numam-dpdk/examples/vhost_blk/vhost_blk.c
Yunjian Wang dc9e658013 examples/vhost_blk: check driver start failure
This checks the return value from the function
rte_vhost_driver_start.

Coverity issue: 362027
Fixes: c19beb3f38 ("examples/vhost_blk: introduce vhost storage sample")
Cc: stable@dpdk.org

Signed-off-by: Yunjian Wang <wangyunjian@huawei.com>
Reviewed-by: Chenbo Xia <chenbo.xia@intel.com>
2020-09-30 23:16:55 +02:00

892 lines
21 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2019 Intel Corporation
*/
#include <stdint.h>
#include <unistd.h>
#include <stdbool.h>
#include <signal.h>
#include <assert.h>
#include <semaphore.h>
#include <linux/virtio_blk.h>
#include <linux/virtio_ring.h>
#include <rte_atomic.h>
#include <rte_cycles.h>
#include <rte_log.h>
#include <rte_malloc.h>
#include <rte_vhost.h>
#include "vhost_blk.h"
#include "blk_spec.h"
#define VIRTQ_DESC_F_NEXT 1
#define VIRTQ_DESC_F_AVAIL (1 << 7)
#define VIRTQ_DESC_F_USED (1 << 15)
#define MAX_TASK 12
#define VHOST_BLK_FEATURES ((1ULL << VIRTIO_F_RING_PACKED) | \
(1ULL << VIRTIO_F_VERSION_1) |\
(1ULL << VIRTIO_F_NOTIFY_ON_EMPTY) | \
(1ULL << VHOST_USER_F_PROTOCOL_FEATURES))
#define CTRLR_NAME "vhost.socket"
enum CTRLR_WORKER_STATUS {
WORKER_STATE_START = 0,
WORKER_STATE_STOP,
};
struct vhost_blk_ctrlr *g_vhost_ctrlr;
/* Path to folder where character device will be created. Can be set by user. */
static char dev_pathname[PATH_MAX] = "";
static sem_t exit_sem;
static enum CTRLR_WORKER_STATUS worker_thread_status;
struct vhost_blk_ctrlr *
vhost_blk_ctrlr_find(const char *ctrlr_name)
{
if (ctrlr_name == NULL)
return NULL;
/* currently we only support 1 socket file fd */
return g_vhost_ctrlr;
}
static uint64_t
gpa_to_vva(struct vhost_blk_ctrlr *ctrlr, uint64_t gpa, uint64_t *len)
{
assert(ctrlr->mem != NULL);
return rte_vhost_va_from_guest_pa(ctrlr->mem, gpa, len);
}
static void
enqueue_task(struct vhost_blk_task *task)
{
struct vhost_blk_queue *vq = task->vq;
struct vring_used *used = vq->vring.used;
rte_vhost_set_last_inflight_io_split(task->ctrlr->vid,
vq->id, task->req_idx);
/* Fill out the next entry in the "used" ring. id = the
* index of the descriptor that contained the blk request.
* len = the total amount of data transferred for the blk
* request. We must report the correct len, for variable
* length blk CDBs, where we may return less data than
* allocated by the guest VM.
*/
used->ring[used->idx & (vq->vring.size - 1)].id = task->req_idx;
used->ring[used->idx & (vq->vring.size - 1)].len = task->data_len;
rte_smp_mb();
used->idx++;
rte_smp_mb();
rte_vhost_clr_inflight_desc_split(task->ctrlr->vid,
vq->id, used->idx, task->req_idx);
/* Send an interrupt back to the guest VM so that it knows
* a completion is ready to be processed.
