d8d51d4f9b
This add the support of hardware reassembly per SA basis. In SA rule, new parameter reassembly_en is added to enable HW reassembly per SA. For example: sa in <idx> aead_algo <algo> aead_key <key> mode ipv4-tunnel src <ip> dst <ip> type inline-protocol-offload port_id <id> reassembly_en Stats counter frag_dropped will represent the number of fragment drop in case of reassembly failures. Signed-off-by: Rahul Bhansali <rbhansali@marvell.com> Acked-by: Akhil Goyal <gakhil@marvell.com>
886 lines
24 KiB
C
886 lines
24 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2016-2020 Intel Corporation
|
|
*/
|
|
#include <sys/types.h>
|
|
#include <netinet/in.h>
|
|
#include <netinet/ip.h>
|
|
|
|
#include <rte_branch_prediction.h>
|
|
#include <rte_event_crypto_adapter.h>
|
|
#include <rte_log.h>
|
|
#include <rte_crypto.h>
|
|
#include <rte_security.h>
|
|
#include <rte_cryptodev.h>
|
|
#include <rte_ipsec.h>
|
|
#include <rte_ethdev.h>
|
|
#include <rte_mbuf.h>
|
|
#include <rte_hash.h>
|
|
|
|
#include "ipsec.h"
|
|
#include "esp.h"
|
|
|
|
static inline void
|
|
set_ipsec_conf(struct ipsec_sa *sa, struct rte_security_ipsec_xform *ipsec)
|
|
{
|
|
if (ipsec->mode == RTE_SECURITY_IPSEC_SA_MODE_TUNNEL) {
|
|
struct rte_security_ipsec_tunnel_param *tunnel =
|
|
&ipsec->tunnel;
|
|
if (IS_IP4_TUNNEL(sa->flags)) {
|
|
tunnel->type =
|
|
RTE_SECURITY_IPSEC_TUNNEL_IPV4;
|
|
tunnel->ipv4.ttl = IPDEFTTL;
|
|
|
|
memcpy((uint8_t *)&tunnel->ipv4.src_ip,
|
|
(uint8_t *)&sa->src.ip.ip4, 4);
|
|
|
|
memcpy((uint8_t *)&tunnel->ipv4.dst_ip,
|
|
(uint8_t *)&sa->dst.ip.ip4, 4);
|
|
} else if (IS_IP6_TUNNEL(sa->flags)) {
|
|
tunnel->type =
|
|
RTE_SECURITY_IPSEC_TUNNEL_IPV6;
|
|
tunnel->ipv6.hlimit = IPDEFTTL;
|
|
tunnel->ipv6.dscp = 0;
|
|
tunnel->ipv6.flabel = 0;
|
|
|
|
memcpy((uint8_t *)&tunnel->ipv6.src_addr,
|
|
(uint8_t *)&sa->src.ip.ip6.ip6_b, 16);
|
|
|
|
memcpy((uint8_t *)&tunnel->ipv6.dst_addr,
|
|
(uint8_t *)&sa->dst.ip.ip6.ip6_b, 16);
|
|
}
|
|
/* TODO support for Transport */
|
|
}
|
|
ipsec->replay_win_sz = app_sa_prm.window_size;
|
|
ipsec->options.esn = app_sa_prm.enable_esn;
|
|
ipsec->options.udp_encap = sa->udp_encap;
|
|
if (IS_HW_REASSEMBLY_EN(sa->flags))
|
|
ipsec->options.ip_reassembly_en = 1;
|
|
}
|
|
|
|
int
|
|
create_lookaside_session(struct ipsec_ctx *ipsec_ctx_lcore[],
|
|
struct socket_ctx *skt_ctx, const struct eventmode_conf *em_conf,
|
|
struct ipsec_sa *sa, struct rte_ipsec_session *ips)
|
|
{
|
|
