (diag);
e1000_check_for_link(hw);
return (0);
}
/* This function is based on em_update_stats_counters() in e1000/if_em.c */
static void
eth_em_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_hw_stats *stats =
E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
int pause_frames;
if(hw->phy.media_type == e1000_media_type_copper ||
(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
stats->symerrs += E1000_READ_REG(hw,E1000_SYMERRS);
stats->sec += E1000_READ_REG(hw, E1000_SEC);
}
stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
stats->mpc += E1000_READ_REG(hw, E1000_MPC);
stats->scc += E1000_READ_REG(hw, E1000_SCC);
stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
stats->mcc += E1000_READ_REG(hw, E1000_MCC);
stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
stats->colc += E1000_READ_REG(hw, E1000_COLC);
stats->dc += E1000_READ_REG(hw, E1000_DC);
stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
/*
* For watchdog management we need to know if we have been
* paused during the last interval, so capture that here.
*/
pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
stats->xoffrxc += pause_frames;
stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
/*
* For the 64-bit byte counters the low dword must be read first.
* Both registers clear on the read of the high dword.
*/
stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
stats->ruc += E1000_READ_REG(hw, E1000_RUC);
stats->rfc += E1000_READ_REG(hw, E1000_RFC);
stats->roc += E1000_READ_REG(hw, E1000_ROC);
stats->rjc += E1000_READ_REG(hw, E1000_RJC);
stats->tor += E1000_READ_REG(hw, E1000_TORH);
stats->tot += E1000_READ_REG(hw, E1000_TOTH);
stats->tpr += E1000_READ_REG(hw, E1000_TPR);
stats->tpt += E1000_READ_REG(hw, E1000_TPT);
stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
/* Interrupt Counts */
if (hw->mac.type >= e1000_82571) {
stats->iac += E1000_READ_REG(hw, E1000_IAC);
stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
}
if (hw->mac.type >= e1000_82543) {
stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
}
if (rte_stats == NULL)
return;
/* Rx Errors */
rte_stats->imissed = stats->mpc;
rte_stats->ierrors = stats->crcerrs +
stats->rlec + stats->ruc + stats->roc +
rte_stats->imissed +
stats->rxerrc + stats->algnerrc + stats->cexterr;
/* Tx Errors */
rte_stats->oerrors = stats->ecol + stats->latecol;
rte_stats->ipackets = stats->gprc;
rte_stats->opackets = stats->gptc;
rte_stats->ibytes = stats->gorc;
rte_stats->obytes = stats->gotc;
}
static void
eth_em_stats_reset(struct rte_eth_dev *dev)
{
struct e1000_hw_stats *hw_stats =
E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
/* HW registers are cleared on read */
eth_em_stats_get(dev, NULL);
/* Reset software totals */
memset(hw_stats, 0, sizeof(*hw_stats));
}
static int
eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
em_rxq_intr_enable(hw);
rte_intr_enable(&dev->pci_dev->intr_handle);
return 0;
}
static int
eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
em_rxq_intr_disable(hw);
return 0;
}
static uint32_t
em_get_max_pktlen(const struct e1000_hw *hw)
{
switch (hw->mac.type) {
case e1000_82571:
case e1000_82572:
case e1000_ich9lan:
case e1000_ich10lan:
case e1000_pch2lan:
case e1000_82574:
case e1000_80003es2lan: /* 9K Jumbo Frame size */
case e1000_82583:
return (0x2412);
case e1000_pchlan:
return (0x1000);
/* Adapters that do not support jumbo frames */
case e1000_ich8lan:
return (ETHER_MAX_LEN);
default:
return (MAX_JUMBO_FRAME_SIZE);
}
}
static void
eth_em_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
dev_info->max_rx_pktlen = em_get_max_pktlen(hw);
dev_info->max_mac_addrs = hw->mac.rar_entry_count;
/*
* Starting with 631xESB hw supports 2 TX/RX queues per port.
* Unfortunatelly, all these nics have just one TX context.
* So we have few choises for TX:
* - Use just one TX queue.
* - Allow cksum offload only for one TX queue.
* - Don't allow TX cksum offload at all.
* For now, option #1 was chosen.
* To use second RX queue we have to use extended RX descriptor
* (Multiple Receive Queues are mutually exclusive with UDP
* fragmentation and are not supported when a legacy receive
* descriptor format is used).
* Which means separate RX routinies - as legacy nics (82540, 82545)
* don't support extended RXD.
