numam-dpdk/drivers/net/sfc/sfc_flow.c
Thomas Monjalon b7ed955a20 ethdev: deprecate legacy filter API
As stated in the deprecation notice from December 2016,
"the legacy filter API, including rte_eth_dev_filter_supported(),
rte_eth_dev_filter_ctrl() as well as filter types MACVLAN, ETHERTYPE,
FLEXIBLE, SYN, NTUPLE, TUNNEL, FDIR, HASH and L2_TUNNEL, is superseded
by the generic flow API (rte_flow)".

After a long wait of more than two years, the legacy filter API
is marked as deprecated, while still tested with testpmd and
the tep_termination example.

The next step will be to announce a deadline for complete removal.
As preparation of the removal of rte_eth_ctrl.h,
RTE_ETH_FLOW_*, RTE_TUNNEL_TYPE_* and RTE_ETH_HASH_FUNCTION_* definitions
are moved to rte_ethdev.h and rte_flow.h.

Signed-off-by: Thomas Monjalon <thomas@monjalon.net>
Acked-by: Shahaf Shuler <shahafs@mellanox.com>
Acked-by: Andrew Rybchenko <arybchenko@solarflare.com>
Acked-by: Jerin Jacob <jerinj@marvell.com>
Acked-by: Stephen Hemminger <stephen@networkplumber.org>
Acked-by: Hemant Agrawal <hemant.agrawal@nxp.com>
Acked-by: Adrien Mazarguil <adrien.mazarguil@6wind.com>
Acked-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
2019-04-19 14:51:54 +02:00

2505 lines
65 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 2017-2018 Solarflare Communications Inc.
* All rights reserved.
*
* This software was jointly developed between OKTET Labs (under contract
* for Solarflare) and Solarflare Communications, Inc.
*/
#include <rte_byteorder.h>
#include <rte_tailq.h>
#include <rte_common.h>
#include <rte_ethdev_driver.h>
#include <rte_ether.h>
#include <rte_flow.h>
#include <rte_flow_driver.h>
#include "efx.h"
#include "sfc.h"
#include "sfc_rx.h"
#include "sfc_filter.h"
#include "sfc_flow.h"
#include "sfc_log.h"
#include "sfc_dp_rx.h"
/*
* At now flow API is implemented in such a manner that each
* flow rule is converted to one or more hardware filters.
* All elements of flow rule (attributes, pattern items, actions)
* correspond to one or more fields in the efx_filter_spec_s structure
* that is responsible for the hardware filter.
* If some required field is unset in the flow rule, then a handful
* of filter copies will be created to cover all possible values
* of such a field.
*/
enum sfc_flow_item_layers {
SFC_FLOW_ITEM_ANY_LAYER,
SFC_FLOW_ITEM_START_LAYER,
SFC_FLOW_ITEM_L2,
SFC_FLOW_ITEM_L3,
SFC_FLOW_ITEM_L4,
};
typedef int (sfc_flow_item_parse)(const struct rte_flow_item *item,
efx_filter_spec_t *spec,
struct rte_flow_error *error);
struct sfc_flow_item {
enum rte_flow_item_type type; /* Type of item */
enum sfc_flow_item_layers layer; /* Layer of item */
enum sfc_flow_item_layers prev_layer; /* Previous layer of item */
sfc_flow_item_parse *parse; /* Parsing function */
};
static sfc_flow_item_parse sfc_flow_parse_void;
static sfc_flow_item_parse sfc_flow_parse_eth;
static sfc_flow_item_parse sfc_flow_parse_vlan;
static sfc_flow_item_parse sfc_flow_parse_ipv4;
static sfc_flow_item_parse sfc_flow_parse_ipv6;
static sfc_flow_item_parse sfc_flow_parse_tcp;
static sfc_flow_item_parse sfc_flow_parse_udp;
static sfc_flow_item_parse sfc_flow_parse_vxlan;
static sfc_flow_item_parse sfc_flow_parse_geneve;
static sfc_flow_item_parse sfc_flow_parse_nvgre;
typedef int (sfc_flow_spec_set_vals)(struct sfc_flow_spec *spec,
unsigned int filters_count_for_one_val,
struct rte_flow_error *error);
typedef boolean_t (sfc_flow_spec_check)(efx_filter_match_flags_t match,
efx_filter_spec_t *spec,
struct sfc_filter *filter);
struct sfc_flow_copy_flag {
/* EFX filter specification match flag */
efx_filter_match_flags_t flag;
/* Number of values of corresponding field */
unsigned int vals_count;
/* Function to set values in specifications */
sfc_flow_spec_set_vals *set_vals;
/*
* Function to check that the specification is suitable
* for adding this match flag
*/
sfc_flow_spec_check *spec_check;
};
static sfc_flow_spec_set_vals sfc_flow_set_unknown_dst_flags;
static sfc_flow_spec_check sfc_flow_check_unknown_dst_flags;
static sfc_flow_spec_set_vals sfc_flow_set_ethertypes;
static sfc_flow_spec_set_vals sfc_flow_set_ifrm_unknown_dst_flags;
static sfc_flow_spec_check sfc_flow_check_ifrm_unknown_dst_flags;
static sfc_flow_spec_set_vals sfc_flow_set_outer_vid_flag;
static sfc_flow_spec_check sfc_flow_check_outer_vid_flag;
static boolean_t
sfc_flow_is_zero(const uint8_t *buf, unsigned int size)
{
uint8_t sum = 0;
unsigned int i;
for (i = 0; i < size; i++)
sum |= buf[i];
return (sum == 0) ? B_TRUE : B_FALSE;
}
/*
* Validate item and prepare structures spec and mask for parsing
*/
static int
sfc_flow_parse_init(const struct rte_flow_item *item,
const void **spec_ptr,
const void **mask_ptr,
const void *supp_mask,
const void *def_mask,
unsigned int size,
struct rte_flow_error *error)
{
const uint8_t *spec;
const uint8_t *mask;
const uint8_t *last;
uint8_t supp;
unsigned int i;
if (item == NULL) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, NULL,
"NULL item");
return -rte_errno;
}
if ((item->last != NULL || item->mask != NULL) && item->spec == NULL) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Mask or last is set without spec");
return -rte_errno;
}
/*
* If "mask" is not set, default mask is used,
* but if default mask is NULL, "mask" should be set
*/
if (item->mask == NULL) {
if (def_mask == NULL) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, NULL,
"Mask should be specified");
return -rte_errno;
}
mask = def_mask;
} else {
mask = item->mask;
}
spec = item->spec;
last = item->last;
if (spec == NULL)
goto exit;
/*
* If field values in "last" are either 0 or equal to the corresponding
* values in "spec" then they are ignored
*/
if (last != NULL &&
!sfc_flow_is_zero(last, size) &&
memcmp(last, spec, size) != 0) {
rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Ranging is not supported");
return -rte_errno;
}
if (supp_mask == NULL) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"Supported mask for item should be specified");
return -rte_errno;
}
/* Check that mask does not ask for more match than supp_mask */
for (i = 0; i < size; i++) {
supp = ((const uint8_t *)supp_mask)[i];
if (~supp & mask[i]) {
rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Item's field is not supported");
return -rte_errno;
}
}
exit:
*spec_ptr = spec;
*mask_ptr = mask;
return 0;
}
/*
* Protocol parsers.
* Masking is not supported, so masks in items should be either
* full or empty (zeroed) and set only for supported fields which
* are specified in the supp_mask.
*/
static int
sfc_flow_parse_void(__rte_unused const struct rte_flow_item *item,
__rte_unused efx_filter_spec_t *efx_spec,
__rte_unused struct rte_flow_error *error)
{
return 0;
}
/**
* Convert Ethernet item to EFX filter specification.
*
* @param item[in]
* Item specification. Outer frame specification may only comprise
* source/destination addresses and Ethertype field.
* Inner frame specification may contain destination address only.
* There is support for individual/group mask as well as for empty and full.
* If the mask is NULL, default mask will be used. Ranging is not supported.
* @param efx_spec[in, out]
* EFX filter specification to update.
* @param[out] error
* Perform verbose error reporting if not NULL.
