numam-dpdk/drivers/net/mlx5/mlx5_mr.c
David Marchand 8ac3591694 remove useless include of EAL memory config header
Restrict this header inclusion to its real users.

Fixes: 028669bc9f ("eal: hide shared memory config")
Cc: stable@dpdk.org

Signed-off-by: David Marchand <david.marchand@redhat.com>
Acked-by: Anatoly Burakov <anatoly.burakov@intel.com>
2019-10-09 10:22:24 +02:00

1617 lines
45 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2016 6WIND S.A.
* Copyright 2016 Mellanox Technologies, Ltd
*/
#ifdef PEDANTIC
#pragma GCC diagnostic ignored "-Wpedantic"
#endif
#include <infiniband/verbs.h>
#ifdef PEDANTIC
#pragma GCC diagnostic error "-Wpedantic"
#endif
#include <rte_eal_memconfig.h>
#include <rte_mempool.h>
#include <rte_malloc.h>
#include <rte_rwlock.h>
#include <rte_bus_pci.h>
#include "mlx5.h"
#include "mlx5_mr.h"
#include "mlx5_rxtx.h"
#include "mlx5_glue.h"
struct mr_find_contig_memsegs_data {
uintptr_t addr;
uintptr_t start;
uintptr_t end;
const struct rte_memseg_list *msl;
};
struct mr_update_mp_data {
struct rte_eth_dev *dev;
struct mlx5_mr_ctrl *mr_ctrl;
int ret;
};
/**
* Expand B-tree table to a given size. Can't be called with holding
* memory_hotplug_lock or sh->mr.rwlock due to rte_realloc().
*
* @param bt
* Pointer to B-tree structure.
* @param n
* Number of entries for expansion.
*
* @return
* 0 on success, -1 on failure.
*/
static int
mr_btree_expand(struct mlx5_mr_btree *bt, int n)
{
void *mem;
int ret = 0;
if (n <= bt->size)
return ret;
/*
* Downside of directly using rte_realloc() is that SOCKET_ID_ANY is
* used inside if there's no room to expand. Because this is a quite
* rare case and a part of very slow path, it is very acceptable.
* Initially cache_bh[] will be given practically enough space and once
* it is expanded, expansion wouldn't be needed again ever.
*/
mem = rte_realloc(bt->table, n * sizeof(struct mlx5_mr_cache), 0);
if (mem == NULL) {
/* Not an error, B-tree search will be skipped. */
DRV_LOG(WARNING, "failed to expand MR B-tree (%p) table",
(void *)bt);
ret = -1;
} else {
DRV_LOG(DEBUG, "expanded MR B-tree table (size=%u)", n);
bt->table = mem;
bt->size = n;
}
return ret;
}
/**
* Look up LKey from given B-tree lookup table, store the last index and return
* searched LKey.
*
* @param bt
* Pointer to B-tree structure.
* @param[out] idx
* Pointer to index. Even on search failure, returns index where it stops
* searching so that index can be used when inserting a new entry.
* @param addr
* Search key.
*
* @return
* Searched LKey on success, UINT32_MAX on no match.
*/
static uint32_t
mr_btree_lookup(struct mlx5_mr_btree *bt, uint16_t *idx, uintptr_t addr)
{
struct mlx5_mr_cache *lkp_tbl;
uint16_t n;
uint16_t base = 0;
assert(bt != NULL);
lkp_tbl = *bt->table;
n = bt->len;
/* First entry must be NULL for comparison. */
assert(bt->len > 0 || (lkp_tbl[0].start == 0 &&
lkp_tbl[0].lkey == UINT32_MAX));
/* Binary search. */
do {
register uint16_t delta = n >> 1;
if (addr < lkp_tbl[base + delta].start) {
n = delta;
} else {
base += delta;
n -= delta;
}
} while (n > 1);
assert(addr >= lkp_tbl[base].start);
*idx = base;
if (addr < lkp_tbl[base].end)
return lkp_tbl[base].lkey;
/* Not found. */
return UINT32_MAX;
}
/**
* Insert an entry to B-tree lookup table.
*
* @param bt
* Pointer to B-tree structure.
* @param entry
* Pointer to new entry to insert.
*
* @return
* 0 on success, -1 on failure.
*/
static int
mr_btree_insert(struct mlx5_mr_btree *bt, struct mlx5_mr_cache *entry)
{
struct mlx5_mr_cache *lkp_tbl;
uint16_t idx = 0;
size_t shift;
assert(bt != NULL);
assert(bt->len <= bt->size);
assert(bt->len > 0);
lkp_tbl = *bt->table;
/* Find out the slot for insertion. */
if (mr_btree_lookup(bt, &idx, entry->start) != UINT32_MAX) {
DRV_LOG(DEBUG,
"abort insertion to B-tree(%p): already exist at"
" idx=%u [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
(void *)bt, idx, entry->start, entry->end, entry->lkey);
/* Already exist, return. */
return 0;
}
/* If table is full, return error. */
if (unlikely(bt->len == bt->size)) {
bt->overflow = 1;
return -1;
}
/* Insert entry. */
++idx;
shift = (bt->len - idx) * sizeof(struct mlx5_mr_cache);
if (shift)
memmove(&lkp_tbl[idx + 1], &lkp_tbl[idx], shift);
lkp_tbl[idx] = *entry;
bt->len++;
DRV_LOG(DEBUG,
"inserted B-tree(%p)[%u],"
" [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
(void *)bt, idx, entry->start, entry->end, entry->lkey);
return 0;
}
/**
* Initialize B-tree and allocate memory for lookup table.
*
* @param bt
* Pointer to B-tree structure.
* @param n
* Number of entries to allocate.
* @param socket
* NUMA socket on which memory must be allocated.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
mlx5_mr_btree_init(struct mlx5_mr_btree *bt, int n, int socket)
{
if (bt == NULL) {
rte_errno = EINVAL;
return -rte_errno;
}
assert(!bt->table && !bt->size);
memset(bt, 0, sizeof(*bt));
bt->table = rte_calloc_socket("B-tree table",
n, sizeof(struct mlx5_mr_cache),
0, socket);
if (bt->table == NULL) {
rte_errno = ENOMEM;
DEBUG("failed to allocate memory for btree cache on socket %d",
socket);
return -rte_errno;
}
bt->size = n;
/* First entry must be NULL for binary search. */
(*bt->table)[bt->len++] = (struct mlx5_mr_cache) {
.lkey = UINT32_MAX,
};
DEBUG("initialized B-tree %p with table %p",
(void *)bt, (void *)bt->table);
return 0;
}
/**
* Free B-tree resources.
*
* @param bt
* Pointer to B-tree structure.
