numam-dpdk/app/test-pmd/cmdline_flow.c
Dekel Peled 1e45c908fe app/testpmd: fix metadata API and Tx insertion
Previous patch introduces the Tx metadata feature, with unnecessary
restrictions on data entry.
It also used the metadata in txonly fwd engine only.

This fix removes the data entry restrictions on metadata item.
It also implements callback function to add the metadata in every
Tx packet, sent by any fwd engine.

Fixes: c18feafa193c ("app/testpmd: support metadata as flow rule item")

Signed-off-by: Dekel Peled <dekelp@mellanox.com>
Acked-by: Ori Kam <orika@mellanox.com>
2018-10-26 22:14:06 +02:00

5049 lines
129 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2016 6WIND S.A.
* Copyright 2016 Mellanox Technologies, Ltd
*/
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <inttypes.h>
#include <errno.h>
#include <ctype.h>
#include <string.h>
#include <arpa/inet.h>
#include <sys/socket.h>
#include <rte_common.h>
#include <rte_eth_ctrl.h>
#include <rte_ethdev.h>
#include <rte_byteorder.h>
#include <cmdline_parse.h>
#include <cmdline_parse_etheraddr.h>
#include <rte_flow.h>
#include "testpmd.h"
/** Parser token indices. */
enum index {
/* Special tokens. */
ZERO = 0,
END,
/* Common tokens. */
INTEGER,
UNSIGNED,
PREFIX,
BOOLEAN,
STRING,
MAC_ADDR,
IPV4_ADDR,
IPV6_ADDR,
RULE_ID,
PORT_ID,
GROUP_ID,
PRIORITY_LEVEL,
/* Top-level command. */
FLOW,
/* Sub-level commands. */
VALIDATE,
CREATE,
DESTROY,
FLUSH,
QUERY,
LIST,
ISOLATE,
/* Destroy arguments. */
DESTROY_RULE,
/* Query arguments. */
QUERY_ACTION,
/* List arguments. */
LIST_GROUP,
/* Validate/create arguments. */
GROUP,
PRIORITY,
INGRESS,
EGRESS,
TRANSFER,
/* Validate/create pattern. */
PATTERN,
ITEM_PARAM_IS,
ITEM_PARAM_SPEC,
ITEM_PARAM_LAST,
ITEM_PARAM_MASK,
ITEM_PARAM_PREFIX,
ITEM_NEXT,
ITEM_END,
ITEM_VOID,
ITEM_INVERT,
ITEM_ANY,
ITEM_ANY_NUM,
ITEM_PF,
ITEM_VF,
ITEM_VF_ID,
ITEM_PHY_PORT,
ITEM_PHY_PORT_INDEX,
ITEM_PORT_ID,
ITEM_PORT_ID_ID,
ITEM_MARK,
ITEM_MARK_ID,
ITEM_RAW,
ITEM_RAW_RELATIVE,
ITEM_RAW_SEARCH,
ITEM_RAW_OFFSET,
ITEM_RAW_LIMIT,
ITEM_RAW_PATTERN,
ITEM_ETH,
ITEM_ETH_DST,
ITEM_ETH_SRC,
ITEM_ETH_TYPE,
ITEM_VLAN,
ITEM_VLAN_TCI,
ITEM_VLAN_PCP,
ITEM_VLAN_DEI,
ITEM_VLAN_VID,
ITEM_VLAN_INNER_TYPE,
ITEM_IPV4,
ITEM_IPV4_TOS,
ITEM_IPV4_TTL,
ITEM_IPV4_PROTO,
ITEM_IPV4_SRC,
ITEM_IPV4_DST,
ITEM_IPV6,
ITEM_IPV6_TC,
ITEM_IPV6_FLOW,
ITEM_IPV6_PROTO,
ITEM_IPV6_HOP,
ITEM_IPV6_SRC,
ITEM_IPV6_DST,
ITEM_ICMP,
ITEM_ICMP_TYPE,
ITEM_ICMP_CODE,
ITEM_UDP,
ITEM_UDP_SRC,
ITEM_UDP_DST,
ITEM_TCP,
ITEM_TCP_SRC,
ITEM_TCP_DST,
ITEM_TCP_FLAGS,
ITEM_SCTP,
ITEM_SCTP_SRC,
ITEM_SCTP_DST,
ITEM_SCTP_TAG,
ITEM_SCTP_CKSUM,
ITEM_VXLAN,
ITEM_VXLAN_VNI,
ITEM_E_TAG,
ITEM_E_TAG_GRP_ECID_B,
ITEM_NVGRE,
ITEM_NVGRE_TNI,
ITEM_MPLS,
ITEM_MPLS_LABEL,
ITEM_GRE,
ITEM_GRE_PROTO,
ITEM_FUZZY,
ITEM_FUZZY_THRESH,
ITEM_GTP,
ITEM_GTP_TEID,
ITEM_GTPC,
ITEM_GTPU,
ITEM_GENEVE,
ITEM_GENEVE_VNI,
ITEM_GENEVE_PROTO,
ITEM_VXLAN_GPE,
ITEM_VXLAN_GPE_VNI,
ITEM_ARP_ETH_IPV4,
ITEM_ARP_ETH_IPV4_SHA,
ITEM_ARP_ETH_IPV4_SPA,
ITEM_ARP_ETH_IPV4_THA,
ITEM_ARP_ETH_IPV4_TPA,
ITEM_IPV6_EXT,
ITEM_IPV6_EXT_NEXT_HDR,
ITEM_ICMP6,
ITEM_ICMP6_TYPE,
ITEM_ICMP6_CODE,
ITEM_ICMP6_ND_NS,
ITEM_ICMP6_ND_NS_TARGET_ADDR,
ITEM_ICMP6_ND_NA,
ITEM_ICMP6_ND_NA_TARGET_ADDR,
ITEM_ICMP6_ND_OPT,
ITEM_ICMP6_ND_OPT_TYPE,
ITEM_ICMP6_ND_OPT_SLA_ETH,
ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
ITEM_ICMP6_ND_OPT_TLA_ETH,
ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
ITEM_META,
ITEM_META_DATA,
/* Validate/create actions. */
ACTIONS,
ACTION_NEXT,
ACTION_END,
ACTION_VOID,
ACTION_PASSTHRU,
ACTION_JUMP,
ACTION_JUMP_GROUP,
ACTION_MARK,
ACTION_MARK_ID,
ACTION_FLAG,
ACTION_QUEUE,
ACTION_QUEUE_INDEX,
ACTION_DROP,
ACTION_COUNT,
ACTION_COUNT_SHARED,
ACTION_COUNT_ID,
ACTION_RSS,
ACTION_RSS_FUNC,
ACTION_RSS_LEVEL,
ACTION_RSS_FUNC_DEFAULT,
ACTION_RSS_FUNC_TOEPLITZ,
ACTION_RSS_FUNC_SIMPLE_XOR,
ACTION_RSS_TYPES,
ACTION_RSS_TYPE,
ACTION_RSS_KEY,
ACTION_RSS_KEY_LEN,
ACTION_RSS_QUEUES,
ACTION_RSS_QUEUE,
ACTION_PF,
ACTION_VF,
ACTION_VF_ORIGINAL,
ACTION_VF_ID,
ACTION_PHY_PORT,
ACTION_PHY_PORT_ORIGINAL,
ACTION_PHY_PORT_INDEX,
ACTION_PORT_ID,
ACTION_PORT_ID_ORIGINAL,
ACTION_PORT_ID_ID,
ACTION_METER,
ACTION_METER_ID,
ACTION_OF_SET_MPLS_TTL,
ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
ACTION_OF_DEC_MPLS_TTL,
ACTION_OF_SET_NW_TTL,
ACTION_OF_SET_NW_TTL_NW_TTL,
ACTION_OF_DEC_NW_TTL,
ACTION_OF_COPY_TTL_OUT,
ACTION_OF_COPY_TTL_IN,
ACTION_OF_POP_VLAN,
ACTION_OF_PUSH_VLAN,
ACTION_OF_PUSH_VLAN_ETHERTYPE,
ACTION_OF_SET_VLAN_VID,
ACTION_OF_SET_VLAN_VID_VLAN_VID,
ACTION_OF_SET_VLAN_PCP,
ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
ACTION_OF_POP_MPLS,
ACTION_OF_POP_MPLS_ETHERTYPE,
ACTION_OF_PUSH_MPLS,
ACTION_OF_PUSH_MPLS_ETHERTYPE,
ACTION_VXLAN_ENCAP,
ACTION_VXLAN_DECAP,
ACTION_NVGRE_ENCAP,
ACTION_NVGRE_DECAP,
ACTION_L2_ENCAP,
ACTION_L2_DECAP,
ACTION_MPLSOGRE_ENCAP,
ACTION_MPLSOGRE_DECAP,
ACTION_MPLSOUDP_ENCAP,
ACTION_MPLSOUDP_DECAP,
ACTION_SET_IPV4_SRC,
ACTION_SET_IPV4_SRC_IPV4_SRC,
ACTION_SET_IPV4_DST,
ACTION_SET_IPV4_DST_IPV4_DST,
ACTION_SET_IPV6_SRC,
ACTION_SET_IPV6_SRC_IPV6_SRC,
ACTION_SET_IPV6_DST,
ACTION_SET_IPV6_DST_IPV6_DST,
ACTION_SET_TP_SRC,
ACTION_SET_TP_SRC_TP_SRC,
ACTION_SET_TP_DST,
ACTION_SET_TP_DST_TP_DST,
ACTION_MAC_SWAP,
ACTION_DEC_TTL,
ACTION_SET_TTL,
ACTION_SET_TTL_TTL,
ACTION_SET_MAC_SRC,
ACTION_SET_MAC_SRC_MAC_SRC,
ACTION_SET_MAC_DST,
ACTION_SET_MAC_DST_MAC_DST,
};
/** Maximum size for pattern in struct rte_flow_item_raw. */
#define ITEM_RAW_PATTERN_SIZE 40
/** Storage size for struct rte_flow_item_raw including pattern. */
#define ITEM_RAW_SIZE \
(sizeof(struct rte_flow_item_raw) + ITEM_RAW_PATTERN_SIZE)
/** Maximum number of queue indices in struct rte_flow_action_rss. */
#define ACTION_RSS_QUEUE_NUM 32
/** Storage for struct rte_flow_action_rss including external data. */
struct action_rss_data {
struct rte_flow_action_rss conf;
uint8_t key[RSS_HASH_KEY_LENGTH];
uint16_t queue[ACTION_RSS_QUEUE_NUM];
};
/** Maximum number of items in struct rte_flow_action_vxlan_encap. */
#define ACTION_VXLAN_ENCAP_ITEMS_NUM 6
/** Storage for struct rte_flow_action_vxlan_encap including external data. */
struct action_vxlan_encap_data {
struct rte_flow_action_vxlan_encap conf;
struct rte_flow_item items[ACTION_VXLAN_ENCAP_ITEMS_NUM];
struct rte_flow_item_eth item_eth;
struct rte_flow_item_vlan item_vlan;
union {
struct rte_flow_item_ipv4 item_ipv4;
struct rte_flow_item_ipv6 item_ipv6;
};
struct rte_flow_item_udp item_udp;
struct rte_flow_item_vxlan item_vxlan;
};
/** Maximum number of items in struct rte_flow_action_nvgre_encap. */
#define ACTION_NVGRE_ENCAP_ITEMS_NUM 5
/** Storage for struct rte_flow_action_nvgre_encap including external data. */
struct action_nvgre_encap_data {
struct rte_flow_action_nvgre_encap conf;
struct rte_flow_item items[ACTION_NVGRE_ENCAP_ITEMS_NUM];
struct rte_flow_item_eth item_eth;
struct rte_flow_item_vlan item_vlan;
union {
struct rte_flow_item_ipv4 item_ipv4;
struct rte_flow_item_ipv6 item_ipv6;
};
struct rte_flow_item_nvgre item_nvgre;
};
/** Maximum data size in struct rte_flow_action_raw_encap. */
#define ACTION_RAW_ENCAP_MAX_DATA 128
/** Storage for struct rte_flow_action_raw_encap including external data. */
struct action_raw_encap_data {
struct rte_flow_action_raw_encap conf;
uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
uint8_t preserve[ACTION_RAW_ENCAP_MAX_DATA];
};
/** Storage for struct rte_flow_action_raw_decap including external data. */
struct action_raw_decap_data {
struct rte_flow_action_raw_decap conf;
uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
};
/** Maximum number of subsequent tokens and arguments on the stack. */
#define CTX_STACK_SIZE 16
/** Parser context. */
struct context {
/** Stack of subsequent token lists to process. */
const enum index *next[CTX_STACK_SIZE];
/** Arguments for stacked tokens. */
const void *args[CTX_STACK_SIZE];
enum index curr; /**< Current token index. */
enum index prev; /**< Index of the last token seen. */
int next_num; /**< Number of entries in next[]. */
int args_num; /**< Number of entries in args[]. */
uint32_t eol:1; /**< EOL has been detected. */
uint32_t last:1; /**< No more arguments. */
portid_t port; /**< Current port ID (for completions). */
uint32_t objdata; /**< Object-specific data. */
void *object; /**< Address of current object for relative offsets. */
void *objmask; /**< Object a full mask must be written to. */
};
/** Token argument. */
struct arg {
uint32_t hton:1; /**< Use network byte ordering. */
uint32_t sign:1; /**< Value is signed. */
uint32_t bounded:1; /**< Value is bounded. */
uintmax_t min; /**< Minimum value if bounded. */
uintmax_t max; /**< Maximum value if bounded. */
uint32_t offset; /**< Relative offset from ctx->object. */
uint32_t size; /**< Field size. */
const uint8_t *mask; /**< Bit-mask to use instead of offset/size. */
};
/** Parser token definition. */
struct token {
/** Type displayed during completion (defaults to "TOKEN"). */
const char *type;
/** Help displayed during completion (defaults to token name). */
const char *help;
/** Private data used by parser functions. */
const void *priv;
/**
* Lists of subsequent tokens to push on the stack. Each call to the
* parser consumes the last entry of that stack.
*/
const enum index *const *next;
/** Arguments stack for subsequent tokens that need them. */
const struct arg *const *args;
/**
* Token-processing callback, returns -1 in case of error, the
* length of the matched string otherwise. If NULL, attempts to
* match the token name.
*
* If buf is not NULL, the result should be stored in it according
* to context. An error is returned if not large enough.
*/
int (*call)(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size);
/**
* Callback that provides possible values for this token, used for
* completion. Returns -1 in case of error, the number of possible
* values otherwise. If NULL, the token name is used.
*
* If buf is not NULL, entry index ent is written to buf and the
* full length of the entry is returned (same behavior as
* snprintf()).