*/
rte_vhost_vring_call(task->ctrlr->vid, vq->id);
}
static void
enqueue_task_packed(struct vhost_blk_task *task)
{
struct vhost_blk_queue *vq = task->vq;
struct vring_packed_desc *desc;
rte_vhost_set_last_inflight_io_packed(task->ctrlr->vid, vq->id,
task->inflight_idx);
desc = &vq->vring.desc_packed[vq->last_used_idx];
desc->id = task->buffer_id;
desc->addr = 0;
rte_smp_mb();
if (vq->used_wrap_counter)
desc->flags |= VIRTQ_DESC_F_AVAIL | VIRTQ_DESC_F_USED;
else
desc->flags &= ~(VIRTQ_DESC_F_AVAIL | VIRTQ_DESC_F_USED);
rte_smp_mb();
rte_vhost_clr_inflight_desc_packed(task->ctrlr->vid, vq->id,
task->inflight_idx);
vq->last_used_idx += task->chain_num;
if (vq->last_used_idx >= vq->vring.size) {
vq->last_used_idx -= vq->vring.size;
vq->used_wrap_counter = !vq->used_wrap_counter;
}
/* Send an interrupt back to the guest VM so that it knows
* a completion is ready to be processed.
*/
rte_vhost_vring_call(task->ctrlr->vid, vq->id);
}
static bool
descriptor_has_next_packed(struct vring_packed_desc *cur_desc)
{
return !!(cur_desc->flags & VRING_DESC_F_NEXT);
}
static bool
descriptor_has_next_split(struct vring_desc *cur_desc)
{
return !!(cur_desc->flags & VRING_DESC_F_NEXT);
}
static int
desc_payload_to_iovs(struct vhost_blk_ctrlr *ctrlr, struct iovec *iovs,
uint32_t *iov_index, uintptr_t payload, uint64_t remaining)
{
void *vva;
uint64_t len;
do {
if (*iov_index >= VHOST_BLK_MAX_IOVS) {
fprintf(stderr, "VHOST_BLK_MAX_IOVS reached\n");
return -1;
}
len = remaining;
vva = (void *)(uintptr_t)gpa_to_vva(ctrlr,
payload, &len);
if (!vva || !len) {
fprintf(stderr, "failed to translate desc address.\n");
return -1;
}
iovs[*iov_index].iov_base = vva;
iovs[*iov_index].iov_len = len;
payload += len;
remaining -= len;
(*iov_index)++;
} while (remaining);
return 0;
}
static struct vring_desc *
vring_get_next_desc(struct vhost_blk_queue *vq, struct vring_desc *desc)
{
if (descriptor_has_next_split(desc))
return &vq->vring.desc[desc->next];
return NULL;
}
static struct vring_packed_desc *
vring_get_next_desc_packed(struct vhost_blk_queue *vq, uint16_t *req_idx)
{
if (descriptor_has_next_packed(&vq->vring.desc_packed[*req_idx])) {
*req_idx = (*req_idx + 1) % vq->vring.size;
return &vq->vring.desc_packed[*req_idx];
}
return NULL;
}
static struct rte_vhost_inflight_desc_packed *
vring_get_next_inflight_desc(struct vhost_blk_queue *vq,
struct rte_vhost_inflight_desc_packed *desc)
{
if (!!(desc->flags & VRING_DESC_F_NEXT))
return &vq->inflight_ring.inflight_packed->desc[desc->next];
return NULL;
}
static int
setup_iovs_from_descs_split(struct vhost_blk_ctrlr *ctrlr,
struct vhost_blk_queue *vq, uint16_t req_idx,
struct iovec *iovs, uint32_t *iovs_idx,
uint32_t *payload)
{
struct vring_desc *desc = &vq->vring.desc[req_idx];
do {
/* does not support indirect descriptors */
assert((desc->flags & VRING_DESC_F_INDIRECT) == 0);
if (*iovs_idx >= VHOST_BLK_MAX_IOVS) {
fprintf(stderr, "Reach VHOST_BLK_MAX_IOVS\n");