uint16_t cdev_id = RTE_CRYPTO_MAX_DEVS;
|
|
enum rte_crypto_op_sess_type sess_type;
|
|
struct rte_cryptodev_info cdev_info;
|
|
enum rte_crypto_op_type op_type;
|
|
unsigned long cdev_id_qp = 0;
|
|
struct ipsec_ctx *ipsec_ctx;
|
|
struct cdev_key key = { 0 };
|
|
void *sess = NULL;
|
|
uint32_t lcore_id;
|
|
int32_t ret = 0;
|
|
|
|
RTE_LCORE_FOREACH(lcore_id) {
|
|
ipsec_ctx = ipsec_ctx_lcore[lcore_id];
|
|
|
|
/* Core is not bound to any cryptodev, skip it */
|
|
if (ipsec_ctx->cdev_map == NULL)
|
|
continue;
|
|
|
|
/* Looking for cryptodev, which can handle this SA */
|
|
key.lcore_id = (uint8_t)lcore_id;
|
|
key.cipher_algo = (uint8_t)sa->cipher_algo;
|
|
key.auth_algo = (uint8_t)sa->auth_algo;
|
|
key.aead_algo = (uint8_t)sa->aead_algo;
|
|
|
|
ret = rte_hash_lookup_data(ipsec_ctx->cdev_map, &key,
|
|
(void **)&cdev_id_qp);
|
|
if (ret == -ENOENT)
|
|
continue;
|
|
if (ret < 0) {
|
|
RTE_LOG(ERR, IPSEC,
|
|
"No cryptodev: core %u, cipher_algo %u, "
|
|
"auth_algo %u, aead_algo %u\n",
|
|
key.lcore_id,
|
|
key.cipher_algo,
|
|
key.auth_algo,
|
|
key.aead_algo);
|
|
return ret;
|
|
}
|
|
|
|
/* Verify that all cores are using same cryptodev for current
|
|
* algorithm combination, required by SA.
|
|
* Current cryptodev mapping process will map SA to the first
|
|
* cryptodev that matches requirements, so it's a double check,
|
|
* not an additional restriction.
|
|
*/
|
|
if (cdev_id == RTE_CRYPTO_MAX_DEVS)
|
|
cdev_id = ipsec_ctx->tbl[cdev_id_qp].id;
|
|
else if (cdev_id != ipsec_ctx->tbl[cdev_id_qp].id) {
|
|
RTE_LOG(ERR, IPSEC,
|
|
"SA mapping to multiple cryptodevs is "
|
|
"not supported!");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Store per core queue pair information */
|
|
sa->cqp[lcore_id] = &ipsec_ctx->tbl[cdev_id_qp];
|
|
}
|
|
if (cdev_id == RTE_CRYPTO_MAX_DEVS) {
|
|
RTE_LOG(WARNING, IPSEC, "No cores found to handle SA\n");
|
|
return 0;
|
|
}
|
|
|
|
RTE_LOG(DEBUG, IPSEC, "Create session for SA spi %u on cryptodev "
|
|
"%u\n", sa->spi, cdev_id);
|
|
|
|
if (ips->type != RTE_SECURITY_ACTION_TYPE_NONE &&
|
|
ips->type != RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) {
|
|
struct rte_security_session_conf sess_conf = {
|
|
.action_type = ips->type,
|
|
.protocol = RTE_SECURITY_PROTOCOL_IPSEC,
|
|
{.ipsec = {
|
|
.spi = sa->spi,
|
|
.salt = sa->salt,
|
|
.options = { 0 },
|
|
.replay_win_sz = 0,
|
|
.direction = sa->direction,
|
|
.proto = RTE_SECURITY_IPSEC_SA_PROTO_ESP,
|
|
.mode = (IS_TUNNEL(sa->flags)) ?