*/
int (*comp)(struct context *ctx, const struct token *token,
unsigned int ent, char *buf, unsigned int size);
/** Mandatory token name, no default value. */
const char *name;
};
/** Static initializer for the next field. */
#define NEXT(...) (const enum index *const []){ __VA_ARGS__, NULL, }
/** Static initializer for a NEXT() entry. */
#define NEXT_ENTRY(...) (const enum index []){ __VA_ARGS__, ZERO, }
/** Static initializer for the args field. */
#define ARGS(...) (const struct arg *const []){ __VA_ARGS__, NULL, }
/** Static initializer for ARGS() to target a field. */
#define ARGS_ENTRY(s, f) \
(&(const struct arg){ \
.offset = offsetof(s, f), \
.size = sizeof(((s *)0)->f), \
})
/** Static initializer for ARGS() to target a bit-field. */
#define ARGS_ENTRY_BF(s, f, b) \
(&(const struct arg){ \
.size = sizeof(s), \
.mask = (const void *)&(const s){ .f = (1 << (b)) - 1 }, \
})
/** Static initializer for ARGS() to target an arbitrary bit-mask. */
#define ARGS_ENTRY_MASK(s, f, m) \
(&(const struct arg){ \
.offset = offsetof(s, f), \
.size = sizeof(((s *)0)->f), \
.mask = (const void *)(m), \
})
/** Same as ARGS_ENTRY_MASK() using network byte ordering for the value. */
#define ARGS_ENTRY_MASK_HTON(s, f, m) \
(&(const struct arg){ \
.hton = 1, \
.offset = offsetof(s, f), \
.size = sizeof(((s *)0)->f), \
.mask = (const void *)(m), \
})
/** Static initializer for ARGS() to target a pointer. */
#define ARGS_ENTRY_PTR(s, f) \
(&(const struct arg){ \
.size = sizeof(*((s *)0)->f), \
})
/** Static initializer for ARGS() with arbitrary offset and size. */
#define ARGS_ENTRY_ARB(o, s) \
(&(const struct arg){ \
.offset = (o), \
.size = (s), \
})
/** Same as ARGS_ENTRY_ARB() with bounded values. */
#define ARGS_ENTRY_ARB_BOUNDED(o, s, i, a) \
(&(const struct arg){ \
.bounded = 1, \
.min = (i), \
.max = (a), \
.offset = (o), \
.size = (s), \
})
/** Same as ARGS_ENTRY() using network byte ordering. */
#define ARGS_ENTRY_HTON(s, f) \
(&(const struct arg){ \
.hton = 1, \
.offset = offsetof(s, f), \
.size = sizeof(((s *)0)->f), \
})
/** Parser output buffer layout expected by cmd_flow_parsed(). */
struct buffer {
enum index command; /**< Flow command. */
portid_t port; /**< Affected port ID. */
union {
struct {
struct rte_flow_attr attr;
struct rte_flow_item *pattern;
struct rte_flow_action *actions;
uint32_t pattern_n;
uint32_t actions_n;
uint8_t *data;
} vc; /**< Validate/create arguments. */
struct {
uint32_t *rule;
uint32_t rule_n;
} destroy; /**< Destroy arguments. */
struct {
uint32_t rule;
struct rte_flow_action action;
} query; /**< Query arguments. */
struct {
uint32_t *group;
uint32_t group_n;
} list; /**< List arguments. */
struct {
int set;
} isolate; /**< Isolated mode arguments. */
} args; /**< Command arguments. */
};
/** Private data for pattern items. */
struct parse_item_priv {
enum rte_flow_item_type type; /**< Item type. */
uint32_t size; /**< Size of item specification structure. */
};
#define PRIV_ITEM(t, s) \
(&(const struct parse_item_priv){ \
.type = RTE_FLOW_ITEM_TYPE_ ## t, \
.size = s, \
})
/** Private data for actions. */
struct parse_action_priv {
enum rte_flow_action_type type; /**< Action type. */
uint32_t size; /**< Size of action configuration structure. */
};
#define PRIV_ACTION(t, s) \
(&(const struct parse_action_priv){ \
.type = RTE_FLOW_ACTION_TYPE_ ## t, \
.size = s, \
})
static const enum index next_vc_attr[] = {
GROUP,
PRIORITY,
INGRESS,
EGRESS,
TRANSFER,
PATTERN,
ZERO,
};
static const enum index next_destroy_attr[] = {
DESTROY_RULE,
END,
ZERO,
};
static const enum index next_list_attr[] = {
LIST_GROUP,
END,
ZERO,
};
static const enum index item_param[] = {
ITEM_PARAM_IS,
ITEM_PARAM_SPEC,
ITEM_PARAM_LAST,
ITEM_PARAM_MASK,
ITEM_PARAM_PREFIX,
ZERO,
};
static const enum index next_item[] = {
ITEM_END,
ITEM_VOID,
ITEM_INVERT,
ITEM_ANY,
ITEM_PF,
ITEM_VF,
ITEM_PHY_PORT,
ITEM_PORT_ID,
ITEM_MARK,
ITEM_RAW,
ITEM_ETH,
ITEM_VLAN,
ITEM_IPV4,
ITEM_IPV6,
ITEM_ICMP,
ITEM_UDP,
ITEM_TCP,
ITEM_SCTP,
ITEM_VXLAN,
ITEM_E_TAG,
ITEM_NVGRE,
ITEM_MPLS,
ITEM_GRE,
ITEM_FUZZY,
ITEM_GTP,
ITEM_GTPC,
ITEM_GTPU,
ITEM_GENEVE,
ITEM_VXLAN_GPE,
ITEM_ARP_ETH_IPV4,
ITEM_IPV6_EXT,
ITEM_ICMP6,
ITEM_ICMP6_ND_NS,
ITEM_ICMP6_ND_NA,
ITEM_ICMP6_ND_OPT,
ITEM_ICMP6_ND_OPT_SLA_ETH,
ITEM_ICMP6_ND_OPT_TLA_ETH,
ITEM_META,
ZERO,
};
static const enum index item_fuzzy[] = {
ITEM_FUZZY_THRESH,
ITEM_NEXT,
ZERO,
};
static const enum index item_any[] = {
ITEM_ANY_NUM,
ITEM_NEXT,
ZERO,
};
static const enum index item_vf[] = {
ITEM_VF_ID,
ITEM_NEXT,
ZERO,
};
static const enum index item_phy_port[] = {
ITEM_PHY_PORT_INDEX,
ITEM_NEXT,
ZERO,
};
static const enum index item_port_id[] = {
ITEM_PORT_ID_ID,
ITEM_NEXT,
ZERO,
};
static const enum index item_mark[] = {
ITEM_MARK_ID,
ITEM_NEXT,
ZERO,
};
static const enum index item_raw[] = {
ITEM_RAW_RELATIVE,
ITEM_RAW_SEARCH,
ITEM_RAW_OFFSET,
ITEM_RAW_LIMIT,
ITEM_RAW_PATTERN,
ITEM_NEXT,
ZERO,
};
static const enum index item_eth[] = {
ITEM_ETH_DST,
ITEM_ETH_SRC,
ITEM_ETH_TYPE,
ITEM_NEXT,
ZERO,
};
static const enum index item_vlan[] = {
ITEM_VLAN_TCI,
ITEM_VLAN_PCP,
ITEM_VLAN_DEI,
ITEM_VLAN_VID,
ITEM_VLAN_INNER_TYPE,
ITEM_NEXT,
ZERO,
};
static const enum index item_ipv4[] = {
ITEM_IPV4_TOS,
ITEM_IPV4_TTL,
ITEM_IPV4_PROTO,
ITEM_IPV4_SRC,
ITEM_IPV4_DST,
ITEM_NEXT,
ZERO,
};
static const enum index item_ipv6[] = {
ITEM_IPV6_TC,
ITEM_IPV6_FLOW,
ITEM_IPV6_PROTO,
ITEM_IPV6_HOP,
ITEM_IPV6_SRC,
ITEM_IPV6_DST,
ITEM_NEXT,
ZERO,
};
static const enum index item_icmp[] = {
ITEM_ICMP_TYPE,
ITEM_ICMP_CODE,
ITEM_NEXT,
ZERO,
};
static const enum index item_udp[] = {
ITEM_UDP_SRC,
ITEM_UDP_DST,
ITEM_NEXT,
ZERO,
};
static const enum index item_tcp[] = {
ITEM_TCP_SRC,
ITEM_TCP_DST,
ITEM_TCP_FLAGS,
ITEM_NEXT,
ZERO,
};
static const enum index item_sctp[] = {
ITEM_SCTP_SRC,
ITEM_SCTP_DST,
ITEM_SCTP_TAG,
ITEM_SCTP_CKSUM,
ITEM_NEXT,
ZERO,
};
static const enum index item_vxlan[] = {
ITEM_VXLAN_VNI,
ITEM_NEXT,
ZERO,
};
static const enum index item_e_tag[] = {
ITEM_E_TAG_GRP_ECID_B,
ITEM_NEXT,
ZERO,
};
static const enum index item_nvgre[] = {
ITEM_NVGRE_TNI,
ITEM_NEXT,
ZERO,
};
static const enum index item_mpls[] = {
ITEM_MPLS_LABEL,
ITEM_NEXT,
ZERO,
};
static const enum index item_gre[] = {
ITEM_GRE_PROTO,
ITEM_NEXT,
ZERO,
};
static const enum index item_gtp[] = {
ITEM_GTP_TEID,
ITEM_NEXT,
ZERO,
};
static const enum index item_geneve[] = {
ITEM_GENEVE_VNI,
ITEM_GENEVE_PROTO,
ITEM_NEXT,
ZERO,
};
static const enum index item_vxlan_gpe[] = {
ITEM_VXLAN_GPE_VNI,
ITEM_NEXT,
ZERO,
};
static const enum index item_arp_eth_ipv4[] = {
ITEM_ARP_ETH_IPV4_SHA,
ITEM_ARP_ETH_IPV4_SPA,
ITEM_ARP_ETH_IPV4_THA,
ITEM_ARP_ETH_IPV4_TPA,
ITEM_NEXT,
ZERO,
};
static const enum index item_ipv6_ext[] = {
ITEM_IPV6_EXT_NEXT_HDR,
ITEM_NEXT,
ZERO,
};
static const enum index item_icmp6[] = {
ITEM_ICMP6_TYPE,
ITEM_ICMP6_CODE,
ITEM_NEXT,
ZERO,
};
static const enum index item_icmp6_nd_ns[] = {
ITEM_ICMP6_ND_NS_TARGET_ADDR,
ITEM_NEXT,
ZERO,
};
static const enum index item_icmp6_nd_na[] = {
ITEM_ICMP6_ND_NA_TARGET_ADDR,
ITEM_NEXT,
ZERO,
};
static const enum index item_icmp6_nd_opt[] = {
ITEM_ICMP6_ND_OPT_TYPE,
ITEM_NEXT,
ZERO,
};
static const enum index item_icmp6_nd_opt_sla_eth[] = {
ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
ITEM_NEXT,
ZERO,
};
static const enum index item_icmp6_nd_opt_tla_eth[] = {
ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
ITEM_NEXT,
ZERO,
};
static const enum index item_meta[] = {
ITEM_META_DATA,
ITEM_NEXT,
ZERO,
};
static const enum index next_action[] = {
ACTION_END,
ACTION_VOID,
ACTION_PASSTHRU,
ACTION_JUMP,
ACTION_MARK,
ACTION_FLAG,
ACTION_QUEUE,
ACTION_DROP,
ACTION_COUNT,
ACTION_RSS,
ACTION_PF,
ACTION_VF,
ACTION_PHY_PORT,
ACTION_PORT_ID,
ACTION_METER,
ACTION_OF_SET_MPLS_TTL,
ACTION_OF_DEC_MPLS_TTL,
ACTION_OF_SET_NW_TTL,
ACTION_OF_DEC_NW_TTL,
ACTION_OF_COPY_TTL_OUT,
ACTION_OF_COPY_TTL_IN,
ACTION_OF_POP_VLAN,
ACTION_OF_PUSH_VLAN,
ACTION_OF_SET_VLAN_VID,
ACTION_OF_SET_VLAN_PCP,
ACTION_OF_POP_MPLS,
ACTION_OF_PUSH_MPLS,
ACTION_VXLAN_ENCAP,
ACTION_VXLAN_DECAP,
ACTION_NVGRE_ENCAP,
ACTION_NVGRE_DECAP,
ACTION_L2_ENCAP,
ACTION_L2_DECAP,
ACTION_MPLSOGRE_ENCAP,
ACTION_MPLSOGRE_DECAP,
ACTION_MPLSOUDP_ENCAP,
ACTION_MPLSOUDP_DECAP,
ACTION_SET_IPV4_SRC,
ACTION_SET_IPV4_DST,
ACTION_SET_IPV6_SRC,
ACTION_SET_IPV6_DST,
ACTION_SET_TP_SRC,
ACTION_SET_TP_DST,
ACTION_MAC_SWAP,
ACTION_DEC_TTL,
ACTION_SET_TTL,
ACTION_SET_MAC_SRC,
ACTION_SET_MAC_DST,
ZERO,
};
static const enum index action_mark[] = {
ACTION_MARK_ID,
ACTION_NEXT,
ZERO,
};
static const enum index action_queue[] = {
ACTION_QUEUE_INDEX,
ACTION_NEXT,
ZERO,
};
static const enum index action_count[] = {
ACTION_COUNT_ID,
ACTION_COUNT_SHARED,
ACTION_NEXT,
ZERO,
};
static const enum index action_rss[] = {
ACTION_RSS_FUNC,
ACTION_RSS_LEVEL,
ACTION_RSS_TYPES,
ACTION_RSS_KEY,
ACTION_RSS_KEY_LEN,
ACTION_RSS_QUEUES,
ACTION_NEXT,
ZERO,
};
static const enum index action_vf[] = {
ACTION_VF_ORIGINAL,
ACTION_VF_ID,
ACTION_NEXT,
ZERO,
};
static const enum index action_phy_port[] = {
ACTION_PHY_PORT_ORIGINAL,
ACTION_PHY_PORT_INDEX,
ACTION_NEXT,
ZERO,
};
static const enum index action_port_id[] = {
ACTION_PORT_ID_ORIGINAL,
ACTION_PORT_ID_ID,
ACTION_NEXT,
ZERO,
};
static const enum index action_meter[] = {
ACTION_METER_ID,
ACTION_NEXT,
ZERO,
};
static const enum index action_of_set_mpls_ttl[] = {
ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
ACTION_NEXT,
ZERO,
};
static const enum index action_of_set_nw_ttl[] = {
ACTION_OF_SET_NW_TTL_NW_TTL,
ACTION_NEXT,
ZERO,
};
static const enum index action_of_push_vlan[] = {
ACTION_OF_PUSH_VLAN_ETHERTYPE,
ACTION_NEXT,
ZERO,
};
static const enum index action_of_set_vlan_vid[] = {
ACTION_OF_SET_VLAN_VID_VLAN_VID,
ACTION_NEXT,
ZERO,
};
static const enum index action_of_set_vlan_pcp[] = {
ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
ACTION_NEXT,
ZERO,
};
static const enum index action_of_pop_mpls[] = {
ACTION_OF_POP_MPLS_ETHERTYPE,
ACTION_NEXT,
ZERO,
};
static const enum index action_of_push_mpls[] = {
ACTION_OF_PUSH_MPLS_ETHERTYPE,
ACTION_NEXT,
ZERO,
};
static const enum index action_set_ipv4_src[] = {
ACTION_SET_IPV4_SRC_IPV4_SRC,
ACTION_NEXT,
ZERO,
};
static const enum index action_set_mac_src[] = {
ACTION_SET_MAC_SRC_MAC_SRC,
ACTION_NEXT,
ZERO,
};
static const enum index action_set_ipv4_dst[] = {
ACTION_SET_IPV4_DST_IPV4_DST,
ACTION_NEXT,
ZERO,
};
static const enum index action_set_ipv6_src[] = {
ACTION_SET_IPV6_SRC_IPV6_SRC,
ACTION_NEXT,
ZERO,
};
static const enum index action_set_ipv6_dst[] = {
ACTION_SET_IPV6_DST_IPV6_DST,
ACTION_NEXT,
ZERO,
};
static const enum index action_set_tp_src[] = {
ACTION_SET_TP_SRC_TP_SRC,
ACTION_NEXT,
ZERO,
};
static const enum index action_set_tp_dst[] = {
ACTION_SET_TP_DST_TP_DST,
ACTION_NEXT,
ZERO,
};
static const enum index action_set_ttl[] = {
ACTION_SET_TTL_TTL,
ACTION_NEXT,
ZERO,
};
static const enum index action_jump[] = {
ACTION_JUMP_GROUP,
ACTION_NEXT,
ZERO,
};
static const enum index action_set_mac_dst[] = {
ACTION_SET_MAC_DST_MAC_DST,
ACTION_NEXT,
ZERO,
};
static int parse_init(struct context *, const struct token *,
const char *, unsigned int,
void *, unsigned int);
static int parse_vc(struct context *, const struct token *,
const char *, unsigned int,
void *, unsigned int);
static int parse_vc_spec(struct context *, const struct token *,
const char *, unsigned int, void *, unsigned int);
static int parse_vc_conf(struct context *, const struct token *,
const char *, unsigned int, void *, unsigned int);
static int parse_vc_action_rss(struct context *, const struct token *,
const char *, unsigned int, void *,
unsigned int);
static int parse_vc_action_rss_func(struct context *, const struct token *,
const char *, unsigned int, void *,
unsigned int);
static int parse_vc_action_rss_type(struct context *, const struct token *,
const char *, unsigned int, void *,
unsigned int);
static int parse_vc_action_rss_queue(struct context *, const struct token *,
const char *, unsigned int, void *,
unsigned int);
static int parse_vc_action_vxlan_encap(struct context *, const struct token *,
const char *, unsigned int, void *,
unsigned int);
static int parse_vc_action_nvgre_encap(struct context *, const struct token *,
const char *, unsigned int, void *,
unsigned int);
static int parse_vc_action_l2_encap(struct context *, const struct token *,
const char *, unsigned int, void *,
unsigned int);
static int parse_vc_action_l2_decap(struct context *, const struct token *,
const char *, unsigned int, void *,
unsigned int);
static int parse_vc_action_mplsogre_encap(struct context *,
const struct token *, const char *,
unsigned int, void *, unsigned int);
static int parse_vc_action_mplsogre_decap(struct context *,
const struct token *, const char *,
unsigned int, void *, unsigned int);
static int parse_vc_action_mplsoudp_encap(struct context *,
const struct token *, const char *,
unsigned int, void *, unsigned int);
static int parse_vc_action_mplsoudp_decap(struct context *,
const struct token *, const char *,
unsigned int, void *, unsigned int);
static int parse_destroy(struct context *, const struct token *,
const char *, unsigned int,
void *, unsigned int);
static int parse_flush(struct context *, const struct token *,
const char *, unsigned int,
void *, unsigned int);
static int parse_query(struct context *, const struct token *,
const char *, unsigned int,
void *, unsigned int);
static int parse_action(struct context *, const struct token *,
const char *, unsigned int,
void *, unsigned int);
static int parse_list(struct context *, const struct token *,
const char *, unsigned int,
void *, unsigned int);
static int parse_isolate(struct context *, const struct token *,
const char *, unsigned int,
void *, unsigned int);
static int parse_int(struct context *, const struct token *,
const char *, unsigned int,
void *, unsigned int);
static int parse_prefix(struct context *, const struct token *,
const char *, unsigned int,
void *, unsigned int);
static int parse_boolean(struct context *, const struct token *,
const char *, unsigned int,
void *, unsigned int);
static int parse_string(struct context *, const struct token *,
const char *, unsigned int,
void *, unsigned int);
static int parse_mac_addr(struct context *, const struct token *,
const char *, unsigned int,
void *, unsigned int);
static int parse_ipv4_addr(struct context *, const struct token *,
const char *, unsigned int,
void *, unsigned int);
static int parse_ipv6_addr(struct context *, const struct token *,
const char *, unsigned int,
void *, unsigned int);
static int parse_port(struct context *, const struct token *,
const char *, unsigned int,
void *, unsigned int);
static int comp_none(struct context *, const struct token *,
unsigned int, char *, unsigned int);
static int comp_boolean(struct context *, const struct token *,
unsigned int, char *, unsigned int);
static int comp_action(struct context *, const struct token *,
unsigned int, char *, unsigned int);
static int comp_port(struct context *, const struct token *,
unsigned int, char *, unsigned int);
static int comp_rule_id(struct context *, const struct token *,
unsigned int, char *, unsigned int);