return -1;
}
if (desc_payload_to_iovs(ctrlr, iovs, iovs_idx,
desc->addr, desc->len) != 0) {
fprintf(stderr, "Failed to convert desc payload to iovs\n");
return -1;
}
*payload += desc->len;
desc = vring_get_next_desc(vq, desc);
} while (desc != NULL);
return 0;
}
static int
setup_iovs_from_descs_packed(struct vhost_blk_ctrlr *ctrlr,
struct vhost_blk_queue *vq, uint16_t req_idx,
struct iovec *iovs, uint32_t *iovs_idx,
uint32_t *payload)
{
struct vring_packed_desc *desc = &vq->vring.desc_packed[req_idx];
do {
/* does not support indirect descriptors */
assert((desc->flags & VRING_DESC_F_INDIRECT) == 0);
if (*iovs_idx >= VHOST_BLK_MAX_IOVS) {
fprintf(stderr, "Reach VHOST_BLK_MAX_IOVS\n");
return -1;
}
if (desc_payload_to_iovs(ctrlr, iovs, iovs_idx,
desc->addr, desc->len) != 0) {
fprintf(stderr, "Failed to convert desc payload to iovs\n");
return -1;
}
*payload += desc->len;
desc = vring_get_next_desc_packed(vq, &req_idx);
} while (desc != NULL);
return 0;
}
static int
setup_iovs_from_inflight_desc(struct vhost_blk_ctrlr *ctrlr,
struct vhost_blk_queue *vq, uint16_t req_idx,
struct iovec *iovs, uint32_t *iovs_idx,
uint32_t *payload)
{
struct rte_vhost_ring_inflight *inflight_vq;
struct rte_vhost_inflight_desc_packed *desc;
inflight_vq = &vq->inflight_ring;
desc = &inflight_vq->inflight_packed->desc[req_idx];
do {
/* does not support indirect descriptors */
assert((desc->flags & VRING_DESC_F_INDIRECT) == 0);
if (*iovs_idx >= VHOST_BLK_MAX_IOVS) {
fprintf(stderr, "Reach VHOST_BLK_MAX_IOVS\n");
return -1;
}
if (desc_payload_to_iovs(ctrlr, iovs, iovs_idx,
desc->addr, desc->len) != 0) {
fprintf(stderr, "Failed to convert desc payload to iovs\n");
return -1;
}
*payload += desc->len;
desc = vring_get_next_inflight_desc(vq, desc);
} while (desc != NULL);
return 0;
}
static void
process_blk_task(struct vhost_blk_task *task)
{
uint32_t payload = 0;
if (task->vq->packed_ring) {
struct rte_vhost_ring_inflight *inflight_ring;
struct rte_vhost_resubmit_info *resubmit_inflight;
inflight_ring = &task->vq->inflight_ring;
resubmit_inflight = inflight_ring->resubmit_inflight;
if (resubmit_inflight != NULL &&
resubmit_inflight->resubmit_list != NULL) {
if (setup_iovs_from_inflight_desc(task->ctrlr, task->vq,
task->req_idx, task->iovs, &task->iovs_cnt,
&payload)) {
fprintf(stderr, "Failed to setup iovs\n");
return;
}
} else {
if (setup_iovs_from_descs_packed(task->ctrlr, task->vq,
task->req_idx, task->iovs, &task->iovs_cnt,
&payload)) {
fprintf(stderr, "Failed to setup iovs\n");
return;
}
}
} else {
if (setup_iovs_from_descs_split(task->ctrlr, task->vq,
task->req_idx, task->iovs, &task->iovs_cnt, &payload)) {
fprintf(stderr, "Failed to setup iovs\n");
return;
}
}
/* First IOV must be the req head. */
task->req = (struct virtio_blk_outhdr *)task->iovs[0].iov_base;
assert(sizeof(*task->req) == task->iovs[0].iov_len);
/* Last IOV must be the status tail. */
task->status = (uint8_t *)task->iovs[task->iovs_cnt - 1].iov_base;
