numam-dpdk/lib/librte_node/pkt_cls.c
Nithin Dabilpuram 5b2655a693 node: add packet classifier
This node classifies pkts based on packet type and
sends them to appropriate next node. This is node
helps in distribution of packets from ethdev_rx node
to different next node with a constant overhead for
all packet types.

Currently all except non fragmented IPV4 packets are marked
to be sent to "pkt_drop" node.
Performance difference on ARM64 Octeontx2 is -4.9% due to
addition of new node in the path.

Signed-off-by: Nithin Dabilpuram <ndabilpuram@marvell.com>
2020-07-22 01:18:59 +02:00

226 lines
5.1 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (C) 2020 Marvell.
*/
#include <rte_debug.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_mbuf.h>
#include <rte_graph.h>
#include <rte_graph_worker.h>
#include "pkt_cls_priv.h"
#include "node_private.h"
/* Next node for each ptype, default is '0' is "pkt_drop" */
static const uint8_t p_nxt[256] __rte_cache_aligned = {
[RTE_PTYPE_L3_IPV4] = PKT_CLS_NEXT_IP4_LOOKUP,
[RTE_PTYPE_L3_IPV4_EXT] = PKT_CLS_NEXT_IP4_LOOKUP,
[RTE_PTYPE_L3_IPV4_EXT_UNKNOWN] = PKT_CLS_NEXT_IP4_LOOKUP,
[RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L2_ETHER] =
PKT_CLS_NEXT_IP4_LOOKUP,
[RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L2_ETHER] =
PKT_CLS_NEXT_IP4_LOOKUP,
[RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L2_ETHER] =
PKT_CLS_NEXT_IP4_LOOKUP,
};
static uint16_t
pkt_cls_node_process(struct rte_graph *graph, struct rte_node *node,
void **objs, uint16_t nb_objs)
{
struct rte_mbuf *mbuf0, *mbuf1, *mbuf2, *mbuf3, **pkts;
uint8_t l0, l1, l2, l3, last_type;
uint16_t next_index, n_left_from;
uint16_t held = 0, last_spec = 0;
struct pkt_cls_node_ctx *ctx;
void **to_next, **from;
uint32_t i;
pkts = (struct rte_mbuf **)objs;
from = objs;
n_left_from = nb_objs;
for (i = OBJS_PER_CLINE; i < RTE_GRAPH_BURST_SIZE; i += OBJS_PER_CLINE)
rte_prefetch0(&objs[i]);
#if RTE_GRAPH_BURST_SIZE > 64
for (i = 0; i < 4 && i < n_left_from; i++)
rte_prefetch0(pkts[i]);
#endif
ctx = (struct pkt_cls_node_ctx *)node->ctx;
last_type = ctx->l2l3_type;
next_index = p_nxt[last_type];
/* Get stream for the speculated next node */
to_next = rte_node_next_stream_get(graph, node,
next_index, nb_objs);
while (n_left_from >= 4) {
#if RTE_GRAPH_BURST_SIZE > 64
if (likely(n_left_from > 7)) {
rte_prefetch0(pkts[4]);
rte_prefetch0(pkts[5]);
rte_prefetch0(pkts[6]);
rte_prefetch0(pkts[7]);
}
#endif
mbuf0 = pkts[0];
mbuf1 = pkts[1];
mbuf2 = pkts[2];
mbuf3 = pkts[3];
pkts += 4;
n_left_from -= 4;
l0 = mbuf0->packet_type &
(RTE_PTYPE_L2_MASK | RTE_PTYPE_L3_MASK);
l1 = mbuf1->packet_type &
(RTE_PTYPE_L2_MASK | RTE_PTYPE_L3_MASK);
l2 = mbuf2->packet_type &
(RTE_PTYPE_L2_MASK | RTE_PTYPE_L3_MASK);
l3 = mbuf3->packet_type &
(RTE_PTYPE_L2_MASK | RTE_PTYPE_L3_MASK);
/* Check if they are destined to same
* next node based on l2l3 packet type.
*/
uint8_t fix_spec = (last_type ^ l0) | (last_type ^ l1) |
(last_type ^ l2) | (last_type ^ l3);
if (unlikely(fix_spec)) {
/* Copy things successfully speculated till now */
rte_memcpy(to_next, from,
last_spec * sizeof(from[0]));
from += last_spec;
to_next += last_spec;
held += last_spec;
last_spec = 0;
/* l0 */
if (p_nxt[l0] == next_index) {
to_next[0] = from[0];
to_next++;
held++;
} else {
rte_node_enqueue_x1(graph, node,
p_nxt[l0], from[0]);
}
/* l1 */
if (p_nxt[l1] == next_index) {
to_next[0] = from[1];
to_next++;
held++;
} else {
rte_node_enqueue_x1(graph, node,
p_nxt[l1], from[1]);
}
/* l2 */
if (p_nxt[l2] == next_index) {
to_next[0] = from[2];
to_next++;
held++;
} else {
rte_node_enqueue_x1(graph, node,
p_nxt[l2], from[2]);
}
/* l3 */
if (p_nxt[l3] == next_index) {
to_next[0] = from[3];
to_next++;
held++;
} else {
rte_node_enqueue_x1(graph, node,
p_nxt[l3], from[3]);
}
/* Update speculated ptype */
if ((last_type != l3) && (l2 == l3) &&
(next_index != p_nxt[l3])) {
/* Put the current stream for
* speculated ltype.
*/
rte_node_next_stream_put(graph, node,
next_index, held);
held = 0;
/* Get next stream for new ltype */
next_index = p_nxt[l3];
last_type = l3;
to_next = rte_node_next_stream_get(graph, node,
next_index,
nb_objs);
} else if (next_index == p_nxt[l3]) {
last_type = l3;
}
from += 4;
} else {
last_spec += 4;
}
}
while (n_left_from > 0) {
mbuf0 = pkts[0];
pkts += 1;
n_left_from -= 1;
l0 = mbuf0->packet_type &
(RTE_PTYPE_L2_MASK | RTE_PTYPE_L3_MASK);
if (unlikely((l0 != last_type) &&
(p_nxt[l0] != next_index))) {
/* Copy things successfully speculated till now */
rte_memcpy(to_next, from,
last_spec * sizeof(from[0]));
from += last_spec;
to_next += last_spec;
held += last_spec;
last_spec = 0;
rte_node_enqueue_x1(graph, node,
p_nxt[l0], from[0]);
from += 1;
} else {
last_spec += 1;
}
}
/* !!! Home run !!! */
if (likely(last_spec == nb_objs)) {
rte_node_next_stream_move(graph, node, next_index);
return nb_objs;
}
held += last_spec;
/* Copy things successfully speculated till now */
rte_memcpy(to_next, from, last_spec * sizeof(from[0]));
rte_node_next_stream_put(graph, node, next_index, held);
ctx->l2l3_type = last_type;
return nb_objs;
}
/* Packet Classification Node */
struct rte_node_register pkt_cls_node = {
.process = pkt_cls_node_process,
.name = "pkt_cls",
.nb_edges = PKT_CLS_NEXT_MAX,
.next_nodes = {
/* Pkt drop node starts at '0' */
[PKT_CLS_NEXT_PKT_DROP] = "pkt_drop",
[PKT_CLS_NEXT_IP4_LOOKUP] = "ip4_lookup",
},
};
RTE_NODE_REGISTER(pkt_cls_node);