*/
void
mlx5_mr_btree_free(struct mlx5_mr_btree *bt)
{
if (bt == NULL)
return;
DEBUG("freeing B-tree %p with table %p",
(void *)bt, (void *)bt->table);
rte_free(bt->table);
memset(bt, 0, sizeof(*bt));
}
/**
* Dump all the entries in a B-tree
*
* @param bt
* Pointer to B-tree structure.
*/
void
mlx5_mr_btree_dump(struct mlx5_mr_btree *bt __rte_unused)
{
#ifndef NDEBUG
int idx;
struct mlx5_mr_cache *lkp_tbl;
if (bt == NULL)
return;
lkp_tbl = *bt->table;
for (idx = 0; idx < bt->len; ++idx) {
struct mlx5_mr_cache *entry = &lkp_tbl[idx];
DEBUG("B-tree(%p)[%u],"
" [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
(void *)bt, idx, entry->start, entry->end, entry->lkey);
}
#endif
}
/**
* Find virtually contiguous memory chunk in a given MR.
*
* @param dev
* Pointer to MR structure.
* @param[out] entry
* Pointer to returning MR cache entry. If not found, this will not be
* updated.
* @param start_idx
* Start index of the memseg bitmap.
*
* @return
* Next index to go on lookup.
*/
static int
mr_find_next_chunk(struct mlx5_mr *mr, struct mlx5_mr_cache *entry,
int base_idx)
{
uintptr_t start = 0;
uintptr_t end = 0;
uint32_t idx = 0;
/* MR for external memory doesn't have memseg list. */
if (mr->msl == NULL) {
struct ibv_mr *ibv_mr = mr->ibv_mr;
assert(mr->ms_bmp_n == 1);
assert(mr->ms_n == 1);
assert(base_idx == 0);
/*
* Can't search it from memseg list but get it directly from
* verbs MR as there's only one chunk.
*/
entry->start = (uintptr_t)ibv_mr->addr;
entry->end = (uintptr_t)ibv_mr->addr + mr->ibv_mr->length;
entry->lkey = rte_cpu_to_be_32(mr->ibv_mr->lkey);
/* Returning 1 ends iteration. */
return 1;
}
for (idx = base_idx; idx < mr->ms_bmp_n; ++idx) {
if (rte_bitmap_get(mr->ms_bmp, idx)) {
const struct rte_memseg_list *msl;
const struct rte_memseg *ms;
msl = mr->msl;
ms = rte_fbarray_get(&msl->memseg_arr,
mr->ms_base_idx + idx);
assert(msl->page_sz == ms->hugepage_sz);
if (!start)
start = ms->addr_64;
end = ms->addr_64 + ms->hugepage_sz;
} else if (start) {
/* Passed the end of a fragment. */
break;
}
}
if (start) {
/* Found one chunk. */
entry->start = start;
entry->end = end;
entry->lkey = rte_cpu_to_be_32(mr->ibv_mr->lkey);
}
return idx;
}
/**
* Insert a MR to the global B-tree cache. It may fail due to low-on-memory.
* Then, this entry will have to be searched by mr_lookup_dev_list() in
* mlx5_mr_create() on miss.
*
* @param dev
* Pointer to Ethernet device shared context.
* @param mr
* Pointer to MR to insert.
*
* @return
* 0 on success, -1 on failure.
*/
static int
mr_insert_dev_cache(struct mlx5_ibv_shared *sh, struct mlx5_mr *mr)
{
unsigned int n;
DRV_LOG(DEBUG, "device %s inserting MR(%p) to global cache",
sh->ibdev_name, (void *)mr);
for (n = 0; n < mr->ms_bmp_n; ) {
struct mlx5_mr_cache entry;
memset(&entry, 0, sizeof(entry));
/* Find a contiguous chunk and advance the index. */
n = mr_find_next_chunk(mr, &entry, n);
if (!entry.end)
break;
if (mr_btree_insert(&sh->mr.cache, &entry) < 0) {
/*
* Overflowed, but the global table cannot be expanded
* because of deadlock.
*/
return -1;
}
}
return 0;
}
/**
* Look up address in the original global MR list.
*
* @param sh
* Pointer to Ethernet device shared context.
* @param[out] entry
* Pointer to returning MR cache entry. If no match, this will not be updated.
* @param addr
* Search key.
*
* @return
* Found MR on match, NULL otherwise.
*/
static struct mlx5_mr *
mr_lookup_dev_list(struct mlx5_ibv_shared *sh, struct mlx5_mr_cache *entry,
uintptr_t addr)
{
struct mlx5_mr *mr;
/* Iterate all the existing MRs. */
LIST_FOREACH(mr, &sh->mr.mr_list, mr) {
unsigned int n;
if (mr->ms_n == 0)
continue;
for (n = 0; n < mr->ms_bmp_n; ) {
struct mlx5_mr_cache ret;
memset(&ret, 0, sizeof(ret));
n = mr_find_next_chunk(mr, &ret, n);
if (addr >= ret.start && addr < ret.end) {
/* Found. */
*entry = ret;
return mr;
}
}
}
return NULL;
}
/**
* Look up address on device.
*
* @param dev
* Pointer to Ethernet device shared context.
* @param[out] entry
* Pointer to returning MR cache entry. If no match, this will not be updated.
* @param addr
* Search key.
*
* @return
* Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
*/
static uint32_t
mr_lookup_dev(struct mlx5_ibv_shared *sh, struct mlx5_mr_cache *entry,
uintptr_t addr)
{
uint16_t idx;
uint32_t lkey = UINT32_MAX;
struct mlx5_mr *mr;
/*
* If the global cache has overflowed since it failed to expand the
* B-tree table, it can't have all the existing MRs. Then, the address
* has to be searched by traversing the original MR list instead, which
* is very slow path. Otherwise, the global cache is all inclusive.
*/
if (!unlikely(sh->mr.cache.overflow)) {
lkey = mr_btree_lookup(&sh->mr.cache, &idx, addr);
if (lkey != UINT32_MAX)
*entry = (*sh->mr.cache.table)[idx];
} else {
/* Falling back to the slowest path. */
mr = mr_lookup_dev_list(sh, entry, addr);
if (mr != NULL)
lkey = entry->lkey;
}
assert(lkey == UINT32_MAX || (addr >= entry->start &&
addr < entry->end));
return lkey;
}
/**
* Free MR resources. MR lock must not be held to avoid a deadlock. rte_free()
* can raise memory free event and the callback function will spin on the lock.
*
* @param mr
* Pointer to MR to free.
*/
static void
mr_free(struct mlx5_mr *mr)
{
if (mr == NULL)
return;
DRV_LOG(DEBUG, "freeing MR(%p):", (void *)mr);
if (mr->ibv_mr != NULL)
claim_zero(mlx5_glue->dereg_mr(mr->ibv_mr));
if (mr->ms_bmp != NULL)
rte_bitmap_free(mr->ms_bmp);
rte_free(mr);
}
/**
* Release resources of detached MR having no online entry.
