520dd9923b
Some global variables are defined with generic names, add component name as prefix to variables to prevent collusion with application variables. Signed-off-by: Ferruh Yigit <ferruh.yigit@intel.com> Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com> Acked-by: Shreyansh Jain <shreyansh.jain@nxp.com> Acked-by: Tianfei Zhang <tianfei.zhang@intel.com>
421 lines
11 KiB
C
421 lines
11 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2017 Intel Corporation
|
|
*/
|
|
|
|
#include <rte_cryptodev.h>
|
|
#include <rte_malloc.h>
|
|
|
|
#include "rte_cryptodev_scheduler_operations.h"
|
|
#include "scheduler_pmd_private.h"
|
|
|
|
#define DEF_PKT_SIZE_THRESHOLD (0xffffff80)
|
|
#define SLAVE_IDX_SWITCH_MASK (0x01)
|
|
#define PRIMARY_SLAVE_IDX 0
|
|
#define SECONDARY_SLAVE_IDX 1
|
|
#define NB_PKT_SIZE_SLAVES 2
|
|
|
|
/** pkt size based scheduler context */
|
|
struct psd_scheduler_ctx {
|
|
uint32_t threshold;
|
|
};
|
|
|
|
/** pkt size based scheduler queue pair context */
|
|
struct psd_scheduler_qp_ctx {
|
|
struct scheduler_slave primary_slave;
|
|
struct scheduler_slave secondary_slave;
|
|
uint32_t threshold;
|
|
uint8_t deq_idx;
|
|
} __rte_cache_aligned;
|
|
|
|
/** scheduling operation variables' wrapping */
|
|
struct psd_schedule_op {
|
|
uint8_t slave_idx;
|
|
uint16_t pos;
|
|
};
|
|
|
|
static uint16_t
|
|
schedule_enqueue(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops)
|
|
{
|
|
struct scheduler_qp_ctx *qp_ctx = qp;
|
|
struct psd_scheduler_qp_ctx *psd_qp_ctx = qp_ctx->private_qp_ctx;
|
|
struct rte_crypto_op *sched_ops[NB_PKT_SIZE_SLAVES][nb_ops];
|
|
uint32_t in_flight_ops[NB_PKT_SIZE_SLAVES] = {
|
|
psd_qp_ctx->primary_slave.nb_inflight_cops,
|
|
psd_qp_ctx->secondary_slave.nb_inflight_cops
|
|
};
|
|
struct psd_schedule_op enq_ops[NB_PKT_SIZE_SLAVES] = {
|
|
{PRIMARY_SLAVE_IDX, 0}, {SECONDARY_SLAVE_IDX, 0}
|
|
};
|
|
struct psd_schedule_op *p_enq_op;
|
|
uint16_t i, processed_ops_pri = 0, processed_ops_sec = 0;
|
|
uint32_t job_len;
|
|
|
|
if (unlikely(nb_ops == 0))
|
|
return 0;
|
|
|
|
for (i = 0; i < nb_ops && i < 4; i++) {
|
|
rte_prefetch0(ops[i]->sym);
|
|
rte_prefetch0(ops[i]->sym->session);
|
|
}
|
|
|
|
for (i = 0; (i < (nb_ops - 8)) && (nb_ops > 8); i += 4) {
|
|
rte_prefetch0(ops[i + 4]->sym);
|
|
rte_prefetch0(ops[i + 4]->sym->session);
|
|
rte_prefetch0(ops[i + 5]->sym);
|
|
rte_prefetch0(ops[i + 5]->sym->session);
|
|
rte_prefetch0(ops[i + 6]->sym);
|
|
rte_prefetch0(ops[i + 6]->sym->session);
|
|
rte_prefetch0(ops[i + 7]->sym);
|
|
rte_prefetch0(ops[i + 7]->sym->session);
|
|
|
|
