450b53f3f2
Don't free the outer match spec by its pointer in the parsing context
if it has already been tracked by an entry in the outer rule registry.
Fixes: dadff13793
("net/sfc: support encap flow items in transfer rules")
Signed-off-by: Ivan Malov <ivan.malov@oktetlabs.ru>
Acked-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru>
2345 lines
63 KiB
C
2345 lines
63 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Copyright(c) 2019-2020 Xilinx, Inc.
|
|
* Copyright(c) 2019 Solarflare Communications Inc.
|
|
*
|
|
* This software was jointly developed between OKTET Labs (under contract
|
|
* for Solarflare) and Solarflare Communications, Inc.
|
|
*/
|
|
|
|
#include <stdbool.h>
|
|
|
|
#include <rte_common.h>
|
|
|
|
#include "efx.h"
|
|
|
|
#include "sfc.h"
|
|
#include "sfc_log.h"
|
|
#include "sfc_switch.h"
|
|
|
|
static int
|
|
sfc_mae_assign_entity_mport(struct sfc_adapter *sa,
|
|
efx_mport_sel_t *mportp)
|
|
{
|
|
const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
|
|
|
|
return efx_mae_mport_by_pcie_function(encp->enc_pf, encp->enc_vf,
|
|
mportp);
|
|
}
|
|
|
|
int
|
|
sfc_mae_attach(struct sfc_adapter *sa)
|
|
{
|
|
struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
|
|
struct sfc_mae_switch_port_request switch_port_request = {0};
|
|
const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
|
|
efx_mport_sel_t entity_mport;
|
|
struct sfc_mae *mae = &sa->mae;
|
|
efx_mae_limits_t limits;
|
|
int rc;
|
|
|
|
sfc_log_init(sa, "entry");
|
|
|
|
if (!encp->enc_mae_supported) {
|
|
mae->status = SFC_MAE_STATUS_UNSUPPORTED;
|
|
return 0;
|
|
}
|
|
|
|
sfc_log_init(sa, "init MAE");
|
|
rc = efx_mae_init(sa->nic);
|
|
if (rc != 0)
|
|
goto fail_mae_init;
|
|
|
|
sfc_log_init(sa, "get MAE limits");
|
|
rc = efx_mae_get_limits(sa->nic, &limits);
|
|
if (rc != 0)
|
|
goto fail_mae_get_limits;
|
|
|
|
sfc_log_init(sa, "assign entity MPORT");
|
|
rc = sfc_mae_assign_entity_mport(sa, &entity_mport);
|
|
if (rc != 0)
|
|
goto fail_mae_assign_entity_mport;
|
|
|
|
sfc_log_init(sa, "assign RTE switch domain");
|
|
rc = sfc_mae_assign_switch_domain(sa, &mae->switch_domain_id);
|
|
if (rc != 0)
|
|
goto fail_mae_assign_switch_domain;
|
|
|
|
sfc_log_init(sa, "assign RTE switch port");
|
|
switch_port_request.type = SFC_MAE_SWITCH_PORT_INDEPENDENT;
|
|
switch_port_request.entity_mportp = &entity_mport;
|
|
/*
|
|
* As of now, the driver does not support representors, so
|
|
* RTE ethdev MPORT simply matches that of the entity.
|
|
*/
|
|
switch_port_request.ethdev_mportp = &entity_mport;
|
|
switch_port_request.ethdev_port_id = sas->port_id;
|
|
rc = sfc_mae_assign_switch_port(mae->switch_domain_id,
|
|
&switch_port_request,
|
|
&mae->switch_port_id);
|
|
if (rc != 0)
|
|
goto fail_mae_assign_switch_port;
|
|
|
|
mae->status = SFC_MAE_STATUS_SUPPORTED;
|
|
mae->nb_outer_rule_prios_max = limits.eml_max_n_outer_prios;
|
|
mae->nb_action_rule_prios_max = limits.eml_max_n_action_prios;
|
|
mae->encap_types_supported = limits.eml_encap_types_supported;
|
|
TAILQ_INIT(&mae->outer_rules);
|
|
TAILQ_INIT(&mae->action_sets);
|
|
|
|
sfc_log_init(sa, "done");
|
|
|
|
return 0;
|
|
|
|
fail_mae_assign_switch_port:
|
|
fail_mae_assign_switch_domain:
|
|
fail_mae_assign_entity_mport:
|
|
fail_mae_get_limits:
|
|
efx_mae_fini(sa->nic);
|
|
|
|
fail_mae_init:
|
|
sfc_log_init(sa, "failed %d", rc);
|
|
|
|
return rc;
|
|
}
|
|
|
|
void
|
|
sfc_mae_detach(struct sfc_adapter *sa)
|
|
{
|
|
struct sfc_mae *mae = &sa->mae;
|
|
enum sfc_mae_status status_prev = mae->status;
|
|
|
|
sfc_log_init(sa, "entry");
|
|
|
|
mae->nb_action_rule_prios_max = 0;
|
|
mae->status = SFC_MAE_STATUS_UNKNOWN;
|
|
|
|
if (status_prev != SFC_MAE_STATUS_SUPPORTED)
|
|
return;
|
|
|
|
efx_mae_fini(sa->nic);
|
|
|
|
sfc_log_init(sa, "done");
|
|
}
|
|
|
|
static struct sfc_mae_outer_rule *
|
|
sfc_mae_outer_rule_attach(struct sfc_adapter *sa,
|
|
const efx_mae_match_spec_t *match_spec,
|
|
efx_tunnel_protocol_t encap_type)
|
|
{
|
|
struct sfc_mae_outer_rule *rule;
|
|
struct sfc_mae *mae = &sa->mae;
|
|
|
|
SFC_ASSERT(sfc_adapter_is_locked(sa));
|
|
|
|
TAILQ_FOREACH(rule, &mae->outer_rules, entries) {
|
|
if (efx_mae_match_specs_equal(rule->match_spec, match_spec) &&
|
|
rule->encap_type == encap_type) {
|
|
++(rule->refcnt);
|
|
return rule;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int
|
|
sfc_mae_outer_rule_add(struct sfc_adapter *sa,
|
|
efx_mae_match_spec_t *match_spec,
|
|
efx_tunnel_protocol_t encap_type,
|
|
struct sfc_mae_outer_rule **rulep)
|
|
{
|
|
struct sfc_mae_outer_rule *rule;
|
|
struct sfc_mae *mae = &sa->mae;
|
|
|
|
SFC_ASSERT(sfc_adapter_is_locked(sa));
|
|
|
|
rule = rte_zmalloc("sfc_mae_outer_rule", sizeof(*rule), 0);
|
|
if (rule == NULL)
|
|
return ENOMEM;
|
|
|
|
rule->refcnt = 1;
|
|
rule->match_spec = match_spec;
|
|
rule->encap_type = encap_type;
|
|
|
|
rule->fw_rsrc.rule_id.id = EFX_MAE_RSRC_ID_INVALID;
|
|
|
|
TAILQ_INSERT_TAIL(&mae->outer_rules, rule, entries);
|
|
|
|
*rulep = rule;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
sfc_mae_outer_rule_del(struct sfc_adapter *sa,
|
|
struct sfc_mae_outer_rule *rule)
|
|
{
|
|
struct sfc_mae *mae = &sa->mae;
|
|
|
|
SFC_ASSERT(sfc_adapter_is_locked(sa));
|
|
SFC_ASSERT(rule->refcnt != 0);
|
|
|
|
--(rule->refcnt);
|
|
|
|
if (rule->refcnt != 0)
|
|
return;
|
|
|
|
SFC_ASSERT(rule->fw_rsrc.rule_id.id == EFX_MAE_RSRC_ID_INVALID);
|
|
SFC_ASSERT(rule->fw_rsrc.refcnt == 0);
|
|
|
|
efx_mae_match_spec_fini(sa->nic, rule->match_spec);
|
|
|
|
TAILQ_REMOVE(&mae->outer_rules, rule, entries);
|
|
rte_free(rule);
|
|
}
|
|
|
|
static int
|
|
sfc_mae_outer_rule_enable(struct sfc_adapter *sa,
|
|
struct sfc_mae_outer_rule *rule,
|
|
efx_mae_match_spec_t *match_spec_action)
|
|
{
|
|
struct sfc_mae_fw_rsrc *fw_rsrc = &rule->fw_rsrc;
|
|
int rc;
|
|
|
|
SFC_ASSERT(sfc_adapter_is_locked(sa));
|
|
|
|
if (fw_rsrc->refcnt == 0) {
|
|
SFC_ASSERT(fw_rsrc->rule_id.id == EFX_MAE_RSRC_ID_INVALID);
|
|
SFC_ASSERT(rule->match_spec != NULL);
|
|
|
|
rc = efx_mae_outer_rule_insert(sa->nic, rule->match_spec,
|
|
rule->encap_type,
|
|
&fw_rsrc->rule_id);
|
|
if (rc != 0)
|
|
return rc;
|
|
}
|
|
|
|
rc = efx_mae_match_spec_outer_rule_id_set(match_spec_action,
|
|
&fw_rsrc->rule_id);
|
|
if (rc != 0) {
|
|
if (fw_rsrc->refcnt == 0) {
|
|
(void)efx_mae_outer_rule_remove(sa->nic,
|
|
&fw_rsrc->rule_id);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
++(fw_rsrc->refcnt);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
sfc_mae_outer_rule_disable(struct sfc_adapter *sa,
|
|
struct sfc_mae_outer_rule *rule)
|
|
{
|
|
struct sfc_mae_fw_rsrc *fw_rsrc = &rule->fw_rsrc;
|
|
int rc;
|
|
|
|
SFC_ASSERT(sfc_adapter_is_locked(sa));
|
|
SFC_ASSERT(fw_rsrc->rule_id.id != EFX_MAE_RSRC_ID_INVALID);
|
|
SFC_ASSERT(fw_rsrc->refcnt != 0);
|
|
|
|
if (fw_rsrc->refcnt == 1) {
|
|
rc = efx_mae_outer_rule_remove(sa->nic, &fw_rsrc->rule_id);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
fw_rsrc->rule_id.id = EFX_MAE_RSRC_ID_INVALID;
|
|
}
|
|
|
|
--(fw_rsrc->refcnt);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct sfc_mae_action_set *
|
|
sfc_mae_action_set_attach(struct sfc_adapter *sa,
|
|
const efx_mae_actions_t *spec)
|
|
{
|
|
struct sfc_mae_action_set *action_set;
|
|
struct sfc_mae *mae = &sa->mae;
|
|
|
|
SFC_ASSERT(sfc_adapter_is_locked(sa));
