numam-dpdk/app/test-eventdev/test_perf_queue.c
Volodymyr Fialko 6776a58173 app/eventdev: fix timestamp with crypto producer
With symmetric crypto producer and enabled `--fwd_latency` we will
treat rte_mbuf as perf_elt which will lead to rte_mbuf header
corruption. Use rte_mbuf data to store time stamp information.
For asymmetric add space in result data for time stamp.

Fixes: de2bc16e1b ("app/eventdev: add crypto producer mode")
Cc: stable@dpdk.org

Signed-off-by: Volodymyr Fialko <vfialko@marvell.com>
Acked-by: Anoob Joseph <anoobj@marvell.com>
2022-11-07 19:12:22 +01:00

353 lines
9.2 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017 Cavium, Inc
*/
#include "test_perf_common.h"
/* See http://doc.dpdk.org/guides/tools/testeventdev.html for test details */
static inline int
perf_queue_nb_event_queues(struct evt_options *opt)
{
/* nb_queues = number of producers * number of stages */
uint8_t nb_prod = opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR ?
rte_eth_dev_count_avail() : evt_nr_active_lcores(opt->plcores);
return nb_prod * opt->nb_stages;
}
static __rte_always_inline void
fwd_event(struct rte_event *const ev, uint8_t *const sched_type_list,
const uint8_t nb_stages)
{
ev->queue_id++;
ev->sched_type = sched_type_list[ev->queue_id % nb_stages];
ev->op = RTE_EVENT_OP_FORWARD;
ev->event_type = RTE_EVENT_TYPE_CPU;
}
static int
perf_queue_worker(void *arg, const int enable_fwd_latency)
{
struct perf_elt *pe = NULL;
uint16_t enq = 0, deq = 0;
struct rte_event ev;
PERF_WORKER_INIT;
uint8_t stage;
while (t->done == false) {
deq = rte_event_dequeue_burst(dev, port, &ev, 1, 0);
if (!deq) {
rte_pause();
continue;
}
if (prod_crypto_type && (ev.event_type == RTE_EVENT_TYPE_CRYPTODEV)) {
if (perf_handle_crypto_ev(&ev, &pe, enable_fwd_latency))
continue;
} else {
pe = ev.event_ptr;
}
stage = ev.queue_id % nb_stages;
if (enable_fwd_latency && !prod_timer_type && stage == 0)
/* first q in pipeline, mark timestamp to compute fwd latency */
perf_mark_fwd_latency(pe);
/* last stage in pipeline */
if (unlikely(stage == laststage)) {
if (enable_fwd_latency)
cnt = perf_process_last_stage_latency(pool, prod_crypto_type,
&ev, w, bufs, sz, cnt);
else
cnt = perf_process_last_stage(pool, prod_crypto_type,
&ev, w, bufs, sz, cnt);
} else {
fwd_event(&ev, sched_type_list, nb_stages);
do {
enq = rte_event_enqueue_burst(dev, port, &ev, 1);
} while (!enq && !t->done);
}
}
perf_worker_cleanup(pool, dev, port, &ev, enq, deq);
return 0;
}
static int
perf_queue_worker_burst(void *arg, const int enable_fwd_latency)
{
/* +1 to avoid prefetch out of array check */
struct rte_event ev[BURST_SIZE + 1];
uint16_t enq = 0, nb_rx = 0;
struct perf_elt *pe = NULL;
PERF_WORKER_INIT;
uint8_t stage;
uint16_t i;
while (t->done == false) {
nb_rx = rte_event_dequeue_burst(dev, port, ev, BURST_SIZE, 0);
if (!nb_rx) {
rte_pause();
continue;
}
for (i = 0; i < nb_rx; i++) {
if (prod_crypto_type && (ev[i].event_type == RTE_EVENT_TYPE_CRYPTODEV)) {
if (perf_handle_crypto_ev(&ev[i], &pe, enable_fwd_latency))
continue;
}
stage = ev[i].queue_id % nb_stages;
if (enable_fwd_latency && !prod_timer_type && stage == 0) {
rte_prefetch0(ev[i+1].event_ptr);
/* first queue in pipeline.