/* job_len is initialized as cipher data length, once
|
|
* it is 0, equals to auth data length
|
|
*/
|
|
job_len = ops[i]->sym->cipher.data.length;
|
|
job_len += (ops[i]->sym->cipher.data.length == 0) *
|
|
ops[i]->sym->auth.data.length;
|
|
/* decide the target op based on the job length */
|
|
p_enq_op = &enq_ops[!(job_len & psd_qp_ctx->threshold)];
|
|
|
|
/* stop schedule cops before the queue is full, this shall
|
|
* prevent the failed enqueue
|
|
*/
|
|
if (p_enq_op->pos + in_flight_ops[p_enq_op->slave_idx] ==
|
|
qp_ctx->max_nb_objs) {
|
|
i = nb_ops;
|
|
break;
|
|
}
|
|
|
|
sched_ops[p_enq_op->slave_idx][p_enq_op->pos] = ops[i];
|
|
p_enq_op->pos++;
|
|
|
|
job_len = ops[i+1]->sym->cipher.data.length;
|
|
job_len += (ops[i+1]->sym->cipher.data.length == 0) *
|
|
ops[i+1]->sym->auth.data.length;
|
|
p_enq_op = &enq_ops[!(job_len & psd_qp_ctx->threshold)];
|
|
|
|
if (p_enq_op->pos + in_flight_ops[p_enq_op->slave_idx] ==
|
|
qp_ctx->max_nb_objs) {
|
|
i = nb_ops;
|
|
break;
|
|
}
|
|
|
|
sched_ops[p_enq_op->slave_idx][p_enq_op->pos] = ops[i+1];
|
|
p_enq_op->pos++;
|
|
|
|
job_len = ops[i+2]->sym->cipher.data.length;
|
|
job_len += (ops[i+2]->sym->cipher.data.length == 0) *
|
|
ops[i+2]->sym->auth.data.length;
|
|
p_enq_op = &enq_ops[!(job_len & psd_qp_ctx->threshold)];
|
|
|
|
if (p_enq_op->pos + in_flight_ops[p_enq_op->slave_idx] ==
|
|
qp_ctx->max_nb_objs) {
|
|
i = nb_ops;
|
|
break;
|
|
}
|
|
|
|
sched_ops[p_enq_op->slave_idx][p_enq_op->pos] = ops[i+2];
|
|
p_enq_op->pos++;
|
|
|
|
job_len = ops[i+3]->sym->cipher.data.length;
|
|
job_len += (ops[i+3]->sym->cipher.data.length == 0) *
|
|
ops[i+3]->sym->auth.data.length;
|
|
p_enq_op = &enq_ops[!(job_len & psd_qp_ctx->threshold)];
|
|
|
|
if (p_enq_op->pos + in_flight_ops[p_enq_op->slave_idx] ==
|
|
qp_ctx->max_nb_objs) {
|
|
i = nb_ops;
|
|
break;
|
|
}
|
|
|
|
sched_ops[p_enq_op->slave_idx][p_enq_op->pos] = ops[i+3];
|
|
p_enq_op->pos++;
|
|
}
|
|
|
|
for (; i < nb_ops; i++) {
|
|
job_len = ops[i]->sym->cipher.data.length;
|
|
job_len += (ops[i]->sym->cipher.data.length == 0) *
|
|
ops[i]->sym->auth.data.length;
|
|
p_enq_op = &enq_ops[!(job_len & psd_qp_ctx->threshold)];
|
|
|
|
if (p_enq_op->pos + in_flight_ops[p_enq_op->slave_idx] ==
|
|
qp_ctx->max_nb_objs) {
|
|
i = nb_ops;
|
|
break;
|
|
}
|
|
|
|
sched_ops[p_enq_op->slave_idx][p_enq_op->pos] = ops[i];
|
|
p_enq_op->pos++;
|
|
}
|
|
|
|
processed_ops_pri = rte_cryptodev_enqueue_burst(
|
|
psd_qp_ctx->primary_slave.dev_id,
|
|
psd_qp_ctx->primary_slave.qp_id,
|
|
sched_ops[PRIMARY_SLAVE_IDX],
|
|
enq_ops[PRIMARY_SLAVE_IDX].pos);
|
|