*
* @param sh
* Pointer to Ethernet device shared context.
*/
static void
mlx5_mr_garbage_collect(struct mlx5_ibv_shared *sh)
{
struct mlx5_mr *mr_next;
struct mlx5_mr_list free_list = LIST_HEAD_INITIALIZER(free_list);
/* Must be called from the primary process. */
assert(rte_eal_process_type() == RTE_PROC_PRIMARY);
/*
* MR can't be freed with holding the lock because rte_free() could call
* memory free callback function. This will be a deadlock situation.
*/
rte_rwlock_write_lock(&sh->mr.rwlock);
/* Detach the whole free list and release it after unlocking. */
free_list = sh->mr.mr_free_list;
LIST_INIT(&sh->mr.mr_free_list);
rte_rwlock_write_unlock(&sh->mr.rwlock);
/* Release resources. */
mr_next = LIST_FIRST(&free_list);
while (mr_next != NULL) {
struct mlx5_mr *mr = mr_next;
mr_next = LIST_NEXT(mr, mr);
mr_free(mr);
}
}
/* Called during rte_memseg_contig_walk() by mlx5_mr_create(). */
static int
mr_find_contig_memsegs_cb(const struct rte_memseg_list *msl,
const struct rte_memseg *ms, size_t len, void *arg)
{
struct mr_find_contig_memsegs_data *data = arg;
if (data->addr < ms->addr_64 || data->addr >= ms->addr_64 + len)
return 0;
/* Found, save it and stop walking. */
data->start = ms->addr_64;
data->end = ms->addr_64 + len;
data->msl = msl;
return 1;
}
/**
* Create a new global Memory Region (MR) for a missing virtual address.
* This API should be called on a secondary process, then a request is sent to
* the primary process in order to create a MR for the address. As the global MR
* list is on the shared memory, following LKey lookup should succeed unless the
* request fails.
*
* @param dev
* Pointer to Ethernet device.
* @param[out] entry
* Pointer to returning MR cache entry, found in the global cache or newly
* created. If failed to create one, this will not be updated.
* @param addr
* Target virtual address to register.
*
* @return
* Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
*/
static uint32_t
mlx5_mr_create_secondary(struct rte_eth_dev *dev, struct mlx5_mr_cache *entry,
uintptr_t addr)
{
struct mlx5_priv *priv = dev->data->dev_private;
int ret;
DEBUG("port %u requesting MR creation for address (%p)",
dev->data->port_id, (void *)addr);
ret = mlx5_mp_req_mr_create(dev, addr);
if (ret) {
DEBUG("port %u fail to request MR creation for address (%p)",
dev->data->port_id, (void *)addr);
return UINT32_MAX;
}
rte_rwlock_read_lock(&priv->sh->mr.rwlock);
/* Fill in output data. */
mr_lookup_dev(priv->sh, entry, addr);
/* Lookup can't fail. */
assert(entry->lkey != UINT32_MAX);
rte_rwlock_read_unlock(&priv->sh->mr.rwlock);
DEBUG("port %u MR CREATED by primary process for %p:\n"
" [0x%" PRIxPTR ", 0x%" PRIxPTR "), lkey=0x%x",
dev->data->port_id, (void *)addr,
entry->start, entry->end, entry->lkey);
return entry->lkey;
}
/**
* Create a new global Memory Region (MR) for a missing virtual address.
* Register entire virtually contiguous memory chunk around the address.
* This must be called from the primary process.
*
* @param dev
* Pointer to Ethernet device.
* @param[out] entry
* Pointer to returning MR cache entry, found in the global cache or newly
* created. If failed to create one, this will not be updated.
* @param addr
* Target virtual address to register.
*
* @return
* Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
*/
uint32_t
mlx5_mr_create_primary(struct rte_eth_dev *dev, struct mlx5_mr_cache *entry,
uintptr_t addr)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_ibv_shared *sh = priv->sh;
struct mlx5_dev_config *config = &priv->config;
const struct rte_memseg_list *msl;
const struct rte_memseg *ms;
struct mlx5_mr *mr = NULL;
size_t len;
uint32_t ms_n;
uint32_t bmp_size;
void *bmp_mem;
int ms_idx_shift = -1;
unsigned int n;
struct mr_find_contig_memsegs_data data = {
.addr = addr,
};
struct mr_find_contig_memsegs_data data_re;
DRV_LOG(DEBUG, "port %u creating a MR using address (%p)",
dev->data->port_id, (void *)addr);
/*
* Release detached MRs if any. This can't be called with holding either
* memory_hotplug_lock or sh->mr.rwlock. MRs on the free list have
* been detached by the memory free event but it couldn't be released
* inside the callback due to deadlock. As a result, releasing resources
* is quite opportunistic.
*/
mlx5_mr_garbage_collect(sh);
/*
* If enabled, find out a contiguous virtual address chunk in use, to
* which the given address belongs, in order to register maximum range.
* In the best case where mempools are not dynamically recreated and
* '--socket-mem' is specified as an EAL option, it is very likely to
* have only one MR(LKey) per a socket and per a hugepage-size even
* though the system memory is highly fragmented. As the whole memory
* chunk will be pinned by kernel, it can't be reused unless entire
* chunk is freed from EAL.
*
* If disabled, just register one memseg (page). Then, memory
* consumption will be minimized but it may drop performance if there
* are many MRs to lookup on the datapath.
*/
if (!config->mr_ext_memseg_en) {
data.msl = rte_mem_virt2memseg_list((void *)addr);
data.start = RTE_ALIGN_FLOOR(addr, data.msl->page_sz);
data.end = data.start + data.msl->page_sz;
} else if (!rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data)) {
DRV_LOG(WARNING,
"port %u unable to find virtually contiguous"
" chunk for address (%p)."