*/
static int
sfc_flow_parse_eth(const struct rte_flow_item *item,
efx_filter_spec_t *efx_spec,
struct rte_flow_error *error)
{
int rc;
const struct rte_flow_item_eth *spec = NULL;
const struct rte_flow_item_eth *mask = NULL;
const struct rte_flow_item_eth supp_mask = {
.dst.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
.src.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
.type = 0xffff,
};
const struct rte_flow_item_eth ifrm_supp_mask = {
.dst.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
};
const uint8_t ig_mask[EFX_MAC_ADDR_LEN] = {
0x01, 0x00, 0x00, 0x00, 0x00, 0x00
};
const struct rte_flow_item_eth *supp_mask_p;
const struct rte_flow_item_eth *def_mask_p;
uint8_t *loc_mac = NULL;
boolean_t is_ifrm = (efx_spec->efs_encap_type !=
EFX_TUNNEL_PROTOCOL_NONE);
if (is_ifrm) {
supp_mask_p = &ifrm_supp_mask;
def_mask_p = &ifrm_supp_mask;
loc_mac = efx_spec->efs_ifrm_loc_mac;
} else {
supp_mask_p = &supp_mask;
def_mask_p = &rte_flow_item_eth_mask;
loc_mac = efx_spec->efs_loc_mac;
}
rc = sfc_flow_parse_init(item,
(const void **)&spec,
(const void **)&mask,
supp_mask_p, def_mask_p,
sizeof(struct rte_flow_item_eth),
error);
if (rc != 0)
return rc;
/* If "spec" is not set, could be any Ethernet */
if (spec == NULL)
return 0;
if (is_same_ether_addr(&mask->dst, &supp_mask.dst)) {
efx_spec->efs_match_flags |= is_ifrm ?
EFX_FILTER_MATCH_IFRM_LOC_MAC :
EFX_FILTER_MATCH_LOC_MAC;
rte_memcpy(loc_mac, spec->dst.addr_bytes,
EFX_MAC_ADDR_LEN);
} else if (memcmp(mask->dst.addr_bytes, ig_mask,
EFX_MAC_ADDR_LEN) == 0) {
if (is_unicast_ether_addr(&spec->dst))
efx_spec->efs_match_flags |= is_ifrm ?
EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST :
EFX_FILTER_MATCH_UNKNOWN_UCAST_DST;
else
efx_spec->efs_match_flags |= is_ifrm ?
EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST :
EFX_FILTER_MATCH_UNKNOWN_MCAST_DST;
} else if (!is_zero_ether_addr(&mask->dst)) {
goto fail_bad_mask;
}
/*
* ifrm_supp_mask ensures that the source address and
* ethertype masks are equal to zero in inner frame,
* so these fields are filled in only for the outer frame
*/
if (is_same_ether_addr(&mask->src, &supp_mask.src)) {
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_MAC;
rte_memcpy(efx_spec->efs_rem_mac, spec->src.addr_bytes,
EFX_MAC_ADDR_LEN);
} else if (!is_zero_ether_addr(&mask->src)) {
goto fail_bad_mask;
}
/*
* Ether type is in big-endian byte order in item and
* in little-endian in efx_spec, so byte swap is used
*/
if (mask->type == supp_mask.type) {
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
efx_spec->efs_ether_type = rte_bswap16(spec->type);
} else if (mask->type != 0) {
goto fail_bad_mask;
}
return 0;
fail_bad_mask:
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Bad mask in the ETH pattern item");
return -rte_errno;
}
/**
* Convert VLAN item to EFX filter specification.
*
* @param item[in]
* Item specification. Only VID field is supported.
* The mask can not be NULL. Ranging is not supported.
* @param efx_spec[in, out]
* EFX filter specification to update.
* @param[out] error
* Perform verbose error reporting if not NULL.
*/
static int
sfc_flow_parse_vlan(const struct rte_flow_item *item,
efx_filter_spec_t *efx_spec,
struct rte_flow_error *error)
{
int rc;
uint16_t vid;
const struct rte_flow_item_vlan *spec = NULL;
const struct rte_flow_item_vlan *mask = NULL;
const struct rte_flow_item_vlan supp_mask = {
.tci = rte_cpu_to_be_16(ETH_VLAN_ID_MAX),
.inner_type = RTE_BE16(0xffff),
};
rc = sfc_flow_parse_init(item,
(const void **)&spec,
(const void **)&mask,
&supp_mask,
NULL,
sizeof(struct rte_flow_item_vlan),
error);
if (rc != 0)
return rc;
/*
* VID is in big-endian byte order in item and
* in little-endian in efx_spec, so byte swap is used.
* If two VLAN items are included, the first matches
* the outer tag and the next matches the inner tag.
*/
if (mask->tci == supp_mask.tci) {
/* Apply mask to keep VID only */
vid = rte_bswap16(spec->tci & mask->tci);
if (!(efx_spec->efs_match_flags &
EFX_FILTER_MATCH_OUTER_VID)) {
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_OUTER_VID;
efx_spec->efs_outer_vid = vid;
} else if (!(efx_spec->efs_match_flags &
EFX_FILTER_MATCH_INNER_VID)) {
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_INNER_VID;
efx_spec->efs_inner_vid = vid;
} else {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"More than two VLAN items");
return -rte_errno;
}
} else {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"VLAN ID in TCI match is required");
return -rte_errno;
}
if (efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"VLAN TPID matching is not supported");
return -rte_errno;
}
if (mask->inner_type == supp_mask.inner_type) {
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
efx_spec->efs_ether_type = rte_bswap16(spec->inner_type);
} else if (mask->inner_type) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Bad mask for VLAN inner_type");
return -rte_errno;
}
return 0;
}
/**
* Convert IPv4 item to EFX filter specification.
*
* @param item[in]
* Item specification. Only source and destination addresses and
* protocol fields are supported. If the mask is NULL, default
* mask will be used. Ranging is not supported.
* @param efx_spec[in, out]
* EFX filter specification to update.
* @param[out] error
* Perform verbose error reporting if not NULL.
*/
static int
sfc_flow_parse_ipv4(const struct rte_flow_item *item,
efx_filter_spec_t *efx_spec,
struct rte_flow_error *error)
{
int rc;
const struct rte_flow_item_ipv4 *spec = NULL;
const struct rte_flow_item_ipv4 *mask = NULL;
const uint16_t ether_type_ipv4 = rte_cpu_to_le_16(EFX_ETHER_TYPE_IPV4);
const struct rte_flow_item_ipv4 supp_mask = {
.hdr = {
.src_addr = 0xffffffff,
.dst_addr = 0xffffffff,
.next_proto_id = 0xff,
}
};
rc = sfc_flow_parse_init(item,
(const void **)&spec,
(const void **)&mask,
&supp_mask,
&rte_flow_item_ipv4_mask,
sizeof(struct rte_flow_item_ipv4),
error);
if (rc != 0)
return rc;
/*
* Filtering by IPv4 source and destination addresses requires
* the appropriate ETHER_TYPE in hardware filters
*/
if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE)) {
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
efx_spec->efs_ether_type = ether_type_ipv4;
} else if (efx_spec->efs_ether_type != ether_type_ipv4) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Ethertype in pattern with IPV4 item should be appropriate");
return -rte_errno;
}
if (spec == NULL)
return 0;
/*
* IPv4 addresses are in big-endian byte order in item and in
* efx_spec
*/
if (mask->hdr.src_addr == supp_mask.hdr.src_addr) {
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_HOST;
efx_spec->efs_rem_host.eo_u32[0] = spec->hdr.src_addr;
} else if (mask->hdr.src_addr != 0) {
goto fail_bad_mask;
}
if (mask->hdr.dst_addr == supp_mask.hdr.dst_addr) {
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_HOST;
efx_spec->efs_loc_host.eo_u32[0] = spec->hdr.dst_addr;
} else if (mask->hdr.dst_addr != 0) {
goto fail_bad_mask;
}
if (mask->hdr.next_proto_id == supp_mask.hdr.next_proto_id) {
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
efx_spec->efs_ip_proto = spec->hdr.next_proto_id;
} else if (mask->hdr.next_proto_id != 0) {
goto fail_bad_mask;
}
return 0;
fail_bad_mask:
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Bad mask in the IPV4 pattern item");
return -rte_errno;
}
/**
* Convert IPv6 item to EFX filter specification.
*
* @param item[in]
* Item specification. Only source and destination addresses and
* next header fields are supported. If the mask is NULL, default
* mask will be used. Ranging is not supported.
* @param efx_spec[in, out]
* EFX filter specification to update.
* @param[out] error
* Perform verbose error reporting if not NULL.