* To avoid it we support just one RX queue for now (no RSS).
*/
dev_info->max_rx_queues = 1;
dev_info->max_tx_queues = 1;
dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
.nb_max = E1000_MAX_RING_DESC,
.nb_min = E1000_MIN_RING_DESC,
.nb_align = EM_RXD_ALIGN,
};
dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
.nb_max = E1000_MAX_RING_DESC,
.nb_min = E1000_MIN_RING_DESC,
.nb_align = EM_TXD_ALIGN,
};
}
/* return 0 means link status changed, -1 means not changed */
static int
eth_em_link_update(struct rte_eth_dev *dev, int wait_to_complete)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_eth_link link, old;
int link_check, count;
link_check = 0;
hw->mac.get_link_status = 1;
/* possible wait-to-complete in up to 9 seconds */
for (count = 0; count < EM_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
/* Read the real link status */
switch (hw->phy.media_type) {
case e1000_media_type_copper:
/* Do the work to read phy */
e1000_check_for_link(hw);
link_check = !hw->mac.get_link_status;
break;
case e1000_media_type_fiber:
e1000_check_for_link(hw);
link_check = (E1000_READ_REG(hw, E1000_STATUS) &
E1000_STATUS_LU);
break;
case e1000_media_type_internal_serdes:
e1000_check_for_link(hw);
link_check = hw->mac.serdes_has_link;
break;
default:
break;
}
if (link_check || wait_to_complete == 0)
break;
rte_delay_ms(EM_LINK_UPDATE_CHECK_INTERVAL);
}
memset(&link, 0, sizeof(link));
rte_em_dev_atomic_read_link_status(dev, &link);
old = link;
/* Now we check if a transition has happened */
if (link_check && (link.link_status == 0)) {
hw->mac.ops.get_link_up_info(hw, &link.link_speed,
&link.link_duplex);
link.link_status = 1;
} else if (!link_check && (link.link_status == 1)) {
link.link_speed = 0;
link.link_duplex = 0;
link.link_status = 0;
}
rte_em_dev_atomic_write_link_status(dev, &link);
/* not changed */
if (old.link_status == link.link_status)
return -1;
/* changed */
return 0;
}
/*
* em_hw_control_acquire sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
* For ASF and Pass Through versions of f/w this means
* that the driver is loaded. For AMT version type f/w
* this means that the network i/f is open.
*/
static void
em_hw_control_acquire(struct e1000_hw *hw)
{
uint32_t ctrl_ext, swsm;
/* Let firmware know the driver has taken over */
if (hw->mac.type == e1000_82573) {
swsm = E1000_READ_REG(hw, E1000_SWSM);
E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
} else {
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
E1000_WRITE_REG(hw, E1000_CTRL_EXT,
ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}
}
/*
* em_hw_control_release resets {CTRL_EXTT|FWSM}:DRV_LOAD bit.
* For ASF and Pass Through versions of f/w this means that the
* driver is no longer loaded. For AMT versions of the
* f/w this means that the network i/f is closed.
*/
static void
em_hw_control_release(struct e1000_hw *hw)
{
uint32_t ctrl_ext, swsm;
/* Let firmware taken over control of h/w */
if (hw->mac.type == e1000_82573) {
swsm = E1000_READ_REG(hw, E1000_SWSM);
E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
} else {
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
E1000_WRITE_REG(hw, E1000_CTRL_EXT,
ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}
}
/*
* Bit of a misnomer, what this really means is
* to enable OS management of the system... aka
* to disable special hardware management features.
*/
static void
em_init_manageability(struct e1000_hw *hw)
{
if (e1000_enable_mng_pass_thru(hw)) {
uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
/* disable hardware interception of ARP */
manc &= ~(E1000_MANC_ARP_EN);
/* enable receiving management packets to the host */
manc |= E1000_MANC_EN_MNG2HOST;
manc2h |= 1 << 5; /* Mng Port 623 */
manc2h |= 1 << 6; /* Mng Port 664 */
E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
E1000_WRITE_REG(hw, E1000_MANC, manc);
}
}
/*
* Give control back to hardware management
* controller if there is one.
