numam-dpdk/lib/acl/acl_run_avx512x8.h
Josh Soref 7be78d0279 fix spelling in comments and strings
The tool comes from https://github.com/jsoref

Signed-off-by: Josh Soref <jsoref@gmail.com>
Signed-off-by: Thomas Monjalon <thomas@monjalon.net>
2022-01-11 12:16:53 +01:00

254 lines
5.8 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2020 Intel Corporation
*/
/*
* Defines required by "acl_run_avx512_common.h".
* Note that all of them has to be undefined by the end
* of this file, as "acl_run_avx512_common.h" can be included several
* times from different *.h files for the same *.c.
*/
/*
* This implementation uses 256-bit registers(ymm) and intrinsics.
* So our main SIMD type is 256-bit width and each such variable can
* process sizeof(__m256i) / sizeof(uint32_t) == 8 entries in parallel.
*/
#define _T_simd __m256i
#define _T_mask __mmask8
/* Naming convention for static const variables. */
#define _SC_(x) ymm_##x
#define _SV_(x) (ymm_##x.y)
/* Naming convention for internal functions. */
#define _F_(x) x##_avx512x8
/*
* Same intrinsics have different syntaxes (depending on the bit-width),
* so to overcome that few macros need to be defined.
*/
/* Naming convention for generic epi(packed integers) type intrinsics. */
#define _M_I_(x) _mm256_##x
/* Naming convention for si(whole simd integer) type intrinsics. */
#define _M_SI_(x) _mm256_##x##_si256
/* Naming convention for masked gather type intrinsics. */
#define _M_MGI_(x) _mm256_m##x
/* Naming convention for gather type intrinsics. */
#define _M_GI_(name, idx, base, scale) _mm256_##name(base, idx, scale)
/* num/mask of transitions per SIMD regs */
#define _SIMD_MASK_BIT_ (sizeof(_T_simd) / sizeof(uint32_t))
#define _SIMD_MASK_MAX_ RTE_LEN2MASK(_SIMD_MASK_BIT_, uint32_t)
#define _SIMD_FLOW_NUM_ (2 * _SIMD_MASK_BIT_)
#define _SIMD_FLOW_MSK_ (_SIMD_FLOW_NUM_ - 1)
/* num/mask of pointers per SIMD regs */
#define _SIMD_PTR_NUM_ (sizeof(_T_simd) / sizeof(uintptr_t))
#define _SIMD_PTR_MSK_ RTE_LEN2MASK(_SIMD_PTR_NUM_, uint32_t)
static const rte_ymm_t _SC_(match_mask) = {
.u32 = {
RTE_ACL_NODE_MATCH,
RTE_ACL_NODE_MATCH,
RTE_ACL_NODE_MATCH,
RTE_ACL_NODE_MATCH,
RTE_ACL_NODE_MATCH,
RTE_ACL_NODE_MATCH,
RTE_ACL_NODE_MATCH,
RTE_ACL_NODE_MATCH,
},
};
static const rte_ymm_t _SC_(index_mask) = {
.u32 = {
RTE_ACL_NODE_INDEX,
RTE_ACL_NODE_INDEX,
RTE_ACL_NODE_INDEX,
RTE_ACL_NODE_INDEX,
RTE_ACL_NODE_INDEX,
RTE_ACL_NODE_INDEX,
RTE_ACL_NODE_INDEX,
RTE_ACL_NODE_INDEX,
},
};
static const rte_ymm_t _SC_(trlo_idle) = {
.u32 = {
RTE_ACL_IDLE_NODE,
RTE_ACL_IDLE_NODE,
RTE_ACL_IDLE_NODE,
RTE_ACL_IDLE_NODE,
RTE_ACL_IDLE_NODE,
RTE_ACL_IDLE_NODE,
RTE_ACL_IDLE_NODE,
RTE_ACL_IDLE_NODE,
},
};
static const rte_ymm_t _SC_(trhi_idle) = {
.u32 = {
0, 0, 0, 0,
0, 0, 0, 0,
},
};
static const rte_ymm_t _SC_(shuffle_input) = {
.u32 = {
0x00000000, 0x04040404, 0x08080808, 0x0c0c0c0c,
0x00000000, 0x04040404, 0x08080808, 0x0c0c0c0c,
},
};
static const rte_ymm_t _SC_(four_32) = {
.u32 = {
4, 4, 4, 4,
4, 4, 4, 4,
},
};
static const rte_ymm_t _SC_(idx_add) = {
.u32 = {
0, 1, 2, 3,
4, 5, 6, 7,
},
};
static const rte_ymm_t _SC_(range_base) = {
.u32 = {
0xffffff00, 0xffffff04, 0xffffff08, 0xffffff0c,
0xffffff00, 0xffffff04, 0xffffff08, 0xffffff0c,
},
};
static const rte_ymm_t _SC_(pminp) = {
.u32 = {
0x00, 0x01, 0x02, 0x03,
0x08, 0x09, 0x0a, 0x0b,
},
};
static const __mmask16 _SC_(pmidx_msk) = 0x55;
static const rte_ymm_t _SC_(pmidx[2]) = {
[0] = {
.u32 = {
0, 0, 1, 0, 2, 0, 3, 0,
},
},
[1] = {
.u32 = {
4, 0, 5, 0, 6, 0, 7, 0,
},
},
};
/*
* unfortunately current AVX512 ISA doesn't provide ability for
* gather load on a byte quantity. So we have to mimic it in SW,
* by doing 4x1B scalar loads.