|
|
|
|
TAILQ_FOREACH(action_set, &mae->action_sets, entries) {
|
|
if (efx_mae_action_set_specs_equal(action_set->spec, spec)) {
|
|
++(action_set->refcnt);
|
|
return action_set;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int
|
|
sfc_mae_action_set_add(struct sfc_adapter *sa,
|
|
efx_mae_actions_t *spec,
|
|
struct sfc_mae_action_set **action_setp)
|
|
{
|
|
struct sfc_mae_action_set *action_set;
|
|
struct sfc_mae *mae = &sa->mae;
|
|
|
|
SFC_ASSERT(sfc_adapter_is_locked(sa));
|
|
|
|
action_set = rte_zmalloc("sfc_mae_action_set", sizeof(*action_set), 0);
|
|
if (action_set == NULL)
|
|
return ENOMEM;
|
|
|
|
action_set->refcnt = 1;
|
|
action_set->spec = spec;
|
|
|
|
action_set->fw_rsrc.aset_id.id = EFX_MAE_RSRC_ID_INVALID;
|
|
|
|
TAILQ_INSERT_TAIL(&mae->action_sets, action_set, entries);
|
|
|
|
*action_setp = action_set;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
sfc_mae_action_set_del(struct sfc_adapter *sa,
|
|
struct sfc_mae_action_set *action_set)
|
|
{
|
|
struct sfc_mae *mae = &sa->mae;
|
|
|
|
SFC_ASSERT(sfc_adapter_is_locked(sa));
|
|
SFC_ASSERT(action_set->refcnt != 0);
|
|
|
|
--(action_set->refcnt);
|
|
|
|
if (action_set->refcnt != 0)
|
|
return;
|
|
|
|
SFC_ASSERT(action_set->fw_rsrc.aset_id.id == EFX_MAE_RSRC_ID_INVALID);
|
|
SFC_ASSERT(action_set->fw_rsrc.refcnt == 0);
|
|
|
|
efx_mae_action_set_spec_fini(sa->nic, action_set->spec);
|
|
TAILQ_REMOVE(&mae->action_sets, action_set, entries);
|
|
rte_free(action_set);
|
|
}
|
|
|
|
static int
|
|
sfc_mae_action_set_enable(struct sfc_adapter *sa,
|
|
struct sfc_mae_action_set *action_set)
|
|
{
|
|
struct sfc_mae_fw_rsrc *fw_rsrc = &action_set->fw_rsrc;
|
|
int rc;
|
|
|
|
SFC_ASSERT(sfc_adapter_is_locked(sa));
|
|
|
|
if (fw_rsrc->refcnt == 0) {
|
|
SFC_ASSERT(fw_rsrc->aset_id.id == EFX_MAE_RSRC_ID_INVALID);
|
|
SFC_ASSERT(action_set->spec != NULL);
|
|
|
|
rc = efx_mae_action_set_alloc(sa->nic, action_set->spec,
|
|
&fw_rsrc->aset_id);
|
|
if (rc != 0)
|
|
return rc;
|
|
}
|
|
|
|
++(fw_rsrc->refcnt);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
sfc_mae_action_set_disable(struct sfc_adapter *sa,
|
|
struct sfc_mae_action_set *action_set)
|
|
{
|
|
struct sfc_mae_fw_rsrc *fw_rsrc = &action_set->fw_rsrc;
|
|
int rc;
|
|
|
|
SFC_ASSERT(sfc_adapter_is_locked(sa));
|
|
SFC_ASSERT(fw_rsrc->aset_id.id != EFX_MAE_RSRC_ID_INVALID);
|
|
SFC_ASSERT(fw_rsrc->refcnt != 0);
|
|
|
|
if (fw_rsrc->refcnt == 1) {
|
|
rc = efx_mae_action_set_free(sa->nic, &fw_rsrc->aset_id);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
fw_rsrc->aset_id.id = EFX_MAE_RSRC_ID_INVALID;
|
|
}
|
|
|
|
--(fw_rsrc->refcnt);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
sfc_mae_flow_cleanup(struct sfc_adapter *sa,
|
|
struct rte_flow *flow)
|
|
{
|
|
struct sfc_flow_spec *spec;
|
|
struct sfc_flow_spec_mae *spec_mae;
|
|
|
|
if (flow == NULL)
|
|
return;
|
|
|
|
spec = &flow->spec;
|
|
|
|
if (spec == NULL)
|
|
return;
|
|
|
|
spec_mae = &spec->mae;
|
|
|
|
SFC_ASSERT(spec_mae->rule_id.id == EFX_MAE_RSRC_ID_INVALID);
|
|
|
|
if (spec_mae->outer_rule != NULL)
|
|
sfc_mae_outer_rule_del(sa, spec_mae->outer_rule);
|
|
|
|
if (spec_mae->action_set != NULL)
|
|
sfc_mae_action_set_del(sa, spec_mae->action_set);
|
|
|
|
if (spec_mae->match_spec != NULL)
|
|
efx_mae_match_spec_fini(sa->nic, spec_mae->match_spec);
|
|
}
|
|
|
|
static int
|
|
sfc_mae_set_ethertypes(struct sfc_mae_parse_ctx *ctx)
|
|
{
|
|
struct sfc_mae_pattern_data *pdata = &ctx->pattern_data;
|
|
const efx_mae_field_id_t *fremap = ctx->field_ids_remap;
|
|
const efx_mae_field_id_t field_ids[] = {
|
|
EFX_MAE_FIELD_VLAN0_PROTO_BE,
|
|
EFX_MAE_FIELD_VLAN1_PROTO_BE,
|
|
};
|
|
const struct sfc_mae_ethertype *et;
|
|
unsigned int i;
|
|
int rc;
|
|
|
|
/*
|
|
* In accordance with RTE flow API convention, the innermost L2
|
|
* item's "type" ("inner_type") is a L3 EtherType. If there is
|
|
* no L3 item, it's 0x0000/0x0000.
|
|
*/
|
|
et = &pdata->ethertypes[pdata->nb_vlan_tags];
|
|
rc = efx_mae_match_spec_field_set(ctx->match_spec,
|
|
fremap[EFX_MAE_FIELD_ETHER_TYPE_BE],
|
|
sizeof(et->value),
|
|
(const uint8_t *)&et->value,
|
|
sizeof(et->mask),
|
|
(const uint8_t *)&et->mask);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
/*
|
|
* sfc_mae_rule_parse_item_vlan() has already made sure
|
|
* that pdata->nb_vlan_tags does not exceed this figure.
|
|
*/
|
|
RTE_BUILD_BUG_ON(SFC_MAE_MATCH_VLAN_MAX_NTAGS != 2);
|
|
|
|
for (i = 0; i < pdata->nb_vlan_tags; ++i) {
|
|
et = &pdata->ethertypes[i];
|
|
|
|
rc = efx_mae_match_spec_field_set(ctx->match_spec,
|
|
fremap[field_ids[i]],
|
|
sizeof(et->value),
|
|
(const uint8_t *)&et->value,
|
|
sizeof(et->mask),
|
|
(const uint8_t *)&et->mask);
|
|
if (rc != 0)
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
sfc_mae_rule_process_pattern_data(struct sfc_mae_parse_ctx *ctx,
|
|
struct rte_flow_error *error)
|
|
{
|
|
const efx_mae_field_id_t *fremap = ctx->field_ids_remap;
|
|
struct sfc_mae_pattern_data *pdata = &ctx->pattern_data;
|
|
struct sfc_mae_ethertype *ethertypes = pdata->ethertypes;
|
|
const rte_be16_t supported_tpids[] = {
|
|
/* VLAN standard TPID (always the first element) */
|
|
RTE_BE16(RTE_ETHER_TYPE_VLAN),
|
|
|
|
/* Double-tagging TPIDs */
|
|
RTE_BE16(RTE_ETHER_TYPE_QINQ),
|
|
RTE_BE16(RTE_ETHER_TYPE_QINQ1),
|
|
RTE_BE16(RTE_ETHER_TYPE_QINQ2),
|
|
RTE_BE16(RTE_ETHER_TYPE_QINQ3),
|
|
};
|
|
unsigned int nb_supported_tpids = RTE_DIM(supported_tpids);
|
|
unsigned int ethertype_idx;
|
|
const uint8_t *valuep;
|
|
const uint8_t *maskp;
|
|
int rc;
|
|
|
|
if (pdata->innermost_ethertype_restriction.mask != 0 &&
|
|
pdata->nb_vlan_tags < SFC_MAE_MATCH_VLAN_MAX_NTAGS) {
|
|
/*
|
|
* If a single item VLAN is followed by a L3 item, value
|
|
* of "type" in item ETH can't be a double-tagging TPID.
|
|
*/
|
|
nb_supported_tpids = 1;
|
|
}
|
|
|
|
/*
|
|
* sfc_mae_rule_parse_item_vlan() has already made sure
|
|
* that pdata->nb_vlan_tags does not exceed this figure.
|
|
*/
|
|
RTE_BUILD_BUG_ON(SFC_MAE_MATCH_VLAN_MAX_NTAGS != 2);
|
|
|
|
for (ethertype_idx = 0;
|
|
ethertype_idx < pdata->nb_vlan_tags; ++ethertype_idx) {
|
|
unsigned int tpid_idx;
|
|
|
|
/* Exact match is supported only. */
|
|
if (ethertypes[ethertype_idx].mask != RTE_BE16(0xffff)) {
|
|
rc = EINVAL;
|
|
goto fail;
|
|
}
|
|
|
|
for (tpid_idx = pdata->nb_vlan_tags - ethertype_idx - 1;
|
|
tpid_idx < nb_supported_tpids; ++tpid_idx) {
|
|
if (ethertypes[ethertype_idx].value ==
|
|
supported_tpids[tpid_idx])
|
|
break;
|
|
}
|
|
|
|
if (tpid_idx == nb_supported_tpids) {
|
|
rc = EINVAL;
|
|
goto fail;
|
|
}
|
|
|
|
nb_supported_tpids = 1;
|
|
}
|
|
|
|
if (pdata->innermost_ethertype_restriction.mask == RTE_BE16(0xffff)) {
|
|
struct sfc_mae_ethertype *et = ðertypes[ethertype_idx];
|
|
|
|
if (et->mask == 0) {
|
|
et->mask = RTE_BE16(0xffff);
|
|
et->value =
|
|
pdata->innermost_ethertype_restriction.value;
|
|
} else if (et->mask != RTE_BE16(0xffff) ||
|
|
et->value !=
|
|
pdata->innermost_ethertype_restriction.value) {
|
|
rc = EINVAL;
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now, when the number of VLAN tags is known, set fields
|
|
* ETHER_TYPE, VLAN0_PROTO and VLAN1_PROTO so that the first
|
|
* one is either a valid L3 EtherType (or 0x0000/0x0000),
|
|
* and the last two are valid TPIDs (or 0x0000/0x0000).