*/
static void
em_release_manageability(struct e1000_hw *hw)
{
uint32_t manc;
if (e1000_enable_mng_pass_thru(hw)) {
manc = E1000_READ_REG(hw, E1000_MANC);
/* re-enable hardware interception of ARP */
manc |= E1000_MANC_ARP_EN;
manc &= ~E1000_MANC_EN_MNG2HOST;
E1000_WRITE_REG(hw, E1000_MANC, manc);
}
}
static void
eth_em_promiscuous_enable(struct rte_eth_dev *dev)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t rctl;
rctl = E1000_READ_REG(hw, E1000_RCTL);
rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
}
static void
eth_em_promiscuous_disable(struct rte_eth_dev *dev)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t rctl;
rctl = E1000_READ_REG(hw, E1000_RCTL);
rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
if (dev->data->all_multicast == 1)
rctl |= E1000_RCTL_MPE;
else
rctl &= (~E1000_RCTL_MPE);
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
}
static void
eth_em_allmulticast_enable(struct rte_eth_dev *dev)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t rctl;
rctl = E1000_READ_REG(hw, E1000_RCTL);
rctl |= E1000_RCTL_MPE;
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
}
static void
eth_em_allmulticast_disable(struct rte_eth_dev *dev)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t rctl;
if (dev->data->promiscuous == 1)
return; /* must remain in all_multicast mode */
rctl = E1000_READ_REG(hw, E1000_RCTL);
rctl &= (~E1000_RCTL_MPE);
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
}
static int
eth_em_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_vfta * shadow_vfta =
E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
uint32_t vfta;
uint32_t vid_idx;
uint32_t vid_bit;
vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
E1000_VFTA_ENTRY_MASK);
vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
if (on)
vfta |= vid_bit;
else
vfta &= ~vid_bit;
E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
/* update local VFTA copy */
shadow_vfta->vfta[vid_idx] = vfta;
return 0;
}
static void
em_vlan_hw_filter_disable(struct rte_eth_dev *dev)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t reg;
/* Filter Table Disable */
reg = E1000_READ_REG(hw, E1000_RCTL);
reg &= ~E1000_RCTL_CFIEN;
reg &= ~E1000_RCTL_VFE;
E1000_WRITE_REG(hw, E1000_RCTL, reg);
}
static void
em_vlan_hw_filter_enable(struct rte_eth_dev *dev)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_vfta * shadow_vfta =
E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
uint32_t reg;
int i;
/* Filter Table Enable, CFI not used for packet acceptance */
reg = E1000_READ_REG(hw, E1000_RCTL);
reg &= ~E1000_RCTL_CFIEN;
reg |= E1000_RCTL_VFE;
E1000_WRITE_REG(hw, E1000_RCTL, reg);
/* restore vfta from local copy */
for (i = 0; i < IGB_VFTA_SIZE; i++)
E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
}
static void
em_vlan_hw_strip_disable(struct rte_eth_dev *dev)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t reg;
/* VLAN Mode Disable */
reg = E1000_READ_REG(hw, E1000_CTRL);
reg &= ~E1000_CTRL_VME;
E1000_WRITE_REG(hw, E1000_CTRL, reg);
}
static void
em_vlan_hw_strip_enable(struct rte_eth_dev *dev)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t reg;
/* VLAN Mode Enable */
reg = E1000_READ_REG(hw, E1000_CTRL);
reg |= E1000_CTRL_VME;
E1000_WRITE_REG(hw, E1000_CTRL, reg);
}
static void
eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask)
{
if(mask & ETH_VLAN_STRIP_MASK){
if (dev->data->dev_conf.rxmode.hw_vlan_strip)
em_vlan_hw_strip_enable(dev);
else
em_vlan_hw_strip_disable(dev);
}
if(mask & ETH_VLAN_FILTER_MASK){
if (dev->data->dev_conf.rxmode.hw_vlan_filter)
em_vlan_hw_filter_enable(dev);
else
em_vlan_hw_filter_disable(dev);
}
}
/*
* It enables the interrupt mask and then enable the interrupt.
*
* @param dev
* Pointer to struct rte_eth_dev.
*
* @return
* - On success, zero.
* - On failure, a negative value.
*/
static int
eth_em_interrupt_setup(struct rte_eth_dev *dev)
{
uint32_t regval;
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* clear interrupt */
E1000_READ_REG(hw, E1000_ICR);
regval = E1000_READ_REG(hw, E1000_IMS);
E1000_WRITE_REG(hw, E1000_IMS, regval | E1000_ICR_LSC);
return (0);
}
/*
* It clears the interrupt causes and enables the interrupt.
* It will be called once only during nic initialized.
*
* @param dev
* Pointer to struct rte_eth_dev.
*
* @return
* - On success, zero.