* mark time stamp to compute fwd latency
*/
perf_mark_fwd_latency(ev[i].event_ptr);
}
/* last stage in pipeline */
if (unlikely(stage == laststage)) {
if (enable_fwd_latency)
cnt = perf_process_last_stage_latency(pool,
prod_crypto_type, &ev[i], w, bufs, sz, cnt);
else
cnt = perf_process_last_stage(pool, prod_crypto_type,
&ev[i], w, bufs, sz, cnt);
ev[i].op = RTE_EVENT_OP_RELEASE;
} else {
fwd_event(&ev[i], sched_type_list, nb_stages);
}
}
enq = rte_event_enqueue_burst(dev, port, ev, nb_rx);
while (enq < nb_rx && !t->done) {
enq += rte_event_enqueue_burst(dev, port,
ev + enq, nb_rx - enq);
}
}
perf_worker_cleanup(pool, dev, port, ev, enq, nb_rx);
return 0;
}
static int
worker_wrapper(void *arg)
{
struct worker_data *w = arg;
struct evt_options *opt = w->t->opt;
const bool burst = evt_has_burst_mode(w->dev_id);
const int fwd_latency = opt->fwd_latency;
/* allow compiler to optimize */
if (!burst && !fwd_latency)
return perf_queue_worker(arg, 0);
else if (!burst && fwd_latency)
return perf_queue_worker(arg, 1);
else if (burst && !fwd_latency)
return perf_queue_worker_burst(arg, 0);
else if (burst && fwd_latency)
return perf_queue_worker_burst(arg, 1);
rte_panic("invalid worker\n");
}
static int
perf_queue_launch_lcores(struct evt_test *test, struct evt_options *opt)
{
return perf_launch_lcores(test, opt, worker_wrapper);
}
static int
perf_queue_eventdev_setup(struct evt_test *test, struct evt_options *opt)
{
uint8_t queue;
int nb_stages = opt->nb_stages;
int ret;
int nb_ports;
int nb_queues;
uint16_t prod;
struct rte_event_dev_info dev_info;
struct test_perf *t = evt_test_priv(test);
nb_ports = evt_nr_active_lcores(opt->wlcores);
nb_ports += opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR ||
opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR ? 0 :
evt_nr_active_lcores(opt->plcores);
nb_queues = perf_queue_nb_event_queues(opt);
ret = rte_event_dev_info_get(opt->dev_id, &dev_info);
if (ret) {
evt_err("failed to get eventdev info %d", opt->dev_id);
return ret;
}
ret = evt_configure_eventdev(opt, nb_queues, nb_ports);
if (ret) {
evt_err("failed to configure eventdev %d", opt->dev_id);
return ret;
}
struct rte_event_queue_conf q_conf = {
.priority = RTE_EVENT_DEV_PRIORITY_NORMAL,
.nb_atomic_flows = opt->nb_flows,
.nb_atomic_order_sequences = opt->nb_flows,
};
/* queue configurations */
for (queue = 0; queue < nb_queues; queue++) {
q_conf.schedule_type =
(opt->sched_type_list[queue % nb_stages]);
if (opt->q_priority) {
uint8_t stage_pos = queue % nb_stages;
/* Configure event queues(stage 0 to stage n) with
* RTE_EVENT_DEV_PRIORITY_LOWEST to
* RTE_EVENT_DEV_PRIORITY_HIGHEST.