|
|
*/
|
|
rc = sfc_mae_set_ethertypes(ctx);
|
|
if (rc != 0)
|
|
goto fail;
|
|
|
|
if (pdata->l3_next_proto_restriction_mask == 0xff) {
|
|
if (pdata->l3_next_proto_mask == 0) {
|
|
pdata->l3_next_proto_mask = 0xff;
|
|
pdata->l3_next_proto_value =
|
|
pdata->l3_next_proto_restriction_value;
|
|
} else if (pdata->l3_next_proto_mask != 0xff ||
|
|
pdata->l3_next_proto_value !=
|
|
pdata->l3_next_proto_restriction_value) {
|
|
rc = EINVAL;
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
valuep = (const uint8_t *)&pdata->l3_next_proto_value;
|
|
maskp = (const uint8_t *)&pdata->l3_next_proto_mask;
|
|
rc = efx_mae_match_spec_field_set(ctx->match_spec,
|
|
fremap[EFX_MAE_FIELD_IP_PROTO],
|
|
sizeof(pdata->l3_next_proto_value),
|
|
valuep,
|
|
sizeof(pdata->l3_next_proto_mask),
|
|
maskp);
|
|
if (rc != 0)
|
|
goto fail;
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
return rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ITEM, NULL,
|
|
"Failed to process pattern data");
|
|
}
|
|
|
|
static int
|
|
sfc_mae_rule_parse_item_port_id(const struct rte_flow_item *item,
|
|
struct sfc_flow_parse_ctx *ctx,
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
|
|
const struct rte_flow_item_port_id supp_mask = {
|
|
.id = 0xffffffff,
|
|
};
|
|
const void *def_mask = &rte_flow_item_port_id_mask;
|
|
const struct rte_flow_item_port_id *spec = NULL;
|
|
const struct rte_flow_item_port_id *mask = NULL;
|
|
efx_mport_sel_t mport_sel;
|
|
int rc;
|
|
|
|
if (ctx_mae->match_mport_set) {
|
|
return rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Can't handle multiple traffic source items");
|
|
}
|
|
|
|
rc = sfc_flow_parse_init(item,
|
|
(const void **)&spec, (const void **)&mask,
|
|
(const void *)&supp_mask, def_mask,
|
|
sizeof(struct rte_flow_item_port_id), error);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
if (mask->id != supp_mask.id) {
|
|
return rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Bad mask in the PORT_ID pattern item");
|
|
}
|
|
|
|
/* If "spec" is not set, could be any port ID */
|
|
if (spec == NULL)
|
|
return 0;
|
|
|
|
if (spec->id > UINT16_MAX) {
|
|
return rte_flow_error_set(error, EOVERFLOW,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"The port ID is too large");
|
|
}
|
|
|
|
rc = sfc_mae_switch_port_by_ethdev(ctx_mae->sa->mae.switch_domain_id,
|
|
spec->id, &mport_sel);
|
|
if (rc != 0) {
|
|
return rte_flow_error_set(error, rc,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Can't find RTE ethdev by the port ID");
|
|
}
|
|
|
|
rc = efx_mae_match_spec_mport_set(ctx_mae->match_spec,
|
|
&mport_sel, NULL);
|
|
if (rc != 0) {
|
|
return rte_flow_error_set(error, rc,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Failed to set MPORT for the port ID");
|
|
}
|
|
|
|
ctx_mae->match_mport_set = B_TRUE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
sfc_mae_rule_parse_item_phy_port(const struct rte_flow_item *item,
|
|
struct sfc_flow_parse_ctx *ctx,
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
|
|
const struct rte_flow_item_phy_port supp_mask = {
|
|
.index = 0xffffffff,
|
|
};
|
|
const void *def_mask = &rte_flow_item_phy_port_mask;
|
|
const struct rte_flow_item_phy_port *spec = NULL;
|
|
const struct rte_flow_item_phy_port *mask = NULL;
|
|
efx_mport_sel_t mport_v;
|
|
int rc;
|
|
|
|
if (ctx_mae->match_mport_set) {
|
|
return rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Can't handle multiple traffic source items");
|
|
}
|
|
|
|
rc = sfc_flow_parse_init(item,
|
|
(const void **)&spec, (const void **)&mask,
|
|
(const void *)&supp_mask, def_mask,
|
|
sizeof(struct rte_flow_item_phy_port), error);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
if (mask->index != supp_mask.index) {
|
|
return rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Bad mask in the PHY_PORT pattern item");
|
|
}
|
|
|
|
/* If "spec" is not set, could be any physical port */
|
|
if (spec == NULL)
|
|
return 0;
|
|
|
|
rc = efx_mae_mport_by_phy_port(spec->index, &mport_v);
|
|
if (rc != 0) {
|
|
return rte_flow_error_set(error, rc,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Failed to convert the PHY_PORT index");
|
|
}
|
|
|
|
rc = efx_mae_match_spec_mport_set(ctx_mae->match_spec, &mport_v, NULL);
|
|
if (rc != 0) {
|
|
return rte_flow_error_set(error, rc,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Failed to set MPORT for the PHY_PORT");
|
|
}
|
|
|
|
ctx_mae->match_mport_set = B_TRUE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
sfc_mae_rule_parse_item_pf(const struct rte_flow_item *item,
|
|
struct sfc_flow_parse_ctx *ctx,
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
|
|
const efx_nic_cfg_t *encp = efx_nic_cfg_get(ctx_mae->sa->nic);
|
|
efx_mport_sel_t mport_v;
|
|
int rc;
|
|
|
|
if (ctx_mae->match_mport_set) {
|
|
return rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Can't handle multiple traffic source items");
|
|
}
|
|
|
|
rc = efx_mae_mport_by_pcie_function(encp->enc_pf, EFX_PCI_VF_INVALID,
|
|
&mport_v);
|
|
if (rc != 0) {
|
|
return rte_flow_error_set(error, rc,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Failed to convert the PF ID");
|
|
}
|
|
|
|
rc = efx_mae_match_spec_mport_set(ctx_mae->match_spec, &mport_v, NULL);
|
|
if (rc != 0) {
|
|
return rte_flow_error_set(error, rc,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Failed to set MPORT for the PF");
|
|
}
|
|
|
|
ctx_mae->match_mport_set = B_TRUE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
sfc_mae_rule_parse_item_vf(const struct rte_flow_item *item,
|
|
struct sfc_flow_parse_ctx *ctx,
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
|
|
const efx_nic_cfg_t *encp = efx_nic_cfg_get(ctx_mae->sa->nic);
|
|
const struct rte_flow_item_vf supp_mask = {
|
|
.id = 0xffffffff,
|
|
};
|
|
const void *def_mask = &rte_flow_item_vf_mask;
|
|
const struct rte_flow_item_vf *spec = NULL;
|
|
const struct rte_flow_item_vf *mask = NULL;
|
|
efx_mport_sel_t mport_v;
|
|
int rc;
|
|
|
|
if (ctx_mae->match_mport_set) {
|
|
return rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Can't handle multiple traffic source items");
|
|
}
|
|
|
|
rc = sfc_flow_parse_init(item,
|
|
(const void **)&spec, (const void **)&mask,
|
|
(const void *)&supp_mask, def_mask,
|
|
sizeof(struct rte_flow_item_vf), error);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
if (mask->id != supp_mask.id) {
|
|
return rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Bad mask in the VF pattern item");
|
|
}
|
|
|
|
/*
|
|
* If "spec" is not set, the item requests any VF related to the
|
|
* PF of the current DPDK port (but not the PF itself).
|
|
* Reject this match criterion as unsupported.
|
|
*/
|
|
if (spec == NULL) {
|
|
return rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Bad spec in the VF pattern item");
|
|
}
|
|
|
|
rc = efx_mae_mport_by_pcie_function(encp->enc_pf, spec->id, &mport_v);
|
|
if (rc != 0) {
|
|
return rte_flow_error_set(error, rc,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Failed to convert the PF + VF IDs");
|
|
}
|
|
|
|
rc = efx_mae_match_spec_mport_set(ctx_mae->match_spec, &mport_v, NULL);
|
|
if (rc != 0) {
|
|
return rte_flow_error_set(error, rc,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Failed to set MPORT for the PF + VF");
|
|
}
|
|
|
|
ctx_mae->match_mport_set = B_TRUE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Having this field ID in a field locator means that this
|
|
* locator cannot be used to actually set the field at the
|
|
* time when the corresponding item gets encountered. Such
|
|
* fields get stashed in the parsing context instead. This
|
|
* is required to resolve dependencies between the stashed
|
|
* fields. See sfc_mae_rule_process_pattern_data().
|
|
*/
|
|
#define SFC_MAE_FIELD_HANDLING_DEFERRED EFX_MAE_FIELD_NIDS
|
|
|
|
struct sfc_mae_field_locator {
|
|
efx_mae_field_id_t field_id;
|
|
size_t size;
|
|
/* Field offset in the corresponding rte_flow_item_ struct */
|
|
size_t ofst;
|
|
};
|
|
|
|
static void
|
|
sfc_mae_item_build_supp_mask(const struct sfc_mae_field_locator *field_locators,
|
|
unsigned int nb_field_locators, void *mask_ptr,
|
|
size_t mask_size)
|
|
{
|
|
unsigned int i;
|
|
|
|
memset(mask_ptr, 0, mask_size);
|
|
|
|
for (i = 0; i < nb_field_locators; ++i) {
|
|
const struct sfc_mae_field_locator *fl = &field_locators[i];
|
|
|
|
SFC_ASSERT(fl->ofst + fl->size <= mask_size);
|
|
memset(RTE_PTR_ADD(mask_ptr, fl->ofst), 0xff, fl->size);
|
|
}
|
|
}
|
|
|
|
static int
|
|
sfc_mae_parse_item(const struct sfc_mae_field_locator *field_locators,
|
|
unsigned int nb_field_locators, const uint8_t *spec,
|
|
const uint8_t *mask, struct sfc_mae_parse_ctx *ctx,
|
|
struct rte_flow_error *error)
|
|
{
|
|
const efx_mae_field_id_t *fremap = ctx->field_ids_remap;
|
|
unsigned int i;
|
|
int rc = 0;
|
|
|
|
for (i = 0; i < nb_field_locators; ++i) {
|
|
const struct sfc_mae_field_locator *fl = &field_locators[i];
|
|
|
|
if (fl->field_id == SFC_MAE_FIELD_HANDLING_DEFERRED)
|
|
continue;
|
|
|
|
rc = efx_mae_match_spec_field_set(ctx->match_spec,
|
|
fremap[fl->field_id],
|
|
fl->size, spec + fl->ofst,
|
|
fl->size, mask + fl->ofst);
|
|
if (rc != 0)
|
|
break;
|
|
}
|
|
|
|
if (rc != 0) {
|
|
rc = rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ITEM,
|
|
NULL, "Failed to process item fields");
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static const struct sfc_mae_field_locator flocs_eth[] = {
|
|
{
|
|
/*
|
|
* This locator is used only for building supported fields mask.
|
|
* The field is handled by sfc_mae_rule_process_pattern_data().
|
|
*/
|
|
SFC_MAE_FIELD_HANDLING_DEFERRED,
|
|
RTE_SIZEOF_FIELD(struct rte_flow_item_eth, type),
|
|
offsetof(struct rte_flow_item_eth, type),
|
|
},
|
|
{
|
|
EFX_MAE_FIELD_ETH_DADDR_BE,
|
|
RTE_SIZEOF_FIELD(struct rte_flow_item_eth, dst),
|
|
offsetof(struct rte_flow_item_eth, dst),
|
|
},
|
|
{
|
|
EFX_MAE_FIELD_ETH_SADDR_BE,
|
|
RTE_SIZEOF_FIELD(struct rte_flow_item_eth, src),
|
|
offsetof(struct rte_flow_item_eth, src),
|
|
},
|
|
};
|
|
|
|
static int
|
|
sfc_mae_rule_parse_item_eth(const struct rte_flow_item *item,
|
|
struct sfc_flow_parse_ctx *ctx,
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
|
|
struct rte_flow_item_eth supp_mask;
|
|
const uint8_t *spec = NULL;
|
|
const uint8_t *mask = NULL;
|
|
int rc;
|
|
|
|
sfc_mae_item_build_supp_mask(flocs_eth, RTE_DIM(flocs_eth),
|
|
&supp_mask, sizeof(supp_mask));
|
|
|
|
rc = sfc_flow_parse_init(item,
|
|
(const void **)&spec, (const void **)&mask,
|
|
(const void *)&supp_mask,
|
|
&rte_flow_item_eth_mask,
|
|
sizeof(struct rte_flow_item_eth), error);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
if (spec != NULL) {
|
|
struct sfc_mae_pattern_data *pdata = &ctx_mae->pattern_data;
|
|
struct sfc_mae_ethertype *ethertypes = pdata->ethertypes;
|
|
const struct rte_flow_item_eth *item_spec;
|
|
const struct rte_flow_item_eth *item_mask;
|
|
|
|
item_spec = (const struct rte_flow_item_eth *)spec;
|
|
item_mask = (const struct rte_flow_item_eth *)mask;
|
|
|
|
ethertypes[0].value = item_spec->type;
|
|
ethertypes[0].mask = item_mask->type;
|
|
} else {
|
|
/*
|
|
* The specification is empty. This is wrong in the case
|
|
* when there are more network patterns in line. Other
|
|
* than that, any Ethernet can match. All of that is
|
|
* checked at the end of parsing.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
return sfc_mae_parse_item(flocs_eth, RTE_DIM(flocs_eth), spec, mask,
|
|
ctx_mae, error);
|
|
}
|
|
|
|
static const struct sfc_mae_field_locator flocs_vlan[] = {
|
|
/* Outermost tag */
|
|
{
|
|
EFX_MAE_FIELD_VLAN0_TCI_BE,
|
|
RTE_SIZEOF_FIELD(struct rte_flow_item_vlan, tci),
|
|
offsetof(struct rte_flow_item_vlan, tci),
|
|
},
|
|
{
|
|
/*
|
|
* This locator is used only for building supported fields mask.
|
|
* The field is handled by sfc_mae_rule_process_pattern_data().
|
|
*/
|
|
SFC_MAE_FIELD_HANDLING_DEFERRED,
|
|
RTE_SIZEOF_FIELD(struct rte_flow_item_vlan, inner_type),
|
|
offsetof(struct rte_flow_item_vlan, inner_type),
|
|
},
|
|
|
|
/* Innermost tag */
|
|
{
|
|
EFX_MAE_FIELD_VLAN1_TCI_BE,
|
|
RTE_SIZEOF_FIELD(struct rte_flow_item_vlan, tci),
|
|
offsetof(struct rte_flow_item_vlan, tci),
|
|
},
|
|
{
|
|
/*
|
|
* This locator is used only for building supported fields mask.
|
|
* The field is handled by sfc_mae_rule_process_pattern_data().