* - On failure, a negative value.
*/
static int
eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
E1000_READ_REG(hw, E1000_ICR);
em_rxq_intr_enable(hw);
return 0;
}
/*
* It enable receive packet interrupt.
* @param hw
* Pointer to struct e1000_hw
*
* @return
*/
static void
em_rxq_intr_enable(struct e1000_hw *hw)
{
E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_RXT0);
E1000_WRITE_FLUSH(hw);
}
/*
* It disabled lsc interrupt.
* @param hw
* Pointer to struct e1000_hw
*
* @return
*/
static void
em_lsc_intr_disable(struct e1000_hw *hw)
{
E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_LSC);
E1000_WRITE_FLUSH(hw);
}
/*
* It disabled receive packet interrupt.
* @param hw
* Pointer to struct e1000_hw
*
* @return
*/
static void
em_rxq_intr_disable(struct e1000_hw *hw)
{
E1000_READ_REG(hw, E1000_ICR);
E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
E1000_WRITE_FLUSH(hw);
}
/*
* It reads ICR and gets interrupt causes, check it and set a bit flag
* to update link status.
*
* @param dev
* Pointer to struct rte_eth_dev.
*
* @return
* - On success, zero.
* - On failure, a negative value.
*/
static int
eth_em_interrupt_get_status(struct rte_eth_dev *dev)
{
uint32_t icr;
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_interrupt *intr =
E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
/* read-on-clear nic registers here */
icr = E1000_READ_REG(hw, E1000_ICR);
if (icr & E1000_ICR_LSC) {
intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
}
return 0;
}
/*
* It executes link_update after knowing an interrupt is prsent.
*
* @param dev
* Pointer to struct rte_eth_dev.
*
* @return
* - On success, zero.
* - On failure, a negative value.
*/
static int
eth_em_interrupt_action(struct rte_eth_dev *dev)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_interrupt *intr =
E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
uint32_t tctl, rctl;
struct rte_eth_link link;
int ret;
if (!(intr->flags & E1000_FLAG_NEED_LINK_UPDATE))
return -1;
intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
rte_intr_enable(&(dev->pci_dev->intr_handle));
/* set get_link_status to check register later */
hw->mac.get_link_status = 1;
ret = eth_em_link_update(dev, 0);
/* check if link has changed */
if (ret < 0)
return 0;
memset(&link, 0, sizeof(link));
rte_em_dev_atomic_read_link_status(dev, &link);
if (link.link_status) {
PMD_INIT_LOG(INFO, " Port %d: Link Up - speed %u Mbps - %s",
dev->data->port_id, (unsigned)link.link_speed,
link.link_duplex == ETH_LINK_FULL_DUPLEX ?
"full-duplex" : "half-duplex");
} else {
PMD_INIT_LOG(INFO, " Port %d: Link Down", dev->data->port_id);
}
PMD_INIT_LOG(DEBUG, "PCI Address: %04d:%02d:%02d:%d",
dev->pci_dev->addr.domain, dev->pci_dev->addr.bus,
dev->pci_dev->addr.devid, dev->pci_dev->addr.function);
tctl = E1000_READ_REG(hw, E1000_TCTL);
rctl = E1000_READ_REG(hw, E1000_RCTL);
if (link.link_status) {
/* enable Tx/Rx */
tctl |= E1000_TCTL_EN;
rctl |= E1000_RCTL_EN;
} else {
/* disable Tx/Rx */
tctl &= ~E1000_TCTL_EN;
rctl &= ~E1000_RCTL_EN;
}
E1000_WRITE_REG(hw, E1000_TCTL, tctl);
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
E1000_WRITE_FLUSH(hw);
return 0;
}
/**
* Interrupt handler which shall be registered at first.
*
* @param handle
* Pointer to interrupt handle.
* @param param
* The address of parameter (struct rte_eth_dev *) regsitered before.
*
* @return
* void
*/
static void
eth_em_interrupt_handler(__rte_unused struct rte_intr_handle *handle,
void *param)
{
struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
eth_em_interrupt_get_status(dev);
eth_em_interrupt_action(dev);
_rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC);
}
static int
eth_em_led_on(struct rte_eth_dev *dev)
{
struct e1000_hw *hw;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
return (e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
}
static int
eth_em_led_off(struct rte_eth_dev *dev)
{
struct e1000_hw *hw;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
return (e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
}
static int
eth_em_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
{
struct e1000_hw *hw;
uint32_t ctrl;
int tx_pause;
int rx_pause;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
fc_conf->pause_time = hw->fc.pause_time;
fc_conf->high_water = hw->fc.high_water;
fc_conf->low_water = hw->fc.low_water;
fc_conf->send_xon = hw->fc.send_xon;
fc_conf->autoneg = hw->mac.autoneg;
/*
* Return rx_pause and tx_pause status according to actual setting of
* the TFCE and RFCE bits in the CTRL register.