/* enqueue shall not fail as the slave queue is monitored */
|
|
RTE_ASSERT(processed_ops_pri == enq_ops[PRIMARY_SLAVE_IDX].pos);
|
|
|
|
psd_qp_ctx->primary_slave.nb_inflight_cops += processed_ops_pri;
|
|
|
|
processed_ops_sec = rte_cryptodev_enqueue_burst(
|
|
psd_qp_ctx->secondary_slave.dev_id,
|
|
psd_qp_ctx->secondary_slave.qp_id,
|
|
sched_ops[SECONDARY_SLAVE_IDX],
|
|
enq_ops[SECONDARY_SLAVE_IDX].pos);
|
|
RTE_ASSERT(processed_ops_sec == enq_ops[SECONDARY_SLAVE_IDX].pos);
|
|
|
|
psd_qp_ctx->secondary_slave.nb_inflight_cops += processed_ops_sec;
|
|
|
|
return processed_ops_pri + processed_ops_sec;
|
|
}
|
|
|
|
static uint16_t
|
|
schedule_enqueue_ordering(void *qp, struct rte_crypto_op **ops,
|
|
uint16_t nb_ops)
|
|
{
|
|
struct rte_ring *order_ring =
|
|
((struct scheduler_qp_ctx *)qp)->order_ring;
|
|
uint16_t nb_ops_to_enq = get_max_enqueue_order_count(order_ring,
|
|
nb_ops);
|
|
uint16_t nb_ops_enqd = schedule_enqueue(qp, ops,
|
|
nb_ops_to_enq);
|
|
|
|
scheduler_order_insert(order_ring, ops, nb_ops_enqd);
|
|
|
|
return nb_ops_enqd;
|
|
}
|
|
|
|
static uint16_t
|
|
schedule_dequeue(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops)
|
|
{
|
|
struct psd_scheduler_qp_ctx *qp_ctx =
|
|
((struct scheduler_qp_ctx *)qp)->private_qp_ctx;
|
|
struct scheduler_slave *slaves[NB_PKT_SIZE_SLAVES] = {
|
|
&qp_ctx->primary_slave, &qp_ctx->secondary_slave};
|
|
struct scheduler_slave *slave = slaves[qp_ctx->deq_idx];
|
|
uint16_t nb_deq_ops_pri = 0, nb_deq_ops_sec = 0;
|
|
|
|
if (slave->nb_inflight_cops) {
|
|
nb_deq_ops_pri = rte_cryptodev_dequeue_burst(slave->dev_id,
|
|
slave->qp_id, ops, nb_ops);
|
|
slave->nb_inflight_cops -= nb_deq_ops_pri;
|
|
}
|
|
|
|
qp_ctx->deq_idx = (~qp_ctx->deq_idx) & SLAVE_IDX_SWITCH_MASK;
|
|
|
|
if (nb_deq_ops_pri == nb_ops)
|
|
return nb_deq_ops_pri;
|
|
|
|
slave = slaves[qp_ctx->deq_idx];
|
|
|
|
if (slave->nb_inflight_cops) {
|
|
nb_deq_ops_sec = rte_cryptodev_dequeue_burst(slave->dev_id,
|
|
slave->qp_id, &ops[nb_deq_ops_pri],
|
|
nb_ops - nb_deq_ops_pri);
|
|
slave->nb_inflight_cops -= nb_deq_ops_sec;
|
|
|
|
if (!slave->nb_inflight_cops)
|
|
qp_ctx->deq_idx = (~qp_ctx->deq_idx) &
|
|
SLAVE_IDX_SWITCH_MASK;
|
|
}
|
|
|
|
return nb_deq_ops_pri + nb_deq_ops_sec;
|
|
}
|
|
|
|
static uint16_t
|
|
schedule_dequeue_ordering(void *qp, struct rte_crypto_op **ops,
|
|
uint16_t nb_ops)
|
|
{
|
|
struct rte_ring *order_ring =
|
|
((struct scheduler_qp_ctx *)qp)->order_ring;
|
|
|
|
schedule_dequeue(qp, ops, nb_ops);
|
|
|
|
return scheduler_order_drain(order_ring, ops, nb_ops);
|
|
}
|
|
|
|
static int
|