assert(sizeof(*task->status) == task->iovs[task->iovs_cnt - 1].iov_len);
/* Transport data len */
task->data_len = payload - task->iovs[0].iov_len -
task->iovs[task->iovs_cnt - 1].iov_len;
if (vhost_bdev_process_blk_commands(task->ctrlr->bdev, task))
/* invalid response */
*task->status = VIRTIO_BLK_S_IOERR;
else
/* successfully */
*task->status = VIRTIO_BLK_S_OK;
if (task->vq->packed_ring)
enqueue_task_packed(task);
else
enqueue_task(task);
}
static void
blk_task_init(struct vhost_blk_task *task)
{
task->iovs_cnt = 0;
task->data_len = 0;
task->req = NULL;
task->status = NULL;
}
static void
submit_inflight_vq(struct vhost_blk_queue *vq)
{
struct rte_vhost_ring_inflight *inflight_ring;
struct rte_vhost_resubmit_info *resubmit_inflight;
struct vhost_blk_task *task;
inflight_ring = &vq->inflight_ring;
resubmit_inflight = inflight_ring->resubmit_inflight;
if (resubmit_inflight == NULL ||
resubmit_inflight->resubmit_num == 0)
return;
fprintf(stdout, "Resubmit inflight num is %d\n",
resubmit_inflight->resubmit_num);
while (resubmit_inflight->resubmit_num-- > 0) {
uint16_t desc_idx;
desc_idx = resubmit_inflight->resubmit_list[
resubmit_inflight->resubmit_num].index;
if (vq->packed_ring) {
uint16_t task_idx;
struct rte_vhost_inflight_desc_packed *desc;
desc = inflight_ring->inflight_packed->desc;
task_idx = desc[desc[desc_idx].last].id;
task = &vq->tasks[task_idx];
task->req_idx = desc_idx;
task->chain_num = desc[desc_idx].num;
task->buffer_id = task_idx;
task->inflight_idx = desc_idx;
vq->last_avail_idx += desc[desc_idx].num;
if (vq->last_avail_idx >= vq->vring.size) {
vq->last_avail_idx -= vq->vring.size;
vq->avail_wrap_counter =
!vq->avail_wrap_counter;
}
} else
/* In split ring, the desc_idx is the req_id
* which was initialized when allocated the task pool.
*/
task = &vq->tasks[desc_idx];
blk_task_init(task);
process_blk_task(task);
}
free(resubmit_inflight->resubmit_list);
resubmit_inflight->resubmit_list = NULL;
}
/* Use the buffer_id as the task_idx */
static uint16_t
vhost_blk_vq_get_desc_chain_buffer_id(struct vhost_blk_queue *vq,
uint16_t *req_head, uint16_t *num)
{
struct vring_packed_desc *desc = &vq->vring.desc_packed[
vq->last_avail_idx];
*req_head = vq->last_avail_idx;
*num = 1;
while (descriptor_has_next_packed(desc)) {
vq->last_avail_idx = (vq->last_avail_idx + 1) % vq->vring.size;
desc = &vq->vring.desc_packed[vq->last_avail_idx];
*num += 1;
}
/* Point to next desc */
vq->last_avail_idx = (vq->last_avail_idx + 1) % vq->vring.size;
if (vq->last_avail_idx < *req_head)
vq->avail_wrap_counter = !vq->avail_wrap_counter;
return desc->id;
}
static uint16_t
vq_get_desc_idx(struct vhost_blk_queue *vq)
{
uint16_t desc_idx;
uint16_t last_avail_idx;
last_avail_idx = vq->last_avail_idx & (vq->vring.size - 1);
desc_idx = vq->vring.avail->ring[last_avail_idx];
vq->last_avail_idx++;
return desc_idx;
}
static int
vhost_blk_vq_is_avail(struct vhost_blk_queue *vq)