static int comp_vc_action_rss_type(struct context *, const struct token *,
unsigned int, char *, unsigned int);
static int comp_vc_action_rss_queue(struct context *, const struct token *,
unsigned int, char *, unsigned int);
/** Token definitions. */
static const struct token token_list[] = {
/* Special tokens. */
[ZERO] = {
.name = "ZERO",
.help = "null entry, abused as the entry point",
.next = NEXT(NEXT_ENTRY(FLOW)),
},
[END] = {
.name = "",
.type = "RETURN",
.help = "command may end here",
},
/* Common tokens. */
[INTEGER] = {
.name = "{int}",
.type = "INTEGER",
.help = "integer value",
.call = parse_int,
.comp = comp_none,
},
[UNSIGNED] = {
.name = "{unsigned}",
.type = "UNSIGNED",
.help = "unsigned integer value",
.call = parse_int,
.comp = comp_none,
},
[PREFIX] = {
.name = "{prefix}",
.type = "PREFIX",
.help = "prefix length for bit-mask",
.call = parse_prefix,
.comp = comp_none,
},
[BOOLEAN] = {
.name = "{boolean}",
.type = "BOOLEAN",
.help = "any boolean value",
.call = parse_boolean,
.comp = comp_boolean,
},
[STRING] = {
.name = "{string}",
.type = "STRING",
.help = "fixed string",
.call = parse_string,
.comp = comp_none,
},
[MAC_ADDR] = {
.name = "{MAC address}",
.type = "MAC-48",
.help = "standard MAC address notation",
.call = parse_mac_addr,
.comp = comp_none,
},
[IPV4_ADDR] = {
.name = "{IPv4 address}",
.type = "IPV4 ADDRESS",
.help = "standard IPv4 address notation",
.call = parse_ipv4_addr,
.comp = comp_none,
},
[IPV6_ADDR] = {
.name = "{IPv6 address}",
.type = "IPV6 ADDRESS",
.help = "standard IPv6 address notation",
.call = parse_ipv6_addr,
.comp = comp_none,
},
[RULE_ID] = {
.name = "{rule id}",
.type = "RULE ID",
.help = "rule identifier",
.call = parse_int,
.comp = comp_rule_id,
},
[PORT_ID] = {
.name = "{port_id}",
.type = "PORT ID",
.help = "port identifier",
.call = parse_port,
.comp = comp_port,
},
[GROUP_ID] = {
.name = "{group_id}",
.type = "GROUP ID",
.help = "group identifier",
.call = parse_int,
.comp = comp_none,
},
[PRIORITY_LEVEL] = {
.name = "{level}",
.type = "PRIORITY",
.help = "priority level",
.call = parse_int,
.comp = comp_none,
},
/* Top-level command. */
[FLOW] = {
.name = "flow",
.type = "{command} {port_id} [{arg} [...]]",
.help = "manage ingress/egress flow rules",
.next = NEXT(NEXT_ENTRY
(VALIDATE,
CREATE,
DESTROY,
FLUSH,
LIST,
QUERY,
ISOLATE)),
.call = parse_init,
},
/* Sub-level commands. */
[VALIDATE] = {
.name = "validate",
.help = "check whether a flow rule can be created",
.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
.args = ARGS(ARGS_ENTRY(struct buffer, port)),
.call = parse_vc,
},
[CREATE] = {
.name = "create",
.help = "create a flow rule",
.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
.args = ARGS(ARGS_ENTRY(struct buffer, port)),
.call = parse_vc,
},
[DESTROY] = {
.name = "destroy",
.help = "destroy specific flow rules",
.next = NEXT(NEXT_ENTRY(DESTROY_RULE), NEXT_ENTRY(PORT_ID)),
.args = ARGS(ARGS_ENTRY(struct buffer, port)),
.call = parse_destroy,
},
[FLUSH] = {
.name = "flush",
.help = "destroy all flow rules",
.next = NEXT(NEXT_ENTRY(PORT_ID)),
.args = ARGS(ARGS_ENTRY(struct buffer, port)),
.call = parse_flush,
},
[QUERY] = {
.name = "query",
.help = "query an existing flow rule",
.next = NEXT(NEXT_ENTRY(QUERY_ACTION),
NEXT_ENTRY(RULE_ID),
NEXT_ENTRY(PORT_ID)),
.args = ARGS(ARGS_ENTRY(struct buffer, args.query.action.type),
ARGS_ENTRY(struct buffer, args.query.rule),
ARGS_ENTRY(struct buffer, port)),
.call = parse_query,
},
[LIST] = {
.name = "list",
.help = "list existing flow rules",
.next = NEXT(next_list_attr, NEXT_ENTRY(PORT_ID)),
.args = ARGS(ARGS_ENTRY(struct buffer, port)),
.call = parse_list,
},
[ISOLATE] = {
.name = "isolate",
.help = "restrict ingress traffic to the defined flow rules",
.next = NEXT(NEXT_ENTRY(BOOLEAN),
NEXT_ENTRY(PORT_ID)),
.args = ARGS(ARGS_ENTRY(struct buffer, args.isolate.set),
ARGS_ENTRY(struct buffer, port)),
.call = parse_isolate,
},
/* Destroy arguments. */
[DESTROY_RULE] = {
.name = "rule",
.help = "specify a rule identifier",
.next = NEXT(next_destroy_attr, NEXT_ENTRY(RULE_ID)),
.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.destroy.rule)),
.call = parse_destroy,
},
/* Query arguments. */
[QUERY_ACTION] = {
.name = "{action}",
.type = "ACTION",
.help = "action to query, must be part of the rule",
.call = parse_action,
.comp = comp_action,
},
/* List arguments. */
[LIST_GROUP] = {
.name = "group",
.help = "specify a group",
.next = NEXT(next_list_attr, NEXT_ENTRY(GROUP_ID)),
.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.list.group)),
.call = parse_list,
},
/* Validate/create attributes. */
[GROUP] = {
.name = "group",
.help = "specify a group",
.next = NEXT(next_vc_attr, NEXT_ENTRY(GROUP_ID)),
.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, group)),
.call = parse_vc,
},
[PRIORITY] = {
.name = "priority",
.help = "specify a priority level",
.next = NEXT(next_vc_attr, NEXT_ENTRY(PRIORITY_LEVEL)),
.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, priority)),
.call = parse_vc,
},
[INGRESS] = {
.name = "ingress",
.help = "affect rule to ingress",
.next = NEXT(next_vc_attr),
.call = parse_vc,
},
[EGRESS] = {
.name = "egress",
.help = "affect rule to egress",
.next = NEXT(next_vc_attr),
.call = parse_vc,
},
[TRANSFER] = {
.name = "transfer",
.help = "apply rule directly to endpoints found in pattern",
.next = NEXT(next_vc_attr),
.call = parse_vc,
},
/* Validate/create pattern. */
[PATTERN] = {
.name = "pattern",
.help = "submit a list of pattern items",
.next = NEXT(next_item),
.call = parse_vc,
},
[ITEM_PARAM_IS] = {
.name = "is",
.help = "match value perfectly (with full bit-mask)",
.call = parse_vc_spec,
},
[ITEM_PARAM_SPEC] = {
.name = "spec",
.help = "match value according to configured bit-mask",
.call = parse_vc_spec,
},
[ITEM_PARAM_LAST] = {
.name = "last",
.help = "specify upper bound to establish a range",
.call = parse_vc_spec,
},
[ITEM_PARAM_MASK] = {
.name = "mask",
.help = "specify bit-mask with relevant bits set to one",
.call = parse_vc_spec,
},
[ITEM_PARAM_PREFIX] = {
.name = "prefix",
.help = "generate bit-mask from a prefix length",
.call = parse_vc_spec,
},
[ITEM_NEXT] = {
.name = "/",
.help = "specify next pattern item",
.next = NEXT(next_item),
},
[ITEM_END] = {
.name = "end",
.help = "end list of pattern items",
.priv = PRIV_ITEM(END, 0),
.next = NEXT(NEXT_ENTRY(ACTIONS)),
.call = parse_vc,
},
[ITEM_VOID] = {
.name = "void",
.help = "no-op pattern item",
.priv = PRIV_ITEM(VOID, 0),
.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
.call = parse_vc,
},
[ITEM_INVERT] = {
.name = "invert",
.help = "perform actions when pattern does not match",
.priv = PRIV_ITEM(INVERT, 0),
.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
.call = parse_vc,
},
[ITEM_ANY] = {
.name = "any",
.help = "match any protocol for the current layer",
.priv = PRIV_ITEM(ANY, sizeof(struct rte_flow_item_any)),
.next = NEXT(item_any),
.call = parse_vc,
},
[ITEM_ANY_NUM] = {
.name = "num",
.help = "number of layers covered",
.next = NEXT(item_any, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY(struct rte_flow_item_any, num)),
},
[ITEM_PF] = {
.name = "pf",
.help = "match traffic from/to the physical function",
.priv = PRIV_ITEM(PF, 0),
.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
.call = parse_vc,
},
[ITEM_VF] = {
.name = "vf",
.help = "match traffic from/to a virtual function ID",
.priv = PRIV_ITEM(VF, sizeof(struct rte_flow_item_vf)),
.next = NEXT(item_vf),
.call = parse_vc,
},
[ITEM_VF_ID] = {
.name = "id",
.help = "VF ID",
.next = NEXT(item_vf, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY(struct rte_flow_item_vf, id)),
},
[ITEM_PHY_PORT] = {
.name = "phy_port",
.help = "match traffic from/to a specific physical port",
.priv = PRIV_ITEM(PHY_PORT,
sizeof(struct rte_flow_item_phy_port)),
.next = NEXT(item_phy_port),
.call = parse_vc,
},
[ITEM_PHY_PORT_INDEX] = {
.name = "index",
.help = "physical port index",
.next = NEXT(item_phy_port, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY(struct rte_flow_item_phy_port, index)),
},
[ITEM_PORT_ID] = {
.name = "port_id",
.help = "match traffic from/to a given DPDK port ID",
.priv = PRIV_ITEM(PORT_ID,
sizeof(struct rte_flow_item_port_id)),
.next = NEXT(item_port_id),
.call = parse_vc,
},
[ITEM_PORT_ID_ID] = {
.name = "id",
.help = "DPDK port ID",
.next = NEXT(item_port_id, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY(struct rte_flow_item_port_id, id)),
},
[ITEM_MARK] = {
.name = "mark",
.help = "match traffic against value set in previously matched rule",
.priv = PRIV_ITEM(MARK, sizeof(struct rte_flow_item_mark)),
.next = NEXT(item_mark),
.call = parse_vc,
},
[ITEM_MARK_ID] = {
.name = "id",
.help = "Integer value to match against",
.next = NEXT(item_mark, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY(struct rte_flow_item_mark, id)),
},
[ITEM_RAW] = {
.name = "raw",
.help = "match an arbitrary byte string",
.priv = PRIV_ITEM(RAW, ITEM_RAW_SIZE),
.next = NEXT(item_raw),
.call = parse_vc,
},
[ITEM_RAW_RELATIVE] = {
.name = "relative",
.help = "look for pattern after the previous item",
.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
relative, 1)),
},
[ITEM_RAW_SEARCH] = {
.name = "search",
.help = "search pattern from offset (see also limit)",
.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
search, 1)),
},
[ITEM_RAW_OFFSET] = {
.name = "offset",
.help = "absolute or relative offset for pattern",
.next = NEXT(item_raw, NEXT_ENTRY(INTEGER), item_param),
.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, offset)),
},
[ITEM_RAW_LIMIT] = {
.name = "limit",
.help = "search area limit for start of pattern",
.next = NEXT(item_raw, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, limit)),
},
[ITEM_RAW_PATTERN] = {
.name = "pattern",
.help = "byte string to look for",
.next = NEXT(item_raw,
NEXT_ENTRY(STRING),
NEXT_ENTRY(ITEM_PARAM_IS,
ITEM_PARAM_SPEC,
ITEM_PARAM_MASK)),
.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, pattern),
ARGS_ENTRY(struct rte_flow_item_raw, length),
ARGS_ENTRY_ARB(sizeof(struct rte_flow_item_raw),
ITEM_RAW_PATTERN_SIZE)),
},
[ITEM_ETH] = {
.name = "eth",
.help = "match Ethernet header",
.priv = PRIV_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
.next = NEXT(item_eth),
.call = parse_vc,
},
[ITEM_ETH_DST] = {
.name = "dst",
.help = "destination MAC",
.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, dst)),
},
[ITEM_ETH_SRC] = {
.name = "src",
.help = "source MAC",
.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, src)),
},
[ITEM_ETH_TYPE] = {
.name = "type",
.help = "EtherType",
.next = NEXT(item_eth, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, type)),
},
[ITEM_VLAN] = {
.name = "vlan",
.help = "match 802.1Q/ad VLAN tag",
.priv = PRIV_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
.next = NEXT(item_vlan),
.call = parse_vc,
},
[ITEM_VLAN_TCI] = {
.name = "tci",
.help = "tag control information",
.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, tci)),
},
[ITEM_VLAN_PCP] = {
.name = "pcp",
.help = "priority code point",
.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
tci, "\xe0\x00")),
},
[ITEM_VLAN_DEI] = {
.name = "dei",
.help = "drop eligible indicator",
.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
tci, "\x10\x00")),
},
[ITEM_VLAN_VID] = {
.name = "vid",
.help = "VLAN identifier",
.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
tci, "\x0f\xff")),
},
[ITEM_VLAN_INNER_TYPE] = {
.name = "inner_type",
.help = "inner EtherType",
.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan,
inner_type)),
},
[ITEM_IPV4] = {
.name = "ipv4",
.help = "match IPv4 header",
.priv = PRIV_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
.next = NEXT(item_ipv4),
.call = parse_vc,
},
[ITEM_IPV4_TOS] = {
.name = "tos",
.help = "type of service",
.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
hdr.type_of_service)),
},
[ITEM_IPV4_TTL] = {
.name = "ttl",
.help = "time to live",
.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
hdr.time_to_live)),
},
[ITEM_IPV4_PROTO] = {
.name = "proto",
.help = "next protocol ID",
.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
hdr.next_proto_id)),
},
[ITEM_IPV4_SRC] = {
.name = "src",
.help = "source address",
.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
hdr.src_addr)),
},
[ITEM_IPV4_DST] = {
.name = "dst",
.help = "destination address",
.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
hdr.dst_addr)),
},
[ITEM_IPV6] = {
.name = "ipv6",
.help = "match IPv6 header",
.priv = PRIV_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
.next = NEXT(item_ipv6),
.call = parse_vc,
},
[ITEM_IPV6_TC] = {
.name = "tc",
.help = "traffic class",
.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
hdr.vtc_flow,
"\x0f\xf0\x00\x00")),
},
[ITEM_IPV6_FLOW] = {
.name = "flow",
.help = "flow label",
.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
hdr.vtc_flow,
"\x00\x0f\xff\xff")),
},
[ITEM_IPV6_PROTO] = {
.name = "proto",
.help = "protocol (next header)",
.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
hdr.proto)),
},
[ITEM_IPV6_HOP] = {
.name = "hop",
.help = "hop limit",
.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
hdr.hop_limits)),
},
[ITEM_IPV6_SRC] = {
.name = "src",
.help = "source address",
.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
hdr.src_addr)),
},
[ITEM_IPV6_DST] = {
.name = "dst",
.help = "destination address",
.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
hdr.dst_addr)),
},
[ITEM_ICMP] = {
.name = "icmp",
.help = "match ICMP header",
.priv = PRIV_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
.next = NEXT(item_icmp),
.call = parse_vc,
},
[ITEM_ICMP_TYPE] = {
.name = "type",
.help = "ICMP packet type",
.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
hdr.icmp_type)),
},
[ITEM_ICMP_CODE] = {
.name = "code",
.help = "ICMP packet code",
.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
hdr.icmp_code)),
},
[ITEM_UDP] = {
.name = "udp",
.help = "match UDP header",
.priv = PRIV_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
.next = NEXT(item_udp),
.call = parse_vc,
},
[ITEM_UDP_SRC] = {
.name = "src",
.help = "UDP source port",
.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
hdr.src_port)),
},
[ITEM_UDP_DST] = {
.name = "dst",
.help = "UDP destination port",
.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
hdr.dst_port)),
},
[ITEM_TCP] = {
.name = "tcp",
.help = "match TCP header",
.priv = PRIV_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
.next = NEXT(item_tcp),
.call = parse_vc,
},
[ITEM_TCP_SRC] = {
.name = "src",
.help = "TCP source port",
.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
hdr.src_port)),
},
[ITEM_TCP_DST] = {
.name = "dst",
.help = "TCP destination port",
.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
hdr.dst_port)),
},
[ITEM_TCP_FLAGS] = {
.name = "flags",
.help = "TCP flags",
.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
hdr.tcp_flags)),
},
[ITEM_SCTP] = {
.name = "sctp",
.help = "match SCTP header",
.priv = PRIV_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
.next = NEXT(item_sctp),