|
|
*/
|
|
SFC_MAE_FIELD_HANDLING_DEFERRED,
|
|
RTE_SIZEOF_FIELD(struct rte_flow_item_vlan, inner_type),
|
|
offsetof(struct rte_flow_item_vlan, inner_type),
|
|
},
|
|
};
|
|
|
|
static int
|
|
sfc_mae_rule_parse_item_vlan(const struct rte_flow_item *item,
|
|
struct sfc_flow_parse_ctx *ctx,
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
|
|
struct sfc_mae_pattern_data *pdata = &ctx_mae->pattern_data;
|
|
const struct sfc_mae_field_locator *flocs;
|
|
struct rte_flow_item_vlan supp_mask;
|
|
const uint8_t *spec = NULL;
|
|
const uint8_t *mask = NULL;
|
|
unsigned int nb_flocs;
|
|
int rc;
|
|
|
|
RTE_BUILD_BUG_ON(SFC_MAE_MATCH_VLAN_MAX_NTAGS != 2);
|
|
|
|
if (pdata->nb_vlan_tags == SFC_MAE_MATCH_VLAN_MAX_NTAGS) {
|
|
return rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"Can't match that many VLAN tags");
|
|
}
|
|
|
|
nb_flocs = RTE_DIM(flocs_vlan) / SFC_MAE_MATCH_VLAN_MAX_NTAGS;
|
|
flocs = flocs_vlan + pdata->nb_vlan_tags * nb_flocs;
|
|
|
|
/* If parsing fails, this can remain incremented. */
|
|
++pdata->nb_vlan_tags;
|
|
|
|
sfc_mae_item_build_supp_mask(flocs, nb_flocs,
|
|
&supp_mask, sizeof(supp_mask));
|
|
|
|
rc = sfc_flow_parse_init(item,
|
|
(const void **)&spec, (const void **)&mask,
|
|
(const void *)&supp_mask,
|
|
&rte_flow_item_vlan_mask,
|
|
sizeof(struct rte_flow_item_vlan), error);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
if (spec != NULL) {
|
|
struct sfc_mae_ethertype *ethertypes = pdata->ethertypes;
|
|
const struct rte_flow_item_vlan *item_spec;
|
|
const struct rte_flow_item_vlan *item_mask;
|
|
|
|
item_spec = (const struct rte_flow_item_vlan *)spec;
|
|
item_mask = (const struct rte_flow_item_vlan *)mask;
|
|
|
|
ethertypes[pdata->nb_vlan_tags].value = item_spec->inner_type;
|
|
ethertypes[pdata->nb_vlan_tags].mask = item_mask->inner_type;
|
|
} else {
|
|
/*
|
|
* The specification is empty. This is wrong in the case
|
|
* when there are more network patterns in line. Other
|
|
* than that, any Ethernet can match. All of that is
|
|
* checked at the end of parsing.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
return sfc_mae_parse_item(flocs, nb_flocs, spec, mask, ctx_mae, error);
|
|
}
|
|
|
|
static const struct sfc_mae_field_locator flocs_ipv4[] = {
|
|
{
|
|
EFX_MAE_FIELD_SRC_IP4_BE,
|
|
RTE_SIZEOF_FIELD(struct rte_flow_item_ipv4, hdr.src_addr),
|
|
offsetof(struct rte_flow_item_ipv4, hdr.src_addr),
|
|
},
|
|
{
|
|
EFX_MAE_FIELD_DST_IP4_BE,
|
|
RTE_SIZEOF_FIELD(struct rte_flow_item_ipv4, hdr.dst_addr),
|
|
offsetof(struct rte_flow_item_ipv4, hdr.dst_addr),
|
|
},
|
|
{
|
|
/*
|
|
* This locator is used only for building supported fields mask.
|
|
* The field is handled by sfc_mae_rule_process_pattern_data().
|
|
*/
|
|
SFC_MAE_FIELD_HANDLING_DEFERRED,
|
|
RTE_SIZEOF_FIELD(struct rte_flow_item_ipv4, hdr.next_proto_id),
|
|
offsetof(struct rte_flow_item_ipv4, hdr.next_proto_id),
|
|
},
|
|
{
|
|
EFX_MAE_FIELD_IP_TOS,
|
|
RTE_SIZEOF_FIELD(struct rte_flow_item_ipv4,
|
|
hdr.type_of_service),
|
|
offsetof(struct rte_flow_item_ipv4, hdr.type_of_service),
|
|
},
|
|
{
|
|
EFX_MAE_FIELD_IP_TTL,
|
|
RTE_SIZEOF_FIELD(struct rte_flow_item_ipv4, hdr.time_to_live),
|
|
offsetof(struct rte_flow_item_ipv4, hdr.time_to_live),
|
|
},
|
|
};
|
|
|
|
static int
|
|
sfc_mae_rule_parse_item_ipv4(const struct rte_flow_item *item,
|
|
struct sfc_flow_parse_ctx *ctx,
|
|
struct rte_flow_error *error)
|
|
{
|
|
rte_be16_t ethertype_ipv4_be = RTE_BE16(RTE_ETHER_TYPE_IPV4);
|
|
struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
|
|
struct sfc_mae_pattern_data *pdata = &ctx_mae->pattern_data;
|
|
struct rte_flow_item_ipv4 supp_mask;
|
|
const uint8_t *spec = NULL;
|
|
const uint8_t *mask = NULL;
|
|
int rc;
|
|
|
|
sfc_mae_item_build_supp_mask(flocs_ipv4, RTE_DIM(flocs_ipv4),
|
|
&supp_mask, sizeof(supp_mask));
|
|
|
|
rc = sfc_flow_parse_init(item,
|
|
(const void **)&spec, (const void **)&mask,
|
|
(const void *)&supp_mask,
|
|
&rte_flow_item_ipv4_mask,
|
|
sizeof(struct rte_flow_item_ipv4), error);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
pdata->innermost_ethertype_restriction.value = ethertype_ipv4_be;
|
|
pdata->innermost_ethertype_restriction.mask = RTE_BE16(0xffff);
|
|
|
|
if (spec != NULL) {
|
|
const struct rte_flow_item_ipv4 *item_spec;
|
|
const struct rte_flow_item_ipv4 *item_mask;
|
|
|
|
item_spec = (const struct rte_flow_item_ipv4 *)spec;
|
|
item_mask = (const struct rte_flow_item_ipv4 *)mask;
|
|
|
|
pdata->l3_next_proto_value = item_spec->hdr.next_proto_id;
|
|
pdata->l3_next_proto_mask = item_mask->hdr.next_proto_id;
|
|
} else {
|
|
return 0;
|
|
}
|
|
|
|
return sfc_mae_parse_item(flocs_ipv4, RTE_DIM(flocs_ipv4), spec, mask,
|
|
ctx_mae, error);
|
|
}
|
|
|
|
static const struct sfc_mae_field_locator flocs_ipv6[] = {
|
|
{
|
|
EFX_MAE_FIELD_SRC_IP6_BE,
|
|
RTE_SIZEOF_FIELD(struct rte_flow_item_ipv6, hdr.src_addr),
|
|
offsetof(struct rte_flow_item_ipv6, hdr.src_addr),
|
|
},
|
|
{
|
|
EFX_MAE_FIELD_DST_IP6_BE,
|
|
RTE_SIZEOF_FIELD(struct rte_flow_item_ipv6, hdr.dst_addr),
|
|
offsetof(struct rte_flow_item_ipv6, hdr.dst_addr),
|
|
},
|
|
{
|
|
/*
|
|
* This locator is used only for building supported fields mask.
|
|
* The field is handled by sfc_mae_rule_process_pattern_data().
|
|
*/
|
|
SFC_MAE_FIELD_HANDLING_DEFERRED,
|
|
RTE_SIZEOF_FIELD(struct rte_flow_item_ipv6, hdr.proto),
|
|
offsetof(struct rte_flow_item_ipv6, hdr.proto),
|
|
},
|
|
{
|
|
EFX_MAE_FIELD_IP_TTL,
|
|
RTE_SIZEOF_FIELD(struct rte_flow_item_ipv6, hdr.hop_limits),
|
|
offsetof(struct rte_flow_item_ipv6, hdr.hop_limits),
|
|
},
|
|
};
|
|
|
|
static int
|
|
sfc_mae_rule_parse_item_ipv6(const struct rte_flow_item *item,
|
|
struct sfc_flow_parse_ctx *ctx,
|
|
struct rte_flow_error *error)
|
|
{
|
|
rte_be16_t ethertype_ipv6_be = RTE_BE16(RTE_ETHER_TYPE_IPV6);
|
|
struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
|
|
const efx_mae_field_id_t *fremap = ctx_mae->field_ids_remap;
|
|
struct sfc_mae_pattern_data *pdata = &ctx_mae->pattern_data;
|
|
struct rte_flow_item_ipv6 supp_mask;
|
|
const uint8_t *spec = NULL;
|
|
const uint8_t *mask = NULL;
|
|
rte_be32_t vtc_flow_be;
|
|
uint32_t vtc_flow;
|
|
uint8_t tc_value;
|
|
uint8_t tc_mask;
|
|
int rc;
|
|
|
|
sfc_mae_item_build_supp_mask(flocs_ipv6, RTE_DIM(flocs_ipv6),
|
|
&supp_mask, sizeof(supp_mask));
|
|
|
|
vtc_flow_be = RTE_BE32(RTE_IPV6_HDR_TC_MASK);
|
|
memcpy(&supp_mask, &vtc_flow_be, sizeof(vtc_flow_be));
|
|
|
|
rc = sfc_flow_parse_init(item,
|
|
(const void **)&spec, (const void **)&mask,
|
|
(const void *)&supp_mask,
|
|
&rte_flow_item_ipv6_mask,
|
|
sizeof(struct rte_flow_item_ipv6), error);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
pdata->innermost_ethertype_restriction.value = ethertype_ipv6_be;
|
|
pdata->innermost_ethertype_restriction.mask = RTE_BE16(0xffff);
|
|
|
|
if (spec != NULL) {
|
|
const struct rte_flow_item_ipv6 *item_spec;
|
|
const struct rte_flow_item_ipv6 *item_mask;
|
|
|
|
item_spec = (const struct rte_flow_item_ipv6 *)spec;
|
|
item_mask = (const struct rte_flow_item_ipv6 *)mask;
|
|
|
|
pdata->l3_next_proto_value = item_spec->hdr.proto;
|
|
pdata->l3_next_proto_mask = item_mask->hdr.proto;
|
|
} else {
|
|
return 0;
|
|
}
|
|
|
|
rc = sfc_mae_parse_item(flocs_ipv6, RTE_DIM(flocs_ipv6), spec, mask,
|
|
ctx_mae, error);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
memcpy(&vtc_flow_be, spec, sizeof(vtc_flow_be));
|
|
vtc_flow = rte_be_to_cpu_32(vtc_flow_be);
|
|
tc_value = (vtc_flow & RTE_IPV6_HDR_TC_MASK) >> RTE_IPV6_HDR_TC_SHIFT;
|
|
|
|
memcpy(&vtc_flow_be, mask, sizeof(vtc_flow_be));
|
|
vtc_flow = rte_be_to_cpu_32(vtc_flow_be);
|
|
tc_mask = (vtc_flow & RTE_IPV6_HDR_TC_MASK) >> RTE_IPV6_HDR_TC_SHIFT;
|
|
|
|
rc = efx_mae_match_spec_field_set(ctx_mae->match_spec,
|
|
fremap[EFX_MAE_FIELD_IP_TOS],
|
|
sizeof(tc_value), &tc_value,
|
|
sizeof(tc_mask), &tc_mask);
|
|
if (rc != 0) {
|
|
return rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ITEM,
|
|
NULL, "Failed to process item fields");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct sfc_mae_field_locator flocs_tcp[] = {
|
|
{
|
|
EFX_MAE_FIELD_L4_SPORT_BE,
|
|
RTE_SIZEOF_FIELD(struct rte_flow_item_tcp, hdr.src_port),
|
|
offsetof(struct rte_flow_item_tcp, hdr.src_port),
|
|
},
|
|
{
|
|
EFX_MAE_FIELD_L4_DPORT_BE,
|
|
RTE_SIZEOF_FIELD(struct rte_flow_item_tcp, hdr.dst_port),
|
|
offsetof(struct rte_flow_item_tcp, hdr.dst_port),
|
|
},
|
|
{
|
|
EFX_MAE_FIELD_TCP_FLAGS_BE,
|
|
/*
|
|
* The values have been picked intentionally since the
|
|
* target MAE field is oversize (16 bit). This mapping
|
|
* relies on the fact that the MAE field is big-endian.