|
|
RTE_SECURITY_IPSEC_SA_MODE_TUNNEL :
|
|
RTE_SECURITY_IPSEC_SA_MODE_TRANSPORT,
|
|
} },
|
|
.crypto_xform = sa->xforms,
|
|
.userdata = NULL,
|
|
|
|
};
|
|
|
|
if (ips->type == RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL) {
|
|
struct rte_security_ctx *ctx = (struct rte_security_ctx *)
|
|
rte_cryptodev_get_sec_ctx(
|
|
cdev_id);
|
|
|
|
/* Set IPsec parameters in conf */
|
|
set_ipsec_conf(sa, &(sess_conf.ipsec));
|
|
|
|
ips->security.ses = rte_security_session_create(ctx,
|
|
&sess_conf, skt_ctx->session_pool);
|
|
if (ips->security.ses == NULL) {
|
|
RTE_LOG(ERR, IPSEC,
|
|
"SEC Session init failed: err: %d\n", ret);
|
|
return -1;
|
|
}
|
|
ips->security.ctx = ctx;
|
|
|
|
sess = ips->security.ses;
|
|
op_type = RTE_CRYPTO_OP_TYPE_SYMMETRIC;
|
|
sess_type = RTE_CRYPTO_OP_SECURITY_SESSION;
|
|
} else {
|
|
RTE_LOG(ERR, IPSEC, "Inline not supported\n");
|
|
return -1;
|
|
}
|
|
} else {
|
|
if (ips->type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) {
|
|
struct rte_cryptodev_info info;
|
|
|
|
rte_cryptodev_info_get(cdev_id, &info);
|
|
if (!(info.feature_flags &
|
|
RTE_CRYPTODEV_FF_SYM_CPU_CRYPTO))
|
|
return -ENOTSUP;
|
|
|
|
}
|
|
ips->crypto.dev_id = cdev_id;
|
|
ips->crypto.ses = rte_cryptodev_sym_session_create(cdev_id,
|
|
sa->xforms, skt_ctx->session_pool);
|
|
|
|
rte_cryptodev_info_get(cdev_id, &cdev_info);
|
|
}
|
|
|
|
/* Setup meta data required by event crypto adapter */
|
|
if (em_conf->enable_event_crypto_adapter && sess != NULL) {
|
|
union rte_event_crypto_metadata m_data;
|
|
const struct eventdev_params *eventdev_conf;
|
|
|
|
eventdev_conf = &(em_conf->eventdev_config[0]);
|
|
memset(&m_data, 0, sizeof(m_data));
|
|
|
|
/* Fill in response information */
|
|
m_data.response_info.sched_type = em_conf->ext_params.sched_type;
|
|
m_data.response_info.op = RTE_EVENT_OP_NEW;
|
|
m_data.response_info.queue_id = eventdev_conf->ev_cpt_queue_id;
|
|
|
|
/* Fill in request information */
|
|
m_data.request_info.cdev_id = cdev_id;
|
|
m_data.request_info.queue_pair_id = 0;
|
|
|
|
/* Attach meta info to session */
|
|
rte_cryptodev_session_event_mdata_set(cdev_id, sess, op_type,
|
|
sess_type, &m_data, sizeof(m_data));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
create_inline_session(struct socket_ctx *skt_ctx, struct ipsec_sa *sa,
|
|
struct rte_ipsec_session *ips)
|
|
{
|
|
int32_t ret = 0;
|
|
struct rte_security_ctx *sec_ctx;
|
|
struct rte_security_session_conf sess_conf = {
|
|
.action_type = ips->type,
|
|
.protocol = RTE_SECURITY_PROTOCOL_IPSEC,
|
|
{.ipsec = {
|
|
.spi = sa->spi,
|
|
.salt = sa->salt,
|
|
.options = { 0 },
|
|
.replay_win_sz = 0,
|
|