*/
ctrl = E1000_READ_REG(hw, E1000_CTRL);
if (ctrl & E1000_CTRL_TFCE)
tx_pause = 1;
else
tx_pause = 0;
if (ctrl & E1000_CTRL_RFCE)
rx_pause = 1;
else
rx_pause = 0;
if (rx_pause && tx_pause)
fc_conf->mode = RTE_FC_FULL;
else if (rx_pause)
fc_conf->mode = RTE_FC_RX_PAUSE;
else if (tx_pause)
fc_conf->mode = RTE_FC_TX_PAUSE;
else
fc_conf->mode = RTE_FC_NONE;
return 0;
}
static int
eth_em_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
{
struct e1000_hw *hw;
int err;
enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
e1000_fc_none,
e1000_fc_rx_pause,
e1000_fc_tx_pause,
e1000_fc_full
};
uint32_t rx_buf_size;
uint32_t max_high_water;
uint32_t rctl;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (fc_conf->autoneg != hw->mac.autoneg)
return -ENOTSUP;
rx_buf_size = em_get_rx_buffer_size(hw);
PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
/* At least reserve one Ethernet frame for watermark */
max_high_water = rx_buf_size - ETHER_MAX_LEN;
if ((fc_conf->high_water > max_high_water) ||
(fc_conf->high_water < fc_conf->low_water)) {
PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water);
return (-EINVAL);
}
hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
hw->fc.pause_time = fc_conf->pause_time;
hw->fc.high_water = fc_conf->high_water;
hw->fc.low_water = fc_conf->low_water;
hw->fc.send_xon = fc_conf->send_xon;
err = e1000_setup_link_generic(hw);
if (err == E1000_SUCCESS) {
/* check if we want to forward MAC frames - driver doesn't have native
* capability to do that, so we'll write the registers ourselves */
rctl = E1000_READ_REG(hw, E1000_RCTL);
/* set or clear MFLCN.PMCF bit depending on configuration */
if (fc_conf->mac_ctrl_frame_fwd != 0)
rctl |= E1000_RCTL_PMCF;
else
rctl &= ~E1000_RCTL_PMCF;
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
E1000_WRITE_FLUSH(hw);
return 0;
}
PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
return (-EIO);
}
static void
eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
uint32_t index, __rte_unused uint32_t pool)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
e1000_rar_set(hw, mac_addr->addr_bytes, index);
}
static void
eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index)
{
uint8_t addr[ETHER_ADDR_LEN];
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
memset(addr, 0, sizeof(addr));
e1000_rar_set(hw, addr, index);
}
static int
eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
{
struct rte_eth_dev_info dev_info;
struct e1000_hw *hw;
uint32_t frame_size;
uint32_t rctl;
eth_em_infos_get(dev, &dev_info);
frame_size = mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + VLAN_TAG_SIZE;
/* check that mtu is within the allowed range */
if ((mtu < ETHER_MIN_MTU) || (frame_size > dev_info.max_rx_pktlen))
return -EINVAL;
/* refuse mtu that requires the support of scattered packets when this
* feature has not been enabled before. */
if (!dev->data->scattered_rx &&
frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
return -EINVAL;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
rctl = E1000_READ_REG(hw, E1000_RCTL);
/* switch to jumbo mode if needed */
if (frame_size > ETHER_MAX_LEN) {
dev->data->dev_conf.rxmode.jumbo_frame = 1;
rctl |= E1000_RCTL_LPE;
} else {
dev->data->dev_conf.rxmode.jumbo_frame = 0;
rctl &= ~E1000_RCTL_LPE;
}
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
/* update max frame size */
dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
return 0;
}
static int
eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
struct ether_addr *mc_addr_set,
uint32_t nb_mc_addr)
{
struct e1000_hw *hw;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
return 0;
}
struct rte_driver em_pmd_drv = {
.type = PMD_PDEV,
.init = rte_em_pmd_init,
};
PMD_REGISTER_DRIVER(em_pmd_drv);