" rte_memseg_contig_walk() failed.",
dev->data->port_id, (void *)addr);
rte_errno = ENXIO;
goto err_nolock;
}
alloc_resources:
/* Addresses must be page-aligned. */
assert(rte_is_aligned((void *)data.start, data.msl->page_sz));
assert(rte_is_aligned((void *)data.end, data.msl->page_sz));
msl = data.msl;
ms = rte_mem_virt2memseg((void *)data.start, msl);
len = data.end - data.start;
assert(msl->page_sz == ms->hugepage_sz);
/* Number of memsegs in the range. */
ms_n = len / msl->page_sz;
DEBUG("port %u extending %p to [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
" page_sz=0x%" PRIx64 ", ms_n=%u",
dev->data->port_id, (void *)addr,
data.start, data.end, msl->page_sz, ms_n);
/* Size of memory for bitmap. */
bmp_size = rte_bitmap_get_memory_footprint(ms_n);
mr = rte_zmalloc_socket(NULL,
RTE_ALIGN_CEIL(sizeof(*mr),
RTE_CACHE_LINE_SIZE) +
bmp_size,
RTE_CACHE_LINE_SIZE, msl->socket_id);
if (mr == NULL) {
DEBUG("port %u unable to allocate memory for a new MR of"
" address (%p).",
dev->data->port_id, (void *)addr);
rte_errno = ENOMEM;
goto err_nolock;
}
mr->msl = msl;
/*
* Save the index of the first memseg and initialize memseg bitmap. To
* see if a memseg of ms_idx in the memseg-list is still valid, check:
* rte_bitmap_get(mr->bmp, ms_idx - mr->ms_base_idx)
*/
mr->ms_base_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
bmp_mem = RTE_PTR_ALIGN_CEIL(mr + 1, RTE_CACHE_LINE_SIZE);
mr->ms_bmp = rte_bitmap_init(ms_n, bmp_mem, bmp_size);
if (mr->ms_bmp == NULL) {
DEBUG("port %u unable to initialize bitmap for a new MR of"
" address (%p).",
dev->data->port_id, (void *)addr);
rte_errno = EINVAL;
goto err_nolock;
}
/*
* Should recheck whether the extended contiguous chunk is still valid.
* Because memory_hotplug_lock can't be held if there's any memory
* related calls in a critical path, resource allocation above can't be
* locked. If the memory has been changed at this point, try again with
* just single page. If not, go on with the big chunk atomically from
* here.
*/
rte_mcfg_mem_read_lock();
data_re = data;
if (len > msl->page_sz &&
!rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data_re)) {
DEBUG("port %u unable to find virtually contiguous"
" chunk for address (%p)."
" rte_memseg_contig_walk() failed.",
dev->data->port_id, (void *)addr);
rte_errno = ENXIO;
goto err_memlock;
}
if (data.start != data_re.start || data.end != data_re.end) {
/*
* The extended contiguous chunk has been changed. Try again
* with single memseg instead.
*/
data.start = RTE_ALIGN_FLOOR(addr, msl->page_sz);
data.end = data.start + msl->page_sz;
rte_mcfg_mem_read_unlock();
mr_free(mr);
goto alloc_resources;
}
assert(data.msl == data_re.msl);
rte_rwlock_write_lock(&sh->mr.rwlock);
/*
* Check the address is really missing. If other thread already created
* one or it is not found due to overflow, abort and return.
*/
if (mr_lookup_dev(sh, entry, addr) != UINT32_MAX) {
/*
* Insert to the global cache table. It may fail due to
* low-on-memory. Then, this entry will have to be searched
* here again.
*/
mr_btree_insert(&sh->mr.cache, entry);
DEBUG("port %u found MR for %p on final lookup, abort",
dev->data->port_id, (void *)addr);
rte_rwlock_write_unlock(&sh->mr.rwlock);
rte_mcfg_mem_read_unlock();
/*
* Must be unlocked before calling rte_free() because
* mlx5_mr_mem_event_free_cb() can be called inside.
*/
mr_free(mr);
return entry->lkey;
}
/*
* Trim start and end addresses for verbs MR. Set bits for registering
* memsegs but exclude already registered ones. Bitmap can be
* fragmented.
*/
for (n = 0; n < ms_n; ++n) {
uintptr_t start;
struct mlx5_mr_cache ret;
memset(&ret, 0, sizeof(ret));
start = data_re.start + n * msl->page_sz;
/* Exclude memsegs already registered by other MRs. */
if (mr_lookup_dev(sh, &ret, start) == UINT32_MAX) {
/*
* Start from the first unregistered memseg in the
* extended range.
*/
if (ms_idx_shift == -1) {
mr->ms_base_idx += n;
data.start = start;
ms_idx_shift = n;
}
data.end = start + msl->page_sz;
rte_bitmap_set(mr->ms_bmp, n - ms_idx_shift);
++mr->ms_n;
}
}
len = data.end - data.start;
mr->ms_bmp_n = len / msl->page_sz;
assert(ms_idx_shift + mr->ms_bmp_n <= ms_n);
/*
* Finally create a verbs MR for the memory chunk. ibv_reg_mr() can be
* called with holding the memory lock because it doesn't use
* mlx5_alloc_buf_extern() which eventually calls rte_malloc_socket()
* through mlx5_alloc_verbs_buf().
*/
mr->ibv_mr = mlx5_glue->reg_mr(sh->pd, (void *)data.start, len,
IBV_ACCESS_LOCAL_WRITE);
if (mr->ibv_mr == NULL) {
DEBUG("port %u fail to create a verbs MR for address (%p)",
dev->data->port_id, (void *)addr);
rte_errno = EINVAL;
goto err_mrlock;
}
assert((uintptr_t)mr->ibv_mr->addr == data.start);
assert(mr->ibv_mr->length == len);
LIST_INSERT_HEAD(&sh->mr.mr_list, mr, mr);
DEBUG("port %u MR CREATED (%p) for %p:\n"
" [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
" lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u",
dev->data->port_id, (void *)mr, (void *)addr,
data.start, data.end, rte_cpu_to_be_32(mr->ibv_mr->lkey),
mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n);
/* Insert to the global cache table. */
mr_insert_dev_cache(sh, mr);
/* Fill in output data. */
mr_lookup_dev(sh, entry, addr);
/* Lookup can't fail. */
assert(entry->lkey != UINT32_MAX);
rte_rwlock_write_unlock(&sh->mr.rwlock);
rte_mcfg_mem_read_unlock();
return entry->lkey;
err_mrlock:
rte_rwlock_write_unlock(&sh->mr.rwlock);
err_memlock:
rte_mcfg_mem_read_unlock();
err_nolock:
/*
* In case of error, as this can be called in a datapath, a warning
* message per an error is preferable instead. Must be unlocked before
* calling rte_free() because mlx5_mr_mem_event_free_cb() can be called
* inside.
*/
mr_free(mr);
return UINT32_MAX;
}
/**
* Create a new global Memory Region (MR) for a missing virtual address.
* This can be called from primary and secondary process.
*
* @param dev
* Pointer to Ethernet device.
* @param[out] entry
* Pointer to returning MR cache entry, found in the global cache or newly
* created. If failed to create one, this will not be updated.
* @param addr
* Target virtual address to register.
*
* @return
* Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
*/
static uint32_t
mlx5_mr_create(struct rte_eth_dev *dev, struct mlx5_mr_cache *entry,
uintptr_t addr)
{
uint32_t ret = 0;
switch (rte_eal_process_type()) {
case RTE_PROC_PRIMARY:
ret = mlx5_mr_create_primary(dev, entry, addr);
break;
case RTE_PROC_SECONDARY:
ret = mlx5_mr_create_secondary(dev, entry, addr);
break;
default:
break;
}
return ret;
}
/**
* Rebuild the global B-tree cache of device from the original MR list.