|
|
*/
|
|
RTE_SIZEOF_FIELD(struct rte_flow_item_tcp, hdr.data_off) +
|
|
RTE_SIZEOF_FIELD(struct rte_flow_item_tcp, hdr.tcp_flags),
|
|
offsetof(struct rte_flow_item_tcp, hdr.data_off),
|
|
},
|
|
};
|
|
|
|
static int
|
|
sfc_mae_rule_parse_item_tcp(const struct rte_flow_item *item,
|
|
struct sfc_flow_parse_ctx *ctx,
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
|
|
struct sfc_mae_pattern_data *pdata = &ctx_mae->pattern_data;
|
|
struct rte_flow_item_tcp supp_mask;
|
|
const uint8_t *spec = NULL;
|
|
const uint8_t *mask = NULL;
|
|
int rc;
|
|
|
|
/*
|
|
* When encountered among outermost items, item TCP is invalid.
|
|
* Check which match specification is being constructed now.
|
|
*/
|
|
if (ctx_mae->match_spec != ctx_mae->match_spec_action) {
|
|
return rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, item,
|
|
"TCP in outer frame is invalid");
|
|
}
|
|
|
|
sfc_mae_item_build_supp_mask(flocs_tcp, RTE_DIM(flocs_tcp),
|
|
&supp_mask, sizeof(supp_mask));
|
|
|
|
rc = sfc_flow_parse_init(item,
|
|
(const void **)&spec, (const void **)&mask,
|
|
(const void *)&supp_mask,
|
|
&rte_flow_item_tcp_mask,
|
|
sizeof(struct rte_flow_item_tcp), error);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
pdata->l3_next_proto_restriction_value = IPPROTO_TCP;
|
|
pdata->l3_next_proto_restriction_mask = 0xff;
|
|
|
|
if (spec == NULL)
|
|
return 0;
|
|
|
|
return sfc_mae_parse_item(flocs_tcp, RTE_DIM(flocs_tcp), spec, mask,
|
|
ctx_mae, error);
|
|
}
|
|
|
|
static const struct sfc_mae_field_locator flocs_udp[] = {
|
|
{
|
|
EFX_MAE_FIELD_L4_SPORT_BE,
|
|
RTE_SIZEOF_FIELD(struct rte_flow_item_udp, hdr.src_port),
|
|
offsetof(struct rte_flow_item_udp, hdr.src_port),
|
|
},
|
|
{
|
|
EFX_MAE_FIELD_L4_DPORT_BE,
|
|
RTE_SIZEOF_FIELD(struct rte_flow_item_udp, hdr.dst_port),
|
|
offsetof(struct rte_flow_item_udp, hdr.dst_port),
|
|
},
|
|
};
|
|
|
|
static int
|
|
sfc_mae_rule_parse_item_udp(const struct rte_flow_item *item,
|
|
struct sfc_flow_parse_ctx *ctx,
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
|
|
struct sfc_mae_pattern_data *pdata = &ctx_mae->pattern_data;
|
|
struct rte_flow_item_udp supp_mask;
|
|
const uint8_t *spec = NULL;
|
|
const uint8_t *mask = NULL;
|
|
int rc;
|
|
|
|
sfc_mae_item_build_supp_mask(flocs_udp, RTE_DIM(flocs_udp),
|
|
&supp_mask, sizeof(supp_mask));
|
|
|
|
rc = sfc_flow_parse_init(item,
|
|
(const void **)&spec, (const void **)&mask,
|
|
(const void *)&supp_mask,
|
|
&rte_flow_item_udp_mask,
|
|
sizeof(struct rte_flow_item_udp), error);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
pdata->l3_next_proto_restriction_value = IPPROTO_UDP;
|
|
pdata->l3_next_proto_restriction_mask = 0xff;
|
|
|
|
if (spec == NULL)
|
|
return 0;
|
|
|
|
return sfc_mae_parse_item(flocs_udp, RTE_DIM(flocs_udp), spec, mask,
|
|
ctx_mae, error);
|
|
}
|
|
|
|
static const struct sfc_mae_field_locator flocs_tunnel[] = {
|
|
{
|
|
/*
|
|
* The size and offset values are relevant
|
|
* for Geneve and NVGRE, too.
|
|
*/
|
|
.size = RTE_SIZEOF_FIELD(struct rte_flow_item_vxlan, vni),
|
|
.ofst = offsetof(struct rte_flow_item_vxlan, vni),
|
|
},
|
|
};
|
|
|
|
/*
|
|
* An auxiliary registry which allows using non-encap. field IDs
|
|
* directly when building a match specification of type ACTION.
|
|
*
|
|
* See sfc_mae_rule_parse_pattern() and sfc_mae_rule_parse_item_tunnel().
|
|
*/
|
|
static const efx_mae_field_id_t field_ids_no_remap[] = {
|
|
#define FIELD_ID_NO_REMAP(_field) \
|
|
[EFX_MAE_FIELD_##_field] = EFX_MAE_FIELD_##_field
|
|
|
|
FIELD_ID_NO_REMAP(ETHER_TYPE_BE),
|
|
FIELD_ID_NO_REMAP(ETH_SADDR_BE),
|
|
FIELD_ID_NO_REMAP(ETH_DADDR_BE),
|
|
FIELD_ID_NO_REMAP(VLAN0_TCI_BE),
|
|
FIELD_ID_NO_REMAP(VLAN0_PROTO_BE),
|
|
FIELD_ID_NO_REMAP(VLAN1_TCI_BE),
|
|
FIELD_ID_NO_REMAP(VLAN1_PROTO_BE),
|
|
FIELD_ID_NO_REMAP(SRC_IP4_BE),
|
|
FIELD_ID_NO_REMAP(DST_IP4_BE),
|
|
FIELD_ID_NO_REMAP(IP_PROTO),
|
|
FIELD_ID_NO_REMAP(IP_TOS),
|
|
FIELD_ID_NO_REMAP(IP_TTL),
|
|
FIELD_ID_NO_REMAP(SRC_IP6_BE),
|
|
FIELD_ID_NO_REMAP(DST_IP6_BE),
|
|
FIELD_ID_NO_REMAP(L4_SPORT_BE),
|
|
FIELD_ID_NO_REMAP(L4_DPORT_BE),
|
|
FIELD_ID_NO_REMAP(TCP_FLAGS_BE),
|
|
|
|
#undef FIELD_ID_NO_REMAP
|
|
};
|
|
|
|
/*
|
|
* An auxiliary registry which allows using "ENC" field IDs
|
|
* when building a match specification of type OUTER.
|
|
*
|
|
* See sfc_mae_rule_encap_parse_init().
|
|
*/
|
|
static const efx_mae_field_id_t field_ids_remap_to_encap[] = {
|
|
#define FIELD_ID_REMAP_TO_ENCAP(_field) \
|
|
[EFX_MAE_FIELD_##_field] = EFX_MAE_FIELD_ENC_##_field
|
|
|
|
FIELD_ID_REMAP_TO_ENCAP(ETHER_TYPE_BE),
|
|
FIELD_ID_REMAP_TO_ENCAP(ETH_SADDR_BE),
|
|
FIELD_ID_REMAP_TO_ENCAP(ETH_DADDR_BE),
|
|
FIELD_ID_REMAP_TO_ENCAP(VLAN0_TCI_BE),
|
|
FIELD_ID_REMAP_TO_ENCAP(VLAN0_PROTO_BE),
|
|
FIELD_ID_REMAP_TO_ENCAP(VLAN1_TCI_BE),
|
|
FIELD_ID_REMAP_TO_ENCAP(VLAN1_PROTO_BE),
|
|
FIELD_ID_REMAP_TO_ENCAP(SRC_IP4_BE),
|
|
FIELD_ID_REMAP_TO_ENCAP(DST_IP4_BE),
|
|
FIELD_ID_REMAP_TO_ENCAP(IP_PROTO),
|
|
FIELD_ID_REMAP_TO_ENCAP(IP_TOS),
|
|
FIELD_ID_REMAP_TO_ENCAP(IP_TTL),
|
|
FIELD_ID_REMAP_TO_ENCAP(SRC_IP6_BE),
|
|
FIELD_ID_REMAP_TO_ENCAP(DST_IP6_BE),
|
|
FIELD_ID_REMAP_TO_ENCAP(L4_SPORT_BE),
|
|
FIELD_ID_REMAP_TO_ENCAP(L4_DPORT_BE),
|
|
|
|
#undef FIELD_ID_REMAP_TO_ENCAP
|
|
};
|
|
|
|
static int
|
|
sfc_mae_rule_parse_item_tunnel(const struct rte_flow_item *item,
|
|
struct sfc_flow_parse_ctx *ctx,
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
|
|
uint8_t vnet_id_v[sizeof(uint32_t)] = {0};
|
|
uint8_t vnet_id_m[sizeof(uint32_t)] = {0};
|
|
const struct rte_flow_item_vxlan *vxp;
|
|
uint8_t supp_mask[sizeof(uint64_t)];
|
|
const uint8_t *spec = NULL;
|
|
const uint8_t *mask = NULL;
|
|
const void *def_mask;
|
|
int rc;
|
|
|
|
/*
|
|
* We're about to start processing inner frame items.
|
|
* Process pattern data that has been deferred so far
|
|
* and reset pattern data storage.
|
|
*/
|
|
rc = sfc_mae_rule_process_pattern_data(ctx_mae, error);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
memset(&ctx_mae->pattern_data, 0, sizeof(ctx_mae->pattern_data));
|
|
|
|
sfc_mae_item_build_supp_mask(flocs_tunnel, RTE_DIM(flocs_tunnel),
|
|
&supp_mask, sizeof(supp_mask));
|
|
|
|
/*
|
|
* This tunnel item was preliminarily detected by
|
|
* sfc_mae_rule_encap_parse_init(). Default mask
|
|
* was also picked by that helper. Use it here.
|
|
*/
|
|
def_mask = ctx_mae->tunnel_def_mask;
|
|
|
|
rc = sfc_flow_parse_init(item,
|
|
(const void **)&spec, (const void **)&mask,
|
|
(const void *)&supp_mask, def_mask,
|
|
sizeof(def_mask), error);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
/*
|
|
* This item and later ones comprise a
|
|
* match specification of type ACTION.
|
|
*/
|
|
ctx_mae->match_spec = ctx_mae->match_spec_action;
|
|
|
|
/* This item and later ones use non-encap. EFX MAE field IDs. */
|
|
ctx_mae->field_ids_remap = field_ids_no_remap;
|
|
|
|
if (spec == NULL)
|
|
return 0;
|
|
|
|
/*
|
|
* Field EFX_MAE_FIELD_ENC_VNET_ID_BE is a 32-bit one.
|
|
* Copy 24-bit VNI, which is BE, at offset 1 in it.
|
|
* The extra byte is 0 both in the mask and in the value.
|
|
*/
|
|
vxp = (const struct rte_flow_item_vxlan *)spec;
|
|
memcpy(vnet_id_v + 1, &vxp->vni, sizeof(vxp->vni));
|
|
|
|
vxp = (const struct rte_flow_item_vxlan *)mask;
|
|
memcpy(vnet_id_m + 1, &vxp->vni, sizeof(vxp->vni));
|
|
|
|
rc = efx_mae_match_spec_field_set(ctx_mae->match_spec,
|
|
EFX_MAE_FIELD_ENC_VNET_ID_BE,
|
|
sizeof(vnet_id_v), vnet_id_v,
|
|
sizeof(vnet_id_m), vnet_id_m);
|
|
if (rc != 0) {
|
|
rc = rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ITEM,
|
|
item, "Failed to set VXLAN VNI");
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static const struct sfc_flow_item sfc_flow_items[] = {
|
|
{
|
|
.type = RTE_FLOW_ITEM_TYPE_PORT_ID,
|
|
/*
|
|
* In terms of RTE flow, this item is a META one,
|
|
* and its position in the pattern is don't care.