|
slave_attach(__rte_unused struct rte_cryptodev *dev,
|
|
__rte_unused uint8_t slave_id)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
slave_detach(__rte_unused struct rte_cryptodev *dev,
|
|
__rte_unused uint8_t slave_id)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
scheduler_start(struct rte_cryptodev *dev)
|
|
{
|
|
struct scheduler_ctx *sched_ctx = dev->data->dev_private;
|
|
struct psd_scheduler_ctx *psd_ctx = sched_ctx->private_ctx;
|
|
uint16_t i;
|
|
|
|
/* for packet size based scheduler, nb_slaves have to >= 2 */
|
|
if (sched_ctx->nb_slaves < NB_PKT_SIZE_SLAVES) {
|
|
CR_SCHED_LOG(ERR, "not enough slaves to start");
|
|
return -1;
|
|
}
|
|
|
|
for (i = 0; i < dev->data->nb_queue_pairs; i++) {
|
|
struct scheduler_qp_ctx *qp_ctx = dev->data->queue_pairs[i];
|
|
struct psd_scheduler_qp_ctx *ps_qp_ctx =
|
|
qp_ctx->private_qp_ctx;
|
|
|
|
ps_qp_ctx->primary_slave.dev_id =
|
|
sched_ctx->slaves[PRIMARY_SLAVE_IDX].dev_id;
|
|
ps_qp_ctx->primary_slave.qp_id = i;
|
|
ps_qp_ctx->primary_slave.nb_inflight_cops = 0;
|
|
|
|
ps_qp_ctx->secondary_slave.dev_id =
|
|
sched_ctx->slaves[SECONDARY_SLAVE_IDX].dev_id;
|
|
ps_qp_ctx->secondary_slave.qp_id = i;
|
|
ps_qp_ctx->secondary_slave.nb_inflight_cops = 0;
|
|
|
|
ps_qp_ctx->threshold = psd_ctx->threshold;
|
|
}
|
|
|
|
if (sched_ctx->reordering_enabled) {
|
|
dev->enqueue_burst = &schedule_enqueue_ordering;
|
|
dev->dequeue_burst = &schedule_dequeue_ordering;
|
|
} else {
|
|
dev->enqueue_burst = &schedule_enqueue;
|
|
dev->dequeue_burst = &schedule_dequeue;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
scheduler_stop(struct rte_cryptodev *dev)
|
|
{
|
|
uint16_t i;
|
|
|
|
for (i = 0; i < dev->data->nb_queue_pairs; i++) {
|
|
struct scheduler_qp_ctx *qp_ctx = dev->data->queue_pairs[i];
|
|
struct psd_scheduler_qp_ctx *ps_qp_ctx = qp_ctx->private_qp_ctx;
|
|
|
|
if (ps_qp_ctx->primary_slave.nb_inflight_cops +
|
|
ps_qp_ctx->secondary_slave.nb_inflight_cops) {
|
|
CR_SCHED_LOG(ERR, "Some crypto ops left in slave queue");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
scheduler_config_qp(struct rte_cryptodev *dev, uint16_t qp_id)
|
|
{
|
|
struct scheduler_qp_ctx *qp_ctx = dev->data->queue_pairs[qp_id];
|
|
struct psd_scheduler_qp_ctx *ps_qp_ctx;
|
|
|
|
ps_qp_ctx = rte_zmalloc_socket(NULL, sizeof(*ps_qp_ctx), 0,
|
|
rte_socket_id());
|
|
if (!ps_qp_ctx) {
|
|
CR_SCHED_LOG(ERR, "failed allocate memory for private queue pair");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
qp_ctx->private_qp_ctx = (void *)ps_qp_ctx;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