*/
static int
sfc_flow_parse_ipv6(const struct rte_flow_item *item,
efx_filter_spec_t *efx_spec,
struct rte_flow_error *error)
{
int rc;
const struct rte_flow_item_ipv6 *spec = NULL;
const struct rte_flow_item_ipv6 *mask = NULL;
const uint16_t ether_type_ipv6 = rte_cpu_to_le_16(EFX_ETHER_TYPE_IPV6);
const struct rte_flow_item_ipv6 supp_mask = {
.hdr = {
.src_addr = { 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff },
.dst_addr = { 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff },
.proto = 0xff,
}
};
rc = sfc_flow_parse_init(item,
(const void **)&spec,
(const void **)&mask,
&supp_mask,
&rte_flow_item_ipv6_mask,
sizeof(struct rte_flow_item_ipv6),
error);
if (rc != 0)
return rc;
/*
* Filtering by IPv6 source and destination addresses requires
* the appropriate ETHER_TYPE in hardware filters
*/
if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE)) {
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
efx_spec->efs_ether_type = ether_type_ipv6;
} else if (efx_spec->efs_ether_type != ether_type_ipv6) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Ethertype in pattern with IPV6 item should be appropriate");
return -rte_errno;
}
if (spec == NULL)
return 0;
/*
* IPv6 addresses are in big-endian byte order in item and in
* efx_spec
*/
if (memcmp(mask->hdr.src_addr, supp_mask.hdr.src_addr,
sizeof(mask->hdr.src_addr)) == 0) {
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_HOST;
RTE_BUILD_BUG_ON(sizeof(efx_spec->efs_rem_host) !=
sizeof(spec->hdr.src_addr));
rte_memcpy(&efx_spec->efs_rem_host, spec->hdr.src_addr,
sizeof(efx_spec->efs_rem_host));
} else if (!sfc_flow_is_zero(mask->hdr.src_addr,
sizeof(mask->hdr.src_addr))) {
goto fail_bad_mask;
}
if (memcmp(mask->hdr.dst_addr, supp_mask.hdr.dst_addr,
sizeof(mask->hdr.dst_addr)) == 0) {
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_HOST;
RTE_BUILD_BUG_ON(sizeof(efx_spec->efs_loc_host) !=
sizeof(spec->hdr.dst_addr));
rte_memcpy(&efx_spec->efs_loc_host, spec->hdr.dst_addr,
sizeof(efx_spec->efs_loc_host));
} else if (!sfc_flow_is_zero(mask->hdr.dst_addr,
sizeof(mask->hdr.dst_addr))) {
goto fail_bad_mask;
}
if (mask->hdr.proto == supp_mask.hdr.proto) {
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
efx_spec->efs_ip_proto = spec->hdr.proto;
} else if (mask->hdr.proto != 0) {
goto fail_bad_mask;
}
return 0;
fail_bad_mask:
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Bad mask in the IPV6 pattern item");
return -rte_errno;
}
/**
* Convert TCP item to EFX filter specification.
*
* @param item[in]
* Item specification. Only source and destination ports fields
* are supported. If the mask is NULL, default mask will be used.
* Ranging is not supported.
* @param efx_spec[in, out]
* EFX filter specification to update.
* @param[out] error
* Perform verbose error reporting if not NULL.
*/
static int
sfc_flow_parse_tcp(const struct rte_flow_item *item,
efx_filter_spec_t *efx_spec,
struct rte_flow_error *error)
{
int rc;
const struct rte_flow_item_tcp *spec = NULL;
const struct rte_flow_item_tcp *mask = NULL;
const struct rte_flow_item_tcp supp_mask = {
.hdr = {
.src_port = 0xffff,
.dst_port = 0xffff,
}
};
rc = sfc_flow_parse_init(item,
(const void **)&spec,
(const void **)&mask,
&supp_mask,
&rte_flow_item_tcp_mask,
sizeof(struct rte_flow_item_tcp),
error);
if (rc != 0)
return rc;
/*
* Filtering by TCP source and destination ports requires
* the appropriate IP_PROTO in hardware filters
*/
if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) {
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
efx_spec->efs_ip_proto = EFX_IPPROTO_TCP;
} else if (efx_spec->efs_ip_proto != EFX_IPPROTO_TCP) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"IP proto in pattern with TCP item should be appropriate");
return -rte_errno;
}
if (spec == NULL)
return 0;
/*
* Source and destination ports are in big-endian byte order in item and
* in little-endian in efx_spec, so byte swap is used
*/
if (mask->hdr.src_port == supp_mask.hdr.src_port) {
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_PORT;
efx_spec->efs_rem_port = rte_bswap16(spec->hdr.src_port);
} else if (mask->hdr.src_port != 0) {
goto fail_bad_mask;
}
if (mask->hdr.dst_port == supp_mask.hdr.dst_port) {
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_PORT;
efx_spec->efs_loc_port = rte_bswap16(spec->hdr.dst_port);
} else if (mask->hdr.dst_port != 0) {
goto fail_bad_mask;
}
return 0;
fail_bad_mask:
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Bad mask in the TCP pattern item");
return -rte_errno;
}
/**
* Convert UDP item to EFX filter specification.
*
* @param item[in]
* Item specification. Only source and destination ports fields
* are supported. If the mask is NULL, default mask will be used.
* Ranging is not supported.
* @param efx_spec[in, out]
* EFX filter specification to update.
* @param[out] error
* Perform verbose error reporting if not NULL.
*/
static int
sfc_flow_parse_udp(const struct rte_flow_item *item,
efx_filter_spec_t *efx_spec,
struct rte_flow_error *error)
{
int rc;
const struct rte_flow_item_udp *spec = NULL;
const struct rte_flow_item_udp *mask = NULL;
const struct rte_flow_item_udp supp_mask = {
.hdr = {
.src_port = 0xffff,
.dst_port = 0xffff,
}
};
rc = sfc_flow_parse_init(item,
(const void **)&spec,
(const void **)&mask,
&supp_mask,
&rte_flow_item_udp_mask,
sizeof(struct rte_flow_item_udp),
error);
if (rc != 0)
return rc;
/*
* Filtering by UDP source and destination ports requires
* the appropriate IP_PROTO in hardware filters
*/
if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) {
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
efx_spec->efs_ip_proto = EFX_IPPROTO_UDP;
} else if (efx_spec->efs_ip_proto != EFX_IPPROTO_UDP) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"IP proto in pattern with UDP item should be appropriate");
return -rte_errno;
}
if (spec == NULL)
return 0;
/*
* Source and destination ports are in big-endian byte order in item and
* in little-endian in efx_spec, so byte swap is used
*/
if (mask->hdr.src_port == supp_mask.hdr.src_port) {
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_PORT;
efx_spec->efs_rem_port = rte_bswap16(spec->hdr.src_port);
} else if (mask->hdr.src_port != 0) {
goto fail_bad_mask;
}
if (mask->hdr.dst_port == supp_mask.hdr.dst_port) {
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_PORT;
efx_spec->efs_loc_port = rte_bswap16(spec->hdr.dst_port);
} else if (mask->hdr.dst_port != 0) {
goto fail_bad_mask;
}
return 0;
fail_bad_mask:
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Bad mask in the UDP pattern item");
return -rte_errno;
}
/*
* Filters for encapsulated packets match based on the EtherType and IP
* protocol in the outer frame.
*/
static int
sfc_flow_set_match_flags_for_encap_pkts(const struct rte_flow_item *item,
efx_filter_spec_t *efx_spec,
uint8_t ip_proto,
struct rte_flow_error *error)
{
if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) {
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
efx_spec->efs_ip_proto = ip_proto;
} else if (efx_spec->efs_ip_proto != ip_proto) {
switch (ip_proto) {
case EFX_IPPROTO_UDP:
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Outer IP header protocol must be UDP "
"in VxLAN/GENEVE pattern");
return -rte_errno;
case EFX_IPPROTO_GRE:
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Outer IP header protocol must be GRE "
"in NVGRE pattern");
return -rte_errno;
default:
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Only VxLAN/GENEVE/NVGRE tunneling patterns "
"are supported");
return -rte_errno;
}
}
if (efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE &&
efx_spec->efs_ether_type != EFX_ETHER_TYPE_IPV4 &&
efx_spec->efs_ether_type != EFX_ETHER_TYPE_IPV6) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Outer frame EtherType in pattern with tunneling "
"must be IPv4 or IPv6");
return -rte_errno;
}
return 0;
}
static int
sfc_flow_set_efx_spec_vni_or_vsid(efx_filter_spec_t *efx_spec,
const uint8_t *vni_or_vsid_val,
const uint8_t *vni_or_vsid_mask,
const struct rte_flow_item *item,
struct rte_flow_error *error)
{
const uint8_t vni_or_vsid_full_mask[EFX_VNI_OR_VSID_LEN] = {
0xff, 0xff, 0xff
};
if (memcmp(vni_or_vsid_mask, vni_or_vsid_full_mask,
EFX_VNI_OR_VSID_LEN) == 0) {
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_VNI_OR_VSID;
rte_memcpy(efx_spec->efs_vni_or_vsid, vni_or_vsid_val,
EFX_VNI_OR_VSID_LEN);
} else if (!sfc_flow_is_zero(vni_or_vsid_mask, EFX_VNI_OR_VSID_LEN)) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Unsupported VNI/VSID mask");
return -rte_errno;
}
return 0;
}
/**
* Convert VXLAN item to EFX filter specification.
*
* @param item[in]
* Item specification. Only VXLAN network identifier field is supported.
* If the mask is NULL, default mask will be used.
* Ranging is not supported.
* @param efx_spec[in, out]
* EFX filter specification to update.
* @param[out] error
* Perform verbose error reporting if not NULL.