.call = parse_vc,
},
[ITEM_SCTP_SRC] = {
.name = "src",
.help = "SCTP source port",
.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
hdr.src_port)),
},
[ITEM_SCTP_DST] = {
.name = "dst",
.help = "SCTP destination port",
.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
hdr.dst_port)),
},
[ITEM_SCTP_TAG] = {
.name = "tag",
.help = "validation tag",
.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
hdr.tag)),
},
[ITEM_SCTP_CKSUM] = {
.name = "cksum",
.help = "checksum",
.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
hdr.cksum)),
},
[ITEM_VXLAN] = {
.name = "vxlan",
.help = "match VXLAN header",
.priv = PRIV_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
.next = NEXT(item_vxlan),
.call = parse_vc,
},
[ITEM_VXLAN_VNI] = {
.name = "vni",
.help = "VXLAN identifier",
.next = NEXT(item_vxlan, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan, vni)),
},
[ITEM_E_TAG] = {
.name = "e_tag",
.help = "match E-Tag header",
.priv = PRIV_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
.next = NEXT(item_e_tag),
.call = parse_vc,
},
[ITEM_E_TAG_GRP_ECID_B] = {
.name = "grp_ecid_b",
.help = "GRP and E-CID base",
.next = NEXT(item_e_tag, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_e_tag,
rsvd_grp_ecid_b,
"\x3f\xff")),
},
[ITEM_NVGRE] = {
.name = "nvgre",
.help = "match NVGRE header",
.priv = PRIV_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
.next = NEXT(item_nvgre),
.call = parse_vc,
},
[ITEM_NVGRE_TNI] = {
.name = "tni",
.help = "virtual subnet ID",
.next = NEXT(item_nvgre, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_nvgre, tni)),
},
[ITEM_MPLS] = {
.name = "mpls",
.help = "match MPLS header",
.priv = PRIV_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
.next = NEXT(item_mpls),
.call = parse_vc,
},
[ITEM_MPLS_LABEL] = {
.name = "label",
.help = "MPLS label",
.next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
label_tc_s,
"\xff\xff\xf0")),
},
[ITEM_GRE] = {
.name = "gre",
.help = "match GRE header",
.priv = PRIV_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
.next = NEXT(item_gre),
.call = parse_vc,
},
[ITEM_GRE_PROTO] = {
.name = "protocol",
.help = "GRE protocol type",
.next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
protocol)),
},
[ITEM_FUZZY] = {
.name = "fuzzy",
.help = "fuzzy pattern match, expect faster than default",
.priv = PRIV_ITEM(FUZZY,
sizeof(struct rte_flow_item_fuzzy)),
.next = NEXT(item_fuzzy),
.call = parse_vc,
},
[ITEM_FUZZY_THRESH] = {
.name = "thresh",
.help = "match accuracy threshold",
.next = NEXT(item_fuzzy, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY(struct rte_flow_item_fuzzy,
thresh)),
},
[ITEM_GTP] = {
.name = "gtp",
.help = "match GTP header",
.priv = PRIV_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
.next = NEXT(item_gtp),
.call = parse_vc,
},
[ITEM_GTP_TEID] = {
.name = "teid",
.help = "tunnel endpoint identifier",
.next = NEXT(item_gtp, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp, teid)),
},
[ITEM_GTPC] = {
.name = "gtpc",
.help = "match GTP header",
.priv = PRIV_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
.next = NEXT(item_gtp),
.call = parse_vc,
},
[ITEM_GTPU] = {
.name = "gtpu",
.help = "match GTP header",
.priv = PRIV_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
.next = NEXT(item_gtp),
.call = parse_vc,
},
[ITEM_GENEVE] = {
.name = "geneve",
.help = "match GENEVE header",
.priv = PRIV_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
.next = NEXT(item_geneve),
.call = parse_vc,
},
[ITEM_GENEVE_VNI] = {
.name = "vni",
.help = "virtual network identifier",
.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve, vni)),
},
[ITEM_GENEVE_PROTO] = {
.name = "protocol",
.help = "GENEVE protocol type",
.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve,
protocol)),
},
[ITEM_VXLAN_GPE] = {
.name = "vxlan-gpe",
.help = "match VXLAN-GPE header",
.priv = PRIV_ITEM(VXLAN_GPE,
sizeof(struct rte_flow_item_vxlan_gpe)),
.next = NEXT(item_vxlan_gpe),
.call = parse_vc,
},
[ITEM_VXLAN_GPE_VNI] = {
.name = "vni",
.help = "VXLAN-GPE identifier",
.next = NEXT(item_vxlan_gpe, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan_gpe,
vni)),
},
[ITEM_ARP_ETH_IPV4] = {
.name = "arp_eth_ipv4",
.help = "match ARP header for Ethernet/IPv4",
.priv = PRIV_ITEM(ARP_ETH_IPV4,
sizeof(struct rte_flow_item_arp_eth_ipv4)),
.next = NEXT(item_arp_eth_ipv4),
.call = parse_vc,
},
[ITEM_ARP_ETH_IPV4_SHA] = {
.name = "sha",
.help = "sender hardware address",
.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
sha)),
},
[ITEM_ARP_ETH_IPV4_SPA] = {
.name = "spa",
.help = "sender IPv4 address",
.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
spa)),
},
[ITEM_ARP_ETH_IPV4_THA] = {
.name = "tha",
.help = "target hardware address",
.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
tha)),
},
[ITEM_ARP_ETH_IPV4_TPA] = {
.name = "tpa",
.help = "target IPv4 address",
.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
tpa)),
},
[ITEM_IPV6_EXT] = {
.name = "ipv6_ext",
.help = "match presence of any IPv6 extension header",
.priv = PRIV_ITEM(IPV6_EXT,
sizeof(struct rte_flow_item_ipv6_ext)),
.next = NEXT(item_ipv6_ext),
.call = parse_vc,
},
[ITEM_IPV6_EXT_NEXT_HDR] = {
.name = "next_hdr",
.help = "next header",
.next = NEXT(item_ipv6_ext, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6_ext,
next_hdr)),
},
[ITEM_ICMP6] = {
.name = "icmp6",
.help = "match any ICMPv6 header",
.priv = PRIV_ITEM(ICMP6, sizeof(struct rte_flow_item_icmp6)),
.next = NEXT(item_icmp6),
.call = parse_vc,
},
[ITEM_ICMP6_TYPE] = {
.name = "type",
.help = "ICMPv6 type",
.next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
type)),
},
[ITEM_ICMP6_CODE] = {
.name = "code",
.help = "ICMPv6 code",
.next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
code)),
},
[ITEM_ICMP6_ND_NS] = {
.name = "icmp6_nd_ns",
.help = "match ICMPv6 neighbor discovery solicitation",
.priv = PRIV_ITEM(ICMP6_ND_NS,
sizeof(struct rte_flow_item_icmp6_nd_ns)),
.next = NEXT(item_icmp6_nd_ns),
.call = parse_vc,
},
[ITEM_ICMP6_ND_NS_TARGET_ADDR] = {
.name = "target_addr",
.help = "target address",
.next = NEXT(item_icmp6_nd_ns, NEXT_ENTRY(IPV6_ADDR),
item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_ns,
target_addr)),
},
[ITEM_ICMP6_ND_NA] = {
.name = "icmp6_nd_na",
.help = "match ICMPv6 neighbor discovery advertisement",
.priv = PRIV_ITEM(ICMP6_ND_NA,
sizeof(struct rte_flow_item_icmp6_nd_na)),
.next = NEXT(item_icmp6_nd_na),
.call = parse_vc,
},
[ITEM_ICMP6_ND_NA_TARGET_ADDR] = {
.name = "target_addr",
.help = "target address",
.next = NEXT(item_icmp6_nd_na, NEXT_ENTRY(IPV6_ADDR),
item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_na,
target_addr)),
},
[ITEM_ICMP6_ND_OPT] = {
.name = "icmp6_nd_opt",
.help = "match presence of any ICMPv6 neighbor discovery"
" option",
.priv = PRIV_ITEM(ICMP6_ND_OPT,
sizeof(struct rte_flow_item_icmp6_nd_opt)),
.next = NEXT(item_icmp6_nd_opt),
.call = parse_vc,
},
[ITEM_ICMP6_ND_OPT_TYPE] = {
.name = "type",
.help = "ND option type",
.next = NEXT(item_icmp6_nd_opt, NEXT_ENTRY(UNSIGNED),
item_param),
.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_opt,
type)),
},
[ITEM_ICMP6_ND_OPT_SLA_ETH] = {
.name = "icmp6_nd_opt_sla_eth",
.help = "match ICMPv6 neighbor discovery source Ethernet"
" link-layer address option",
.priv = PRIV_ITEM
(ICMP6_ND_OPT_SLA_ETH,
sizeof(struct rte_flow_item_icmp6_nd_opt_sla_eth)),
.next = NEXT(item_icmp6_nd_opt_sla_eth),
.call = parse_vc,
},
[ITEM_ICMP6_ND_OPT_SLA_ETH_SLA] = {
.name = "sla",
.help = "source Ethernet LLA",
.next = NEXT(item_icmp6_nd_opt_sla_eth, NEXT_ENTRY(MAC_ADDR),
item_param),
.args = ARGS(ARGS_ENTRY_HTON
(struct rte_flow_item_icmp6_nd_opt_sla_eth, sla)),
},
[ITEM_ICMP6_ND_OPT_TLA_ETH] = {
.name = "icmp6_nd_opt_tla_eth",
.help = "match ICMPv6 neighbor discovery target Ethernet"
" link-layer address option",
.priv = PRIV_ITEM
(ICMP6_ND_OPT_TLA_ETH,
sizeof(struct rte_flow_item_icmp6_nd_opt_tla_eth)),
.next = NEXT(item_icmp6_nd_opt_tla_eth),
.call = parse_vc,
},
[ITEM_ICMP6_ND_OPT_TLA_ETH_TLA] = {
.name = "tla",
.help = "target Ethernet LLA",
.next = NEXT(item_icmp6_nd_opt_tla_eth, NEXT_ENTRY(MAC_ADDR),
item_param),
.args = ARGS(ARGS_ENTRY_HTON
(struct rte_flow_item_icmp6_nd_opt_tla_eth, tla)),
},
[ITEM_META] = {
.name = "meta",
.help = "match metadata header",
.priv = PRIV_ITEM(META, sizeof(struct rte_flow_item_meta)),
.next = NEXT(item_meta),
.call = parse_vc,
},
[ITEM_META_DATA] = {
.name = "data",
.help = "metadata value",
.next = NEXT(item_meta, NEXT_ENTRY(UNSIGNED), item_param),
.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_meta,
data, "\xff\xff\xff\xff")),
},
/* Validate/create actions. */
[ACTIONS] = {
.name = "actions",
.help = "submit a list of associated actions",
.next = NEXT(next_action),
.call = parse_vc,
},
[ACTION_NEXT] = {
.name = "/",
.help = "specify next action",
.next = NEXT(next_action),
},
[ACTION_END] = {
.name = "end",
.help = "end list of actions",
.priv = PRIV_ACTION(END, 0),
.call = parse_vc,
},
[ACTION_VOID] = {
.name = "void",
.help = "no-op action",
.priv = PRIV_ACTION(VOID, 0),
.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
.call = parse_vc,
},
[ACTION_PASSTHRU] = {
.name = "passthru",
.help = "let subsequent rule process matched packets",
.priv = PRIV_ACTION(PASSTHRU, 0),
.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
.call = parse_vc,
},
[ACTION_JUMP] = {
.name = "jump",
.help = "redirect traffic to a given group",
.priv = PRIV_ACTION(JUMP, sizeof(struct rte_flow_action_jump)),
.next = NEXT(action_jump),
.call = parse_vc,
},
[ACTION_JUMP_GROUP] = {
.name = "group",
.help = "group to redirect traffic to",
.next = NEXT(action_jump, NEXT_ENTRY(UNSIGNED)),
.args = ARGS(ARGS_ENTRY(struct rte_flow_action_jump, group)),
.call = parse_vc_conf,
},
[ACTION_MARK] = {
.name = "mark",
.help = "attach 32 bit value to packets",
.priv = PRIV_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
.next = NEXT(action_mark),
.call = parse_vc,
},
[ACTION_MARK_ID] = {
.name = "id",
.help = "32 bit value to return with packets",
.next = NEXT(action_mark, NEXT_ENTRY(UNSIGNED)),
.args = ARGS(ARGS_ENTRY(struct rte_flow_action_mark, id)),
.call = parse_vc_conf,
},
[ACTION_FLAG] = {
.name = "flag",
.help = "flag packets",
.priv = PRIV_ACTION(FLAG, 0),
.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
.call = parse_vc,
},
[ACTION_QUEUE] = {
.name = "queue",
.help = "assign packets to a given queue index",
.priv = PRIV_ACTION(QUEUE,
sizeof(struct rte_flow_action_queue)),
.next = NEXT(action_queue),
.call = parse_vc,
},
[ACTION_QUEUE_INDEX] = {
.name = "index",
.help = "queue index to use",
.next = NEXT(action_queue, NEXT_ENTRY(UNSIGNED)),
.args = ARGS(ARGS_ENTRY(struct rte_flow_action_queue, index)),
.call = parse_vc_conf,
},
[ACTION_DROP] = {
.name = "drop",
.help = "drop packets (note: passthru has priority)",
.priv = PRIV_ACTION(DROP, 0),
.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
.call = parse_vc,
},
[ACTION_COUNT] = {
.name = "count",
.help = "enable counters for this rule",
.priv = PRIV_ACTION(COUNT,
sizeof(struct rte_flow_action_count)),
.next = NEXT(action_count),
.call = parse_vc,
},
[ACTION_COUNT_ID] = {
.name = "identifier",
.help = "counter identifier to use",
.next = NEXT(action_count, NEXT_ENTRY(UNSIGNED)),
.args = ARGS(ARGS_ENTRY(struct rte_flow_action_count, id)),
.call = parse_vc_conf,
},
[ACTION_COUNT_SHARED] = {
.name = "shared",
.help = "shared counter",
.next = NEXT(action_count, NEXT_ENTRY(BOOLEAN)),
.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_count,
shared, 1)),
.call = parse_vc_conf,
},
[ACTION_RSS] = {
.name = "rss",
.help = "spread packets among several queues",
.priv = PRIV_ACTION(RSS, sizeof(struct action_rss_data)),
.next = NEXT(action_rss),
.call = parse_vc_action_rss,
},
[ACTION_RSS_FUNC] = {
.name = "func",
.help = "RSS hash function to apply",
.next = NEXT(action_rss,
NEXT_ENTRY(ACTION_RSS_FUNC_DEFAULT,
ACTION_RSS_FUNC_TOEPLITZ,
ACTION_RSS_FUNC_SIMPLE_XOR)),
},
[ACTION_RSS_FUNC_DEFAULT] = {
.name = "default",
.help = "default hash function",
.call = parse_vc_action_rss_func,
},
[ACTION_RSS_FUNC_TOEPLITZ] = {
.name = "toeplitz",
.help = "Toeplitz hash function",
.call = parse_vc_action_rss_func,
},
[ACTION_RSS_FUNC_SIMPLE_XOR] = {
.name = "simple_xor",
.help = "simple XOR hash function",
.call = parse_vc_action_rss_func,
},
[ACTION_RSS_LEVEL] = {
.name = "level",
.help = "encapsulation level for \"types\"",
.next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
.args = ARGS(ARGS_ENTRY_ARB
(offsetof(struct action_rss_data, conf) +
offsetof(struct rte_flow_action_rss, level),
sizeof(((struct rte_flow_action_rss *)0)->
level))),
},
[ACTION_RSS_TYPES] = {
.name = "types",
.help = "specific RSS hash types",
.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_TYPE)),
},
[ACTION_RSS_TYPE] = {
.name = "{type}",
.help = "RSS hash type",
.call = parse_vc_action_rss_type,
.comp = comp_vc_action_rss_type,
},
[ACTION_RSS_KEY] = {
.name = "key",
.help = "RSS hash key",
.next = NEXT(action_rss, NEXT_ENTRY(STRING)),
.args = ARGS(ARGS_ENTRY_ARB(0, 0),
ARGS_ENTRY_ARB
(offsetof(struct action_rss_data, conf) +
offsetof(struct rte_flow_action_rss, key_len),
sizeof(((struct rte_flow_action_rss *)0)->
key_len)),
ARGS_ENTRY(struct action_rss_data, key)),
},
[ACTION_RSS_KEY_LEN] = {
.name = "key_len",
.help = "RSS hash key length in bytes",
.next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
.args = ARGS(ARGS_ENTRY_ARB_BOUNDED
(offsetof(struct action_rss_data, conf) +
offsetof(struct rte_flow_action_rss, key_len),
sizeof(((struct rte_flow_action_rss *)0)->
key_len),
0,
RSS_HASH_KEY_LENGTH)),
},
[ACTION_RSS_QUEUES] = {
.name = "queues",
.help = "queue indices to use",
.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_QUEUE)),
.call = parse_vc_conf,
},
[ACTION_RSS_QUEUE] = {
.name = "{queue}",
.help = "queue index",
.call = parse_vc_action_rss_queue,
.comp = comp_vc_action_rss_queue,
},
[ACTION_PF] = {
.name = "pf",
.help = "direct traffic to physical function",
.priv = PRIV_ACTION(PF, 0),
.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
.call = parse_vc,
},
[ACTION_VF] = {
.name = "vf",
.help = "direct traffic to a virtual function ID",
.priv = PRIV_ACTION(VF, sizeof(struct rte_flow_action_vf)),
.next = NEXT(action_vf),
.call = parse_vc,
},
[ACTION_VF_ORIGINAL] = {
.name = "original",
.help = "use original VF ID if possible",
.next = NEXT(action_vf, NEXT_ENTRY(BOOLEAN)),
.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_vf,
original, 1)),
.call = parse_vc_conf,
},
[ACTION_VF_ID] = {
.name = "id",
.help = "VF ID",
.next = NEXT(action_vf, NEXT_ENTRY(UNSIGNED)),
.args = ARGS(ARGS_ENTRY(struct rte_flow_action_vf, id)),
.call = parse_vc_conf,
},
[ACTION_PHY_PORT] = {
.name = "phy_port",
.help = "direct packets to physical port index",
.priv = PRIV_ACTION(PHY_PORT,
sizeof(struct rte_flow_action_phy_port)),
.next = NEXT(action_phy_port),
.call = parse_vc,
},
[ACTION_PHY_PORT_ORIGINAL] = {
.name = "original",
.help = "use original port index if possible",
.next = NEXT(action_phy_port, NEXT_ENTRY(BOOLEAN)),