.direction = sa->direction,
|
|
.proto = RTE_SECURITY_IPSEC_SA_PROTO_ESP
|
|
} },
|
|
.crypto_xform = sa->xforms,
|
|
.userdata = NULL,
|
|
};
|
|
|
|
if (IS_TRANSPORT(sa->flags)) {
|
|
sess_conf.ipsec.mode = RTE_SECURITY_IPSEC_SA_MODE_TRANSPORT;
|
|
if (IS_IP4(sa->flags)) {
|
|
sess_conf.ipsec.tunnel.type =
|
|
RTE_SECURITY_IPSEC_TUNNEL_IPV4;
|
|
|
|
sess_conf.ipsec.tunnel.ipv4.src_ip.s_addr =
|
|
sa->src.ip.ip4;
|
|
sess_conf.ipsec.tunnel.ipv4.dst_ip.s_addr =
|
|
sa->dst.ip.ip4;
|
|
} else if (IS_IP6(sa->flags)) {
|
|
sess_conf.ipsec.tunnel.type =
|
|
RTE_SECURITY_IPSEC_TUNNEL_IPV6;
|
|
|
|
memcpy(sess_conf.ipsec.tunnel.ipv6.src_addr.s6_addr,
|
|
sa->src.ip.ip6.ip6_b, 16);
|
|
memcpy(sess_conf.ipsec.tunnel.ipv6.dst_addr.s6_addr,
|
|
sa->dst.ip.ip6.ip6_b, 16);
|
|
}
|
|
} else if (IS_TUNNEL(sa->flags)) {
|
|
sess_conf.ipsec.mode = RTE_SECURITY_IPSEC_SA_MODE_TUNNEL;
|
|
|
|
if (IS_IP4(sa->flags)) {
|
|
sess_conf.ipsec.tunnel.type =
|
|
RTE_SECURITY_IPSEC_TUNNEL_IPV4;
|
|
|
|
sess_conf.ipsec.tunnel.ipv4.src_ip.s_addr =
|
|
sa->src.ip.ip4;
|
|
sess_conf.ipsec.tunnel.ipv4.dst_ip.s_addr =
|
|
sa->dst.ip.ip4;
|
|
} else if (IS_IP6(sa->flags)) {
|
|
sess_conf.ipsec.tunnel.type =
|
|
RTE_SECURITY_IPSEC_TUNNEL_IPV6;
|
|
|
|
memcpy(sess_conf.ipsec.tunnel.ipv6.src_addr.s6_addr,
|
|
sa->src.ip.ip6.ip6_b, 16);
|
|
memcpy(sess_conf.ipsec.tunnel.ipv6.dst_addr.s6_addr,
|
|
sa->dst.ip.ip6.ip6_b, 16);
|
|
} else {
|
|
RTE_LOG(ERR, IPSEC, "invalid tunnel type\n");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if (sa->udp_encap) {
|
|
sess_conf.ipsec.options.udp_encap = 1;
|
|
sess_conf.ipsec.udp.sport = htons(sa->udp.sport);
|
|
sess_conf.ipsec.udp.dport = htons(sa->udp.dport);
|
|
}
|
|
|
|
if (sa->esn > 0) {
|
|
sess_conf.ipsec.options.esn = 1;
|
|
sess_conf.ipsec.esn.value = sa->esn;
|
|
}
|
|
|
|
|
|
RTE_LOG_DP(DEBUG, IPSEC, "Create session for SA spi %u on port %u\n",
|
|
sa->spi, sa->portid);
|
|
|
|
if (ips->type == RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO) {
|
|
struct rte_flow_error err;
|
|
const struct rte_security_capability *sec_cap;
|
|
int ret = 0;
|
|
|
|
sec_ctx = (struct rte_security_ctx *)
|
|
rte_eth_dev_get_sec_ctx(
|
|
sa->portid);
|
|
if (sec_ctx == NULL) {
|
|
RTE_LOG(ERR, IPSEC,
|
|
" rte_eth_dev_get_sec_ctx failed\n");
|
|
return -1;
|
|
}
|
|
|
|
ips->security.ses = rte_security_session_create(sec_ctx,
|
|
&sess_conf, skt_ctx->session_pool);
|
|
if (ips->security.ses == NULL) {
|
|
RTE_LOG(ERR, IPSEC,
|
|
"SEC Session init failed: err: %d\n", ret);
|
|
return -1;
|
|
}
|
|
|
|
sec_cap = rte_security_capabilities_get(sec_ctx);
|
|
|
|
/* iterate until ESP tunnel*/
|
|