*/
uint8_t step = RTE_EVENT_DEV_PRIORITY_LOWEST /
(nb_stages - 1);
/* Higher prio for the queues closer to last stage */
q_conf.priority = RTE_EVENT_DEV_PRIORITY_LOWEST -
(step * stage_pos);
}
ret = rte_event_queue_setup(opt->dev_id, queue, &q_conf);
if (ret) {
evt_err("failed to setup queue=%d", queue);
return ret;
}
}
if (opt->wkr_deq_dep > dev_info.max_event_port_dequeue_depth)
opt->wkr_deq_dep = dev_info.max_event_port_dequeue_depth;
/* port configuration */
const struct rte_event_port_conf p_conf = {
.dequeue_depth = opt->wkr_deq_dep,
.enqueue_depth = dev_info.max_event_port_dequeue_depth,
.new_event_threshold = dev_info.max_num_events,
};
ret = perf_event_dev_port_setup(test, opt, nb_stages /* stride */,
nb_queues, &p_conf);
if (ret)
return ret;
if (!evt_has_distributed_sched(opt->dev_id)) {
uint32_t service_id;
rte_event_dev_service_id_get(opt->dev_id, &service_id);
ret = evt_service_setup(service_id);
if (ret) {
evt_err("No service lcore found to run event dev.");
return ret;
}
}
ret = rte_event_dev_start(opt->dev_id);
if (ret) {
evt_err("failed to start eventdev %d", opt->dev_id);
return ret;
}
if (opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR) {
RTE_ETH_FOREACH_DEV(prod) {
ret = rte_eth_dev_start(prod);
if (ret) {
evt_err("Ethernet dev [%d] failed to start. Using synthetic producer",
prod);
return ret;
}
ret = rte_event_eth_rx_adapter_start(prod);
if (ret) {
evt_err("Rx adapter[%d] start failed", prod);
return ret;
}
printf("%s: Port[%d] using Rx adapter[%d] started\n",
__func__, prod, prod);
}
} else if (opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) {
for (prod = 0; prod < opt->nb_timer_adptrs; prod++) {
ret = rte_event_timer_adapter_start(
t->timer_adptr[prod]);
if (ret) {
evt_err("failed to Start event timer adapter %d"
, prod);
return ret;
}
}
} else if (opt->prod_type == EVT_PROD_TYPE_EVENT_CRYPTO_ADPTR) {
uint8_t cdev_id, cdev_count;
cdev_count = rte_cryptodev_count();
for (cdev_id = 0; cdev_id < cdev_count; cdev_id++) {
ret = rte_cryptodev_start(cdev_id);
if (ret) {
evt_err("Failed to start cryptodev %u",
cdev_id);
return ret;
}
}
}
return 0;
}
static void
perf_queue_opt_dump(struct evt_options *opt)
{
evt_dump_fwd_latency(opt);
perf_opt_dump(opt, perf_queue_nb_event_queues(opt));
}
static int
perf_queue_opt_check(struct evt_options *opt)
{
return perf_opt_check(opt, perf_queue_nb_event_queues(opt));
}
static bool
perf_queue_capability_check(struct evt_options *opt)
{
struct rte_event_dev_info dev_info;
rte_event_dev_info_get(opt->dev_id, &dev_info);
if (dev_info.max_event_queues < perf_queue_nb_event_queues(opt) ||
dev_info.max_event_ports < perf_nb_event_ports(opt)) {
evt_err("not enough eventdev queues=%d/%d or ports=%d/%d",
perf_queue_nb_event_queues(opt),
dev_info.max_event_queues,
perf_nb_event_ports(opt), dev_info.max_event_ports);
}
return true;
}
static const struct evt_test_ops perf_queue = {
.cap_check = perf_queue_capability_check,
.opt_check = perf_queue_opt_check,
.opt_dump = perf_queue_opt_dump,
.test_setup = perf_test_setup,
.mempool_setup = perf_mempool_setup,
.ethdev_setup = perf_ethdev_setup,
.cryptodev_setup = perf_cryptodev_setup,
.ethdev_rx_stop = perf_ethdev_rx_stop,
.eventdev_setup = perf_queue_eventdev_setup,
.launch_lcores = perf_queue_launch_lcores,
.eventdev_destroy = perf_eventdev_destroy,
.mempool_destroy = perf_mempool_destroy,
.ethdev_destroy = perf_ethdev_destroy,
.cryptodev_destroy = perf_cryptodev_destroy,
.test_result = perf_test_result,
.test_destroy = perf_test_destroy,
};
EVT_TEST_REGISTER(perf_queue);