.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_phy_port,
original, 1)),
.call = parse_vc_conf,
},
[ACTION_PHY_PORT_INDEX] = {
.name = "index",
.help = "physical port index",
.next = NEXT(action_phy_port, NEXT_ENTRY(UNSIGNED)),
.args = ARGS(ARGS_ENTRY(struct rte_flow_action_phy_port,
index)),
.call = parse_vc_conf,
},
[ACTION_PORT_ID] = {
.name = "port_id",
.help = "direct matching traffic to a given DPDK port ID",
.priv = PRIV_ACTION(PORT_ID,
sizeof(struct rte_flow_action_port_id)),
.next = NEXT(action_port_id),
.call = parse_vc,
},
[ACTION_PORT_ID_ORIGINAL] = {
.name = "original",
.help = "use original DPDK port ID if possible",
.next = NEXT(action_port_id, NEXT_ENTRY(BOOLEAN)),
.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_port_id,
original, 1)),
.call = parse_vc_conf,
},
[ACTION_PORT_ID_ID] = {
.name = "id",
.help = "DPDK port ID",
.next = NEXT(action_port_id, NEXT_ENTRY(UNSIGNED)),
.args = ARGS(ARGS_ENTRY(struct rte_flow_action_port_id, id)),
.call = parse_vc_conf,
},
[ACTION_METER] = {
.name = "meter",
.help = "meter the directed packets at given id",
.priv = PRIV_ACTION(METER,
sizeof(struct rte_flow_action_meter)),
.next = NEXT(action_meter),
.call = parse_vc,
},
[ACTION_METER_ID] = {
.name = "mtr_id",
.help = "meter id to use",
.next = NEXT(action_meter, NEXT_ENTRY(UNSIGNED)),
.args = ARGS(ARGS_ENTRY(struct rte_flow_action_meter, mtr_id)),
.call = parse_vc_conf,
},
[ACTION_OF_SET_MPLS_TTL] = {
.name = "of_set_mpls_ttl",
.help = "OpenFlow's OFPAT_SET_MPLS_TTL",
.priv = PRIV_ACTION
(OF_SET_MPLS_TTL,
sizeof(struct rte_flow_action_of_set_mpls_ttl)),
.next = NEXT(action_of_set_mpls_ttl),
.call = parse_vc,
},
[ACTION_OF_SET_MPLS_TTL_MPLS_TTL] = {
.name = "mpls_ttl",
.help = "MPLS TTL",
.next = NEXT(action_of_set_mpls_ttl, NEXT_ENTRY(UNSIGNED)),
.args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_mpls_ttl,
mpls_ttl)),
.call = parse_vc_conf,
},
[ACTION_OF_DEC_MPLS_TTL] = {
.name = "of_dec_mpls_ttl",
.help = "OpenFlow's OFPAT_DEC_MPLS_TTL",
.priv = PRIV_ACTION(OF_DEC_MPLS_TTL, 0),
.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
.call = parse_vc,
},
[ACTION_OF_SET_NW_TTL] = {
.name = "of_set_nw_ttl",
.help = "OpenFlow's OFPAT_SET_NW_TTL",
.priv = PRIV_ACTION
(OF_SET_NW_TTL,
sizeof(struct rte_flow_action_of_set_nw_ttl)),
.next = NEXT(action_of_set_nw_ttl),
.call = parse_vc,
},
[ACTION_OF_SET_NW_TTL_NW_TTL] = {
.name = "nw_ttl",
.help = "IP TTL",
.next = NEXT(action_of_set_nw_ttl, NEXT_ENTRY(UNSIGNED)),
.args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_nw_ttl,
nw_ttl)),
.call = parse_vc_conf,
},
[ACTION_OF_DEC_NW_TTL] = {
.name = "of_dec_nw_ttl",
.help = "OpenFlow's OFPAT_DEC_NW_TTL",
.priv = PRIV_ACTION(OF_DEC_NW_TTL, 0),
.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
.call = parse_vc,
},
[ACTION_OF_COPY_TTL_OUT] = {
.name = "of_copy_ttl_out",
.help = "OpenFlow's OFPAT_COPY_TTL_OUT",
.priv = PRIV_ACTION(OF_COPY_TTL_OUT, 0),
.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
.call = parse_vc,
},
[ACTION_OF_COPY_TTL_IN] = {
.name = "of_copy_ttl_in",
.help = "OpenFlow's OFPAT_COPY_TTL_IN",
.priv = PRIV_ACTION(OF_COPY_TTL_IN, 0),
.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
.call = parse_vc,
},
[ACTION_OF_POP_VLAN] = {
.name = "of_pop_vlan",
.help = "OpenFlow's OFPAT_POP_VLAN",
.priv = PRIV_ACTION(OF_POP_VLAN, 0),
.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
.call = parse_vc,
},
[ACTION_OF_PUSH_VLAN] = {
.name = "of_push_vlan",
.help = "OpenFlow's OFPAT_PUSH_VLAN",
.priv = PRIV_ACTION
(OF_PUSH_VLAN,
sizeof(struct rte_flow_action_of_push_vlan)),
.next = NEXT(action_of_push_vlan),
.call = parse_vc,
},
[ACTION_OF_PUSH_VLAN_ETHERTYPE] = {
.name = "ethertype",
.help = "EtherType",
.next = NEXT(action_of_push_vlan, NEXT_ENTRY(UNSIGNED)),
.args = ARGS(ARGS_ENTRY_HTON
(struct rte_flow_action_of_push_vlan,
ethertype)),
.call = parse_vc_conf,
},
[ACTION_OF_SET_VLAN_VID] = {
.name = "of_set_vlan_vid",
.help = "OpenFlow's OFPAT_SET_VLAN_VID",
.priv = PRIV_ACTION
(OF_SET_VLAN_VID,
sizeof(struct rte_flow_action_of_set_vlan_vid)),
.next = NEXT(action_of_set_vlan_vid),
.call = parse_vc,
},
[ACTION_OF_SET_VLAN_VID_VLAN_VID] = {
.name = "vlan_vid",
.help = "VLAN id",
.next = NEXT(action_of_set_vlan_vid, NEXT_ENTRY(UNSIGNED)),
.args = ARGS(ARGS_ENTRY_HTON
(struct rte_flow_action_of_set_vlan_vid,
vlan_vid)),
.call = parse_vc_conf,
},
[ACTION_OF_SET_VLAN_PCP] = {
.name = "of_set_vlan_pcp",
.help = "OpenFlow's OFPAT_SET_VLAN_PCP",
.priv = PRIV_ACTION
(OF_SET_VLAN_PCP,
sizeof(struct rte_flow_action_of_set_vlan_pcp)),
.next = NEXT(action_of_set_vlan_pcp),
.call = parse_vc,
},
[ACTION_OF_SET_VLAN_PCP_VLAN_PCP] = {
.name = "vlan_pcp",
.help = "VLAN priority",
.next = NEXT(action_of_set_vlan_pcp, NEXT_ENTRY(UNSIGNED)),
.args = ARGS(ARGS_ENTRY_HTON
(struct rte_flow_action_of_set_vlan_pcp,
vlan_pcp)),
.call = parse_vc_conf,
},
[ACTION_OF_POP_MPLS] = {
.name = "of_pop_mpls",
.help = "OpenFlow's OFPAT_POP_MPLS",
.priv = PRIV_ACTION(OF_POP_MPLS,
sizeof(struct rte_flow_action_of_pop_mpls)),
.next = NEXT(action_of_pop_mpls),
.call = parse_vc,
},
[ACTION_OF_POP_MPLS_ETHERTYPE] = {
.name = "ethertype",
.help = "EtherType",
.next = NEXT(action_of_pop_mpls, NEXT_ENTRY(UNSIGNED)),
.args = ARGS(ARGS_ENTRY_HTON
(struct rte_flow_action_of_pop_mpls,
ethertype)),
.call = parse_vc_conf,
},
[ACTION_OF_PUSH_MPLS] = {
.name = "of_push_mpls",
.help = "OpenFlow's OFPAT_PUSH_MPLS",
.priv = PRIV_ACTION
(OF_PUSH_MPLS,
sizeof(struct rte_flow_action_of_push_mpls)),
.next = NEXT(action_of_push_mpls),
.call = parse_vc,
},
[ACTION_OF_PUSH_MPLS_ETHERTYPE] = {
.name = "ethertype",
.help = "EtherType",
.next = NEXT(action_of_push_mpls, NEXT_ENTRY(UNSIGNED)),
.args = ARGS(ARGS_ENTRY_HTON
(struct rte_flow_action_of_push_mpls,
ethertype)),
.call = parse_vc_conf,
},
[ACTION_VXLAN_ENCAP] = {
.name = "vxlan_encap",
.help = "VXLAN encapsulation, uses configuration set by \"set"
" vxlan\"",
.priv = PRIV_ACTION(VXLAN_ENCAP,
sizeof(struct action_vxlan_encap_data)),
.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
.call = parse_vc_action_vxlan_encap,
},
[ACTION_VXLAN_DECAP] = {
.name = "vxlan_decap",
.help = "Performs a decapsulation action by stripping all"
" headers of the VXLAN tunnel network overlay from the"
" matched flow.",
.priv = PRIV_ACTION(VXLAN_DECAP, 0),
.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
.call = parse_vc,
},
[ACTION_NVGRE_ENCAP] = {
.name = "nvgre_encap",
.help = "NVGRE encapsulation, uses configuration set by \"set"
" nvgre\"",
.priv = PRIV_ACTION(NVGRE_ENCAP,
sizeof(struct action_nvgre_encap_data)),
.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
.call = parse_vc_action_nvgre_encap,
},
[ACTION_NVGRE_DECAP] = {
.name = "nvgre_decap",
.help = "Performs a decapsulation action by stripping all"
" headers of the NVGRE tunnel network overlay from the"
" matched flow.",
.priv = PRIV_ACTION(NVGRE_DECAP, 0),
.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
.call = parse_vc,
},
[ACTION_L2_ENCAP] = {
.name = "l2_encap",
.help = "l2 encap, uses configuration set by"
" \"set l2_encap\"",
.priv = PRIV_ACTION(RAW_ENCAP,
sizeof(struct action_raw_encap_data)),
.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
.call = parse_vc_action_l2_encap,
},
[ACTION_L2_DECAP] = {
.name = "l2_decap",
.help = "l2 decap, uses configuration set by"
" \"set l2_decap\"",
.priv = PRIV_ACTION(RAW_DECAP,
sizeof(struct action_raw_decap_data)),
.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
.call = parse_vc_action_l2_decap,
},
[ACTION_MPLSOGRE_ENCAP] = {
.name = "mplsogre_encap",
.help = "mplsogre encapsulation, uses configuration set by"
" \"set mplsogre_encap\"",
.priv = PRIV_ACTION(RAW_ENCAP,
sizeof(struct action_raw_encap_data)),
.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
.call = parse_vc_action_mplsogre_encap,
},
[ACTION_MPLSOGRE_DECAP] = {
.name = "mplsogre_decap",
.help = "mplsogre decapsulation, uses configuration set by"
" \"set mplsogre_decap\"",
.priv = PRIV_ACTION(RAW_DECAP,
sizeof(struct action_raw_decap_data)),
.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
.call = parse_vc_action_mplsogre_decap,
},
[ACTION_MPLSOUDP_ENCAP] = {
.name = "mplsoudp_encap",
.help = "mplsoudp encapsulation, uses configuration set by"
" \"set mplsoudp_encap\"",
.priv = PRIV_ACTION(RAW_ENCAP,
sizeof(struct action_raw_encap_data)),
.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
.call = parse_vc_action_mplsoudp_encap,
},
[ACTION_MPLSOUDP_DECAP] = {
.name = "mplsoudp_decap",
.help = "mplsoudp decapsulation, uses configuration set by"
" \"set mplsoudp_decap\"",
.priv = PRIV_ACTION(RAW_DECAP,
sizeof(struct action_raw_decap_data)),
.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
.call = parse_vc_action_mplsoudp_decap,
},
[ACTION_SET_IPV4_SRC] = {
.name = "set_ipv4_src",
.help = "Set a new IPv4 source address in the outermost"
" IPv4 header",
.priv = PRIV_ACTION(SET_IPV4_SRC,
sizeof(struct rte_flow_action_set_ipv4)),
.next = NEXT(action_set_ipv4_src),
.call = parse_vc,
},
[ACTION_SET_IPV4_SRC_IPV4_SRC] = {
.name = "ipv4_addr",
.help = "new IPv4 source address to set",
.next = NEXT(action_set_ipv4_src, NEXT_ENTRY(IPV4_ADDR)),
.args = ARGS(ARGS_ENTRY_HTON
(struct rte_flow_action_set_ipv4, ipv4_addr)),
.call = parse_vc_conf,
},
[ACTION_SET_IPV4_DST] = {
.name = "set_ipv4_dst",
.help = "Set a new IPv4 destination address in the outermost"
" IPv4 header",
.priv = PRIV_ACTION(SET_IPV4_DST,
sizeof(struct rte_flow_action_set_ipv4)),
.next = NEXT(action_set_ipv4_dst),
.call = parse_vc,
},
[ACTION_SET_IPV4_DST_IPV4_DST] = {
.name = "ipv4_addr",
.help = "new IPv4 destination address to set",
.next = NEXT(action_set_ipv4_dst, NEXT_ENTRY(IPV4_ADDR)),
.args = ARGS(ARGS_ENTRY_HTON
(struct rte_flow_action_set_ipv4, ipv4_addr)),
.call = parse_vc_conf,
},
[ACTION_SET_IPV6_SRC] = {
.name = "set_ipv6_src",
.help = "Set a new IPv6 source address in the outermost"
" IPv6 header",
.priv = PRIV_ACTION(SET_IPV6_SRC,
sizeof(struct rte_flow_action_set_ipv6)),
.next = NEXT(action_set_ipv6_src),
.call = parse_vc,
},
[ACTION_SET_IPV6_SRC_IPV6_SRC] = {
.name = "ipv6_addr",
.help = "new IPv6 source address to set",
.next = NEXT(action_set_ipv6_src, NEXT_ENTRY(IPV6_ADDR)),
.args = ARGS(ARGS_ENTRY_HTON
(struct rte_flow_action_set_ipv6, ipv6_addr)),
.call = parse_vc_conf,
},
[ACTION_SET_IPV6_DST] = {
.name = "set_ipv6_dst",
.help = "Set a new IPv6 destination address in the outermost"
" IPv6 header",
.priv = PRIV_ACTION(SET_IPV6_DST,
sizeof(struct rte_flow_action_set_ipv6)),
.next = NEXT(action_set_ipv6_dst),
.call = parse_vc,
},
[ACTION_SET_IPV6_DST_IPV6_DST] = {
.name = "ipv6_addr",
.help = "new IPv6 destination address to set",
.next = NEXT(action_set_ipv6_dst, NEXT_ENTRY(IPV6_ADDR)),
.args = ARGS(ARGS_ENTRY_HTON
(struct rte_flow_action_set_ipv6, ipv6_addr)),
.call = parse_vc_conf,
},
[ACTION_SET_TP_SRC] = {
.name = "set_tp_src",
.help = "set a new source port number in the outermost"
" TCP/UDP header",
.priv = PRIV_ACTION(SET_TP_SRC,
sizeof(struct rte_flow_action_set_tp)),
.next = NEXT(action_set_tp_src),
.call = parse_vc,
},
[ACTION_SET_TP_SRC_TP_SRC] = {
.name = "port",
.help = "new source port number to set",
.next = NEXT(action_set_tp_src, NEXT_ENTRY(UNSIGNED)),
.args = ARGS(ARGS_ENTRY_HTON
(struct rte_flow_action_set_tp, port)),
.call = parse_vc_conf,
},
[ACTION_SET_TP_DST] = {
.name = "set_tp_dst",
.help = "set a new destination port number in the outermost"
" TCP/UDP header",
.priv = PRIV_ACTION(SET_TP_DST,
sizeof(struct rte_flow_action_set_tp)),
.next = NEXT(action_set_tp_dst),
.call = parse_vc,
},
[ACTION_SET_TP_DST_TP_DST] = {
.name = "port",
.help = "new destination port number to set",
.next = NEXT(action_set_tp_dst, NEXT_ENTRY(UNSIGNED)),
.args = ARGS(ARGS_ENTRY_HTON
(struct rte_flow_action_set_tp, port)),
.call = parse_vc_conf,
},
[ACTION_MAC_SWAP] = {
.name = "mac_swap",
.help = "Swap the source and destination MAC addresses"
" in the outermost Ethernet header",
.priv = PRIV_ACTION(MAC_SWAP, 0),
.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
.call = parse_vc,
},
[ACTION_DEC_TTL] = {
.name = "dec_ttl",
.help = "decrease network TTL if available",
.priv = PRIV_ACTION(DEC_TTL, 0),
.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
.call = parse_vc,
},
[ACTION_SET_TTL] = {
.name = "set_ttl",
.help = "set ttl value",
.priv = PRIV_ACTION(SET_TTL,
sizeof(struct rte_flow_action_set_ttl)),
.next = NEXT(action_set_ttl),
.call = parse_vc,
},
[ACTION_SET_TTL_TTL] = {
.name = "ttl_value",
.help = "new ttl value to set",
.next = NEXT(action_set_ttl, NEXT_ENTRY(UNSIGNED)),
.args = ARGS(ARGS_ENTRY_HTON
(struct rte_flow_action_set_ttl, ttl_value)),
.call = parse_vc_conf,
},
[ACTION_SET_MAC_SRC] = {
.name = "set_mac_src",
.help = "set source mac address",
.priv = PRIV_ACTION(SET_MAC_SRC,
sizeof(struct rte_flow_action_set_mac)),
.next = NEXT(action_set_mac_src),
.call = parse_vc,
},
[ACTION_SET_MAC_SRC_MAC_SRC] = {
.name = "mac_addr",
.help = "new source mac address",
.next = NEXT(action_set_mac_src, NEXT_ENTRY(MAC_ADDR)),
.args = ARGS(ARGS_ENTRY_HTON
(struct rte_flow_action_set_mac, mac_addr)),
.call = parse_vc_conf,
},
[ACTION_SET_MAC_DST] = {
.name = "set_mac_dst",
.help = "set destination mac address",
.priv = PRIV_ACTION(SET_MAC_DST,
sizeof(struct rte_flow_action_set_mac)),
.next = NEXT(action_set_mac_dst),
.call = parse_vc,
},
[ACTION_SET_MAC_DST_MAC_DST] = {
.name = "mac_addr",
.help = "new destination mac address to set",
.next = NEXT(action_set_mac_dst, NEXT_ENTRY(MAC_ADDR)),
.args = ARGS(ARGS_ENTRY_HTON
(struct rte_flow_action_set_mac, mac_addr)),
.call = parse_vc_conf,
},
};
/** Remove and return last entry from argument stack. */
static const struct arg *
pop_args(struct context *ctx)
{
return ctx->args_num ? ctx->args[--ctx->args_num] : NULL;
}
/** Add entry on top of the argument stack. */
static int
push_args(struct context *ctx, const struct arg *arg)
{
if (ctx->args_num == CTX_STACK_SIZE)
return -1;
ctx->args[ctx->args_num++] = arg;
return 0;
}
/** Spread value into buffer according to bit-mask. */
static size_t
arg_entry_bf_fill(void *dst, uintmax_t val, const struct arg *arg)
{
uint32_t i = arg->size;
uint32_t end = 0;
int sub = 1;
int add = 0;
size_t len = 0;
if (!arg->mask)
return 0;
#if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
if (!arg->hton) {
i = 0;
end = arg->size;
sub = 0;
add = 1;
}
#endif
while (i != end) {
unsigned int shift = 0;
uint8_t *buf = (uint8_t *)dst + arg->offset + (i -= sub);
for (shift = 0; arg->mask[i] >> shift; ++shift) {
if (!(arg->mask[i] & (1 << shift)))
continue;
++len;
if (!dst)
continue;
*buf &= ~(1 << shift);
*buf |= (val & 1) << shift;
val >>= 1;
}
i += add;
}
return len;
}
/** Compare a string with a partial one of a given length. */
static int
strcmp_partial(const char *full, const char *partial, size_t partial_len)
{
int r = strncmp(full, partial, partial_len);
if (r)
return r;
if (strlen(full) <= partial_len)
return 0;
return full[partial_len];
}
/**
* Parse a prefix length and generate a bit-mask.
*
* Last argument (ctx->args) is retrieved to determine mask size, storage
* location and whether the result must use network byte ordering.