while (sec_cap->action != RTE_SECURITY_ACTION_TYPE_NONE) {
|
|
if (sec_cap->action == ips->type &&
|
|
sec_cap->protocol ==
|
|
RTE_SECURITY_PROTOCOL_IPSEC &&
|
|
sec_cap->ipsec.mode ==
|
|
RTE_SECURITY_IPSEC_SA_MODE_TUNNEL &&
|
|
sec_cap->ipsec.direction == sa->direction)
|
|
break;
|
|
sec_cap++;
|
|
}
|
|
|
|
if (sec_cap->action == RTE_SECURITY_ACTION_TYPE_NONE) {
|
|
RTE_LOG(ERR, IPSEC,
|
|
"No suitable security capability found\n");
|
|
return -1;
|
|
}
|
|
|
|
ips->security.ol_flags = sec_cap->ol_flags;
|
|
ips->security.ctx = sec_ctx;
|
|
sa->pattern[0].type = RTE_FLOW_ITEM_TYPE_ETH;
|
|
|
|
if (IS_IP6(sa->flags)) {
|
|
sa->pattern[1].mask = &rte_flow_item_ipv6_mask;
|
|
sa->pattern[1].type = RTE_FLOW_ITEM_TYPE_IPV6;
|
|
sa->pattern[1].spec = &sa->ipv6_spec;
|
|
|
|
memcpy(sa->ipv6_spec.hdr.dst_addr,
|
|
sa->dst.ip.ip6.ip6_b, 16);
|
|
memcpy(sa->ipv6_spec.hdr.src_addr,
|
|
sa->src.ip.ip6.ip6_b, 16);
|
|
} else if (IS_IP4(sa->flags)) {
|
|
sa->pattern[1].mask = &rte_flow_item_ipv4_mask;
|
|
sa->pattern[1].type = RTE_FLOW_ITEM_TYPE_IPV4;
|
|
sa->pattern[1].spec = &sa->ipv4_spec;
|
|
|
|
sa->ipv4_spec.hdr.dst_addr = sa->dst.ip.ip4;
|
|
sa->ipv4_spec.hdr.src_addr = sa->src.ip.ip4;
|
|
}
|
|
|
|
sa->esp_spec.hdr.spi = rte_cpu_to_be_32(sa->spi);
|
|
|
|
if (sa->udp_encap) {
|
|
|
|
sa->udp_spec.hdr.dst_port =
|
|
rte_cpu_to_be_16(sa->udp.dport);
|
|
sa->udp_spec.hdr.src_port =
|
|
rte_cpu_to_be_16(sa->udp.sport);
|
|
|
|
sa->pattern[2].mask = &rte_flow_item_udp_mask;
|
|
sa->pattern[2].type = RTE_FLOW_ITEM_TYPE_UDP;
|
|
sa->pattern[2].spec = &sa->udp_spec;
|
|
|
|
sa->pattern[3].type = RTE_FLOW_ITEM_TYPE_ESP;
|
|
sa->pattern[3].spec = &sa->esp_spec;
|
|
sa->pattern[3].mask = &rte_flow_item_esp_mask;
|
|
|
|
sa->pattern[4].type = RTE_FLOW_ITEM_TYPE_END;
|
|
} else {
|
|
sa->pattern[2].type = RTE_FLOW_ITEM_TYPE_ESP;
|
|
sa->pattern[2].spec = &sa->esp_spec;
|
|
sa->pattern[2].mask = &rte_flow_item_esp_mask;
|
|
|
|
sa->pattern[3].type = RTE_FLOW_ITEM_TYPE_END;
|
|
}
|
|
|
|
sa->action[0].type = RTE_FLOW_ACTION_TYPE_SECURITY;
|
|
sa->action[0].conf = ips->security.ses;
|
|
|
|
sa->action[1].type = RTE_FLOW_ACTION_TYPE_END;
|
|
|
|
sa->attr.egress = (sa->direction ==
|
|
RTE_SECURITY_IPSEC_SA_DIR_EGRESS);
|
|
sa->attr.ingress = (sa->direction ==
|
|
RTE_SECURITY_IPSEC_SA_DIR_INGRESS);
|
|
if (sa->attr.ingress) {
|
|
uint8_t rss_key[64];
|
|
struct rte_eth_rss_conf rss_conf = {
|
|
.rss_key = rss_key,
|
|
.rss_key_len = sizeof(rss_key),
|
|
};
|
|
struct rte_eth_dev_info dev_info;
|
|
uint16_t queue[RTE_MAX_QUEUES_PER_PORT];
|
|
struct rte_flow_action_rss action_rss;
|
|
unsigned int i;
|
|
unsigned int j;
|
|
|
|