*/
static int
sfc_flow_parse_vxlan(const struct rte_flow_item *item,
efx_filter_spec_t *efx_spec,
struct rte_flow_error *error)
{
int rc;
const struct rte_flow_item_vxlan *spec = NULL;
const struct rte_flow_item_vxlan *mask = NULL;
const struct rte_flow_item_vxlan supp_mask = {
.vni = { 0xff, 0xff, 0xff }
};
rc = sfc_flow_parse_init(item,
(const void **)&spec,
(const void **)&mask,
&supp_mask,
&rte_flow_item_vxlan_mask,
sizeof(struct rte_flow_item_vxlan),
error);
if (rc != 0)
return rc;
rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec,
EFX_IPPROTO_UDP, error);
if (rc != 0)
return rc;
efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_VXLAN;
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
if (spec == NULL)
return 0;
rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->vni,
mask->vni, item, error);
return rc;
}
/**
* Convert GENEVE item to EFX filter specification.
*
* @param item[in]
* Item specification. Only Virtual Network Identifier and protocol type
* fields are supported. But protocol type can be only Ethernet (0x6558).
* If the mask is NULL, default mask will be used.
* Ranging is not supported.
* @param efx_spec[in, out]
* EFX filter specification to update.
* @param[out] error
* Perform verbose error reporting if not NULL.
*/
static int
sfc_flow_parse_geneve(const struct rte_flow_item *item,
efx_filter_spec_t *efx_spec,
struct rte_flow_error *error)
{
int rc;
const struct rte_flow_item_geneve *spec = NULL;
const struct rte_flow_item_geneve *mask = NULL;
const struct rte_flow_item_geneve supp_mask = {
.protocol = RTE_BE16(0xffff),
.vni = { 0xff, 0xff, 0xff }
};
rc = sfc_flow_parse_init(item,
(const void **)&spec,
(const void **)&mask,
&supp_mask,
&rte_flow_item_geneve_mask,
sizeof(struct rte_flow_item_geneve),
error);
if (rc != 0)
return rc;
rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec,
EFX_IPPROTO_UDP, error);
if (rc != 0)
return rc;
efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_GENEVE;
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
if (spec == NULL)
return 0;
if (mask->protocol == supp_mask.protocol) {
if (spec->protocol != rte_cpu_to_be_16(ETHER_TYPE_TEB)) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"GENEVE encap. protocol must be Ethernet "
"(0x6558) in the GENEVE pattern item");
return -rte_errno;
}
} else if (mask->protocol != 0) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Unsupported mask for GENEVE encap. protocol");
return -rte_errno;
}
rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->vni,
mask->vni, item, error);
return rc;
}
/**
* Convert NVGRE item to EFX filter specification.
*
* @param item[in]
* Item specification. Only virtual subnet ID field is supported.
* If the mask is NULL, default mask will be used.
* Ranging is not supported.
* @param efx_spec[in, out]
* EFX filter specification to update.
* @param[out] error
* Perform verbose error reporting if not NULL.
*/
static int
sfc_flow_parse_nvgre(const struct rte_flow_item *item,
efx_filter_spec_t *efx_spec,
struct rte_flow_error *error)
{
int rc;
const struct rte_flow_item_nvgre *spec = NULL;
const struct rte_flow_item_nvgre *mask = NULL;
const struct rte_flow_item_nvgre supp_mask = {
.tni = { 0xff, 0xff, 0xff }
};
rc = sfc_flow_parse_init(item,
(const void **)&spec,
(const void **)&mask,
&supp_mask,
&rte_flow_item_nvgre_mask,
sizeof(struct rte_flow_item_nvgre),
error);
if (rc != 0)
return rc;
rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec,
EFX_IPPROTO_GRE, error);
if (rc != 0)
return rc;
efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_NVGRE;
efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
if (spec == NULL)
return 0;
rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->tni,
mask->tni, item, error);
return rc;
}
static const struct sfc_flow_item sfc_flow_items[] = {
{
.type = RTE_FLOW_ITEM_TYPE_VOID,
.prev_layer = SFC_FLOW_ITEM_ANY_LAYER,
.layer = SFC_FLOW_ITEM_ANY_LAYER,
.parse = sfc_flow_parse_void,
},
{
.type = RTE_FLOW_ITEM_TYPE_ETH,
.prev_layer = SFC_FLOW_ITEM_START_LAYER,
.layer = SFC_FLOW_ITEM_L2,
.parse = sfc_flow_parse_eth,
},
{
.type = RTE_FLOW_ITEM_TYPE_VLAN,
.prev_layer = SFC_FLOW_ITEM_L2,
.layer = SFC_FLOW_ITEM_L2,
.parse = sfc_flow_parse_vlan,
},
{
.type = RTE_FLOW_ITEM_TYPE_IPV4,
.prev_layer = SFC_FLOW_ITEM_L2,
.layer = SFC_FLOW_ITEM_L3,
.parse = sfc_flow_parse_ipv4,
},
{
.type = RTE_FLOW_ITEM_TYPE_IPV6,
.prev_layer = SFC_FLOW_ITEM_L2,
.layer = SFC_FLOW_ITEM_L3,
.parse = sfc_flow_parse_ipv6,
},
{
.type = RTE_FLOW_ITEM_TYPE_TCP,
.prev_layer = SFC_FLOW_ITEM_L3,
.layer = SFC_FLOW_ITEM_L4,
.parse = sfc_flow_parse_tcp,
},
{
.type = RTE_FLOW_ITEM_TYPE_UDP,
.prev_layer = SFC_FLOW_ITEM_L3,
.layer = SFC_FLOW_ITEM_L4,
.parse = sfc_flow_parse_udp,
},
{
.type = RTE_FLOW_ITEM_TYPE_VXLAN,
.prev_layer = SFC_FLOW_ITEM_L4,
.layer = SFC_FLOW_ITEM_START_LAYER,
.parse = sfc_flow_parse_vxlan,
},
{
.type = RTE_FLOW_ITEM_TYPE_GENEVE,
.prev_layer = SFC_FLOW_ITEM_L4,
.layer = SFC_FLOW_ITEM_START_LAYER,
.parse = sfc_flow_parse_geneve,
},
{
.type = RTE_FLOW_ITEM_TYPE_NVGRE,
.prev_layer = SFC_FLOW_ITEM_L3,
.layer = SFC_FLOW_ITEM_START_LAYER,
.parse = sfc_flow_parse_nvgre,
},
};
/*
* Protocol-independent flow API support
*/
static int
sfc_flow_parse_attr(const struct rte_flow_attr *attr,
struct rte_flow *flow,
struct rte_flow_error *error)
{
if (attr == NULL) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR, NULL,
"NULL attribute");
return -rte_errno;
}
if (attr->group != 0) {
rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_GROUP, attr,
"Groups are not supported");
return -rte_errno;
}
if (attr->priority != 0) {
rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, attr,
"Priorities are not supported");
return -rte_errno;
}
if (attr->egress != 0) {
rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, attr,
"Egress is not supported");
return -rte_errno;
}
if (attr->transfer != 0) {
rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER, attr,
"Transfer is not supported");
return -rte_errno;
}
if (attr->ingress == 0) {
rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, attr,
"Only ingress is supported");
return -rte_errno;
}
flow->spec.template.efs_flags |= EFX_FILTER_FLAG_RX;
flow->spec.template.efs_rss_context = EFX_RSS_CONTEXT_DEFAULT;
return 0;
}
/* Get item from array sfc_flow_items */
static const struct sfc_flow_item *
sfc_flow_get_item(enum rte_flow_item_type type)
{
unsigned int i;
for (i = 0; i < RTE_DIM(sfc_flow_items); i++)
if (sfc_flow_items[i].type == type)
return &sfc_flow_items[i];
return NULL;
}
static int
sfc_flow_parse_pattern(const struct rte_flow_item pattern[],
struct rte_flow *flow,
struct rte_flow_error *error)
{
int rc;
unsigned int prev_layer = SFC_FLOW_ITEM_ANY_LAYER;
boolean_t is_ifrm = B_FALSE;
const struct sfc_flow_item *item;
if (pattern == NULL) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_NUM, NULL,
"NULL pattern");
return -rte_errno;
}
for (; pattern->type != RTE_FLOW_ITEM_TYPE_END; pattern++) {
item = sfc_flow_get_item(pattern->type);
if (item == NULL) {
rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM, pattern,
"Unsupported pattern item");
return -rte_errno;
}
/*
* Omitting one or several protocol layers at the beginning
* of pattern is supported
*/
if (item->prev_layer != SFC_FLOW_ITEM_ANY_LAYER &&
prev_layer != SFC_FLOW_ITEM_ANY_LAYER &&
item->prev_layer != prev_layer) {
rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM, pattern,
"Unexpected sequence of pattern items");
return -rte_errno;
}
/*
* Allow only VOID and ETH pattern items in the inner frame.
* Also check that there is only one tunneling protocol.