|
|
*/
|
|
.prev_layer = SFC_FLOW_ITEM_ANY_LAYER,
|
|
.layer = SFC_FLOW_ITEM_ANY_LAYER,
|
|
.ctx_type = SFC_FLOW_PARSE_CTX_MAE,
|
|
.parse = sfc_mae_rule_parse_item_port_id,
|
|
},
|
|
{
|
|
.type = RTE_FLOW_ITEM_TYPE_PHY_PORT,
|
|
/*
|
|
* In terms of RTE flow, this item is a META one,
|
|
* and its position in the pattern is don't care.
|
|
*/
|
|
.prev_layer = SFC_FLOW_ITEM_ANY_LAYER,
|
|
.layer = SFC_FLOW_ITEM_ANY_LAYER,
|
|
.ctx_type = SFC_FLOW_PARSE_CTX_MAE,
|
|
.parse = sfc_mae_rule_parse_item_phy_port,
|
|
},
|
|
{
|
|
.type = RTE_FLOW_ITEM_TYPE_PF,
|
|
/*
|
|
* In terms of RTE flow, this item is a META one,
|
|
* and its position in the pattern is don't care.
|
|
*/
|
|
.prev_layer = SFC_FLOW_ITEM_ANY_LAYER,
|
|
.layer = SFC_FLOW_ITEM_ANY_LAYER,
|
|
.ctx_type = SFC_FLOW_PARSE_CTX_MAE,
|
|
.parse = sfc_mae_rule_parse_item_pf,
|
|
},
|
|
{
|
|
.type = RTE_FLOW_ITEM_TYPE_VF,
|
|
/*
|
|
* In terms of RTE flow, this item is a META one,
|
|
* and its position in the pattern is don't care.
|
|
*/
|
|
.prev_layer = SFC_FLOW_ITEM_ANY_LAYER,
|
|
.layer = SFC_FLOW_ITEM_ANY_LAYER,
|
|
.ctx_type = SFC_FLOW_PARSE_CTX_MAE,
|
|
.parse = sfc_mae_rule_parse_item_vf,
|
|
},
|
|
{
|
|
.type = RTE_FLOW_ITEM_TYPE_ETH,
|
|
.prev_layer = SFC_FLOW_ITEM_START_LAYER,
|
|
.layer = SFC_FLOW_ITEM_L2,
|
|
.ctx_type = SFC_FLOW_PARSE_CTX_MAE,
|
|
.parse = sfc_mae_rule_parse_item_eth,
|
|
},
|
|
{
|
|
.type = RTE_FLOW_ITEM_TYPE_VLAN,
|
|
.prev_layer = SFC_FLOW_ITEM_L2,
|
|
.layer = SFC_FLOW_ITEM_L2,
|
|
.ctx_type = SFC_FLOW_PARSE_CTX_MAE,
|
|
.parse = sfc_mae_rule_parse_item_vlan,
|
|
},
|
|
{
|
|
.type = RTE_FLOW_ITEM_TYPE_IPV4,
|
|
.prev_layer = SFC_FLOW_ITEM_L2,
|
|
.layer = SFC_FLOW_ITEM_L3,
|
|
.ctx_type = SFC_FLOW_PARSE_CTX_MAE,
|
|
.parse = sfc_mae_rule_parse_item_ipv4,
|
|
},
|
|
{
|
|
.type = RTE_FLOW_ITEM_TYPE_IPV6,
|
|
.prev_layer = SFC_FLOW_ITEM_L2,
|
|
.layer = SFC_FLOW_ITEM_L3,
|
|
.ctx_type = SFC_FLOW_PARSE_CTX_MAE,
|
|
.parse = sfc_mae_rule_parse_item_ipv6,
|
|
},
|
|
{
|
|
.type = RTE_FLOW_ITEM_TYPE_TCP,
|
|
.prev_layer = SFC_FLOW_ITEM_L3,
|
|
.layer = SFC_FLOW_ITEM_L4,
|
|
.ctx_type = SFC_FLOW_PARSE_CTX_MAE,
|
|
.parse = sfc_mae_rule_parse_item_tcp,
|
|
},
|
|
{
|
|
.type = RTE_FLOW_ITEM_TYPE_UDP,
|
|
.prev_layer = SFC_FLOW_ITEM_L3,
|
|
.layer = SFC_FLOW_ITEM_L4,
|
|
.ctx_type = SFC_FLOW_PARSE_CTX_MAE,
|
|
.parse = sfc_mae_rule_parse_item_udp,
|
|
},
|
|
{
|
|
.type = RTE_FLOW_ITEM_TYPE_VXLAN,
|
|
.prev_layer = SFC_FLOW_ITEM_L4,
|
|
.layer = SFC_FLOW_ITEM_START_LAYER,
|
|
.ctx_type = SFC_FLOW_PARSE_CTX_MAE,
|
|
.parse = sfc_mae_rule_parse_item_tunnel,
|
|
},
|
|
{
|
|
.type = RTE_FLOW_ITEM_TYPE_GENEVE,
|
|
.prev_layer = SFC_FLOW_ITEM_L4,
|
|
.layer = SFC_FLOW_ITEM_START_LAYER,
|
|
.ctx_type = SFC_FLOW_PARSE_CTX_MAE,
|
|
.parse = sfc_mae_rule_parse_item_tunnel,
|
|
},
|
|
{
|
|
.type = RTE_FLOW_ITEM_TYPE_NVGRE,
|
|
.prev_layer = SFC_FLOW_ITEM_L3,
|
|
.layer = SFC_FLOW_ITEM_START_LAYER,
|
|
.ctx_type = SFC_FLOW_PARSE_CTX_MAE,
|
|
.parse = sfc_mae_rule_parse_item_tunnel,
|
|
},
|
|
};
|
|
|
|
static int
|
|
sfc_mae_rule_process_outer(struct sfc_adapter *sa,
|
|
struct sfc_mae_parse_ctx *ctx,
|
|
struct sfc_mae_outer_rule **rulep,
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct sfc_mae_outer_rule *rule;
|
|
int rc;
|
|
|
|
if (ctx->encap_type == EFX_TUNNEL_PROTOCOL_NONE) {
|
|
*rulep = NULL;
|
|
return 0;
|
|
}
|
|
|
|
SFC_ASSERT(ctx->match_spec_outer != NULL);
|
|
|
|
if (!efx_mae_match_spec_is_valid(sa->nic, ctx->match_spec_outer)) {
|
|
return rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, NULL,
|
|
"Inconsistent pattern (outer)");
|
|
}
|
|
|
|
*rulep = sfc_mae_outer_rule_attach(sa, ctx->match_spec_outer,
|
|
ctx->encap_type);
|
|
if (*rulep != NULL) {
|
|
efx_mae_match_spec_fini(sa->nic, ctx->match_spec_outer);
|
|
} else {
|
|
rc = sfc_mae_outer_rule_add(sa, ctx->match_spec_outer,
|
|
ctx->encap_type, rulep);
|
|
if (rc != 0) {
|
|
return rte_flow_error_set(error, rc,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, NULL,
|
|
"Failed to process the pattern");
|
|
}
|
|
}
|
|
|
|
/* The spec has now been tracked by the outer rule entry. */
|
|
ctx->match_spec_outer = NULL;
|
|
|
|
/*
|
|
* Depending on whether we reuse an existing outer rule or create a
|
|
* new one (see above), outer rule ID is either a valid value or
|
|
* EFX_MAE_RSRC_ID_INVALID. Set it in the action rule match
|
|
* specification (and the full mask, too) in order to have correct
|
|
* class comparisons of the new rule with existing ones.
|
|
* Also, action rule match specification will be validated shortly,
|
|
* and having the full mask set for outer rule ID indicates that we
|
|
* will use this field, and support for this field has to be checked.
|
|
*/
|
|
rule = *rulep;
|
|
rc = efx_mae_match_spec_outer_rule_id_set(ctx->match_spec_action,
|
|
&rule->fw_rsrc.rule_id);
|
|
if (rc != 0) {
|
|
sfc_mae_outer_rule_del(sa, *rulep);
|
|
*rulep = NULL;
|
|
|
|
return rte_flow_error_set(error, rc,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, NULL,
|
|
"Failed to process the pattern");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
sfc_mae_rule_encap_parse_init(struct sfc_adapter *sa,
|
|
const struct rte_flow_item pattern[],
|
|
struct sfc_mae_parse_ctx *ctx,
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct sfc_mae *mae = &sa->mae;
|
|
int rc;
|
|
|
|
if (pattern == NULL) {
|
|
rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ITEM_NUM, NULL,
|
|
"NULL pattern");
|
|
return -rte_errno;
|
|
}
|
|
|
|
for (;;) {
|
|
switch (pattern->type) {
|
|
case RTE_FLOW_ITEM_TYPE_VXLAN:
|
|
ctx->encap_type = EFX_TUNNEL_PROTOCOL_VXLAN;
|
|
ctx->tunnel_def_mask = &rte_flow_item_vxlan_mask;
|
|
RTE_BUILD_BUG_ON(sizeof(ctx->tunnel_def_mask) !=
|
|
sizeof(rte_flow_item_vxlan_mask));
|
|
break;
|
|
case RTE_FLOW_ITEM_TYPE_GENEVE:
|
|
ctx->encap_type = EFX_TUNNEL_PROTOCOL_GENEVE;
|
|
ctx->tunnel_def_mask = &rte_flow_item_geneve_mask;
|
|
RTE_BUILD_BUG_ON(sizeof(ctx->tunnel_def_mask) !=
|
|
sizeof(rte_flow_item_geneve_mask));
|
|
break;
|
|
case RTE_FLOW_ITEM_TYPE_NVGRE:
|
|
ctx->encap_type = EFX_TUNNEL_PROTOCOL_NVGRE;
|
|
ctx->tunnel_def_mask = &rte_flow_item_nvgre_mask;
|
|
RTE_BUILD_BUG_ON(sizeof(ctx->tunnel_def_mask) !=
|
|
sizeof(rte_flow_item_nvgre_mask));
|
|
break;
|
|
case RTE_FLOW_ITEM_TYPE_END:
|
|
break;
|
|
default:
|
|
++pattern;
|
|
continue;
|
|
};
|
|
|
|
break;
|
|
}
|
|
|
|
if (pattern->type == RTE_FLOW_ITEM_TYPE_END)
|
|
return 0;
|
|
|
|
if ((mae->encap_types_supported & (1U << ctx->encap_type)) == 0) {
|
|
return rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM,
|
|
pattern, "Unsupported tunnel item");
|
|
}
|
|
|
|
if (ctx->priority >= mae->nb_outer_rule_prios_max) {
|
|
return rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
|
|
NULL, "Unsupported priority level");
|
|
}
|
|
|
|
rc = efx_mae_match_spec_init(sa->nic, EFX_MAE_RULE_OUTER, ctx->priority,
|
|
&ctx->match_spec_outer);
|
|
if (rc != 0) {
|
|
return rte_flow_error_set(error, rc,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, pattern,
|
|
"Failed to initialise outer rule match specification");
|
|
}
|
|
|
|
/* Outermost items comprise a match specification of type OUTER. */
|
|
ctx->match_spec = ctx->match_spec_outer;
|
|
|
|
/* Outermost items use "ENC" EFX MAE field IDs. */
|
|
ctx->field_ids_remap = field_ids_remap_to_encap;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
sfc_mae_rule_encap_parse_fini(struct sfc_adapter *sa,
|
|
struct sfc_mae_parse_ctx *ctx)
|
|
{
|
|
if (ctx->encap_type == EFX_TUNNEL_PROTOCOL_NONE)
|
|
return;
|
|
|
|
if (ctx->match_spec_outer != NULL)
|
|
efx_mae_match_spec_fini(sa->nic, ctx->match_spec_outer);
|
|
}
|
|
|
|
int
|
|
sfc_mae_rule_parse_pattern(struct sfc_adapter *sa,
|
|
const struct rte_flow_item pattern[],
|
|
struct sfc_flow_spec_mae *spec,
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct sfc_mae_parse_ctx ctx_mae;
|
|
struct sfc_flow_parse_ctx ctx;
|
|
int rc;
|
|
|
|
memset(&ctx_mae, 0, sizeof(ctx_mae));
|
|
ctx_mae.priority = spec->priority;
|
|
ctx_mae.sa = sa;
|
|
|
|
rc = efx_mae_match_spec_init(sa->nic, EFX_MAE_RULE_ACTION,
|
|
spec->priority,
|
|
&ctx_mae.match_spec_action);
|
|
if (rc != 0) {
|
|
rc = rte_flow_error_set(error, rc,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
|
|
"Failed to initialise action rule match specification");
|
|
goto fail_init_match_spec_action;
|
|
}
|
|
|
|
/*
|
|
* As a preliminary setting, assume that there is no encapsulation
|
|
* in the pattern. That is, pattern items are about to comprise a
|
|
* match specification of type ACTION and use non-encap. field IDs.