/* Don't create flow if default flow is created */
|
|
if (flow_info_tbl[sa->portid].rx_def_flow)
|
|
return 0;
|
|
|
|
ret = rte_eth_dev_info_get(sa->portid, &dev_info);
|
|
if (ret != 0) {
|
|
RTE_LOG(ERR, IPSEC,
|
|
"Error during getting device (port %u) info: %s\n",
|
|
sa->portid, strerror(-ret));
|
|
return ret;
|
|
}
|
|
|
|
sa->action[2].type = RTE_FLOW_ACTION_TYPE_END;
|
|
/* Try RSS. */
|
|
sa->action[1].type = RTE_FLOW_ACTION_TYPE_RSS;
|
|
sa->action[1].conf = &action_rss;
|
|
ret = rte_eth_dev_rss_hash_conf_get(sa->portid,
|
|
&rss_conf);
|
|
if (ret != 0) {
|
|
RTE_LOG(ERR, IPSEC,
|
|
"rte_eth_dev_rss_hash_conf_get:ret=%d\n",
|
|
ret);
|
|
return -1;
|
|
}
|
|
for (i = 0, j = 0; i < dev_info.nb_rx_queues; ++i)
|
|
queue[j++] = i;
|
|
|
|
action_rss = (struct rte_flow_action_rss){
|
|
.types = rss_conf.rss_hf,
|
|
.key_len = rss_conf.rss_key_len,
|
|
.queue_num = j,
|
|
.key = rss_key,
|
|
.queue = queue,
|
|
};
|
|
ret = rte_flow_validate(sa->portid, &sa->attr,
|
|
sa->pattern, sa->action,
|
|
&err);
|
|
if (!ret)
|
|
goto flow_create;
|
|
/* Try Queue. */
|
|
sa->action[1].type = RTE_FLOW_ACTION_TYPE_QUEUE;
|
|
sa->action[1].conf =
|
|
&(struct rte_flow_action_queue){
|
|
.index = 0,
|
|
};
|
|
ret = rte_flow_validate(sa->portid, &sa->attr,
|
|
sa->pattern, sa->action,
|
|
&err);
|
|
/* Try End. */
|
|
sa->action[1].type = RTE_FLOW_ACTION_TYPE_END;
|
|
sa->action[1].conf = NULL;
|
|
ret = rte_flow_validate(sa->portid, &sa->attr,
|
|
sa->pattern, sa->action,
|
|
&err);
|
|
if (ret)
|
|
goto flow_create_failure;
|
|
} else if (sa->attr.egress &&
|
|
(ips->security.ol_flags &
|
|
RTE_SECURITY_TX_HW_TRAILER_OFFLOAD)) {
|
|
sa->action[1].type =
|
|
RTE_FLOW_ACTION_TYPE_PASSTHRU;
|
|
sa->action[2].type =
|
|
RTE_FLOW_ACTION_TYPE_END;
|
|
}
|
|
flow_create:
|
|
sa->flow = rte_flow_create(sa->portid,
|
|
&sa->attr, sa->pattern, sa->action, &err);
|
|
if (sa->flow == NULL) {
|
|
flow_create_failure:
|
|
RTE_LOG(ERR, IPSEC,
|
|
"Failed to create ipsec flow msg: %s\n",
|
|
err.message);
|
|
return -1;
|
|
}
|
|
} else if (ips->type == RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL) {
|
|
const struct rte_security_capability *sec_cap;
|
|
|
|
sec_ctx = (struct rte_security_ctx *)
|
|
rte_eth_dev_get_sec_ctx(sa->portid);
|
|
|
|
if (sec_ctx == NULL) {
|
|
RTE_LOG(ERR, IPSEC,
|
|
"Ethernet device doesn't have security features registered\n");
|
|
return -1;
|
|
}
|
|
|
|
/* Set IPsec parameters in conf */
|
|
set_ipsec_conf(sa, &(sess_conf.ipsec));
|
|
|
|
/* Save SA as userdata for the security session. When
|
|
* the packet is received, this userdata will be
|
|
* retrieved using the metadata from the packet.