*
* @param sh
* Pointer to Ethernet device shared context.
*/
static void
mr_rebuild_dev_cache(struct mlx5_ibv_shared *sh)
{
struct mlx5_mr *mr;
DRV_LOG(DEBUG, "device %s rebuild dev cache[]", sh->ibdev_name);
/* Flush cache to rebuild. */
sh->mr.cache.len = 1;
sh->mr.cache.overflow = 0;
/* Iterate all the existing MRs. */
LIST_FOREACH(mr, &sh->mr.mr_list, mr)
if (mr_insert_dev_cache(sh, mr) < 0)
return;
}
/**
* Callback for memory free event. Iterate freed memsegs and check whether it
* belongs to an existing MR. If found, clear the bit from bitmap of MR. As a
* result, the MR would be fragmented. If it becomes empty, the MR will be freed
* later by mlx5_mr_garbage_collect(). Even if this callback is called from a
* secondary process, the garbage collector will be called in primary process
* as the secondary process can't call mlx5_mr_create().
*
* The global cache must be rebuilt if there's any change and this event has to
* be propagated to dataplane threads to flush the local caches.
*
* @param sh
* Pointer to the Ethernet device shared context.
* @param addr
* Address of freed memory.
* @param len
* Size of freed memory.
*/
static void
mlx5_mr_mem_event_free_cb(struct mlx5_ibv_shared *sh,
const void *addr, size_t len)
{
const struct rte_memseg_list *msl;
struct mlx5_mr *mr;
int ms_n;
int i;
int rebuild = 0;
DEBUG("device %s free callback: addr=%p, len=%zu",
sh->ibdev_name, addr, len);
msl = rte_mem_virt2memseg_list(addr);
/* addr and len must be page-aligned. */
assert((uintptr_t)addr == RTE_ALIGN((uintptr_t)addr, msl->page_sz));
assert(len == RTE_ALIGN(len, msl->page_sz));
ms_n = len / msl->page_sz;
rte_rwlock_write_lock(&sh->mr.rwlock);
/* Clear bits of freed memsegs from MR. */
for (i = 0; i < ms_n; ++i) {
const struct rte_memseg *ms;
struct mlx5_mr_cache entry;
uintptr_t start;
int ms_idx;
uint32_t pos;
/* Find MR having this memseg. */
start = (uintptr_t)addr + i * msl->page_sz;
mr = mr_lookup_dev_list(sh, &entry, start);
if (mr == NULL)
continue;
assert(mr->msl); /* Can't be external memory. */
ms = rte_mem_virt2memseg((void *)start, msl);
assert(ms != NULL);
assert(msl->page_sz == ms->hugepage_sz);
ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
pos = ms_idx - mr->ms_base_idx;
assert(rte_bitmap_get(mr->ms_bmp, pos));
assert(pos < mr->ms_bmp_n);
DEBUG("device %s MR(%p): clear bitmap[%u] for addr %p",
sh->ibdev_name, (void *)mr, pos, (void *)start);
rte_bitmap_clear(mr->ms_bmp, pos);
if (--mr->ms_n == 0) {
LIST_REMOVE(mr, mr);
LIST_INSERT_HEAD(&sh->mr.mr_free_list, mr, mr);
DEBUG("device %s remove MR(%p) from list",
sh->ibdev_name, (void *)mr);
}
/*
* MR is fragmented or will be freed. the global cache must be
* rebuilt.
*/
rebuild = 1;
}
if (rebuild) {
mr_rebuild_dev_cache(sh);
/*
* Flush local caches by propagating invalidation across cores.
* rte_smp_wmb() is enough to synchronize this event. If one of
* freed memsegs is seen by other core, that means the memseg
* has been allocated by allocator, which will come after this
* free call. Therefore, this store instruction (incrementing
* generation below) will be guaranteed to be seen by other core
* before the core sees the newly allocated memory.
*/
++sh->mr.dev_gen;
DEBUG("broadcasting local cache flush, gen=%d",
sh->mr.dev_gen);
rte_smp_wmb();
}
rte_rwlock_write_unlock(&sh->mr.rwlock);
}
/**
* Callback for memory event. This can be called from both primary and secondary
* process.
*
* @param event_type
* Memory event type.
* @param addr
* Address of memory.
* @param len
* Size of memory.
*/
void
mlx5_mr_mem_event_cb(enum rte_mem_event event_type, const void *addr,
size_t len, void *arg __rte_unused)
{
struct mlx5_ibv_shared *sh;
struct mlx5_dev_list *dev_list = &mlx5_shared_data->mem_event_cb_list;
/* Must be called from the primary process. */
assert(rte_eal_process_type() == RTE_PROC_PRIMARY);
switch (event_type) {
case RTE_MEM_EVENT_FREE:
rte_rwlock_write_lock(&mlx5_shared_data->mem_event_rwlock);
/* Iterate all the existing mlx5 devices. */
LIST_FOREACH(sh, dev_list, mem_event_cb)
mlx5_mr_mem_event_free_cb(sh, addr, len);
rte_rwlock_write_unlock(&mlx5_shared_data->mem_event_rwlock);
break;
case RTE_MEM_EVENT_ALLOC:
default:
break;
}
}
/**
* Look up address in the global MR cache table. If not found, create a new MR.
* Insert the found/created entry to local bottom-half cache table.
*
* @param dev
* Pointer to Ethernet device.
* @param mr_ctrl
* Pointer to per-queue MR control structure.
* @param[out] entry
* Pointer to returning MR cache entry, found in the global cache or newly
* created. If failed to create one, this is not written.
* @param addr
* Search key.
*
* @return
* Searched LKey on success, UINT32_MAX on no match.
*/
static uint32_t
mlx5_mr_lookup_dev(struct rte_eth_dev *dev, struct mlx5_mr_ctrl *mr_ctrl,
struct mlx5_mr_cache *entry, uintptr_t addr)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_ibv_shared *sh = priv->sh;
struct mlx5_mr_btree *bt = &mr_ctrl->cache_bh;
uint16_t idx;
uint32_t lkey;
/* If local cache table is full, try to double it. */
if (unlikely(bt->len == bt->size))
mr_btree_expand(bt, bt->size << 1);
/* Look up in the global cache. */
rte_rwlock_read_lock(&sh->mr.rwlock);
lkey = mr_btree_lookup(&sh->mr.cache, &idx, addr);
if (lkey != UINT32_MAX) {
/* Found. */
*entry = (*sh->mr.cache.table)[idx];
rte_rwlock_read_unlock(&sh->mr.rwlock);
/*
* Update local cache. Even if it fails, return the found entry
* to update top-half cache. Next time, this entry will be found
* in the global cache.