{
if (vq->packed_ring) {
uint16_t flags = vq->vring.desc_packed[
vq->last_avail_idx].flags;
bool avail_wrap_counter = vq->avail_wrap_counter;
return (!!(flags & VIRTQ_DESC_F_AVAIL) == avail_wrap_counter &&
!!(flags & VIRTQ_DESC_F_USED) != avail_wrap_counter);
} else {
if (vq->vring.avail->idx != vq->last_avail_idx)
return 1;
return 0;
}
}
static void
process_vq(struct vhost_blk_queue *vq)
{
struct vhost_blk_task *task;
if (vq->packed_ring) {
while (vhost_blk_vq_is_avail(vq)) {
uint16_t task_idx, req_idx, last_idx, chain_num;
task_idx = vhost_blk_vq_get_desc_chain_buffer_id(vq,
&req_idx, &chain_num);
task = &vq->tasks[task_idx];
blk_task_init(task);
task->req_idx = req_idx;
task->chain_num = chain_num;
task->buffer_id = task_idx;
last_idx = (req_idx + chain_num - 1) % vq->vring.size;
rte_vhost_set_inflight_desc_packed(task->ctrlr->vid,
vq->id,
task->req_idx,
last_idx,
&task->inflight_idx);
process_blk_task(task);
}
} else {
while (vhost_blk_vq_is_avail(vq)) {
uint16_t desc_idx;
desc_idx = vq_get_desc_idx(vq);
task = &vq->tasks[desc_idx];
blk_task_init(task);
rte_vhost_set_inflight_desc_split(task->ctrlr->vid,
vq->id,
task->req_idx);
process_blk_task(task);
}
}
}
static void *
ctrlr_worker(void *arg)
{
struct vhost_blk_ctrlr *ctrlr = (struct vhost_blk_ctrlr *)arg;
cpu_set_t cpuset;
pthread_t thread;
int i;
fprintf(stdout, "Ctrlr Worker Thread start\n");
if (ctrlr == NULL || ctrlr->bdev == NULL) {
fprintf(stderr,
"%s: Error, invalid argument passed to worker thread\n",
__func__);
exit(0);
}
thread = pthread_self();
CPU_ZERO(&cpuset);
CPU_SET(0, &cpuset);
pthread_setaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
for (i = 0; i < NUM_OF_BLK_QUEUES; i++)
submit_inflight_vq(&ctrlr->queues[i]);
while (worker_thread_status != WORKER_STATE_STOP)
for (i = 0; i < NUM_OF_BLK_QUEUES; i++)
process_vq(&ctrlr->queues[i]);
fprintf(stdout, "Ctrlr Worker Thread Exiting\n");
sem_post(&exit_sem);
return NULL;
}
static int
alloc_task_pool(struct vhost_blk_ctrlr *ctrlr)
{
struct vhost_blk_queue *vq;
int i, j;
for (i = 0; i < NUM_OF_BLK_QUEUES; i++) {
vq = &ctrlr->queues[i];
vq->tasks = rte_zmalloc(NULL,
sizeof(struct vhost_blk_task) * vq->vring.size, 0);
if (!vq->tasks) {
fprintf(stderr, "Failed to allocate task memory\n");
return -1;
}
for (j = 0; j < vq->vring.size; j++) {
vq->tasks[j].req_idx = j;
vq->tasks[j].ctrlr = ctrlr;
vq->tasks[j].vq = vq;
}
}
return 0;
}
static void
free_task_pool(struct vhost_blk_ctrlr *ctrlr)
{
int i;
for (i = 0; i < NUM_OF_BLK_QUEUES; i++)
rte_free(ctrlr->queues[i].tasks);
}
static int
new_device(int vid)
{
struct vhost_blk_ctrlr *ctrlr;
struct vhost_blk_queue *vq;
char path[PATH_MAX];
uint64_t features;
pthread_t tid;
int i, ret;
bool packed_ring;
ret = rte_vhost_get_ifname(vid, path, PATH_MAX);
if (ret) {
fprintf(stderr, "Failed to get the socket path\n");
return -1;
}
ctrlr = vhost_blk_ctrlr_find(path);
if (!ctrlr) {
fprintf(stderr, "Failed to find controller\n");