*/
static int
parse_prefix(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
const struct arg *arg = pop_args(ctx);
static const uint8_t conv[] = "\x00\x80\xc0\xe0\xf0\xf8\xfc\xfe\xff";
char *end;
uintmax_t u;
unsigned int bytes;
unsigned int extra;
(void)token;
/* Argument is expected. */
if (!arg)
return -1;
errno = 0;
u = strtoumax(str, &end, 0);
if (errno || (size_t)(end - str) != len)
goto error;
if (arg->mask) {
uintmax_t v = 0;
extra = arg_entry_bf_fill(NULL, 0, arg);
if (u > extra)
goto error;
if (!ctx->object)
return len;
extra -= u;
while (u--)
(v <<= 1, v |= 1);
v <<= extra;
if (!arg_entry_bf_fill(ctx->object, v, arg) ||
!arg_entry_bf_fill(ctx->objmask, -1, arg))
goto error;
return len;
}
bytes = u / 8;
extra = u % 8;
size = arg->size;
if (bytes > size || bytes + !!extra > size)
goto error;
if (!ctx->object)
return len;
buf = (uint8_t *)ctx->object + arg->offset;
#if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
if (!arg->hton) {
memset((uint8_t *)buf + size - bytes, 0xff, bytes);
memset(buf, 0x00, size - bytes);
if (extra)
((uint8_t *)buf)[size - bytes - 1] = conv[extra];
} else
#endif
{
memset(buf, 0xff, bytes);
memset((uint8_t *)buf + bytes, 0x00, size - bytes);
if (extra)
((uint8_t *)buf)[bytes] = conv[extra];
}
if (ctx->objmask)
memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
return len;
error:
push_args(ctx, arg);
return -1;
}
/** Default parsing function for token name matching. */
static int
parse_default(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
(void)ctx;
(void)buf;
(void)size;
if (strcmp_partial(token->name, str, len))
return -1;
return len;
}
/** Parse flow command, initialize output buffer for subsequent tokens. */
static int
parse_init(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
struct buffer *out = buf;
/* Token name must match. */
if (parse_default(ctx, token, str, len, NULL, 0) < 0)
return -1;
/* Nothing else to do if there is no buffer. */
if (!out)
return len;
/* Make sure buffer is large enough. */
if (size < sizeof(*out))
return -1;
/* Initialize buffer. */
memset(out, 0x00, sizeof(*out));
memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
ctx->objdata = 0;
ctx->object = out;
ctx->objmask = NULL;
return len;
}
/** Parse tokens for validate/create commands. */
static int
parse_vc(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
struct buffer *out = buf;
uint8_t *data;
uint32_t data_size;
/* Token name must match. */
if (parse_default(ctx, token, str, len, NULL, 0) < 0)
return -1;
/* Nothing else to do if there is no buffer. */
if (!out)
return len;
if (!out->command) {
if (ctx->curr != VALIDATE && ctx->curr != CREATE)
return -1;
if (sizeof(*out) > size)
return -1;
out->command = ctx->curr;
ctx->objdata = 0;
ctx->object = out;
ctx->objmask = NULL;
out->args.vc.data = (uint8_t *)out + size;
return len;
}
ctx->objdata = 0;
ctx->object = &out->args.vc.attr;
ctx->objmask = NULL;
switch (ctx->curr) {
case GROUP:
case PRIORITY:
return len;
case INGRESS:
out->args.vc.attr.ingress = 1;
return len;
case EGRESS:
out->args.vc.attr.egress = 1;
return len;
case TRANSFER:
out->args.vc.attr.transfer = 1;
return len;
case PATTERN:
out->args.vc.pattern =
(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
sizeof(double));
ctx->object = out->args.vc.pattern;
ctx->objmask = NULL;
return len;
case ACTIONS:
out->args.vc.actions =
(void *)RTE_ALIGN_CEIL((uintptr_t)
(out->args.vc.pattern +
out->args.vc.pattern_n),
sizeof(double));
ctx->object = out->args.vc.actions;
ctx->objmask = NULL;
return len;
default:
if (!token->priv)
return -1;
break;
}
if (!out->args.vc.actions) {
const struct parse_item_priv *priv = token->priv;
struct rte_flow_item *item =
out->args.vc.pattern + out->args.vc.pattern_n;
data_size = priv->size * 3; /* spec, last, mask */
data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
(out->args.vc.data - data_size),
sizeof(double));
if ((uint8_t *)item + sizeof(*item) > data)
return -1;
*item = (struct rte_flow_item){
.type = priv->type,
};
++out->args.vc.pattern_n;
ctx->object = item;
ctx->objmask = NULL;
} else {
const struct parse_action_priv *priv = token->priv;
struct rte_flow_action *action =
out->args.vc.actions + out->args.vc.actions_n;
data_size = priv->size; /* configuration */
data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
(out->args.vc.data - data_size),
sizeof(double));
if ((uint8_t *)action + sizeof(*action) > data)
return -1;
*action = (struct rte_flow_action){
.type = priv->type,
.conf = data_size ? data : NULL,
};
++out->args.vc.actions_n;
ctx->object = action;
ctx->objmask = NULL;
}
memset(data, 0, data_size);
out->args.vc.data = data;
ctx->objdata = data_size;
return len;
}
/** Parse pattern item parameter type. */
static int
parse_vc_spec(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
struct buffer *out = buf;
struct rte_flow_item *item;
uint32_t data_size;
int index;
int objmask = 0;
(void)size;
/* Token name must match. */
if (parse_default(ctx, token, str, len, NULL, 0) < 0)
return -1;
/* Parse parameter types. */
switch (ctx->curr) {
static const enum index prefix[] = NEXT_ENTRY(PREFIX);
case ITEM_PARAM_IS:
index = 0;
objmask = 1;
break;
case ITEM_PARAM_SPEC:
index = 0;
break;
case ITEM_PARAM_LAST:
index = 1;
break;
case ITEM_PARAM_PREFIX:
/* Modify next token to expect a prefix. */
if (ctx->next_num < 2)
return -1;
ctx->next[ctx->next_num - 2] = prefix;
/* Fall through. */
case ITEM_PARAM_MASK:
index = 2;
break;
default:
return -1;
}
/* Nothing else to do if there is no buffer. */
if (!out)
return len;
if (!out->args.vc.pattern_n)
return -1;
item = &out->args.vc.pattern[out->args.vc.pattern_n - 1];
data_size = ctx->objdata / 3; /* spec, last, mask */
/* Point to selected object. */
ctx->object = out->args.vc.data + (data_size * index);
if (objmask) {
ctx->objmask = out->args.vc.data + (data_size * 2); /* mask */
item->mask = ctx->objmask;
} else
ctx->objmask = NULL;
/* Update relevant item pointer. */
*((const void **[]){ &item->spec, &item->last, &item->mask })[index] =
ctx->object;
return len;
}
/** Parse action configuration field. */
static int
parse_vc_conf(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
struct buffer *out = buf;
(void)size;
/* Token name must match. */
if (parse_default(ctx, token, str, len, NULL, 0) < 0)
return -1;
/* Nothing else to do if there is no buffer. */
if (!out)
return len;
/* Point to selected object. */
ctx->object = out->args.vc.data;
ctx->objmask = NULL;
return len;
}
/** Parse RSS action. */
static int
parse_vc_action_rss(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
struct buffer *out = buf;
struct rte_flow_action *action;
struct action_rss_data *action_rss_data;
unsigned int i;
int ret;
ret = parse_vc(ctx, token, str, len, buf, size);
if (ret < 0)
return ret;
/* Nothing else to do if there is no buffer. */
if (!out)
return ret;
if (!out->args.vc.actions_n)
return -1;
action = &out->args.vc.actions[out->args.vc.actions_n - 1];
/* Point to selected object. */
ctx->object = out->args.vc.data;
ctx->objmask = NULL;
/* Set up default configuration. */
action_rss_data = ctx->object;
*action_rss_data = (struct action_rss_data){
.conf = (struct rte_flow_action_rss){
.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
.level = 0,
.types = rss_hf,
.key_len = sizeof(action_rss_data->key),
.queue_num = RTE_MIN(nb_rxq, ACTION_RSS_QUEUE_NUM),
.key = action_rss_data->key,
.queue = action_rss_data->queue,
},
.key = "testpmd's default RSS hash key, "
"override it for better balancing",
.queue = { 0 },
};
for (i = 0; i < action_rss_data->conf.queue_num; ++i)
action_rss_data->queue[i] = i;
if (!port_id_is_invalid(ctx->port, DISABLED_WARN) &&
ctx->port != (portid_t)RTE_PORT_ALL) {
struct rte_eth_dev_info info;
rte_eth_dev_info_get(ctx->port, &info);
action_rss_data->conf.key_len =
RTE_MIN(sizeof(action_rss_data->key),
info.hash_key_size);
}
action->conf = &action_rss_data->conf;
return ret;
}
/**
* Parse func field for RSS action.
*
* The RTE_ETH_HASH_FUNCTION_* value to assign is derived from the
* ACTION_RSS_FUNC_* index that called this function.
*/
static int
parse_vc_action_rss_func(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
struct action_rss_data *action_rss_data;
enum rte_eth_hash_function func;
(void)buf;
(void)size;
/* Token name must match. */
if (parse_default(ctx, token, str, len, NULL, 0) < 0)
return -1;
switch (ctx->curr) {
case ACTION_RSS_FUNC_DEFAULT:
func = RTE_ETH_HASH_FUNCTION_DEFAULT;
break;
case ACTION_RSS_FUNC_TOEPLITZ:
func = RTE_ETH_HASH_FUNCTION_TOEPLITZ;
break;
case ACTION_RSS_FUNC_SIMPLE_XOR:
func = RTE_ETH_HASH_FUNCTION_SIMPLE_XOR;
break;
default:
return -1;
}
if (!ctx->object)
return len;
action_rss_data = ctx->object;
action_rss_data->conf.func = func;
return len;
}
/**
* Parse type field for RSS action.
*
* Valid tokens are type field names and the "end" token.
*/
static int
parse_vc_action_rss_type(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
static const enum index next[] = NEXT_ENTRY(ACTION_RSS_TYPE);
struct action_rss_data *action_rss_data;
unsigned int i;
(void)token;
(void)buf;
(void)size;
if (ctx->curr != ACTION_RSS_TYPE)
return -1;
if (!(ctx->objdata >> 16) && ctx->object) {
action_rss_data = ctx->object;
action_rss_data->conf.types = 0;
}
if (!strcmp_partial("end", str, len)) {
ctx->objdata &= 0xffff;
return len;
}
for (i = 0; rss_type_table[i].str; ++i)
if (!strcmp_partial(rss_type_table[i].str, str, len))
break;
if (!rss_type_table[i].str)
return -1;
ctx->objdata = 1 << 16 | (ctx->objdata & 0xffff);
/* Repeat token. */
if (ctx->next_num == RTE_DIM(ctx->next))
return -1;
ctx->next[ctx->next_num++] = next;
if (!ctx->object)
return len;
action_rss_data = ctx->object;
action_rss_data->conf.types |= rss_type_table[i].rss_type;
return len;
}
/**
* Parse queue field for RSS action.
*
* Valid tokens are queue indices and the "end" token.
*/
static int
parse_vc_action_rss_queue(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
static const enum index next[] = NEXT_ENTRY(ACTION_RSS_QUEUE);
struct action_rss_data *action_rss_data;
int ret;
int i;
(void)token;
(void)buf;
(void)size;
if (ctx->curr != ACTION_RSS_QUEUE)
return -1;
i = ctx->objdata >> 16;
if (!strcmp_partial("end", str, len)) {
ctx->objdata &= 0xffff;
goto end;
}
if (i >= ACTION_RSS_QUEUE_NUM)
return -1;
if (push_args(ctx,
ARGS_ENTRY_ARB(offsetof(struct action_rss_data, queue) +
i * sizeof(action_rss_data->queue[i]),
sizeof(action_rss_data->queue[i]))))
return -1;
ret = parse_int(ctx, token, str, len, NULL, 0);
if (ret < 0) {
pop_args(ctx);
return -1;
}
++i;
ctx->objdata = i << 16 | (ctx->objdata & 0xffff);
/* Repeat token. */
if (ctx->next_num == RTE_DIM(ctx->next))
return -1;
ctx->next[ctx->next_num++] = next;
end:
if (!ctx->object)
return len;
action_rss_data = ctx->object;
action_rss_data->conf.queue_num = i;
action_rss_data->conf.queue = i ? action_rss_data->queue : NULL;
return len;
}
/** Parse VXLAN encap action. */
static int
parse_vc_action_vxlan_encap(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
struct buffer *out = buf;
struct rte_flow_action *action;
struct action_vxlan_encap_data *action_vxlan_encap_data;
int ret;
ret = parse_vc(ctx, token, str, len, buf, size);
if (ret < 0)
return ret;
/* Nothing else to do if there is no buffer. */
if (!out)
return ret;
if (!out->args.vc.actions_n)
return -1;
action = &out->args.vc.actions[out->args.vc.actions_n - 1];
/* Point to selected object. */
ctx->object = out->args.vc.data;
ctx->objmask = NULL;
/* Set up default configuration. */
action_vxlan_encap_data = ctx->object;
*action_vxlan_encap_data = (struct action_vxlan_encap_data){
.conf = (struct rte_flow_action_vxlan_encap){
.definition = action_vxlan_encap_data->items,
},
.items = {
{
.type = RTE_FLOW_ITEM_TYPE_ETH,
.spec = &action_vxlan_encap_data->item_eth,
.mask = &rte_flow_item_eth_mask,
},
{
.type = RTE_FLOW_ITEM_TYPE_VLAN,
.spec = &action_vxlan_encap_data->item_vlan,
.mask = &rte_flow_item_vlan_mask,
},
{
.type = RTE_FLOW_ITEM_TYPE_IPV4,
.spec = &action_vxlan_encap_data->item_ipv4,
.mask = &rte_flow_item_ipv4_mask,
},
{
.type = RTE_FLOW_ITEM_TYPE_UDP,
.spec = &action_vxlan_encap_data->item_udp,
.mask = &rte_flow_item_udp_mask,
},
{
.type = RTE_FLOW_ITEM_TYPE_VXLAN,
.spec = &action_vxlan_encap_data->item_vxlan,
.mask = &rte_flow_item_vxlan_mask,
},
{
.type = RTE_FLOW_ITEM_TYPE_END,
},
},
.item_eth.type = 0,
.item_vlan = {
.tci = vxlan_encap_conf.vlan_tci,
.inner_type = 0,
},
.item_ipv4.hdr = {
.src_addr = vxlan_encap_conf.ipv4_src,
.dst_addr = vxlan_encap_conf.ipv4_dst,
},
.item_udp.hdr = {
.src_port = vxlan_encap_conf.udp_src,
.dst_port = vxlan_encap_conf.udp_dst,
},
.item_vxlan.flags = 0,
};
memcpy(action_vxlan_encap_data->item_eth.dst.addr_bytes,
vxlan_encap_conf.eth_dst, ETHER_ADDR_LEN);
memcpy(action_vxlan_encap_data->item_eth.src.addr_bytes,
vxlan_encap_conf.eth_src, ETHER_ADDR_LEN);
if (!vxlan_encap_conf.select_ipv4) {
memcpy(&action_vxlan_encap_data->item_ipv6.hdr.src_addr,
&vxlan_encap_conf.ipv6_src,
sizeof(vxlan_encap_conf.ipv6_src));
memcpy(&action_vxlan_encap_data->item_ipv6.hdr.dst_addr,
&vxlan_encap_conf.ipv6_dst,
sizeof(vxlan_encap_conf.ipv6_dst));
action_vxlan_encap_data->items[2] = (struct rte_flow_item){
.type = RTE_FLOW_ITEM_TYPE_IPV6,
.spec = &action_vxlan_encap_data->item_ipv6,
.mask = &rte_flow_item_ipv6_mask,
};
}
if (!vxlan_encap_conf.select_vlan)
action_vxlan_encap_data->items[1].type =
RTE_FLOW_ITEM_TYPE_VOID;
memcpy(action_vxlan_encap_data->item_vxlan.vni, vxlan_encap_conf.vni,
RTE_DIM(vxlan_encap_conf.vni));
action->conf = &action_vxlan_encap_data->conf;
return ret;
}
/** Parse NVGRE encap action. */
static int
parse_vc_action_nvgre_encap(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
struct buffer *out = buf;
struct rte_flow_action *action;
struct action_nvgre_encap_data *action_nvgre_encap_data;
int ret;
ret = parse_vc(ctx, token, str, len, buf, size);
if (ret < 0)
return ret;
/* Nothing else to do if there is no buffer. */
if (!out)
return ret;
if (!out->args.vc.actions_n)
return -1;
action = &out->args.vc.actions[out->args.vc.actions_n - 1];
/* Point to selected object. */
ctx->object = out->args.vc.data;
ctx->objmask = NULL;
/* Set up default configuration. */
action_nvgre_encap_data = ctx->object;
*action_nvgre_encap_data = (struct action_nvgre_encap_data){
.conf = (struct rte_flow_action_nvgre_encap){
.definition = action_nvgre_encap_data->items,
},
.items = {
{
.type = RTE_FLOW_ITEM_TYPE_ETH,
.spec = &action_nvgre_encap_data->item_eth,
.mask = &rte_flow_item_eth_mask,
},
{
.type = RTE_FLOW_ITEM_TYPE_VLAN,
.spec = &action_nvgre_encap_data->item_vlan,
.mask = &rte_flow_item_vlan_mask,
},
{
.type = RTE_FLOW_ITEM_TYPE_IPV4,
.spec = &action_nvgre_encap_data->item_ipv4,
.mask = &rte_flow_item_ipv4_mask,
},
{
.type = RTE_FLOW_ITEM_TYPE_NVGRE,
.spec = &action_nvgre_encap_data->item_nvgre,
.mask = &rte_flow_item_nvgre_mask,
},
{
.type = RTE_FLOW_ITEM_TYPE_END,
},
},
.item_eth.type = 0,
.item_vlan = {
.tci = nvgre_encap_conf.vlan_tci,
.inner_type = 0,
},
.item_ipv4.hdr = {
.src_addr = nvgre_encap_conf.ipv4_src,
.dst_addr = nvgre_encap_conf.ipv4_dst,
},
.item_nvgre.flow_id = 0,
};
memcpy(action_nvgre_encap_data->item_eth.dst.addr_bytes,
nvgre_encap_conf.eth_dst, ETHER_ADDR_LEN);
memcpy(action_nvgre_encap_data->item_eth.src.addr_bytes,
nvgre_encap_conf.eth_src, ETHER_ADDR_LEN);
if (!nvgre_encap_conf.select_ipv4) {
memcpy(&action_nvgre_encap_data->item_ipv6.hdr.src_addr,
&nvgre_encap_conf.ipv6_src,
sizeof(nvgre_encap_conf.ipv6_src));
memcpy(&action_nvgre_encap_data->item_ipv6.hdr.dst_addr,
&nvgre_encap_conf.ipv6_dst,
sizeof(nvgre_encap_conf.ipv6_dst));
action_nvgre_encap_data->items[2] = (struct rte_flow_item){
.type = RTE_FLOW_ITEM_TYPE_IPV6,
.spec = &action_nvgre_encap_data->item_ipv6,
.mask = &rte_flow_item_ipv6_mask,
};
}
if (!nvgre_encap_conf.select_vlan)
action_nvgre_encap_data->items[1].type =
RTE_FLOW_ITEM_TYPE_VOID;
memcpy(action_nvgre_encap_data->item_nvgre.tni, nvgre_encap_conf.tni,
RTE_DIM(nvgre_encap_conf.tni));
action->conf = &action_nvgre_encap_data->conf;
return ret;
}
/** Parse l2 encap action. */
static int
parse_vc_action_l2_encap(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
struct buffer *out = buf;
struct rte_flow_action *action;
struct action_raw_encap_data *action_encap_data;
struct rte_flow_item_eth eth = { .type = 0, };
struct rte_flow_item_vlan vlan = {
.tci = mplsoudp_encap_conf.vlan_tci,
.inner_type = 0,
};
uint8_t *header;
int ret;
ret = parse_vc(ctx, token, str, len, buf, size);
if (ret < 0)
return ret;
/* Nothing else to do if there is no buffer. */
if (!out)
return ret;
if (!out->args.vc.actions_n)
return -1;
action = &out->args.vc.actions[out->args.vc.actions_n - 1];
/* Point to selected object. */
ctx->object = out->args.vc.data;
ctx->objmask = NULL;
/* Copy the headers to the buffer. */
action_encap_data = ctx->object;