|
|
*
|
|
* sfc_mae_rule_encap_parse_init() below may override this.
|
|
*/
|
|
ctx_mae.encap_type = EFX_TUNNEL_PROTOCOL_NONE;
|
|
ctx_mae.match_spec = ctx_mae.match_spec_action;
|
|
ctx_mae.field_ids_remap = field_ids_no_remap;
|
|
|
|
ctx.type = SFC_FLOW_PARSE_CTX_MAE;
|
|
ctx.mae = &ctx_mae;
|
|
|
|
rc = sfc_mae_rule_encap_parse_init(sa, pattern, &ctx_mae, error);
|
|
if (rc != 0)
|
|
goto fail_encap_parse_init;
|
|
|
|
rc = sfc_flow_parse_pattern(sfc_flow_items, RTE_DIM(sfc_flow_items),
|
|
pattern, &ctx, error);
|
|
if (rc != 0)
|
|
goto fail_parse_pattern;
|
|
|
|
rc = sfc_mae_rule_process_pattern_data(&ctx_mae, error);
|
|
if (rc != 0)
|
|
goto fail_process_pattern_data;
|
|
|
|
rc = sfc_mae_rule_process_outer(sa, &ctx_mae, &spec->outer_rule, error);
|
|
if (rc != 0)
|
|
goto fail_process_outer;
|
|
|
|
if (!efx_mae_match_spec_is_valid(sa->nic, ctx_mae.match_spec_action)) {
|
|
rc = rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ITEM, NULL,
|
|
"Inconsistent pattern");
|
|
goto fail_validate_match_spec_action;
|
|
}
|
|
|
|
spec->match_spec = ctx_mae.match_spec_action;
|
|
|
|
return 0;
|
|
|
|
fail_validate_match_spec_action:
|
|
fail_process_outer:
|
|
fail_process_pattern_data:
|
|
fail_parse_pattern:
|
|
sfc_mae_rule_encap_parse_fini(sa, &ctx_mae);
|
|
|
|
fail_encap_parse_init:
|
|
efx_mae_match_spec_fini(sa->nic, ctx_mae.match_spec_action);
|
|
|
|
fail_init_match_spec_action:
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* An action supported by MAE may correspond to a bundle of RTE flow actions,
|
|
* in example, VLAN_PUSH = OF_PUSH_VLAN + OF_VLAN_SET_VID + OF_VLAN_SET_PCP.
|
|
* That is, related RTE flow actions need to be tracked as parts of a whole
|
|
* so that they can be combined into a single action and submitted to MAE
|
|
* representation of a given rule's action set.
|
|
*
|
|
* Each RTE flow action provided by an application gets classified as
|
|
* one belonging to some bundle type. If an action is not supposed to
|
|
* belong to any bundle, or if this action is END, it is described as
|
|
* one belonging to a dummy bundle of type EMPTY.
|
|
*
|
|
* A currently tracked bundle will be submitted if a repeating
|
|
* action or an action of different bundle type follows.
|
|
*/
|
|
|
|
enum sfc_mae_actions_bundle_type {
|
|
SFC_MAE_ACTIONS_BUNDLE_EMPTY = 0,
|
|
SFC_MAE_ACTIONS_BUNDLE_VLAN_PUSH,
|
|
};
|
|
|
|
struct sfc_mae_actions_bundle {
|
|
enum sfc_mae_actions_bundle_type type;
|
|
|
|
/* Indicates actions already tracked by the current bundle */
|
|
uint64_t actions_mask;
|
|
|
|
/* Parameters used by SFC_MAE_ACTIONS_BUNDLE_VLAN_PUSH */
|
|
rte_be16_t vlan_push_tpid;
|
|
rte_be16_t vlan_push_tci;
|
|
};
|
|
|
|
/*
|
|
* Combine configuration of RTE flow actions tracked by the bundle into a
|
|
* single action and submit the result to MAE action set specification.
|
|
* Do nothing in the case of dummy action bundle.
|
|
*/
|
|
static int
|
|
sfc_mae_actions_bundle_submit(const struct sfc_mae_actions_bundle *bundle,
|
|
efx_mae_actions_t *spec)
|
|
{
|
|
int rc = 0;
|
|
|
|
switch (bundle->type) {
|
|
case SFC_MAE_ACTIONS_BUNDLE_EMPTY:
|
|
break;
|
|
case SFC_MAE_ACTIONS_BUNDLE_VLAN_PUSH:
|
|
rc = efx_mae_action_set_populate_vlan_push(
|
|
spec, bundle->vlan_push_tpid, bundle->vlan_push_tci);
|
|
break;
|
|
default:
|
|
SFC_ASSERT(B_FALSE);
|
|
break;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Given the type of the next RTE flow action in the line, decide
|
|
* whether a new bundle is about to start, and, if this is the case,
|
|
* submit and reset the current bundle.
|
|
*/
|
|
static int
|
|
sfc_mae_actions_bundle_sync(const struct rte_flow_action *action,
|
|
struct sfc_mae_actions_bundle *bundle,
|
|
efx_mae_actions_t *spec,
|
|
struct rte_flow_error *error)
|
|
{
|
|
enum sfc_mae_actions_bundle_type bundle_type_new;
|
|
int rc;
|
|
|
|
switch (action->type) {
|
|
case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
|
|
case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
|
|
case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
|
|
bundle_type_new = SFC_MAE_ACTIONS_BUNDLE_VLAN_PUSH;
|
|
break;
|
|
default:
|
|
/*
|
|
* Self-sufficient actions, including END, are handled in this
|
|
* case. No checks for unsupported actions are needed here
|
|
* because parsing doesn't occur at this point.
|
|
*/
|
|
bundle_type_new = SFC_MAE_ACTIONS_BUNDLE_EMPTY;
|
|
break;
|
|
}
|
|
|
|
if (bundle_type_new != bundle->type ||
|
|
(bundle->actions_mask & (1ULL << action->type)) != 0) {
|
|
rc = sfc_mae_actions_bundle_submit(bundle, spec);
|
|
if (rc != 0)
|
|
goto fail_submit;
|
|
|
|
memset(bundle, 0, sizeof(*bundle));
|
|
}
|
|
|
|
bundle->type = bundle_type_new;
|
|
|
|
return 0;
|
|
|
|
fail_submit:
|
|
return rte_flow_error_set(error, rc,
|
|
RTE_FLOW_ERROR_TYPE_ACTION, NULL,
|
|
"Failed to request the (group of) action(s)");
|
|
}
|
|
|
|
static void
|
|
sfc_mae_rule_parse_action_of_push_vlan(
|
|
const struct rte_flow_action_of_push_vlan *conf,
|
|
struct sfc_mae_actions_bundle *bundle)
|
|
{
|
|
bundle->vlan_push_tpid = conf->ethertype;
|
|
}
|
|
|
|
static void
|
|
sfc_mae_rule_parse_action_of_set_vlan_vid(
|
|
const struct rte_flow_action_of_set_vlan_vid *conf,
|
|
struct sfc_mae_actions_bundle *bundle)
|
|
{
|
|
bundle->vlan_push_tci |= (conf->vlan_vid &
|
|
rte_cpu_to_be_16(RTE_LEN2MASK(12, uint16_t)));
|
|
}
|
|
|
|
static void
|
|
sfc_mae_rule_parse_action_of_set_vlan_pcp(
|
|
const struct rte_flow_action_of_set_vlan_pcp *conf,
|
|
struct sfc_mae_actions_bundle *bundle)
|
|
{
|
|
uint16_t vlan_tci_pcp = (uint16_t)(conf->vlan_pcp &
|
|
RTE_LEN2MASK(3, uint8_t)) << 13;
|
|
|
|
bundle->vlan_push_tci |= rte_cpu_to_be_16(vlan_tci_pcp);
|
|
}
|
|
|
|
static int
|
|
sfc_mae_rule_parse_action_mark(const struct rte_flow_action_mark *conf,
|
|
efx_mae_actions_t *spec)
|
|
{
|
|
return efx_mae_action_set_populate_mark(spec, conf->id);
|
|
}
|
|
|
|
static int
|
|
sfc_mae_rule_parse_action_phy_port(struct sfc_adapter *sa,
|
|
const struct rte_flow_action_phy_port *conf,
|
|
efx_mae_actions_t *spec)
|
|
{
|
|
efx_mport_sel_t mport;
|
|
uint32_t phy_port;
|
|
int rc;
|
|
|
|
if (conf->original != 0)
|
|
phy_port = efx_nic_cfg_get(sa->nic)->enc_assigned_port;
|
|
else
|
|
phy_port = conf->index;
|
|
|
|
rc = efx_mae_mport_by_phy_port(phy_port, &mport);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
return efx_mae_action_set_populate_deliver(spec, &mport);
|
|
}
|
|
|
|
static int
|
|
sfc_mae_rule_parse_action_pf_vf(struct sfc_adapter *sa,
|
|
const struct rte_flow_action_vf *vf_conf,
|
|
efx_mae_actions_t *spec)
|
|
{
|
|
const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
|
|
efx_mport_sel_t mport;
|
|
uint32_t vf;
|
|
int rc;
|
|
|
|
if (vf_conf == NULL)
|
|
vf = EFX_PCI_VF_INVALID;
|
|
else if (vf_conf->original != 0)
|
|
vf = encp->enc_vf;
|
|
else
|
|
vf = vf_conf->id;
|
|
|
|
rc = efx_mae_mport_by_pcie_function(encp->enc_pf, vf, &mport);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
return efx_mae_action_set_populate_deliver(spec, &mport);
|
|
}
|
|
|
|
static int
|
|
sfc_mae_rule_parse_action_port_id(struct sfc_adapter *sa,
|
|
const struct rte_flow_action_port_id *conf,
|
|
efx_mae_actions_t *spec)
|
|
{
|
|
struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
|
|
struct sfc_mae *mae = &sa->mae;
|
|
efx_mport_sel_t mport;
|
|
uint16_t port_id;
|
|
int rc;
|
|
|
|
port_id = (conf->original != 0) ? sas->port_id : conf->id;
|
|
|
|
rc = sfc_mae_switch_port_by_ethdev(mae->switch_domain_id,
|
|
port_id, &mport);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
return efx_mae_action_set_populate_deliver(spec, &mport);
|
|
}
|
|
|
|
static int
|
|
sfc_mae_rule_parse_action(struct sfc_adapter *sa,
|
|
const struct rte_flow_action *action,
|
|
struct sfc_mae_actions_bundle *bundle,
|
|
efx_mae_actions_t *spec,
|
|
struct rte_flow_error *error)
|
|
{
|
|
int rc = 0;
|
|
|
|
switch (action->type) {
|
|
case RTE_FLOW_ACTION_TYPE_OF_POP_VLAN:
|
|
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_OF_POP_VLAN,
|
|
bundle->actions_mask);
|
|
rc = efx_mae_action_set_populate_vlan_pop(spec);
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
|
|
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN,
|
|
bundle->actions_mask);
|
|
sfc_mae_rule_parse_action_of_push_vlan(action->conf, bundle);
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
|
|
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID,
|
|
bundle->actions_mask);
|
|
sfc_mae_rule_parse_action_of_set_vlan_vid(action->conf, bundle);
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
|
|
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP,
|
|
bundle->actions_mask);
|
|
sfc_mae_rule_parse_action_of_set_vlan_pcp(action->conf, bundle);
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_FLAG:
|
|
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_FLAG,
|
|
bundle->actions_mask);
|
|