*/
switch (item->type) {
case RTE_FLOW_ITEM_TYPE_VOID:
case RTE_FLOW_ITEM_TYPE_ETH:
break;
case RTE_FLOW_ITEM_TYPE_VXLAN:
case RTE_FLOW_ITEM_TYPE_GENEVE:
case RTE_FLOW_ITEM_TYPE_NVGRE:
if (is_ifrm) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
pattern,
"More than one tunneling protocol");
return -rte_errno;
}
is_ifrm = B_TRUE;
break;
default:
if (is_ifrm) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
pattern,
"There is an unsupported pattern item "
"in the inner frame");
return -rte_errno;
}
break;
}
rc = item->parse(pattern, &flow->spec.template, error);
if (rc != 0)
return rc;
if (item->layer != SFC_FLOW_ITEM_ANY_LAYER)
prev_layer = item->layer;
}
return 0;
}
static int
sfc_flow_parse_queue(struct sfc_adapter *sa,
const struct rte_flow_action_queue *queue,
struct rte_flow *flow)
{
struct sfc_rxq *rxq;
if (queue->index >= sfc_sa2shared(sa)->rxq_count)
return -EINVAL;
rxq = &sa->rxq_ctrl[queue->index];
flow->spec.template.efs_dmaq_id = (uint16_t)rxq->hw_index;
return 0;
}
static int
sfc_flow_parse_rss(struct sfc_adapter *sa,
const struct rte_flow_action_rss *action_rss,
struct rte_flow *flow)
{
struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
struct sfc_rss *rss = &sas->rss;
unsigned int rxq_sw_index;
struct sfc_rxq *rxq;
unsigned int rxq_hw_index_min;
unsigned int rxq_hw_index_max;
efx_rx_hash_type_t efx_hash_types;
const uint8_t *rss_key;
struct sfc_flow_rss *sfc_rss_conf = &flow->rss_conf;
unsigned int i;
if (action_rss->queue_num == 0)
return -EINVAL;
rxq_sw_index = sfc_sa2shared(sa)->rxq_count - 1;
rxq = &sa->rxq_ctrl[rxq_sw_index];
rxq_hw_index_min = rxq->hw_index;
rxq_hw_index_max = 0;
for (i = 0; i < action_rss->queue_num; ++i) {
rxq_sw_index = action_rss->queue[i];
if (rxq_sw_index >= sfc_sa2shared(sa)->rxq_count)
return -EINVAL;
rxq = &sa->rxq_ctrl[rxq_sw_index];
if (rxq->hw_index < rxq_hw_index_min)
rxq_hw_index_min = rxq->hw_index;
if (rxq->hw_index > rxq_hw_index_max)
rxq_hw_index_max = rxq->hw_index;
}
switch (action_rss->func) {
case RTE_ETH_HASH_FUNCTION_DEFAULT:
case RTE_ETH_HASH_FUNCTION_TOEPLITZ:
break;
default:
return -EINVAL;
}
if (action_rss->level)
return -EINVAL;
/*
* Dummy RSS action with only one queue and no specific settings
* for hash types and key does not require dedicated RSS context
* and may be simplified to single queue action.
*/
if (action_rss->queue_num == 1 && action_rss->types == 0 &&
action_rss->key_len == 0) {
flow->spec.template.efs_dmaq_id = rxq_hw_index_min;
return 0;
}
if (action_rss->types) {
int rc;
rc = sfc_rx_hf_rte_to_efx(sa, action_rss->types,
&efx_hash_types);
if (rc != 0)
return -rc;
} else {
unsigned int i;
efx_hash_types = 0;
for (i = 0; i < rss->hf_map_nb_entries; ++i)
efx_hash_types |= rss->hf_map[i].efx;
}
if (action_rss->key_len) {
if (action_rss->key_len != sizeof(rss->key))
return -EINVAL;
rss_key = action_rss->key;
} else {
rss_key = rss->key;
}
flow->rss = B_TRUE;
sfc_rss_conf->rxq_hw_index_min = rxq_hw_index_min;
sfc_rss_conf->rxq_hw_index_max = rxq_hw_index_max;
sfc_rss_conf->rss_hash_types = efx_hash_types;
rte_memcpy(sfc_rss_conf->rss_key, rss_key, sizeof(rss->key));
for (i = 0; i < RTE_DIM(sfc_rss_conf->rss_tbl); ++i) {
unsigned int nb_queues = action_rss->queue_num;
unsigned int rxq_sw_index = action_rss->queue[i % nb_queues];
struct sfc_rxq *rxq = &sa->rxq_ctrl[rxq_sw_index];
sfc_rss_conf->rss_tbl[i] = rxq->hw_index - rxq_hw_index_min;
}
return 0;
}
static int
sfc_flow_spec_flush(struct sfc_adapter *sa, struct sfc_flow_spec *spec,
unsigned int filters_count)
{
unsigned int i;
int ret = 0;
for (i = 0; i < filters_count; i++) {
int rc;
rc = efx_filter_remove(sa->nic, &spec->filters[i]);
if (ret == 0 && rc != 0) {
sfc_err(sa, "failed to remove filter specification "
"(rc = %d)", rc);
ret = rc;
}
}
return ret;
}
static int
sfc_flow_spec_insert(struct sfc_adapter *sa, struct sfc_flow_spec *spec)
{
unsigned int i;
int rc = 0;
for (i = 0; i < spec->count; i++) {
rc = efx_filter_insert(sa->nic, &spec->filters[i]);
if (rc != 0) {
sfc_flow_spec_flush(sa, spec, i);
break;
}
}
return rc;
}
static int
sfc_flow_spec_remove(struct sfc_adapter *sa, struct sfc_flow_spec *spec)
{
return sfc_flow_spec_flush(sa, spec, spec->count);
}
static int
sfc_flow_filter_insert(struct sfc_adapter *sa,
struct rte_flow *flow)
{
struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
struct sfc_rss *rss = &sas->rss;
struct sfc_flow_rss *flow_rss = &flow->rss_conf;
uint32_t efs_rss_context = EFX_RSS_CONTEXT_DEFAULT;
unsigned int i;
int rc = 0;
if (flow->rss) {
unsigned int rss_spread = MIN(flow_rss->rxq_hw_index_max -
flow_rss->rxq_hw_index_min + 1,
EFX_MAXRSS);
rc = efx_rx_scale_context_alloc(sa->nic,
EFX_RX_SCALE_EXCLUSIVE,
rss_spread,
&efs_rss_context);
if (rc != 0)
goto fail_scale_context_alloc;
rc = efx_rx_scale_mode_set(sa->nic, efs_rss_context,
rss->hash_alg,
flow_rss->rss_hash_types, B_TRUE);
if (rc != 0)
goto fail_scale_mode_set;
rc = efx_rx_scale_key_set(sa->nic, efs_rss_context,
flow_rss->rss_key,
sizeof(rss->key));
if (rc != 0)
goto fail_scale_key_set;
/*
* At this point, fully elaborated filter specifications
* have been produced from the template. To make sure that
* RSS behaviour is consistent between them, set the same
* RSS context value everywhere.