scheduler_create_private_ctx(struct rte_cryptodev *dev)
|
|
{
|
|
struct scheduler_ctx *sched_ctx = dev->data->dev_private;
|
|
struct psd_scheduler_ctx *psd_ctx;
|
|
|
|
if (sched_ctx->private_ctx) {
|
|
rte_free(sched_ctx->private_ctx);
|
|
sched_ctx->private_ctx = NULL;
|
|
}
|
|
|
|
psd_ctx = rte_zmalloc_socket(NULL, sizeof(struct psd_scheduler_ctx), 0,
|
|
rte_socket_id());
|
|
if (!psd_ctx) {
|
|
CR_SCHED_LOG(ERR, "failed allocate memory");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
psd_ctx->threshold = DEF_PKT_SIZE_THRESHOLD;
|
|
|
|
sched_ctx->private_ctx = (void *)psd_ctx;
|
|
|
|
return 0;
|
|
}
|
|
static int
|
|
scheduler_option_set(struct rte_cryptodev *dev, uint32_t option_type,
|
|
void *option)
|
|
{
|
|
struct psd_scheduler_ctx *psd_ctx = ((struct scheduler_ctx *)
|
|
dev->data->dev_private)->private_ctx;
|
|
uint32_t threshold;
|
|
|
|
if ((enum rte_cryptodev_schedule_option_type)option_type !=
|
|
CDEV_SCHED_OPTION_THRESHOLD) {
|
|
CR_SCHED_LOG(ERR, "Option not supported");
|
|
return -EINVAL;
|
|
}
|
|
|
|
threshold = ((struct rte_cryptodev_scheduler_threshold_option *)
|
|
option)->threshold;
|
|
if (!rte_is_power_of_2(threshold)) {
|
|
CR_SCHED_LOG(ERR, "Threshold is not power of 2");
|
|
return -EINVAL;
|
|
}
|
|
|
|
psd_ctx->threshold = ~(threshold - 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
scheduler_option_get(struct rte_cryptodev *dev, uint32_t option_type,
|
|
void *option)
|
|
{
|
|
struct psd_scheduler_ctx *psd_ctx = ((struct scheduler_ctx *)
|
|
dev->data->dev_private)->private_ctx;
|
|
struct rte_cryptodev_scheduler_threshold_option *threshold_option;
|
|
|
|
if ((enum rte_cryptodev_schedule_option_type)option_type !=
|
|
CDEV_SCHED_OPTION_THRESHOLD) {
|
|
CR_SCHED_LOG(ERR, "Option not supported");
|
|
return -EINVAL;
|
|
}
|
|
|
|
threshold_option = option;
|
|
threshold_option->threshold = (~psd_ctx->threshold) + 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct rte_cryptodev_scheduler_ops scheduler_ps_ops = {
|
|
slave_attach,
|
|
slave_detach,
|
|
scheduler_start,
|
|
scheduler_stop,
|
|
scheduler_config_qp,
|
|
scheduler_create_private_ctx,
|
|
scheduler_option_set,
|
|
scheduler_option_get
|
|
};
|
|
|
|
static struct rte_cryptodev_scheduler psd_scheduler = {
|
|
.name = "packet-size-based-scheduler",
|
|
.description = "scheduler which will distribute crypto op "
|
|
"burst based on the packet size",
|
|
.mode = CDEV_SCHED_MODE_PKT_SIZE_DISTR,
|
|
.ops = &scheduler_ps_ops
|
|
};
|
|
|
|
struct rte_cryptodev_scheduler *crypto_scheduler_pkt_size_based_distr = &psd_scheduler;
|