rc = efx_mae_action_set_populate_flag(spec);
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_MARK:
|
|
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_MARK,
|
|
bundle->actions_mask);
|
|
rc = sfc_mae_rule_parse_action_mark(action->conf, spec);
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_PHY_PORT:
|
|
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_PHY_PORT,
|
|
bundle->actions_mask);
|
|
rc = sfc_mae_rule_parse_action_phy_port(sa, action->conf, spec);
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_PF:
|
|
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_PF,
|
|
bundle->actions_mask);
|
|
rc = sfc_mae_rule_parse_action_pf_vf(sa, NULL, spec);
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_VF:
|
|
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_VF,
|
|
bundle->actions_mask);
|
|
rc = sfc_mae_rule_parse_action_pf_vf(sa, action->conf, spec);
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_PORT_ID:
|
|
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_PORT_ID,
|
|
bundle->actions_mask);
|
|
rc = sfc_mae_rule_parse_action_port_id(sa, action->conf, spec);
|
|
break;
|
|
case RTE_FLOW_ACTION_TYPE_DROP:
|
|
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_DROP,
|
|
bundle->actions_mask);
|
|
rc = efx_mae_action_set_populate_drop(spec);
|
|
break;
|
|
default:
|
|
return rte_flow_error_set(error, ENOTSUP,
|
|
RTE_FLOW_ERROR_TYPE_ACTION, NULL,
|
|
"Unsupported action");
|
|
}
|
|
|
|
if (rc != 0) {
|
|
rc = rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ACTION,
|
|
NULL, "Failed to request the action");
|
|
} else {
|
|
bundle->actions_mask |= (1ULL << action->type);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
int
|
|
sfc_mae_rule_parse_actions(struct sfc_adapter *sa,
|
|
const struct rte_flow_action actions[],
|
|
struct sfc_mae_action_set **action_setp,
|
|
struct rte_flow_error *error)
|
|
{
|
|
struct sfc_mae_actions_bundle bundle = {0};
|
|
const struct rte_flow_action *action;
|
|
efx_mae_actions_t *spec;
|
|
int rc;
|
|
|
|
if (actions == NULL) {
|
|
return rte_flow_error_set(error, EINVAL,
|
|
RTE_FLOW_ERROR_TYPE_ACTION_NUM, NULL,
|
|
"NULL actions");
|
|
}
|
|
|
|
rc = efx_mae_action_set_spec_init(sa->nic, &spec);
|
|
if (rc != 0)
|
|
goto fail_action_set_spec_init;
|
|
|
|
for (action = actions;
|
|
action->type != RTE_FLOW_ACTION_TYPE_END; ++action) {
|
|
rc = sfc_mae_actions_bundle_sync(action, &bundle, spec, error);
|
|
if (rc != 0)
|
|
goto fail_rule_parse_action;
|
|
|
|
rc = sfc_mae_rule_parse_action(sa, action, &bundle, spec,
|
|
error);
|
|
if (rc != 0)
|
|
goto fail_rule_parse_action;
|
|
}
|
|
|
|
rc = sfc_mae_actions_bundle_sync(action, &bundle, spec, error);
|
|
if (rc != 0)
|
|
goto fail_rule_parse_action;
|
|
|
|
*action_setp = sfc_mae_action_set_attach(sa, spec);
|
|
if (*action_setp != NULL) {
|
|
efx_mae_action_set_spec_fini(sa->nic, spec);
|
|
return 0;
|
|
}
|
|
|
|
rc = sfc_mae_action_set_add(sa, spec, action_setp);
|
|
if (rc != 0)
|
|
goto fail_action_set_add;
|
|
|
|
return 0;
|
|
|
|
fail_action_set_add:
|
|
fail_rule_parse_action:
|
|
efx_mae_action_set_spec_fini(sa->nic, spec);
|
|
|
|
fail_action_set_spec_init:
|
|
if (rc > 0) {
|
|
rc = rte_flow_error_set(error, rc,
|
|
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
|
|
NULL, "Failed to process the action");
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static bool
|
|
sfc_mae_rules_class_cmp(struct sfc_adapter *sa,
|
|
const efx_mae_match_spec_t *left,
|
|
const efx_mae_match_spec_t *right)
|
|
{
|
|
bool have_same_class;
|
|
int rc;
|
|
|
|
rc = efx_mae_match_specs_class_cmp(sa->nic, left, right,
|
|
&have_same_class);
|
|
|
|
return (rc == 0) ? have_same_class : false;
|
|
}
|
|
|
|
static int
|
|
sfc_mae_outer_rule_class_verify(struct sfc_adapter *sa,
|
|
struct sfc_mae_outer_rule *rule)
|
|
{
|
|
struct sfc_mae_fw_rsrc *fw_rsrc = &rule->fw_rsrc;
|
|
struct sfc_mae_outer_rule *entry;
|
|
struct sfc_mae *mae = &sa->mae;
|
|
|
|
if (fw_rsrc->rule_id.id != EFX_MAE_RSRC_ID_INVALID) {
|
|
/* An active rule is reused. It's class is wittingly valid. */
|
|
return 0;
|
|
}
|
|
|
|
TAILQ_FOREACH_REVERSE(entry, &mae->outer_rules,
|
|
sfc_mae_outer_rules, entries) {
|
|
const efx_mae_match_spec_t *left = entry->match_spec;
|
|
const efx_mae_match_spec_t *right = rule->match_spec;
|
|
|
|
if (entry == rule)
|
|
continue;
|
|
|
|
if (sfc_mae_rules_class_cmp(sa, left, right))
|
|
return 0;
|
|
}
|
|
|
|
sfc_info(sa, "for now, the HW doesn't support rule validation, and HW "
|
|
"support for outer frame pattern items is not guaranteed; "
|
|
"other than that, the items are valid from SW standpoint");
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
sfc_mae_action_rule_class_verify(struct sfc_adapter *sa,
|
|
struct sfc_flow_spec_mae *spec)
|
|
{
|
|
const struct rte_flow *entry;
|
|
|
|
TAILQ_FOREACH_REVERSE(entry, &sa->flow_list, sfc_flow_list, entries) {
|
|
const struct sfc_flow_spec *entry_spec = &entry->spec;
|
|
const struct sfc_flow_spec_mae *es_mae = &entry_spec->mae;
|
|
const efx_mae_match_spec_t *left = es_mae->match_spec;
|
|
const efx_mae_match_spec_t *right = spec->match_spec;
|
|
|
|
switch (entry_spec->type) {
|
|
case SFC_FLOW_SPEC_FILTER:
|
|
/* Ignore VNIC-level flows */
|
|
break;
|
|
case SFC_FLOW_SPEC_MAE:
|
|
if (sfc_mae_rules_class_cmp(sa, left, right))
|
|
return 0;
|
|
break;
|
|
default:
|
|
SFC_ASSERT(false);
|
|
}
|
|
}
|
|
|
|
sfc_info(sa, "for now, the HW doesn't support rule validation, and HW "
|
|
"support for inner frame pattern items is not guaranteed; "
|
|
"other than that, the items are valid from SW standpoint");
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Confirm that a given flow can be accepted by the FW.
|
|
*
|
|
* @param sa
|
|
* Software adapter context
|
|
* @param flow
|
|
* Flow to be verified
|
|
* @return
|
|
* Zero on success and non-zero in the case of error.
|
|
* A special value of EAGAIN indicates that the adapter is
|
|
* not in started state. This state is compulsory because
|
|
* it only makes sense to compare the rule class of the flow
|
|
* being validated with classes of the active rules.
|
|
* Such classes are wittingly supported by the FW.
|
|
*/
|
|
int
|
|
sfc_mae_flow_verify(struct sfc_adapter *sa,
|
|
struct rte_flow *flow)
|
|
{
|
|
struct sfc_flow_spec *spec = &flow->spec;
|
|
struct sfc_flow_spec_mae *spec_mae = &spec->mae;
|
|
struct sfc_mae_outer_rule *outer_rule = spec_mae->outer_rule;
|
|
int rc;
|
|
|
|
SFC_ASSERT(sfc_adapter_is_locked(sa));
|
|
|
|
if (sa->state != SFC_ADAPTER_STARTED)
|
|
return EAGAIN;
|
|
|
|
if (outer_rule != NULL) {
|
|
rc = sfc_mae_outer_rule_class_verify(sa, outer_rule);
|
|
if (rc != 0)
|
|
return rc;
|
|
}
|
|
|
|
return sfc_mae_action_rule_class_verify(sa, spec_mae);
|
|
}
|
|
|
|
int
|
|
sfc_mae_flow_insert(struct sfc_adapter *sa,
|
|
struct rte_flow *flow)
|
|
{
|
|
struct sfc_flow_spec *spec = &flow->spec;
|
|
struct sfc_flow_spec_mae *spec_mae = &spec->mae;
|
|
struct sfc_mae_outer_rule *outer_rule = spec_mae->outer_rule;
|
|
struct sfc_mae_action_set *action_set = spec_mae->action_set;
|
|
struct sfc_mae_fw_rsrc *fw_rsrc = &action_set->fw_rsrc;
|
|
int rc;
|
|
|
|
SFC_ASSERT(spec_mae->rule_id.id == EFX_MAE_RSRC_ID_INVALID);
|
|
SFC_ASSERT(action_set != NULL);
|
|
|
|
if (outer_rule != NULL) {
|
|
rc = sfc_mae_outer_rule_enable(sa, outer_rule,
|
|
spec_mae->match_spec);
|
|
if (rc != 0)
|
|
goto fail_outer_rule_enable;
|
|
}
|
|
|
|
rc = sfc_mae_action_set_enable(sa, action_set);
|
|
if (rc != 0)
|
|
goto fail_action_set_enable;
|
|
|
|
rc = efx_mae_action_rule_insert(sa->nic, spec_mae->match_spec,
|
|
NULL, &fw_rsrc->aset_id,
|
|
&spec_mae->rule_id);
|
|
if (rc != 0)
|
|
goto fail_action_rule_insert;
|
|
|
|
return 0;
|
|
|
|
fail_action_rule_insert:
|
|
(void)sfc_mae_action_set_disable(sa, action_set);
|
|
|
|
fail_action_set_enable:
|
|
if (outer_rule != NULL)
|
|
(void)sfc_mae_outer_rule_disable(sa, outer_rule);
|
|
|
|
fail_outer_rule_enable:
|
|
return rc;
|
|
}
|
|
|
|
int
|
|
sfc_mae_flow_remove(struct sfc_adapter *sa,
|
|
struct rte_flow *flow)
|
|
{
|
|
struct sfc_flow_spec *spec = &flow->spec;
|
|
struct sfc_flow_spec_mae *spec_mae = &spec->mae;
|
|
struct sfc_mae_action_set *action_set = spec_mae->action_set;
|
|
struct sfc_mae_outer_rule *outer_rule = spec_mae->outer_rule;
|
|
int rc;
|
|
|
|
SFC_ASSERT(spec_mae->rule_id.id != EFX_MAE_RSRC_ID_INVALID);
|
|
SFC_ASSERT(action_set != NULL);
|
|
|
|
rc = efx_mae_action_rule_remove(sa->nic, &spec_mae->rule_id);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
spec_mae->rule_id.id = EFX_MAE_RSRC_ID_INVALID;
|
|
|
|
rc = sfc_mae_action_set_disable(sa, action_set);
|
|
if (rc != 0) {
|
|
sfc_err(sa, "failed to disable the action set (rc = %d)", rc);
|
|
/* Despite the error, proceed with outer rule removal. */
|
|
}
|
|
|
|
if (outer_rule != NULL)
|
|
return sfc_mae_outer_rule_disable(sa, outer_rule);
|
|
|
|
return 0;
|
|
}
|