*action_encap_data = (struct action_raw_encap_data) {
.conf = (struct rte_flow_action_raw_encap){
.data = action_encap_data->data,
},
.data = {},
};
header = action_encap_data->data;
if (l2_encap_conf.select_vlan)
eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
else if (l2_encap_conf.select_ipv4)
eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
else
eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
memcpy(eth.dst.addr_bytes,
l2_encap_conf.eth_dst, ETHER_ADDR_LEN);
memcpy(eth.src.addr_bytes,
l2_encap_conf.eth_src, ETHER_ADDR_LEN);
memcpy(header, &eth, sizeof(eth));
header += sizeof(eth);
if (l2_encap_conf.select_vlan) {
if (l2_encap_conf.select_ipv4)
vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
else
vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
memcpy(header, &vlan, sizeof(vlan));
header += sizeof(vlan);
}
action_encap_data->conf.size = header -
action_encap_data->data;
action->conf = &action_encap_data->conf;
return ret;
}
/** Parse l2 decap action. */
static int
parse_vc_action_l2_decap(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
struct buffer *out = buf;
struct rte_flow_action *action;
struct action_raw_decap_data *action_decap_data;
struct rte_flow_item_eth eth = { .type = 0, };
struct rte_flow_item_vlan vlan = {
.tci = mplsoudp_encap_conf.vlan_tci,
.inner_type = 0,
};
uint8_t *header;
int ret;
ret = parse_vc(ctx, token, str, len, buf, size);
if (ret < 0)
return ret;
/* Nothing else to do if there is no buffer. */
if (!out)
return ret;
if (!out->args.vc.actions_n)
return -1;
action = &out->args.vc.actions[out->args.vc.actions_n - 1];
/* Point to selected object. */
ctx->object = out->args.vc.data;
ctx->objmask = NULL;
/* Copy the headers to the buffer. */
action_decap_data = ctx->object;
*action_decap_data = (struct action_raw_decap_data) {
.conf = (struct rte_flow_action_raw_decap){
.data = action_decap_data->data,
},
.data = {},
};
header = action_decap_data->data;
if (l2_decap_conf.select_vlan)
eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
memcpy(header, &eth, sizeof(eth));
header += sizeof(eth);
if (l2_decap_conf.select_vlan) {
memcpy(header, &vlan, sizeof(vlan));
header += sizeof(vlan);
}
action_decap_data->conf.size = header -
action_decap_data->data;
action->conf = &action_decap_data->conf;
return ret;
}
#define ETHER_TYPE_MPLS_UNICAST 0x8847
/** Parse MPLSOGRE encap action. */
static int
parse_vc_action_mplsogre_encap(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
struct buffer *out = buf;
struct rte_flow_action *action;
struct action_raw_encap_data *action_encap_data;
struct rte_flow_item_eth eth = { .type = 0, };
struct rte_flow_item_vlan vlan = {
.tci = mplsogre_encap_conf.vlan_tci,
.inner_type = 0,
};
struct rte_flow_item_ipv4 ipv4 = {
.hdr = {
.src_addr = mplsogre_encap_conf.ipv4_src,
.dst_addr = mplsogre_encap_conf.ipv4_dst,
.next_proto_id = IPPROTO_GRE,
},
};
struct rte_flow_item_ipv6 ipv6 = {
.hdr = {
.proto = IPPROTO_GRE,
},
};
struct rte_flow_item_gre gre = {
.protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST),
};
struct rte_flow_item_mpls mpls;
uint8_t *header;
int ret;
ret = parse_vc(ctx, token, str, len, buf, size);
if (ret < 0)
return ret;
/* Nothing else to do if there is no buffer. */
if (!out)
return ret;
if (!out->args.vc.actions_n)
return -1;
action = &out->args.vc.actions[out->args.vc.actions_n - 1];
/* Point to selected object. */
ctx->object = out->args.vc.data;
ctx->objmask = NULL;
/* Copy the headers to the buffer. */
action_encap_data = ctx->object;
*action_encap_data = (struct action_raw_encap_data) {
.conf = (struct rte_flow_action_raw_encap){
.data = action_encap_data->data,
},
.data = {},
.preserve = {},
};
header = action_encap_data->data;
if (mplsogre_encap_conf.select_vlan)
eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
else if (mplsogre_encap_conf.select_ipv4)
eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
else
eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
memcpy(eth.dst.addr_bytes,
mplsogre_encap_conf.eth_dst, ETHER_ADDR_LEN);
memcpy(eth.src.addr_bytes,
mplsogre_encap_conf.eth_src, ETHER_ADDR_LEN);
memcpy(header, &eth, sizeof(eth));
header += sizeof(eth);
if (mplsogre_encap_conf.select_vlan) {
if (mplsogre_encap_conf.select_ipv4)
vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
else
vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
memcpy(header, &vlan, sizeof(vlan));
header += sizeof(vlan);
}
if (mplsogre_encap_conf.select_ipv4) {
memcpy(header, &ipv4, sizeof(ipv4));
header += sizeof(ipv4);
} else {
memcpy(&ipv6.hdr.src_addr,
&mplsogre_encap_conf.ipv6_src,
sizeof(mplsogre_encap_conf.ipv6_src));
memcpy(&ipv6.hdr.dst_addr,
&mplsogre_encap_conf.ipv6_dst,
sizeof(mplsogre_encap_conf.ipv6_dst));
memcpy(header, &ipv6, sizeof(ipv6));
header += sizeof(ipv6);
}
memcpy(header, &gre, sizeof(gre));
header += sizeof(gre);
memcpy(mpls.label_tc_s, mplsogre_encap_conf.label,
RTE_DIM(mplsogre_encap_conf.label));
memcpy(header, &mpls, sizeof(mpls));
header += sizeof(mpls);
action_encap_data->conf.size = header -
action_encap_data->data;
action->conf = &action_encap_data->conf;
return ret;
}
/** Parse MPLSOGRE decap action. */
static int
parse_vc_action_mplsogre_decap(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
struct buffer *out = buf;
struct rte_flow_action *action;
struct action_raw_decap_data *action_decap_data;
struct rte_flow_item_eth eth = { .type = 0, };
struct rte_flow_item_vlan vlan = {.tci = 0};
struct rte_flow_item_ipv4 ipv4 = {
.hdr = {
.next_proto_id = IPPROTO_GRE,
},
};
struct rte_flow_item_ipv6 ipv6 = {
.hdr = {
.proto = IPPROTO_GRE,
},
};
struct rte_flow_item_gre gre = {
.protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST),
};
struct rte_flow_item_mpls mpls;
uint8_t *header;
int ret;
ret = parse_vc(ctx, token, str, len, buf, size);
if (ret < 0)
return ret;
/* Nothing else to do if there is no buffer. */
if (!out)
return ret;
if (!out->args.vc.actions_n)
return -1;
action = &out->args.vc.actions[out->args.vc.actions_n - 1];
/* Point to selected object. */
ctx->object = out->args.vc.data;
ctx->objmask = NULL;
/* Copy the headers to the buffer. */
action_decap_data = ctx->object;
*action_decap_data = (struct action_raw_decap_data) {
.conf = (struct rte_flow_action_raw_decap){
.data = action_decap_data->data,
},
.data = {},
};
header = action_decap_data->data;
if (mplsogre_decap_conf.select_vlan)
eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
else if (mplsogre_encap_conf.select_ipv4)
eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
else
eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
memcpy(eth.dst.addr_bytes,
mplsogre_encap_conf.eth_dst, ETHER_ADDR_LEN);
memcpy(eth.src.addr_bytes,
mplsogre_encap_conf.eth_src, ETHER_ADDR_LEN);
memcpy(header, &eth, sizeof(eth));
header += sizeof(eth);
if (mplsogre_encap_conf.select_vlan) {
if (mplsogre_encap_conf.select_ipv4)
vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
else
vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
memcpy(header, &vlan, sizeof(vlan));
header += sizeof(vlan);
}
if (mplsogre_encap_conf.select_ipv4) {
memcpy(header, &ipv4, sizeof(ipv4));
header += sizeof(ipv4);
} else {
memcpy(header, &ipv6, sizeof(ipv6));
header += sizeof(ipv6);
}
memcpy(header, &gre, sizeof(gre));
header += sizeof(gre);
memset(&mpls, 0, sizeof(mpls));
memcpy(header, &mpls, sizeof(mpls));
header += sizeof(mpls);
action_decap_data->conf.size = header -
action_decap_data->data;
action->conf = &action_decap_data->conf;
return ret;
}
/** Parse MPLSOUDP encap action. */
static int
parse_vc_action_mplsoudp_encap(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
struct buffer *out = buf;
struct rte_flow_action *action;
struct action_raw_encap_data *action_encap_data;
struct rte_flow_item_eth eth = { .type = 0, };
struct rte_flow_item_vlan vlan = {
.tci = mplsoudp_encap_conf.vlan_tci,
.inner_type = 0,
};
struct rte_flow_item_ipv4 ipv4 = {
.hdr = {
.src_addr = mplsoudp_encap_conf.ipv4_src,
.dst_addr = mplsoudp_encap_conf.ipv4_dst,
.next_proto_id = IPPROTO_UDP,
},
};
struct rte_flow_item_ipv6 ipv6 = {
.hdr = {
.proto = IPPROTO_UDP,
},
};
struct rte_flow_item_udp udp = {
.hdr = {
.src_port = mplsoudp_encap_conf.udp_src,
.dst_port = mplsoudp_encap_conf.udp_dst,
},
};
struct rte_flow_item_mpls mpls;
uint8_t *header;
int ret;
ret = parse_vc(ctx, token, str, len, buf, size);
if (ret < 0)
return ret;
/* Nothing else to do if there is no buffer. */
if (!out)
return ret;
if (!out->args.vc.actions_n)
return -1;
action = &out->args.vc.actions[out->args.vc.actions_n - 1];
/* Point to selected object. */
ctx->object = out->args.vc.data;
ctx->objmask = NULL;
/* Copy the headers to the buffer. */
action_encap_data = ctx->object;
*action_encap_data = (struct action_raw_encap_data) {
.conf = (struct rte_flow_action_raw_encap){
.data = action_encap_data->data,
},
.data = {},
.preserve = {},
};
header = action_encap_data->data;
if (mplsoudp_encap_conf.select_vlan)
eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
else if (mplsoudp_encap_conf.select_ipv4)
eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
else
eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
memcpy(eth.dst.addr_bytes,
mplsoudp_encap_conf.eth_dst, ETHER_ADDR_LEN);
memcpy(eth.src.addr_bytes,
mplsoudp_encap_conf.eth_src, ETHER_ADDR_LEN);
memcpy(header, &eth, sizeof(eth));
header += sizeof(eth);
if (mplsoudp_encap_conf.select_vlan) {
if (mplsoudp_encap_conf.select_ipv4)
vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
else
vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
memcpy(header, &vlan, sizeof(vlan));
header += sizeof(vlan);
}
if (mplsoudp_encap_conf.select_ipv4) {
memcpy(header, &ipv4, sizeof(ipv4));
header += sizeof(ipv4);
} else {
memcpy(&ipv6.hdr.src_addr,
&mplsoudp_encap_conf.ipv6_src,
sizeof(mplsoudp_encap_conf.ipv6_src));
memcpy(&ipv6.hdr.dst_addr,
&mplsoudp_encap_conf.ipv6_dst,
sizeof(mplsoudp_encap_conf.ipv6_dst));
memcpy(header, &ipv6, sizeof(ipv6));
header += sizeof(ipv6);
}
memcpy(header, &udp, sizeof(udp));
header += sizeof(udp);
memcpy(mpls.label_tc_s, mplsoudp_encap_conf.label,
RTE_DIM(mplsoudp_encap_conf.label));
memcpy(header, &mpls, sizeof(mpls));
header += sizeof(mpls);
action_encap_data->conf.size = header -
action_encap_data->data;
action->conf = &action_encap_data->conf;
return ret;
}
/** Parse MPLSOUDP decap action. */
static int
parse_vc_action_mplsoudp_decap(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
struct buffer *out = buf;
struct rte_flow_action *action;
struct action_raw_decap_data *action_decap_data;
struct rte_flow_item_eth eth = { .type = 0, };
struct rte_flow_item_vlan vlan = {.tci = 0};
struct rte_flow_item_ipv4 ipv4 = {
.hdr = {
.next_proto_id = IPPROTO_UDP,
},
};
struct rte_flow_item_ipv6 ipv6 = {
.hdr = {
.proto = IPPROTO_UDP,
},
};
struct rte_flow_item_udp udp = {
.hdr = {
.dst_port = rte_cpu_to_be_16(6635),
},
};
struct rte_flow_item_mpls mpls;
uint8_t *header;
int ret;
ret = parse_vc(ctx, token, str, len, buf, size);
if (ret < 0)
return ret;
/* Nothing else to do if there is no buffer. */
if (!out)
return ret;
if (!out->args.vc.actions_n)
return -1;
action = &out->args.vc.actions[out->args.vc.actions_n - 1];
/* Point to selected object. */
ctx->object = out->args.vc.data;
ctx->objmask = NULL;
/* Copy the headers to the buffer. */
action_decap_data = ctx->object;
*action_decap_data = (struct action_raw_decap_data) {
.conf = (struct rte_flow_action_raw_decap){
.data = action_decap_data->data,
},
.data = {},
};
header = action_decap_data->data;
if (mplsoudp_decap_conf.select_vlan)
eth.type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
else if (mplsoudp_encap_conf.select_ipv4)
eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
else
eth.type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
memcpy(eth.dst.addr_bytes,
mplsoudp_encap_conf.eth_dst, ETHER_ADDR_LEN);
memcpy(eth.src.addr_bytes,
mplsoudp_encap_conf.eth_src, ETHER_ADDR_LEN);
memcpy(header, &eth, sizeof(eth));
header += sizeof(eth);
if (mplsoudp_encap_conf.select_vlan) {
if (mplsoudp_encap_conf.select_ipv4)
vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
else
vlan.inner_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
memcpy(header, &vlan, sizeof(vlan));
header += sizeof(vlan);
}
if (mplsoudp_encap_conf.select_ipv4) {
memcpy(header, &ipv4, sizeof(ipv4));
header += sizeof(ipv4);
} else {
memcpy(header, &ipv6, sizeof(ipv6));
header += sizeof(ipv6);
}
memcpy(header, &udp, sizeof(udp));
header += sizeof(udp);
memset(&mpls, 0, sizeof(mpls));
memcpy(header, &mpls, sizeof(mpls));
header += sizeof(mpls);
action_decap_data->conf.size = header -
action_decap_data->data;
action->conf = &action_decap_data->conf;
return ret;
}
/** Parse tokens for destroy command. */
static int
parse_destroy(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
struct buffer *out = buf;
/* Token name must match. */
if (parse_default(ctx, token, str, len, NULL, 0) < 0)
return -1;
/* Nothing else to do if there is no buffer. */
if (!out)
return len;
if (!out->command) {
if (ctx->curr != DESTROY)
return -1;
if (sizeof(*out) > size)
return -1;
out->command = ctx->curr;
ctx->objdata = 0;
ctx->object = out;
ctx->objmask = NULL;
out->args.destroy.rule =
(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
sizeof(double));
return len;
}
if (((uint8_t *)(out->args.destroy.rule + out->args.destroy.rule_n) +
sizeof(*out->args.destroy.rule)) > (uint8_t *)out + size)
return -1;
ctx->objdata = 0;
ctx->object = out->args.destroy.rule + out->args.destroy.rule_n++;
ctx->objmask = NULL;
return len;
}
/** Parse tokens for flush command. */
static int
parse_flush(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
struct buffer *out = buf;
/* Token name must match. */
if (parse_default(ctx, token, str, len, NULL, 0) < 0)
return -1;
/* Nothing else to do if there is no buffer. */
if (!out)
return len;
if (!out->command) {
if (ctx->curr != FLUSH)
return -1;
if (sizeof(*out) > size)
return -1;
out->command = ctx->curr;
ctx->objdata = 0;
ctx->object = out;
ctx->objmask = NULL;
}
return len;
}
/** Parse tokens for query command. */
static int
parse_query(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
struct buffer *out = buf;
/* Token name must match. */
if (parse_default(ctx, token, str, len, NULL, 0) < 0)
return -1;
/* Nothing else to do if there is no buffer. */
if (!out)
return len;
if (!out->command) {
if (ctx->curr != QUERY)
return -1;
if (sizeof(*out) > size)
return -1;
out->command = ctx->curr;
ctx->objdata = 0;
ctx->object = out;
ctx->objmask = NULL;
}
return len;
}
/** Parse action names. */
static int
parse_action(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
struct buffer *out = buf;
const struct arg *arg = pop_args(ctx);
unsigned int i;
(void)size;
/* Argument is expected. */
if (!arg)
return -1;
/* Parse action name. */
for (i = 0; next_action[i]; ++i) {
const struct parse_action_priv *priv;
token = &token_list[next_action[i]];
if (strcmp_partial(token->name, str, len))
continue;
priv = token->priv;
if (!priv)
goto error;
if (out)
memcpy((uint8_t *)ctx->object + arg->offset,
&priv->type,
arg->size);
return len;
}
error:
push_args(ctx, arg);
return -1;
}
/** Parse tokens for list command. */
static int
parse_list(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
struct buffer *out = buf;
/* Token name must match. */
if (parse_default(ctx, token, str, len, NULL, 0) < 0)
return -1;
/* Nothing else to do if there is no buffer. */
if (!out)
return len;
if (!out->command) {
if (ctx->curr != LIST)
return -1;
if (sizeof(*out) > size)
return -1;
out->command = ctx->curr;
ctx->objdata = 0;
ctx->object = out;
ctx->objmask = NULL;
out->args.list.group =
(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
sizeof(double));
return len;
}
if (((uint8_t *)(out->args.list.group + out->args.list.group_n) +
sizeof(*out->args.list.group)) > (uint8_t *)out + size)
return -1;
ctx->objdata = 0;
ctx->object = out->args.list.group + out->args.list.group_n++;
ctx->objmask = NULL;
return len;
}
/** Parse tokens for isolate command. */
static int
parse_isolate(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
struct buffer *out = buf;
/* Token name must match. */
if (parse_default(ctx, token, str, len, NULL, 0) < 0)
return -1;
/* Nothing else to do if there is no buffer. */
if (!out)
return len;
if (!out->command) {
if (ctx->curr != ISOLATE)
return -1;
if (sizeof(*out) > size)
return -1;
out->command = ctx->curr;
ctx->objdata = 0;
ctx->object = out;
ctx->objmask = NULL;
}
return len;
}
/**
* Parse signed/unsigned integers 8 to 64-bit long.
*
* Last argument (ctx->args) is retrieved to determine integer type and
* storage location.
*/
static int
parse_int(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
const struct arg *arg = pop_args(ctx);
uintmax_t u;
char *end;
(void)token;
/* Argument is expected. */
if (!arg)
return -1;
errno = 0;
u = arg->sign ?