*/
mr_btree_insert(bt, entry);
return lkey;
}
rte_rwlock_read_unlock(&sh->mr.rwlock);
/* First time to see the address? Create a new MR. */
lkey = mlx5_mr_create(dev, entry, addr);
/*
* Update the local cache if successfully created a new global MR. Even
* if failed to create one, there's no action to take in this datapath
* code. As returning LKey is invalid, this will eventually make HW
* fail.
*/
if (lkey != UINT32_MAX)
mr_btree_insert(bt, entry);
return lkey;
}
/**
* Bottom-half of LKey search on datapath. Firstly search in cache_bh[] and if
* misses, search in the global MR cache table and update the new entry to
* per-queue local caches.
*
* @param dev
* Pointer to Ethernet device.
* @param mr_ctrl
* Pointer to per-queue MR control structure.
* @param addr
* Search key.
*
* @return
* Searched LKey on success, UINT32_MAX on no match.
*/
static uint32_t
mlx5_mr_addr2mr_bh(struct rte_eth_dev *dev, struct mlx5_mr_ctrl *mr_ctrl,
uintptr_t addr)
{
uint32_t lkey;
uint16_t bh_idx = 0;
/* Victim in top-half cache to replace with new entry. */
struct mlx5_mr_cache *repl = &mr_ctrl->cache[mr_ctrl->head];
/* Binary-search MR translation table. */
lkey = mr_btree_lookup(&mr_ctrl->cache_bh, &bh_idx, addr);
/* Update top-half cache. */
if (likely(lkey != UINT32_MAX)) {
*repl = (*mr_ctrl->cache_bh.table)[bh_idx];
} else {
/*
* If missed in local lookup table, search in the global cache
* and local cache_bh[] will be updated inside if possible.
* Top-half cache entry will also be updated.
*/
lkey = mlx5_mr_lookup_dev(dev, mr_ctrl, repl, addr);
if (unlikely(lkey == UINT32_MAX))
return UINT32_MAX;
}
/* Update the most recently used entry. */
mr_ctrl->mru = mr_ctrl->head;
/* Point to the next victim, the oldest. */
mr_ctrl->head = (mr_ctrl->head + 1) % MLX5_MR_CACHE_N;
return lkey;
}
/**
* Bottom-half of LKey search on Rx.
*
* @param rxq
* Pointer to Rx queue structure.
* @param addr
* Search key.
*
* @return
* Searched LKey on success, UINT32_MAX on no match.
*/
uint32_t
mlx5_rx_addr2mr_bh(struct mlx5_rxq_data *rxq, uintptr_t addr)
{
struct mlx5_rxq_ctrl *rxq_ctrl =
container_of(rxq, struct mlx5_rxq_ctrl, rxq);
struct mlx5_mr_ctrl *mr_ctrl = &rxq->mr_ctrl;
struct mlx5_priv *priv = rxq_ctrl->priv;
return mlx5_mr_addr2mr_bh(ETH_DEV(priv), mr_ctrl, addr);
}
/**
* Bottom-half of LKey search on Tx.
*
* @param txq
* Pointer to Tx queue structure.
* @param addr
* Search key.
*
* @return
* Searched LKey on success, UINT32_MAX on no match.
*/
static uint32_t
mlx5_tx_addr2mr_bh(struct mlx5_txq_data *txq, uintptr_t addr)
{
struct mlx5_txq_ctrl *txq_ctrl =
container_of(txq, struct mlx5_txq_ctrl, txq);
struct mlx5_mr_ctrl *mr_ctrl = &txq->mr_ctrl;
struct mlx5_priv *priv = txq_ctrl->priv;
return mlx5_mr_addr2mr_bh(ETH_DEV(priv), mr_ctrl, addr);
}
/**
* Bottom-half of LKey search on Tx. If it can't be searched in the memseg
* list, register the mempool of the mbuf as externally allocated memory.
*
* @param txq
* Pointer to Tx queue structure.
* @param mb
* Pointer to mbuf.
*
* @return
* Searched LKey on success, UINT32_MAX on no match.
*/
uint32_t
mlx5_tx_mb2mr_bh(struct mlx5_txq_data *txq, struct rte_mbuf *mb)
{
uintptr_t addr = (uintptr_t)mb->buf_addr;
uint32_t lkey;
lkey = mlx5_tx_addr2mr_bh(txq, addr);
if (lkey == UINT32_MAX && rte_errno == ENXIO) {
/* Mempool may have externally allocated memory. */
return mlx5_tx_update_ext_mp(txq, addr, mlx5_mb2mp(mb));
}
return lkey;
}
/**
* Flush all of the local cache entries.
*
* @param mr_ctrl
* Pointer to per-queue MR control structure.
*/
void
mlx5_mr_flush_local_cache(struct mlx5_mr_ctrl *mr_ctrl)
{
/* Reset the most-recently-used index. */
mr_ctrl->mru = 0;
/* Reset the linear search array. */
mr_ctrl->head = 0;
memset(mr_ctrl->cache, 0, sizeof(mr_ctrl->cache));
/* Reset the B-tree table. */
mr_ctrl->cache_bh.len = 1;
mr_ctrl->cache_bh.overflow = 0;
/* Update the generation number. */
mr_ctrl->cur_gen = *mr_ctrl->dev_gen_ptr;
DRV_LOG(DEBUG, "mr_ctrl(%p): flushed, cur_gen=%d",
(void *)mr_ctrl, mr_ctrl->cur_gen);
}
/**
* Creates a memory region for external memory, that is memory which is not
* part of the DPDK memory segments.
*
* @param dev
* Pointer to the ethernet device.
* @param addr
* Starting virtual address of memory.
* @param len
* Length of memory segment being mapped.
* @param socked_id
* Socket to allocate heap memory for the control structures.
*
* @return
* Pointer to MR structure on success, NULL otherwise.
*/
static struct mlx5_mr *
mlx5_create_mr_ext(struct rte_eth_dev *dev, uintptr_t addr, size_t len,
int socket_id)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_mr *mr = NULL;
mr = rte_zmalloc_socket(NULL,
RTE_ALIGN_CEIL(sizeof(*mr),
RTE_CACHE_LINE_SIZE),
RTE_CACHE_LINE_SIZE, socket_id);
if (mr == NULL)
return NULL;
mr->ibv_mr = mlx5_glue->reg_mr(priv->sh->pd, (void *)addr, len,
IBV_ACCESS_LOCAL_WRITE);
if (mr->ibv_mr == NULL) {
DRV_LOG(WARNING,
"port %u fail to create a verbs MR for address (%p)",
dev->data->port_id, (void *)addr);
rte_free(mr);
return NULL;
}
mr->msl = NULL; /* Mark it is external memory. */
mr->ms_bmp = NULL;
mr->ms_n = 1;
mr->ms_bmp_n = 1;
DRV_LOG(DEBUG,
"port %u MR CREATED (%p) for external memory %p:\n"
" [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
" lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u",
dev->data->port_id, (void *)mr, (void *)addr,
addr, addr + len, rte_cpu_to_be_32(mr->ibv_mr->lkey),
mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n);
return mr;
}
/**
* Called during rte_mempool_mem_iter() by mlx5_mr_update_ext_mp().