*/
for (i = 0; i < flow->spec.count; i++) {
efx_filter_spec_t *spec = &flow->spec.filters[i];
spec->efs_rss_context = efs_rss_context;
spec->efs_dmaq_id = flow_rss->rxq_hw_index_min;
spec->efs_flags |= EFX_FILTER_FLAG_RX_RSS;
}
}
rc = sfc_flow_spec_insert(sa, &flow->spec);
if (rc != 0)
goto fail_filter_insert;
if (flow->rss) {
/*
* Scale table is set after filter insertion because
* the table entries are relative to the base RxQ ID
* and the latter is submitted to the HW by means of
* inserting a filter, so by the time of the request
* the HW knows all the information needed to verify
* the table entries, and the operation will succeed
*/
rc = efx_rx_scale_tbl_set(sa->nic, efs_rss_context,
flow_rss->rss_tbl,
RTE_DIM(flow_rss->rss_tbl));
if (rc != 0)
goto fail_scale_tbl_set;
}
return 0;
fail_scale_tbl_set:
sfc_flow_spec_remove(sa, &flow->spec);
fail_filter_insert:
fail_scale_key_set:
fail_scale_mode_set:
if (efs_rss_context != EFX_RSS_CONTEXT_DEFAULT)
efx_rx_scale_context_free(sa->nic, efs_rss_context);
fail_scale_context_alloc:
return rc;
}
static int
sfc_flow_filter_remove(struct sfc_adapter *sa,
struct rte_flow *flow)
{
int rc = 0;
rc = sfc_flow_spec_remove(sa, &flow->spec);
if (rc != 0)
return rc;
if (flow->rss) {
/*
* All specifications for a given flow rule have the same RSS
* context, so that RSS context value is taken from the first
* filter specification
*/
efx_filter_spec_t *spec = &flow->spec.filters[0];
rc = efx_rx_scale_context_free(sa->nic, spec->efs_rss_context);
}
return rc;
}
static int
sfc_flow_parse_mark(struct sfc_adapter *sa,
const struct rte_flow_action_mark *mark,
struct rte_flow *flow)
{
const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
if (mark == NULL || mark->id > encp->enc_filter_action_mark_max)
return EINVAL;
flow->spec.template.efs_flags |= EFX_FILTER_FLAG_ACTION_MARK;
flow->spec.template.efs_mark = mark->id;
return 0;
}
static int
sfc_flow_parse_actions(struct sfc_adapter *sa,
const struct rte_flow_action actions[],
struct rte_flow *flow,
struct rte_flow_error *error)
{
int rc;
const unsigned int dp_rx_features = sa->priv.dp_rx->features;
uint32_t actions_set = 0;
const uint32_t fate_actions_mask = (1UL << RTE_FLOW_ACTION_TYPE_QUEUE) |
(1UL << RTE_FLOW_ACTION_TYPE_RSS) |
(1UL << RTE_FLOW_ACTION_TYPE_DROP);
const uint32_t mark_actions_mask = (1UL << RTE_FLOW_ACTION_TYPE_MARK) |
(1UL << RTE_FLOW_ACTION_TYPE_FLAG);
if (actions == NULL) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_NUM, NULL,
"NULL actions");
return -rte_errno;
}
#define SFC_BUILD_SET_OVERFLOW(_action, _set) \
RTE_BUILD_BUG_ON(_action >= sizeof(_set) * CHAR_BIT)
for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
switch (actions->type) {
case RTE_FLOW_ACTION_TYPE_VOID:
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_VOID,
actions_set);
break;
case RTE_FLOW_ACTION_TYPE_QUEUE:
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_QUEUE,
actions_set);
if ((actions_set & fate_actions_mask) != 0)
goto fail_fate_actions;
rc = sfc_flow_parse_queue(sa, actions->conf, flow);
if (rc != 0) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, actions,
"Bad QUEUE action");
return -rte_errno;
}
break;
case RTE_FLOW_ACTION_TYPE_RSS:
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_RSS,
actions_set);
if ((actions_set & fate_actions_mask) != 0)
goto fail_fate_actions;
rc = sfc_flow_parse_rss(sa, actions->conf, flow);
if (rc != 0) {
rte_flow_error_set(error, -rc,
RTE_FLOW_ERROR_TYPE_ACTION, actions,
"Bad RSS action");
return -rte_errno;
}
break;
case RTE_FLOW_ACTION_TYPE_DROP:
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_DROP,
actions_set);
if ((actions_set & fate_actions_mask) != 0)
goto fail_fate_actions;
flow->spec.template.efs_dmaq_id =
EFX_FILTER_SPEC_RX_DMAQ_ID_DROP;
break;
case RTE_FLOW_ACTION_TYPE_FLAG:
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_FLAG,
actions_set);
if ((actions_set & mark_actions_mask) != 0)
goto fail_actions_overlap;
if ((dp_rx_features & SFC_DP_RX_FEAT_FLOW_FLAG) == 0) {
rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION, NULL,
"FLAG action is not supported on the current Rx datapath");
return -rte_errno;
}
flow->spec.template.efs_flags |=
EFX_FILTER_FLAG_ACTION_FLAG;
break;
case RTE_FLOW_ACTION_TYPE_MARK:
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_MARK,
actions_set);
if ((actions_set & mark_actions_mask) != 0)
goto fail_actions_overlap;
if ((dp_rx_features & SFC_DP_RX_FEAT_FLOW_MARK) == 0) {
rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION, NULL,
"MARK action is not supported on the current Rx datapath");
return -rte_errno;
}
rc = sfc_flow_parse_mark(sa, actions->conf, flow);
if (rc != 0) {
rte_flow_error_set(error, rc,
RTE_FLOW_ERROR_TYPE_ACTION, actions,
"Bad MARK action");
return -rte_errno;
}
break;
default:
rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION, actions,
"Action is not supported");
return -rte_errno;
}
actions_set |= (1UL << actions->type);
}
#undef SFC_BUILD_SET_OVERFLOW
/* When fate is unknown, drop traffic. */
if ((actions_set & fate_actions_mask) == 0) {
flow->spec.template.efs_dmaq_id =
EFX_FILTER_SPEC_RX_DMAQ_ID_DROP;
}
return 0;
fail_fate_actions:
rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, actions,
"Cannot combine several fate-deciding actions, "
"choose between QUEUE, RSS or DROP");
return -rte_errno;
fail_actions_overlap:
rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, actions,
"Overlapping actions are not supported");
return -rte_errno;
}
/**
* Set the EFX_FILTER_MATCH_UNKNOWN_UCAST_DST
* and EFX_FILTER_MATCH_UNKNOWN_MCAST_DST match flags in the same
* specifications after copying.
*
* @param spec[in, out]
* SFC flow specification to update.
* @param filters_count_for_one_val[in]
* How many specifications should have the same match flag, what is the
* number of specifications before copying.
* @param error[out]
* Perform verbose error reporting if not NULL.
*/
static int
sfc_flow_set_unknown_dst_flags(struct sfc_flow_spec *spec,
unsigned int filters_count_for_one_val,
struct rte_flow_error *error)
{
unsigned int i;
static const efx_filter_match_flags_t vals[] = {
EFX_FILTER_MATCH_UNKNOWN_UCAST_DST,
EFX_FILTER_MATCH_UNKNOWN_MCAST_DST
};
if (filters_count_for_one_val * RTE_DIM(vals) != spec->count) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"Number of specifications is incorrect while copying "
"by unknown destination flags");
return -rte_errno;
}
for (i = 0; i < spec->count; i++) {
/* The check above ensures that divisor can't be zero here */
spec->filters[i].efs_match_flags |=
vals[i / filters_count_for_one_val];
}
return 0;
}
/**
* Check that the following conditions are met:
* - the list of supported filters has a filter
* with EFX_FILTER_MATCH_UNKNOWN_MCAST_DST flag instead of
* EFX_FILTER_MATCH_UNKNOWN_UCAST_DST, since this filter will also
* be inserted.
*
* @param match[in]
* The match flags of filter.
* @param spec[in]
* Specification to be supplemented.
* @param filter[in]
* SFC filter with list of supported filters.
*/
static boolean_t
sfc_flow_check_unknown_dst_flags(efx_filter_match_flags_t match,
__rte_unused efx_filter_spec_t *spec,
struct sfc_filter *filter)
{
unsigned int i;
efx_filter_match_flags_t match_mcast_dst;
match_mcast_dst =
(match & ~EFX_FILTER_MATCH_UNKNOWN_UCAST_DST) |
EFX_FILTER_MATCH_UNKNOWN_MCAST_DST;
for (i = 0; i < filter->supported_match_num; i++) {
if (match_mcast_dst == filter->supported_match[i])
return B_TRUE;
}
return B_FALSE;
}
/**
* Set the EFX_FILTER_MATCH_ETHER_TYPE match flag and EFX_ETHER_TYPE_IPV4 and
* EFX_ETHER_TYPE_IPV6 values of the corresponding field in the same
* specifications after copying.
*
* @param spec[in, out]
* SFC flow specification to update.
* @param filters_count_for_one_val[in]
* How many specifications should have the same EtherType value, what is the
* number of specifications before copying.
* @param error[out]
* Perform verbose error reporting if not NULL.
*/
static int
sfc_flow_set_ethertypes(struct sfc_flow_spec *spec,
unsigned int filters_count_for_one_val,
struct rte_flow_error *error)
{
unsigned int i;
static const uint16_t vals[] = {
EFX_ETHER_TYPE_IPV4, EFX_ETHER_TYPE_IPV6
};
if (filters_count_for_one_val * RTE_DIM(vals) != spec->count) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"Number of specifications is incorrect "
"while copying by Ethertype");
return -rte_errno;
}
for (i = 0; i < spec->count; i++) {
spec->filters[i].efs_match_flags |=
EFX_FILTER_MATCH_ETHER_TYPE;
/*
* The check above ensures that
* filters_count_for_one_val is not 0
*/
spec->filters[i].efs_ether_type =
vals[i / filters_count_for_one_val];
}
return 0;
}
/**
* Set the EFX_FILTER_MATCH_OUTER_VID match flag with value 0
* in the same specifications after copying.
*
* @param spec[in, out]
* SFC flow specification to update.
* @param filters_count_for_one_val[in]
* How many specifications should have the same match flag, what is the
* number of specifications before copying.
* @param error[out]
* Perform verbose error reporting if not NULL.
*/
static int
sfc_flow_set_outer_vid_flag(struct sfc_flow_spec *spec,
unsigned int filters_count_for_one_val,
struct rte_flow_error *error)
{
unsigned int i;
if (filters_count_for_one_val != spec->count) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"Number of specifications is incorrect "
"while copying by outer VLAN ID");
return -rte_errno;
}
for (i = 0; i < spec->count; i++) {
spec->filters[i].efs_match_flags |=
EFX_FILTER_MATCH_OUTER_VID;
spec->filters[i].efs_outer_vid = 0;
}
return 0;
}
/**
* Set the EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST and
* EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST match flags in the same
* specifications after copying.
*
* @param spec[in, out]
* SFC flow specification to update.
* @param filters_count_for_one_val[in]
* How many specifications should have the same match flag, what is the
* number of specifications before copying.