(uintmax_t)strtoimax(str, &end, 0) :
strtoumax(str, &end, 0);
if (errno || (size_t)(end - str) != len)
goto error;
if (arg->bounded &&
((arg->sign && ((intmax_t)u < (intmax_t)arg->min ||
(intmax_t)u > (intmax_t)arg->max)) ||
(!arg->sign && (u < arg->min || u > arg->max))))
goto error;
if (!ctx->object)
return len;
if (arg->mask) {
if (!arg_entry_bf_fill(ctx->object, u, arg) ||
!arg_entry_bf_fill(ctx->objmask, -1, arg))
goto error;
return len;
}
buf = (uint8_t *)ctx->object + arg->offset;
size = arg->size;
objmask:
switch (size) {
case sizeof(uint8_t):
*(uint8_t *)buf = u;
break;
case sizeof(uint16_t):
*(uint16_t *)buf = arg->hton ? rte_cpu_to_be_16(u) : u;
break;
case sizeof(uint8_t [3]):
#if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
if (!arg->hton) {
((uint8_t *)buf)[0] = u;
((uint8_t *)buf)[1] = u >> 8;
((uint8_t *)buf)[2] = u >> 16;
break;
}
#endif
((uint8_t *)buf)[0] = u >> 16;
((uint8_t *)buf)[1] = u >> 8;
((uint8_t *)buf)[2] = u;
break;
case sizeof(uint32_t):
*(uint32_t *)buf = arg->hton ? rte_cpu_to_be_32(u) : u;
break;
case sizeof(uint64_t):
*(uint64_t *)buf = arg->hton ? rte_cpu_to_be_64(u) : u;
break;
default:
goto error;
}
if (ctx->objmask && buf != (uint8_t *)ctx->objmask + arg->offset) {
u = -1;
buf = (uint8_t *)ctx->objmask + arg->offset;
goto objmask;
}
return len;
error:
push_args(ctx, arg);
return -1;
}
/**
* Parse a string.
*
* Three arguments (ctx->args) are retrieved from the stack to store data,
* its actual length and address (in that order).
*/
static int
parse_string(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
const struct arg *arg_data = pop_args(ctx);
const struct arg *arg_len = pop_args(ctx);
const struct arg *arg_addr = pop_args(ctx);
char tmp[16]; /* Ought to be enough. */
int ret;
/* Arguments are expected. */
if (!arg_data)
return -1;
if (!arg_len) {
push_args(ctx, arg_data);
return -1;
}
if (!arg_addr) {
push_args(ctx, arg_len);
push_args(ctx, arg_data);
return -1;
}
size = arg_data->size;
/* Bit-mask fill is not supported. */
if (arg_data->mask || size < len)
goto error;
if (!ctx->object)
return len;
/* Let parse_int() fill length information first. */
ret = snprintf(tmp, sizeof(tmp), "%u", len);
if (ret < 0)
goto error;
push_args(ctx, arg_len);
ret = parse_int(ctx, token, tmp, ret, NULL, 0);
if (ret < 0) {
pop_args(ctx);
goto error;
}
buf = (uint8_t *)ctx->object + arg_data->offset;
/* Output buffer is not necessarily NUL-terminated. */
memcpy(buf, str, len);
memset((uint8_t *)buf + len, 0x00, size - len);
if (ctx->objmask)
memset((uint8_t *)ctx->objmask + arg_data->offset, 0xff, len);
/* Save address if requested. */
if (arg_addr->size) {
memcpy((uint8_t *)ctx->object + arg_addr->offset,
(void *[]){
(uint8_t *)ctx->object + arg_data->offset
},
arg_addr->size);
if (ctx->objmask)
memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
(void *[]){
(uint8_t *)ctx->objmask + arg_data->offset
},
arg_addr->size);
}
return len;
error:
push_args(ctx, arg_addr);
push_args(ctx, arg_len);
push_args(ctx, arg_data);
return -1;
}
/**
* Parse a MAC address.
*
* Last argument (ctx->args) is retrieved to determine storage size and
* location.
*/
static int
parse_mac_addr(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
const struct arg *arg = pop_args(ctx);
struct ether_addr tmp;
int ret;
(void)token;
/* Argument is expected. */
if (!arg)
return -1;
size = arg->size;
/* Bit-mask fill is not supported. */
if (arg->mask || size != sizeof(tmp))
goto error;
/* Only network endian is supported. */
if (!arg->hton)
goto error;
ret = cmdline_parse_etheraddr(NULL, str, &tmp, size);
if (ret < 0 || (unsigned int)ret != len)
goto error;
if (!ctx->object)
return len;
buf = (uint8_t *)ctx->object + arg->offset;
memcpy(buf, &tmp, size);
if (ctx->objmask)
memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
return len;
error:
push_args(ctx, arg);
return -1;
}
/**
* Parse an IPv4 address.
*
* Last argument (ctx->args) is retrieved to determine storage size and
* location.
*/
static int
parse_ipv4_addr(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
const struct arg *arg = pop_args(ctx);
char str2[len + 1];
struct in_addr tmp;
int ret;
/* Argument is expected. */
if (!arg)
return -1;
size = arg->size;
/* Bit-mask fill is not supported. */
if (arg->mask || size != sizeof(tmp))
goto error;
/* Only network endian is supported. */
if (!arg->hton)
goto error;
memcpy(str2, str, len);
str2[len] = '\0';
ret = inet_pton(AF_INET, str2, &tmp);
if (ret != 1) {
/* Attempt integer parsing. */
push_args(ctx, arg);
return parse_int(ctx, token, str, len, buf, size);
}
if (!ctx->object)
return len;
buf = (uint8_t *)ctx->object + arg->offset;
memcpy(buf, &tmp, size);
if (ctx->objmask)
memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
return len;
error:
push_args(ctx, arg);
return -1;
}
/**
* Parse an IPv6 address.
*
* Last argument (ctx->args) is retrieved to determine storage size and
* location.
*/
static int
parse_ipv6_addr(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
const struct arg *arg = pop_args(ctx);
char str2[len + 1];
struct in6_addr tmp;
int ret;
(void)token;
/* Argument is expected. */
if (!arg)
return -1;
size = arg->size;
/* Bit-mask fill is not supported. */
if (arg->mask || size != sizeof(tmp))
goto error;
/* Only network endian is supported. */
if (!arg->hton)
goto error;
memcpy(str2, str, len);
str2[len] = '\0';
ret = inet_pton(AF_INET6, str2, &tmp);
if (ret != 1)
goto error;
if (!ctx->object)
return len;
buf = (uint8_t *)ctx->object + arg->offset;
memcpy(buf, &tmp, size);
if (ctx->objmask)
memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
return len;
error:
push_args(ctx, arg);
return -1;
}
/** Boolean values (even indices stand for false). */
static const char *const boolean_name[] = {
"0", "1",
"false", "true",
"no", "yes",
"N", "Y",
"off", "on",
NULL,
};
/**
* Parse a boolean value.
*
* Last argument (ctx->args) is retrieved to determine storage size and
* location.
*/
static int
parse_boolean(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
const struct arg *arg = pop_args(ctx);
unsigned int i;
int ret;
/* Argument is expected. */
if (!arg)
return -1;
for (i = 0; boolean_name[i]; ++i)
if (!strcmp_partial(boolean_name[i], str, len))
break;
/* Process token as integer. */
if (boolean_name[i])
str = i & 1 ? "1" : "0";
push_args(ctx, arg);
ret = parse_int(ctx, token, str, strlen(str), buf, size);
return ret > 0 ? (int)len : ret;
}
/** Parse port and update context. */
static int
parse_port(struct context *ctx, const struct token *token,
const char *str, unsigned int len,
void *buf, unsigned int size)
{
struct buffer *out = &(struct buffer){ .port = 0 };
int ret;
if (buf)
out = buf;
else {
ctx->objdata = 0;
ctx->object = out;
ctx->objmask = NULL;
size = sizeof(*out);
}
ret = parse_int(ctx, token, str, len, out, size);
if (ret >= 0)
ctx->port = out->port;
if (!buf)
ctx->object = NULL;
return ret;
}
/** No completion. */
static int
comp_none(struct context *ctx, const struct token *token,
unsigned int ent, char *buf, unsigned int size)
{
(void)ctx;
(void)token;
(void)ent;
(void)buf;
(void)size;
return 0;
}
/** Complete boolean values. */
static int
comp_boolean(struct context *ctx, const struct token *token,
unsigned int ent, char *buf, unsigned int size)
{
unsigned int i;
(void)ctx;
(void)token;
for (i = 0; boolean_name[i]; ++i)
if (buf && i == ent)
return snprintf(buf, size, "%s", boolean_name[i]);
if (buf)
return -1;
return i;
}
/** Complete action names. */
static int
comp_action(struct context *ctx, const struct token *token,
unsigned int ent, char *buf, unsigned int size)
{
unsigned int i;
(void)ctx;
(void)token;
for (i = 0; next_action[i]; ++i)
if (buf && i == ent)
return snprintf(buf, size, "%s",
token_list[next_action[i]].name);
if (buf)
return -1;
return i;
}
/** Complete available ports. */
static int
comp_port(struct context *ctx, const struct token *token,
unsigned int ent, char *buf, unsigned int size)
{
unsigned int i = 0;
portid_t p;
(void)ctx;
(void)token;
RTE_ETH_FOREACH_DEV(p) {
if (buf && i == ent)
return snprintf(buf, size, "%u", p);
++i;
}
if (buf)
return -1;
return i;
}
/** Complete available rule IDs. */
static int
comp_rule_id(struct context *ctx, const struct token *token,
unsigned int ent, char *buf, unsigned int size)
{
unsigned int i = 0;
struct rte_port *port;
struct port_flow *pf;
(void)token;
if (port_id_is_invalid(ctx->port, DISABLED_WARN) ||
ctx->port == (portid_t)RTE_PORT_ALL)
return -1;
port = &ports[ctx->port];
for (pf = port->flow_list; pf != NULL; pf = pf->next) {
if (buf && i == ent)
return snprintf(buf, size, "%u", pf->id);
++i;
}
if (buf)
return -1;
return i;
}
/** Complete type field for RSS action. */
static int
comp_vc_action_rss_type(struct context *ctx, const struct token *token,
unsigned int ent, char *buf, unsigned int size)
{
unsigned int i;
(void)ctx;
(void)token;
for (i = 0; rss_type_table[i].str; ++i)
;
if (!buf)
return i + 1;
if (ent < i)
return snprintf(buf, size, "%s", rss_type_table[ent].str);
if (ent == i)
return snprintf(buf, size, "end");
return -1;
}
/** Complete queue field for RSS action. */
static int
comp_vc_action_rss_queue(struct context *ctx, const struct token *token,
unsigned int ent, char *buf, unsigned int size)
{
(void)ctx;
(void)token;
if (!buf)
return nb_rxq + 1;
if (ent < nb_rxq)
return snprintf(buf, size, "%u", ent);
if (ent == nb_rxq)
return snprintf(buf, size, "end");
return -1;
}
/** Internal context. */
static struct context cmd_flow_context;
/** Global parser instance (cmdline API). */
cmdline_parse_inst_t cmd_flow;
/** Initialize context. */
static void
cmd_flow_context_init(struct context *ctx)
{
/* A full memset() is not necessary. */
ctx->curr = ZERO;
ctx->prev = ZERO;
ctx->next_num = 0;
ctx->args_num = 0;
ctx->eol = 0;
ctx->last = 0;
ctx->port = 0;
ctx->objdata = 0;
ctx->object = NULL;
ctx->objmask = NULL;
}
/** Parse a token (cmdline API). */
static int
cmd_flow_parse(cmdline_parse_token_hdr_t *hdr, const char *src, void *result,
unsigned int size)
{
struct context *ctx = &cmd_flow_context;
const struct token *token;
const enum index *list;
int len;
int i;
(void)hdr;
token = &token_list[ctx->curr];
/* Check argument length. */
ctx->eol = 0;
ctx->last = 1;
for (len = 0; src[len]; ++len)
if (src[len] == '#' || isspace(src[len]))
break;
if (!len)
return -1;
/* Last argument and EOL detection. */
for (i = len; src[i]; ++i)
if (src[i] == '#' || src[i] == '\r' || src[i] == '\n')
break;
else if (!isspace(src[i])) {
ctx->last = 0;
break;
}
for (; src[i]; ++i)
if (src[i] == '\r' || src[i] == '\n') {
ctx->eol = 1;
break;
}
/* Initialize context if necessary. */
if (!ctx->next_num) {
if (!token->next)
return 0;
ctx->next[ctx->next_num++] = token->next[0];
}
/* Process argument through candidates. */
ctx->prev = ctx->curr;
list = ctx->next[ctx->next_num - 1];
for (i = 0; list[i]; ++i) {
const struct token *next = &token_list[list[i]];
int tmp;
ctx->curr = list[i];
if (next->call)
tmp = next->call(ctx, next, src, len, result, size);
else
tmp = parse_default(ctx, next, src, len, result, size);
if (tmp == -1 || tmp != len)
continue;
token = next;
break;
}
if (!list[i])
return -1;
--ctx->next_num;
/* Push subsequent tokens if any. */
if (token->next)
for (i = 0; token->next[i]; ++i) {
if (ctx->next_num == RTE_DIM(ctx->next))
return -1;
ctx->next[ctx->next_num++] = token->next[i];
}
/* Push arguments if any. */
if (token->args)
for (i = 0; token->args[i]; ++i) {
if (ctx->args_num == RTE_DIM(ctx->args))
return -1;
ctx->args[ctx->args_num++] = token->args[i];
}
return len;
}
/** Return number of completion entries (cmdline API). */
static int
cmd_flow_complete_get_nb(cmdline_parse_token_hdr_t *hdr)
{
struct context *ctx = &cmd_flow_context;
const struct token *token = &token_list[ctx->curr];
const enum index *list;
int i;
(void)hdr;
/* Count number of tokens in current list. */
if (ctx->next_num)
list = ctx->next[ctx->next_num - 1];
else
list = token->next[0];
for (i = 0; list[i]; ++i)
;
if (!i)
return 0;
/*
* If there is a single token, use its completion callback, otherwise
* return the number of entries.
*/
token = &token_list[list[0]];
if (i == 1 && token->comp) {
/* Save index for cmd_flow_get_help(). */
ctx->prev = list[0];
return token->comp(ctx, token, 0, NULL, 0);
}
return i;
}
/** Return a completion entry (cmdline API). */
static int
cmd_flow_complete_get_elt(cmdline_parse_token_hdr_t *hdr, int index,
char *dst, unsigned int size)
{
struct context *ctx = &cmd_flow_context;
const struct token *token = &token_list[ctx->curr];
const enum index *list;
int i;
(void)hdr;
/* Count number of tokens in current list. */
if (ctx->next_num)
list = ctx->next[ctx->next_num - 1];
else
list = token->next[0];
for (i = 0; list[i]; ++i)
;
if (!i)
return -1;
/* If there is a single token, use its completion callback. */
token = &token_list[list[0]];
if (i == 1 && token->comp) {
/* Save index for cmd_flow_get_help(). */
ctx->prev = list[0];
return token->comp(ctx, token, index, dst, size) < 0 ? -1 : 0;
}
/* Otherwise make sure the index is valid and use defaults. */
if (index >= i)
return -1;
token = &token_list[list[index]];
snprintf(dst, size, "%s", token->name);
/* Save index for cmd_flow_get_help(). */
ctx->prev = list[index];
return 0;
}
/** Populate help strings for current token (cmdline API). */
static int
cmd_flow_get_help(cmdline_parse_token_hdr_t *hdr, char *dst, unsigned int size)
{
struct context *ctx = &cmd_flow_context;
const struct token *token = &token_list[ctx->prev];
(void)hdr;
if (!size)
return -1;
/* Set token type and update global help with details. */
snprintf(dst, size, "%s", (token->type ? token->type : "TOKEN"));
if (token->help)
cmd_flow.help_str = token->help;
else
cmd_flow.help_str = token->name;
return 0;
}
/** Token definition template (cmdline API). */
static struct cmdline_token_hdr cmd_flow_token_hdr = {
.ops = &(struct cmdline_token_ops){
.parse = cmd_flow_parse,
.complete_get_nb = cmd_flow_complete_get_nb,
.complete_get_elt = cmd_flow_complete_get_elt,
.get_help = cmd_flow_get_help,
},
.offset = 0,
};
/** Populate the next dynamic token. */
static void
cmd_flow_tok(cmdline_parse_token_hdr_t **hdr,
cmdline_parse_token_hdr_t **hdr_inst)
{
struct context *ctx = &cmd_flow_context;
/* Always reinitialize context before requesting the first token. */
if (!(hdr_inst - cmd_flow.tokens))
cmd_flow_context_init(ctx);
/* Return NULL when no more tokens are expected. */
if (!ctx->next_num && ctx->curr) {
*hdr = NULL;
return;
}
/* Determine if command should end here. */
if (ctx->eol && ctx->last && ctx->next_num) {
const enum index *list = ctx->next[ctx->next_num - 1];
int i;
for (i = 0; list[i]; ++i) {
if (list[i] != END)
continue;
*hdr = NULL;
return;
}
}
*hdr = &cmd_flow_token_hdr;
}
/** Dispatch parsed buffer to function calls. */
static void
cmd_flow_parsed(const struct buffer *in)
{
switch (in->command) {
case VALIDATE:
port_flow_validate(in->port, &in->args.vc.attr,
in->args.vc.pattern, in->args.vc.actions);
break;
case CREATE:
port_flow_create(in->port, &in->args.vc.attr,
in->args.vc.pattern, in->args.vc.actions);
break;
case DESTROY:
port_flow_destroy(in->port, in->args.destroy.rule_n,
in->args.destroy.rule);
break;
case FLUSH:
port_flow_flush(in->port);
break;
case QUERY:
port_flow_query(in->port, in->args.query.rule,
&in->args.query.action);
break;
case LIST:
port_flow_list(in->port, in->args.list.group_n,
in->args.list.group);
break;
case ISOLATE:
port_flow_isolate(in->port, in->args.isolate.set);
break;
default:
break;
}
}
/** Token generator and output processing callback (cmdline API). */
static void
cmd_flow_cb(void *arg0, struct cmdline *cl, void *arg2)
{
if (cl == NULL)
cmd_flow_tok(arg0, arg2);
else
cmd_flow_parsed(arg0);
}
/** Global parser instance (cmdline API). */
cmdline_parse_inst_t cmd_flow = {
.f = cmd_flow_cb,
.data = NULL, /**< Unused. */
.help_str = NULL, /**< Updated by cmd_flow_get_help(). */
.tokens = {
NULL,
}, /**< Tokens are returned by cmd_flow_tok(). */
};