*
* Externally allocated chunk is registered and a MR is created for the chunk.
* The MR object is added to the global list. If memseg list of a MR object
* (mr->msl) is null, the MR object can be regarded as externally allocated
* memory.
*
* Once external memory is registered, it should be static. If the memory is
* freed and the virtual address range has different physical memory mapped
* again, it may cause crash on device due to the wrong translation entry. PMD
* can't track the free event of the external memory for now.
*/
static void
mlx5_mr_update_ext_mp_cb(struct rte_mempool *mp, void *opaque,
struct rte_mempool_memhdr *memhdr,
unsigned mem_idx __rte_unused)
{
struct mr_update_mp_data *data = opaque;
struct rte_eth_dev *dev = data->dev;
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_ibv_shared *sh = priv->sh;
struct mlx5_mr_ctrl *mr_ctrl = data->mr_ctrl;
struct mlx5_mr *mr = NULL;
uintptr_t addr = (uintptr_t)memhdr->addr;
size_t len = memhdr->len;
struct mlx5_mr_cache entry;
uint32_t lkey;
assert(rte_eal_process_type() == RTE_PROC_PRIMARY);
/* If already registered, it should return. */
rte_rwlock_read_lock(&sh->mr.rwlock);
lkey = mr_lookup_dev(sh, &entry, addr);
rte_rwlock_read_unlock(&sh->mr.rwlock);
if (lkey != UINT32_MAX)
return;
DRV_LOG(DEBUG, "port %u register MR for chunk #%d of mempool (%s)",
dev->data->port_id, mem_idx, mp->name);
mr = mlx5_create_mr_ext(dev, addr, len, mp->socket_id);
if (!mr) {
DRV_LOG(WARNING,
"port %u unable to allocate a new MR of"
" mempool (%s).",
dev->data->port_id, mp->name);
data->ret = -1;
return;
}
rte_rwlock_write_lock(&sh->mr.rwlock);
LIST_INSERT_HEAD(&sh->mr.mr_list, mr, mr);
/* Insert to the global cache table. */
mr_insert_dev_cache(sh, mr);
rte_rwlock_write_unlock(&sh->mr.rwlock);
/* Insert to the local cache table */
mlx5_mr_addr2mr_bh(dev, mr_ctrl, addr);
}
/**
* Finds the first ethdev that match the pci device.
* The existence of multiple ethdev per pci device is only with representors.
* On such case, it is enough to get only one of the ports as they all share
* the same ibv context.
*
* @param pdev
* Pointer to the PCI device.
*
* @return
* Pointer to the ethdev if found, NULL otherwise.
*/
static struct rte_eth_dev *
pci_dev_to_eth_dev(struct rte_pci_device *pdev)
{
uint16_t port_id;
RTE_ETH_FOREACH_DEV_OF(port_id, &pdev->device)
return &rte_eth_devices[port_id];
return NULL;
}
/**
* DPDK callback to DMA map external memory to a PCI device.
*
* @param pdev
* Pointer to the PCI device.
* @param addr
* Starting virtual address of memory to be mapped.
* @param iova
* Starting IOVA address of memory to be mapped.
* @param len
* Length of memory segment being mapped.
*
* @return
* 0 on success, negative value on error.
*/
int
mlx5_dma_map(struct rte_pci_device *pdev, void *addr,
uint64_t iova __rte_unused, size_t len)
{
struct rte_eth_dev *dev;
struct mlx5_mr *mr;
struct mlx5_priv *priv;
struct mlx5_ibv_shared *sh;
dev = pci_dev_to_eth_dev(pdev);
if (!dev) {
DRV_LOG(WARNING, "unable to find matching ethdev "
"to PCI device %p", (void *)pdev);
rte_errno = ENODEV;
return -1;
}
priv = dev->data->dev_private;
mr = mlx5_create_mr_ext(dev, (uintptr_t)addr, len, SOCKET_ID_ANY);
if (!mr) {
DRV_LOG(WARNING,
"port %u unable to dma map", dev->data->port_id);
rte_errno = EINVAL;
return -1;
}
sh = priv->sh;
rte_rwlock_write_lock(&sh->mr.rwlock);
LIST_INSERT_HEAD(&sh->mr.mr_list, mr, mr);
/* Insert to the global cache table. */
mr_insert_dev_cache(sh, mr);
rte_rwlock_write_unlock(&sh->mr.rwlock);
return 0;
}
/**
* DPDK callback to DMA unmap external memory to a PCI device.
*
* @param pdev
* Pointer to the PCI device.
* @param addr
* Starting virtual address of memory to be unmapped.
* @param iova
* Starting IOVA address of memory to be unmapped.
* @param len
* Length of memory segment being unmapped.
*
* @return
* 0 on success, negative value on error.
*/
int
mlx5_dma_unmap(struct rte_pci_device *pdev, void *addr,
uint64_t iova __rte_unused, size_t len __rte_unused)
{
struct rte_eth_dev *dev;
struct mlx5_priv *priv;
struct mlx5_ibv_shared *sh;
struct mlx5_mr *mr;
struct mlx5_mr_cache entry;
dev = pci_dev_to_eth_dev(pdev);
if (!dev) {
DRV_LOG(WARNING, "unable to find matching ethdev "
"to PCI device %p", (void *)pdev);
rte_errno = ENODEV;
return -1;
}
priv = dev->data->dev_private;
sh = priv->sh;
rte_rwlock_read_lock(&sh->mr.rwlock);
mr = mr_lookup_dev_list(sh, &entry, (uintptr_t)addr);
if (!mr) {
rte_rwlock_read_unlock(&sh->mr.rwlock);
DRV_LOG(WARNING, "address 0x%" PRIxPTR " wasn't registered "
"to PCI device %p", (uintptr_t)addr,
(void *)pdev);
rte_errno = EINVAL;
return -1;
}
LIST_REMOVE(mr, mr);
LIST_INSERT_HEAD(&sh->mr.mr_free_list, mr, mr);
DEBUG("port %u remove MR(%p) from list", dev->data->port_id,
(void *)mr);
mr_rebuild_dev_cache(sh);
/*
* Flush local caches by propagating invalidation across cores.