* @param error[out]
* Perform verbose error reporting if not NULL.
*/
static int
sfc_flow_set_ifrm_unknown_dst_flags(struct sfc_flow_spec *spec,
unsigned int filters_count_for_one_val,
struct rte_flow_error *error)
{
unsigned int i;
static const efx_filter_match_flags_t vals[] = {
EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST,
EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST
};
if (filters_count_for_one_val * RTE_DIM(vals) != spec->count) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"Number of specifications is incorrect while copying "
"by inner frame unknown destination flags");
return -rte_errno;
}
for (i = 0; i < spec->count; i++) {
/* The check above ensures that divisor can't be zero here */
spec->filters[i].efs_match_flags |=
vals[i / filters_count_for_one_val];
}
return 0;
}
/**
* Check that the following conditions are met:
* - the specification corresponds to a filter for encapsulated traffic
* - the list of supported filters has a filter
* with EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST flag instead of
* EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST, since this filter will also
* be inserted.
*
* @param match[in]
* The match flags of filter.
* @param spec[in]
* Specification to be supplemented.
* @param filter[in]
* SFC filter with list of supported filters.
*/
static boolean_t
sfc_flow_check_ifrm_unknown_dst_flags(efx_filter_match_flags_t match,
efx_filter_spec_t *spec,
struct sfc_filter *filter)
{
unsigned int i;
efx_tunnel_protocol_t encap_type = spec->efs_encap_type;
efx_filter_match_flags_t match_mcast_dst;
if (encap_type == EFX_TUNNEL_PROTOCOL_NONE)
return B_FALSE;
match_mcast_dst =
(match & ~EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST) |
EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST;
for (i = 0; i < filter->supported_match_num; i++) {
if (match_mcast_dst == filter->supported_match[i])
return B_TRUE;
}
return B_FALSE;
}
/**
* Check that the list of supported filters has a filter that differs
* from @p match in that it has no flag EFX_FILTER_MATCH_OUTER_VID
* in this case that filter will be used and the flag
* EFX_FILTER_MATCH_OUTER_VID is not needed.
*
* @param match[in]
* The match flags of filter.
* @param spec[in]
* Specification to be supplemented.
* @param filter[in]
* SFC filter with list of supported filters.
*/
static boolean_t
sfc_flow_check_outer_vid_flag(efx_filter_match_flags_t match,
__rte_unused efx_filter_spec_t *spec,
struct sfc_filter *filter)
{
unsigned int i;
efx_filter_match_flags_t match_without_vid =
match & ~EFX_FILTER_MATCH_OUTER_VID;
for (i = 0; i < filter->supported_match_num; i++) {
if (match_without_vid == filter->supported_match[i])
return B_FALSE;
}
return B_TRUE;
}
/*
* Match flags that can be automatically added to filters.
* Selecting the last minimum when searching for the copy flag ensures that the
* EFX_FILTER_MATCH_UNKNOWN_UCAST_DST flag has a higher priority than
* EFX_FILTER_MATCH_ETHER_TYPE. This is because the filter
* EFX_FILTER_MATCH_UNKNOWN_UCAST_DST is at the end of the list of supported
* filters.
*/
static const struct sfc_flow_copy_flag sfc_flow_copy_flags[] = {
{
.flag = EFX_FILTER_MATCH_UNKNOWN_UCAST_DST,
.vals_count = 2,
.set_vals = sfc_flow_set_unknown_dst_flags,
.spec_check = sfc_flow_check_unknown_dst_flags,
},
{
.flag = EFX_FILTER_MATCH_ETHER_TYPE,
.vals_count = 2,
.set_vals = sfc_flow_set_ethertypes,
.spec_check = NULL,
},
{
.flag = EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST,
.vals_count = 2,
.set_vals = sfc_flow_set_ifrm_unknown_dst_flags,
.spec_check = sfc_flow_check_ifrm_unknown_dst_flags,
},
{
.flag = EFX_FILTER_MATCH_OUTER_VID,
.vals_count = 1,
.set_vals = sfc_flow_set_outer_vid_flag,
.spec_check = sfc_flow_check_outer_vid_flag,
},
};
/* Get item from array sfc_flow_copy_flags */
static const struct sfc_flow_copy_flag *
sfc_flow_get_copy_flag(efx_filter_match_flags_t flag)
{
unsigned int i;
for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) {
if (sfc_flow_copy_flags[i].flag == flag)
return &sfc_flow_copy_flags[i];
}
return NULL;
}
/**
* Make copies of the specifications, set match flag and values
* of the field that corresponds to it.
*
* @param spec[in, out]
* SFC flow specification to update.
* @param flag[in]
* The match flag to add.
* @param error[out]
* Perform verbose error reporting if not NULL.
*/
static int
sfc_flow_spec_add_match_flag(struct sfc_flow_spec *spec,
efx_filter_match_flags_t flag,
struct rte_flow_error *error)
{
unsigned int i;
unsigned int new_filters_count;
unsigned int filters_count_for_one_val;
const struct sfc_flow_copy_flag *copy_flag;
int rc;
copy_flag = sfc_flow_get_copy_flag(flag);
if (copy_flag == NULL) {
rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"Unsupported spec field for copying");
return -rte_errno;
}
new_filters_count = spec->count * copy_flag->vals_count;
if (new_filters_count > SF_FLOW_SPEC_NB_FILTERS_MAX) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"Too much EFX specifications in the flow rule");
return -rte_errno;
}
/* Copy filters specifications */
for (i = spec->count; i < new_filters_count; i++)
spec->filters[i] = spec->filters[i - spec->count];
filters_count_for_one_val = spec->count;
spec->count = new_filters_count;
rc = copy_flag->set_vals(spec, filters_count_for_one_val, error);
if (rc != 0)
return rc;
return 0;
}
/**
* Check that the given set of match flags missing in the original filter spec
* could be covered by adding spec copies which specify the corresponding
* flags and packet field values to match.
*
* @param miss_flags[in]
* Flags that are missing until the supported filter.
* @param spec[in]
* Specification to be supplemented.
* @param filter[in]
* SFC filter.
*
* @return
* Number of specifications after copy or 0, if the flags can not be added.
*/
static unsigned int
sfc_flow_check_missing_flags(efx_filter_match_flags_t miss_flags,
efx_filter_spec_t *spec,
struct sfc_filter *filter)
{
unsigned int i;
efx_filter_match_flags_t copy_flags = 0;
efx_filter_match_flags_t flag;
efx_filter_match_flags_t match = spec->efs_match_flags | miss_flags;
sfc_flow_spec_check *check;
unsigned int multiplier = 1;
for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) {
flag = sfc_flow_copy_flags[i].flag;
check = sfc_flow_copy_flags[i].spec_check;
if ((flag & miss_flags) == flag) {
if (check != NULL && (!check(match, spec, filter)))
continue;
copy_flags |= flag;
multiplier *= sfc_flow_copy_flags[i].vals_count;
}
}
if (copy_flags == miss_flags)
return multiplier;
return 0;
}
/**
* Attempt to supplement the specification template to the minimally
* supported set of match flags. To do this, it is necessary to copy
* the specifications, filling them with the values of fields that
* correspond to the missing flags.
* The necessary and sufficient filter is built from the fewest number
* of copies which could be made to cover the minimally required set
* of flags.
*
* @param sa[in]
* SFC adapter.
* @param spec[in, out]
* SFC flow specification to update.
* @param error[out]
* Perform verbose error reporting if not NULL.
*/
static int
sfc_flow_spec_filters_complete(struct sfc_adapter *sa,
struct sfc_flow_spec *spec,
struct rte_flow_error *error)
{
struct sfc_filter *filter = &sa->filter;
efx_filter_match_flags_t miss_flags;
efx_filter_match_flags_t min_miss_flags = 0;
efx_filter_match_flags_t match;
unsigned int min_multiplier = UINT_MAX;
unsigned int multiplier;
unsigned int i;
int rc;
match = spec->template.efs_match_flags;
for (i = 0; i < filter->supported_match_num; i++) {
if ((match & filter->supported_match[i]) == match) {
miss_flags = filter->supported_match[i] & (~match);
multiplier = sfc_flow_check_missing_flags(miss_flags,
&spec->template, filter);
if (multiplier > 0) {
if (multiplier <= min_multiplier) {
min_multiplier = multiplier;
min_miss_flags = miss_flags;
}
}
}
}
if (min_multiplier == UINT_MAX) {
rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"The flow rule pattern is unsupported");
return -rte_errno;
}
for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) {
efx_filter_match_flags_t flag = sfc_flow_copy_flags[i].flag;
if ((flag & min_miss_flags) == flag) {
rc = sfc_flow_spec_add_match_flag(spec, flag, error);
if (rc != 0)
return rc;
}
}
return 0;
}
/**
* Check that set of match flags is referred to by a filter. Filter is
* described by match flags with the ability to add OUTER_VID and INNER_VID
* flags.
*
* @param match_flags[in]
* Set of match flags.