*/
static inline __m128i
_m256_mask_gather_epi8x4(__m256i pdata, __mmask8 mask)
{
rte_xmm_t v;
rte_ymm_t p;
static const uint32_t zero;
p.y = _mm256_mask_set1_epi64(pdata, mask ^ _SIMD_PTR_MSK_,
(uintptr_t)&zero);
v.u32[0] = *(uint8_t *)p.u64[0];
v.u32[1] = *(uint8_t *)p.u64[1];
v.u32[2] = *(uint8_t *)p.u64[2];
v.u32[3] = *(uint8_t *)p.u64[3];
return v.x;
}
/*
* Gather 4/1 input bytes for up to 8 (2*8) locations in parallel.
*/
static __rte_always_inline __m256i
_F_(gather_bytes)(__m256i zero, const __m256i p[2], const uint32_t m[2],
uint32_t bnum)
{
__m128i inp[2];
if (bnum == sizeof(uint8_t)) {
inp[0] = _m256_mask_gather_epi8x4(p[0], m[0]);
inp[1] = _m256_mask_gather_epi8x4(p[1], m[1]);
} else {
inp[0] = _mm256_mmask_i64gather_epi32(
_mm256_castsi256_si128(zero),
m[0], p[0], NULL, sizeof(uint8_t));
inp[1] = _mm256_mmask_i64gather_epi32(
_mm256_castsi256_si128(zero),
m[1], p[1], NULL, sizeof(uint8_t));
}
/* squeeze input into one 256-bit register */
return _mm256_permutex2var_epi32(_mm256_castsi128_si256(inp[0]),
_SV_(pminp), _mm256_castsi128_si256(inp[1]));
}
#include "acl_run_avx512_common.h"
/*
* Perform search for up to (2 * 8) flows in parallel.
* Use two sets of metadata, each serves 8 flows max.
*/
static inline int
search_avx512x8x2(const struct rte_acl_ctx *ctx, const uint8_t **data,
uint32_t *results, uint32_t total_packets, uint32_t categories)
{
uint32_t i, *pm;
const struct rte_acl_match_results *pr;
struct acl_flow_avx512 flow;
uint32_t match[ctx->num_tries * total_packets];
for (i = 0, pm = match; i != ctx->num_tries; i++, pm += total_packets) {
/* setup for next trie */
acl_set_flow_avx512(&flow, ctx, i, data, pm, total_packets);
/* process the trie */
_F_(search_trie)(&flow);
}
/* resolve matches */
pr = (const struct rte_acl_match_results *)
(ctx->trans_table + ctx->match_index);
if (categories == 1)
_F_(resolve_single_cat)(results, pr, match, total_packets,
ctx->num_tries);
else
resolve_mcle8_avx512x1(results, pr, match, total_packets,
categories, ctx->num_tries);
return 0;
}
#undef _SIMD_PTR_MSK_
#undef _SIMD_PTR_NUM_
#undef _SIMD_FLOW_MSK_
#undef _SIMD_FLOW_NUM_
#undef _SIMD_MASK_MAX_
#undef _SIMD_MASK_BIT_
#undef _M_GI_
#undef _M_MGI_
#undef _M_SI_
#undef _M_I_
#undef _F_
#undef _SV_
#undef _SC_
#undef _T_mask
#undef _T_simd