* rte_smp_wmb() is enough to synchronize this event. If one of
* freed memsegs is seen by other core, that means the memseg
* has been allocated by allocator, which will come after this
* free call. Therefore, this store instruction (incrementing
* generation below) will be guaranteed to be seen by other core
* before the core sees the newly allocated memory.
*/
++sh->mr.dev_gen;
DEBUG("broadcasting local cache flush, gen=%d", sh->mr.dev_gen);
rte_smp_wmb();
rte_rwlock_read_unlock(&sh->mr.rwlock);
return 0;
}
/**
* Register MR for entire memory chunks in a Mempool having externally allocated
* memory and fill in local cache.
*
* @param dev
* Pointer to Ethernet device.
* @param mr_ctrl
* Pointer to per-queue MR control structure.
* @param mp
* Pointer to registering Mempool.
*
* @return
* 0 on success, -1 on failure.
*/
static uint32_t
mlx5_mr_update_ext_mp(struct rte_eth_dev *dev, struct mlx5_mr_ctrl *mr_ctrl,
struct rte_mempool *mp)
{
struct mr_update_mp_data data = {
.dev = dev,
.mr_ctrl = mr_ctrl,
.ret = 0,
};
rte_mempool_mem_iter(mp, mlx5_mr_update_ext_mp_cb, &data);
return data.ret;
}
/**
* Register MR entire memory chunks in a Mempool having externally allocated
* memory and search LKey of the address to return.
*
* @param dev
* Pointer to Ethernet device.
* @param addr
* Search key.
* @param mp
* Pointer to registering Mempool where addr belongs.
*
* @return
* LKey for address on success, UINT32_MAX on failure.
*/
uint32_t
mlx5_tx_update_ext_mp(struct mlx5_txq_data *txq, uintptr_t addr,
struct rte_mempool *mp)
{
struct mlx5_txq_ctrl *txq_ctrl =
container_of(txq, struct mlx5_txq_ctrl, txq);
struct mlx5_mr_ctrl *mr_ctrl = &txq->mr_ctrl;
struct mlx5_priv *priv = txq_ctrl->priv;
if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
DRV_LOG(WARNING,
"port %u using address (%p) from unregistered mempool"
" having externally allocated memory"
" in secondary process, please create mempool"
" prior to rte_eth_dev_start()",
PORT_ID(priv), (void *)addr);
return UINT32_MAX;
}
mlx5_mr_update_ext_mp(ETH_DEV(priv), mr_ctrl, mp);
return mlx5_tx_addr2mr_bh(txq, addr);
}
/* Called during rte_mempool_mem_iter() by mlx5_mr_update_mp(). */
static void
mlx5_mr_update_mp_cb(struct rte_mempool *mp __rte_unused, void *opaque,
struct rte_mempool_memhdr *memhdr,
unsigned mem_idx __rte_unused)
{
struct mr_update_mp_data *data = opaque;
uint32_t lkey;
/* Stop iteration if failed in the previous walk. */
if (data->ret < 0)
return;
/* Register address of the chunk and update local caches. */
lkey = mlx5_mr_addr2mr_bh(data->dev, data->mr_ctrl,
(uintptr_t)memhdr->addr);
if (lkey == UINT32_MAX)
data->ret = -1;
}
/**
* Register entire memory chunks in a Mempool.
*
* @param dev
* Pointer to Ethernet device.
* @param mr_ctrl
* Pointer to per-queue MR control structure.
* @param mp
* Pointer to registering Mempool.
*
* @return
* 0 on success, -1 on failure.
*/
int
mlx5_mr_update_mp(struct rte_eth_dev *dev, struct mlx5_mr_ctrl *mr_ctrl,
struct rte_mempool *mp)
{
struct mr_update_mp_data data = {
.dev = dev,
.mr_ctrl = mr_ctrl,
.ret = 0,
};
rte_mempool_mem_iter(mp, mlx5_mr_update_mp_cb, &data);
if (data.ret < 0 && rte_errno == ENXIO) {
/* Mempool may have externally allocated memory. */
return mlx5_mr_update_ext_mp(dev, mr_ctrl, mp);
}
return data.ret;
}
/**
* Dump all the created MRs and the global cache entries.
*
* @param sh
* Pointer to Ethernet device shared context.
*/
void
mlx5_mr_dump_dev(struct mlx5_ibv_shared *sh __rte_unused)
{
#ifndef NDEBUG
struct mlx5_mr *mr;
int mr_n = 0;
int chunk_n = 0;
rte_rwlock_read_lock(&sh->mr.rwlock);
/* Iterate all the existing MRs. */
LIST_FOREACH(mr, &sh->mr.mr_list, mr) {
unsigned int n;
DEBUG("device %s MR[%u], LKey = 0x%x, ms_n = %u, ms_bmp_n = %u",
sh->ibdev_name, mr_n++,
rte_cpu_to_be_32(mr->ibv_mr->lkey),
mr->ms_n, mr->ms_bmp_n);
if (mr->ms_n == 0)
continue;
for (n = 0; n < mr->ms_bmp_n; ) {
struct mlx5_mr_cache ret = { 0, };
n = mr_find_next_chunk(mr, &ret, n);
if (!ret.end)
break;
DEBUG(" chunk[%u], [0x%" PRIxPTR ", 0x%" PRIxPTR ")",
chunk_n++, ret.start, ret.end);
}
}
DEBUG("device %s dumping global cache", sh->ibdev_name);
mlx5_mr_btree_dump(&sh->mr.cache);
rte_rwlock_read_unlock(&sh->mr.rwlock);
#endif
}
/**
* Release all the created MRs and resources for shared device context.
* list.
*
* @param sh
* Pointer to Ethernet device shared context.
*/
void
mlx5_mr_release(struct mlx5_ibv_shared *sh)
{
struct mlx5_mr *mr_next;
if (rte_log_get_level(mlx5_logtype) == RTE_LOG_DEBUG)
mlx5_mr_dump_dev(sh);
rte_rwlock_write_lock(&sh->mr.rwlock);
/* Detach from MR list and move to free list. */
mr_next = LIST_FIRST(&sh->mr.mr_list);
while (mr_next != NULL) {
struct mlx5_mr *mr = mr_next;
mr_next = LIST_NEXT(mr, mr);
LIST_REMOVE(mr, mr);
LIST_INSERT_HEAD(&sh->mr.mr_free_list, mr, mr);
}
LIST_INIT(&sh->mr.mr_list);
/* Free global cache. */
mlx5_mr_btree_free(&sh->mr.cache);
rte_rwlock_write_unlock(&sh->mr.rwlock);
/* Free all remaining MRs. */
mlx5_mr_garbage_collect(sh);
}