* @param flags_pattern[in]
* Pattern of filter match flags.
*/
static boolean_t
sfc_flow_is_match_with_vids(efx_filter_match_flags_t match_flags,
efx_filter_match_flags_t flags_pattern)
{
if ((match_flags & flags_pattern) != flags_pattern)
return B_FALSE;
switch (match_flags & ~flags_pattern) {
case 0:
case EFX_FILTER_MATCH_OUTER_VID:
case EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_INNER_VID:
return B_TRUE;
default:
return B_FALSE;
}
}
/**
* Check whether the spec maps to a hardware filter which is known to be
* ineffective despite being valid.
*
* @param filter[in]
* SFC filter with list of supported filters.
* @param spec[in]
* SFC flow specification.
*/
static boolean_t
sfc_flow_is_match_flags_exception(struct sfc_filter *filter,
struct sfc_flow_spec *spec)
{
unsigned int i;
uint16_t ether_type;
uint8_t ip_proto;
efx_filter_match_flags_t match_flags;
for (i = 0; i < spec->count; i++) {
match_flags = spec->filters[i].efs_match_flags;
if (sfc_flow_is_match_with_vids(match_flags,
EFX_FILTER_MATCH_ETHER_TYPE) ||
sfc_flow_is_match_with_vids(match_flags,
EFX_FILTER_MATCH_ETHER_TYPE |
EFX_FILTER_MATCH_LOC_MAC)) {
ether_type = spec->filters[i].efs_ether_type;
if (filter->supports_ip_proto_or_addr_filter &&
(ether_type == EFX_ETHER_TYPE_IPV4 ||
ether_type == EFX_ETHER_TYPE_IPV6))
return B_TRUE;
} else if (sfc_flow_is_match_with_vids(match_flags,
EFX_FILTER_MATCH_ETHER_TYPE |
EFX_FILTER_MATCH_IP_PROTO) ||
sfc_flow_is_match_with_vids(match_flags,
EFX_FILTER_MATCH_ETHER_TYPE |
EFX_FILTER_MATCH_IP_PROTO |
EFX_FILTER_MATCH_LOC_MAC)) {
ip_proto = spec->filters[i].efs_ip_proto;
if (filter->supports_rem_or_local_port_filter &&
(ip_proto == EFX_IPPROTO_TCP ||
ip_proto == EFX_IPPROTO_UDP))
return B_TRUE;
}
}
return B_FALSE;
}
static int
sfc_flow_validate_match_flags(struct sfc_adapter *sa,
struct rte_flow *flow,
struct rte_flow_error *error)
{
efx_filter_spec_t *spec_tmpl = &flow->spec.template;
efx_filter_match_flags_t match_flags = spec_tmpl->efs_match_flags;
int rc;
/* Initialize the first filter spec with template */
flow->spec.filters[0] = *spec_tmpl;
flow->spec.count = 1;
if (!sfc_filter_is_match_supported(sa, match_flags)) {
rc = sfc_flow_spec_filters_complete(sa, &flow->spec, error);
if (rc != 0)
return rc;
}
if (sfc_flow_is_match_flags_exception(&sa->filter, &flow->spec)) {
rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"The flow rule pattern is unsupported");
return -rte_errno;
}
return 0;
}
static int
sfc_flow_parse(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow *flow,
struct rte_flow_error *error)
{
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
int rc;
rc = sfc_flow_parse_attr(attr, flow, error);
if (rc != 0)
goto fail_bad_value;
rc = sfc_flow_parse_pattern(pattern, flow, error);
if (rc != 0)
goto fail_bad_value;
rc = sfc_flow_parse_actions(sa, actions, flow, error);
if (rc != 0)
goto fail_bad_value;
rc = sfc_flow_validate_match_flags(sa, flow, error);
if (rc != 0)
goto fail_bad_value;
return 0;
fail_bad_value:
return rc;
}
static int
sfc_flow_validate(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
struct rte_flow flow;
memset(&flow, 0, sizeof(flow));
return sfc_flow_parse(dev, attr, pattern, actions, &flow, error);
}
static struct rte_flow *
sfc_flow_create(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
struct rte_flow *flow = NULL;
int rc;
flow = rte_zmalloc("sfc_rte_flow", sizeof(*flow), 0);
if (flow == NULL) {
rte_flow_error_set(error, ENOMEM,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"Failed to allocate memory");
goto fail_no_mem;
}
rc = sfc_flow_parse(dev, attr, pattern, actions, flow, error);
if (rc != 0)
goto fail_bad_value;
TAILQ_INSERT_TAIL(&sa->filter.flow_list, flow, entries);
sfc_adapter_lock(sa);
if (sa->state == SFC_ADAPTER_STARTED) {
rc = sfc_flow_filter_insert(sa, flow);
if (rc != 0) {
rte_flow_error_set(error, rc,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"Failed to insert filter");
goto fail_filter_insert;
}
}
sfc_adapter_unlock(sa);
return flow;
fail_filter_insert:
TAILQ_REMOVE(&sa->filter.flow_list, flow, entries);
fail_bad_value:
rte_free(flow);
sfc_adapter_unlock(sa);
fail_no_mem:
return NULL;
}
static int
sfc_flow_remove(struct sfc_adapter *sa,
struct rte_flow *flow,
struct rte_flow_error *error)
{
int rc = 0;
SFC_ASSERT(sfc_adapter_is_locked(sa));
if (sa->state == SFC_ADAPTER_STARTED) {
rc = sfc_flow_filter_remove(sa, flow);
if (rc != 0)
rte_flow_error_set(error, rc,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"Failed to destroy flow rule");
}
TAILQ_REMOVE(&sa->filter.flow_list, flow, entries);
rte_free(flow);
return rc;
}
static int
sfc_flow_destroy(struct rte_eth_dev *dev,
struct rte_flow *flow,
struct rte_flow_error *error)
{
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
struct rte_flow *flow_ptr;
int rc = EINVAL;
sfc_adapter_lock(sa);
TAILQ_FOREACH(flow_ptr, &sa->filter.flow_list, entries) {
if (flow_ptr == flow)
rc = 0;
}
if (rc != 0) {
rte_flow_error_set(error, rc,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Failed to find flow rule to destroy");
goto fail_bad_value;
}
rc = sfc_flow_remove(sa, flow, error);
fail_bad_value:
sfc_adapter_unlock(sa);
return -rc;
}
static int
sfc_flow_flush(struct rte_eth_dev *dev,
struct rte_flow_error *error)
{
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
struct rte_flow *flow;
int rc = 0;
int ret = 0;
sfc_adapter_lock(sa);
while ((flow = TAILQ_FIRST(&sa->filter.flow_list)) != NULL) {
rc = sfc_flow_remove(sa, flow, error);
if (rc != 0)
ret = rc;
}
sfc_adapter_unlock(sa);
return -ret;
}
static int
sfc_flow_isolate(struct rte_eth_dev *dev, int enable,
struct rte_flow_error *error)
{
struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
int ret = 0;
sfc_adapter_lock(sa);
if (sa->state != SFC_ADAPTER_INITIALIZED) {
rte_flow_error_set(error, EBUSY,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, "please close the port first");
ret = -rte_errno;
} else {
sfc_sa2shared(sa)->isolated = (enable) ? B_TRUE : B_FALSE;
}
sfc_adapter_unlock(sa);
return ret;
}
const struct rte_flow_ops sfc_flow_ops = {
.validate = sfc_flow_validate,
.create = sfc_flow_create,
.destroy = sfc_flow_destroy,
.flush = sfc_flow_flush,
.query = NULL,
.isolate = sfc_flow_isolate,
};
void
sfc_flow_init(struct sfc_adapter *sa)
{
SFC_ASSERT(sfc_adapter_is_locked(sa));
TAILQ_INIT(&sa->filter.flow_list);
}
void
sfc_flow_fini(struct sfc_adapter *sa)
{
struct rte_flow *flow;
SFC_ASSERT(sfc_adapter_is_locked(sa));
while ((flow = TAILQ_FIRST(&sa->filter.flow_list)) != NULL) {
TAILQ_REMOVE(&sa->filter.flow_list, flow, entries);
rte_free(flow);
}
}
void
sfc_flow_stop(struct sfc_adapter *sa)
{
struct rte_flow *flow;
SFC_ASSERT(sfc_adapter_is_locked(sa));
TAILQ_FOREACH(flow, &sa->filter.flow_list, entries)
sfc_flow_filter_remove(sa, flow);
}
int
sfc_flow_start(struct sfc_adapter *sa)
{
struct rte_flow *flow;
int rc = 0;
sfc_log_init(sa, "entry");
SFC_ASSERT(sfc_adapter_is_locked(sa));
TAILQ_FOREACH(flow, &sa->filter.flow_list, entries) {
rc = sfc_flow_filter_insert(sa, flow);
if (rc != 0)
goto fail_bad_flow;
}
sfc_log_init(sa, "done");
fail_bad_flow:
return rc;
}