return -1;
}
if (ctrlr->started)
return 0;
ctrlr->vid = vid;
ret = rte_vhost_get_negotiated_features(vid, &features);
if (ret) {
fprintf(stderr, "Failed to get the negotiated features\n");
return -1;
}
packed_ring = !!(features & (1ULL << VIRTIO_F_RING_PACKED));
/* Disable Notifications and init last idx */
for (i = 0; i < NUM_OF_BLK_QUEUES; i++) {
vq = &ctrlr->queues[i];
vq->id = i;
assert(rte_vhost_get_vhost_vring(ctrlr->vid, i,
&vq->vring) == 0);
assert(rte_vhost_get_vring_base(ctrlr->vid, i,
&vq->last_avail_idx,
&vq->last_used_idx) == 0);
assert(rte_vhost_get_vhost_ring_inflight(ctrlr->vid, i,
&vq->inflight_ring) == 0);
if (packed_ring) {
/* for the reconnection */
assert(rte_vhost_get_vring_base_from_inflight(
ctrlr->vid, i,
&vq->last_avail_idx,
&vq->last_used_idx) == 0);
vq->avail_wrap_counter = vq->last_avail_idx &
(1 << 15);
vq->last_avail_idx = vq->last_avail_idx &
0x7fff;
vq->used_wrap_counter = vq->last_used_idx &
(1 << 15);
vq->last_used_idx = vq->last_used_idx &
0x7fff;
}
vq->packed_ring = packed_ring;
rte_vhost_enable_guest_notification(vid, i, 0);
}
assert(rte_vhost_get_mem_table(vid, &ctrlr->mem) == 0);
assert(ctrlr->mem != NULL);
assert(alloc_task_pool(ctrlr) == 0);
/* start polling vring */
worker_thread_status = WORKER_STATE_START;
fprintf(stdout, "New Device %s, Device ID %d\n", path, vid);
if (pthread_create(&tid, NULL, &ctrlr_worker, ctrlr) < 0) {
fprintf(stderr, "Worker Thread Started Failed\n");
return -1;
}
/* device has been started */
ctrlr->started = 1;
pthread_detach(tid);
return 0;
}
static void
destroy_device(int vid)
{
char path[PATH_MAX];
struct vhost_blk_ctrlr *ctrlr;
struct vhost_blk_queue *vq;
int i, ret;
ret = rte_vhost_get_ifname(vid, path, PATH_MAX);
if (ret) {
fprintf(stderr, "Destroy Ctrlr Failed\n");
return;
}
fprintf(stdout, "Destroy %s Device ID %d\n", path, vid);
ctrlr = vhost_blk_ctrlr_find(path);
if (!ctrlr) {
fprintf(stderr, "Destroy Ctrlr Failed\n");
return;
}
if (!ctrlr->started)
return;
worker_thread_status = WORKER_STATE_STOP;
sem_wait(&exit_sem);
for (i = 0; i < NUM_OF_BLK_QUEUES; i++) {
vq = &ctrlr->queues[i];
if (vq->packed_ring) {
vq->last_avail_idx |= (vq->avail_wrap_counter <<
15);
vq->last_used_idx |= (vq->used_wrap_counter <<
15);
}
rte_vhost_set_vring_base(ctrlr->vid, i,
vq->last_avail_idx,
vq->last_used_idx);
}
free_task_pool(ctrlr);
free(ctrlr->mem);
ctrlr->started = 0;
}
static int
new_connection(int vid)
{
/* extend the proper features for block device */
vhost_session_install_rte_compat_hooks(vid);
return 0;
}
struct vhost_device_ops vhost_blk_device_ops = {
.new_device = new_device,
.destroy_device = destroy_device,
.new_connection = new_connection,
};
static struct vhost_block_dev *
vhost_blk_bdev_construct(const char *bdev_name,
const char *bdev_serial, uint32_t blk_size, uint64_t blk_cnt,
bool wce_enable)
{
struct vhost_block_dev *bdev;
bdev = rte_zmalloc(NULL, sizeof(*bdev), RTE_CACHE_LINE_SIZE);
if (!bdev)
return NULL;
snprintf(bdev->name, sizeof(bdev->name), "%s", bdev_name);
snprintf(bdev->product_name, sizeof(bdev->product_name), "%s",
bdev_serial);
bdev->blocklen = blk_size;
bdev->blockcnt = blk_cnt;
bdev->write_cache = wce_enable;
fprintf(stdout, "Blocklen=%d, blockcnt=%"PRIx64"\n", bdev->blocklen,
bdev->blockcnt);
/* use memory as disk storage space */
bdev->data = rte_zmalloc(NULL, blk_cnt * blk_size, 0);
if (!bdev->data) {
fprintf(stderr, "No enough reserved huge memory for disk\n");
free(bdev);
return NULL;
}
return bdev;
}
static struct vhost_blk_ctrlr *
vhost_blk_ctrlr_construct(const char *ctrlr_name)
{
int ret;
struct vhost_blk_ctrlr *ctrlr;
char *path;
char cwd[PATH_MAX];
/* always use current directory */
path = getcwd(cwd, PATH_MAX);
if (!path) {
fprintf(stderr, "Cannot get current working directory\n");
return NULL;
}
snprintf(dev_pathname, sizeof(dev_pathname), "%s/%s", path, ctrlr_name);
unlink(dev_pathname);
if (rte_vhost_driver_register(dev_pathname, 0) != 0) {
fprintf(stderr, "Socket %s already exists\n", dev_pathname);
return NULL;
}
ret = rte_vhost_driver_set_features(dev_pathname, VHOST_BLK_FEATURES);
if (ret != 0) {
fprintf(stderr, "Set vhost driver features failed\n");
rte_vhost_driver_unregister(dev_pathname);
return NULL;
}
/* set vhost user protocol features */
vhost_dev_install_rte_compat_hooks(dev_pathname);
ctrlr = rte_zmalloc(NULL, sizeof(*ctrlr), RTE_CACHE_LINE_SIZE);
if (!ctrlr) {
rte_vhost_driver_unregister(dev_pathname);
return NULL;
}
/* hardcoded block device information with 128MiB */
ctrlr->bdev = vhost_blk_bdev_construct("malloc0", "vhost_blk_malloc0",
4096, 32768, 0);
if (!ctrlr->bdev) {
rte_free(ctrlr);
rte_vhost_driver_unregister(dev_pathname);
return NULL;
}
rte_vhost_driver_callback_register(dev_pathname,
&vhost_blk_device_ops);
return ctrlr;
}
static void
vhost_blk_ctrlr_destroy(struct vhost_blk_ctrlr *ctrlr)
{
if (ctrlr->bdev != NULL) {
if (ctrlr->bdev->data != NULL)
rte_free(ctrlr->bdev->data);
rte_free(ctrlr->bdev);
}
rte_free(ctrlr);
rte_vhost_driver_unregister(dev_pathname);
}
static void
signal_handler(__rte_unused int signum)
{
struct vhost_blk_ctrlr *ctrlr;
ctrlr = vhost_blk_ctrlr_find(dev_pathname);
if (ctrlr == NULL)
return;
if (ctrlr->started)
destroy_device(ctrlr->vid);
vhost_blk_ctrlr_destroy(ctrlr);
exit(0);
}
int main(int argc, char *argv[])
{
int ret;
/* init EAL */
ret = rte_eal_init(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");
g_vhost_ctrlr = vhost_blk_ctrlr_construct(CTRLR_NAME);
if (g_vhost_ctrlr == NULL) {
fprintf(stderr, "Construct vhost blk controller failed\n");
return 0;
}
if (sem_init(&exit_sem, 0, 0) < 0) {
fprintf(stderr, "Error init exit_sem\n");
return -1;
}
signal(SIGINT, signal_handler);
ret = rte_vhost_driver_start(dev_pathname);
if (ret < 0) {
fprintf(stderr, "Failed to start vhost driver.\n");
return -1;
}
/* loop for exit the application */
while (1)
sleep(1);
return 0;
}