|
|
*
|
|
* The PMD is expected to set similar metadata for other
|
|
* operations, like rte_eth_event, which are tied to
|
|
* security session. In such cases, the userdata could
|
|
* be obtained to uniquely identify the security
|
|
* parameters denoted.
|
|
*/
|
|
|
|
sess_conf.userdata = (void *) sa;
|
|
|
|
ips->security.ses = rte_security_session_create(sec_ctx,
|
|
&sess_conf, skt_ctx->session_pool);
|
|
if (ips->security.ses == NULL) {
|
|
RTE_LOG(ERR, IPSEC,
|
|
"SEC Session init failed: err: %d\n", ret);
|
|
return -1;
|
|
}
|
|
|
|
sec_cap = rte_security_capabilities_get(sec_ctx);
|
|
if (sec_cap == NULL) {
|
|
RTE_LOG(ERR, IPSEC,
|
|
"No capabilities registered\n");
|
|
return -1;
|
|
}
|
|
|
|
/* iterate until ESP tunnel*/
|
|
while (sec_cap->action !=
|
|
RTE_SECURITY_ACTION_TYPE_NONE) {
|
|
if (sec_cap->action == ips->type &&
|
|
sec_cap->protocol ==
|
|
RTE_SECURITY_PROTOCOL_IPSEC &&
|
|
sec_cap->ipsec.mode ==
|
|
sess_conf.ipsec.mode &&
|
|
sec_cap->ipsec.direction == sa->direction)
|
|
break;
|
|
sec_cap++;
|
|
}
|
|
|
|
if (sec_cap->action == RTE_SECURITY_ACTION_TYPE_NONE) {
|
|
RTE_LOG(ERR, IPSEC,
|
|
"No suitable security capability found\n");
|
|
return -1;
|
|
}
|
|
|
|
ips->security.ol_flags = sec_cap->ol_flags;
|
|
ips->security.ctx = sec_ctx;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
create_ipsec_esp_flow(struct ipsec_sa *sa)
|
|
{
|
|
int ret = 0;
|
|
struct rte_flow_error err = {};
|
|
if (sa->direction == RTE_SECURITY_IPSEC_SA_DIR_EGRESS) {
|
|
RTE_LOG(ERR, IPSEC,
|
|
"No Flow director rule for Egress traffic\n");
|
|
return -1;
|
|
}
|
|
if (sa->flags == TRANSPORT) {
|
|
RTE_LOG(ERR, IPSEC,
|
|
"No Flow director rule for transport mode\n");
|
|
return -1;
|
|
}
|
|
sa->action[0].type = RTE_FLOW_ACTION_TYPE_QUEUE;
|
|
sa->pattern[0].type = RTE_FLOW_ITEM_TYPE_ETH;
|
|
sa->action[0].conf = &(struct rte_flow_action_queue) {
|
|
.index = sa->fdir_qid,
|
|
};
|
|
sa->attr.egress = 0;
|
|
sa->attr.ingress = 1;
|
|
if (IS_IP6(sa->flags)) {
|
|
sa->pattern[1].mask = &rte_flow_item_ipv6_mask;
|
|
sa->pattern[1].type = RTE_FLOW_ITEM_TYPE_IPV6;
|
|
sa->pattern[1].spec = &sa->ipv6_spec;
|
|
memcpy(sa->ipv6_spec.hdr.dst_addr,
|
|
sa->dst.ip.ip6.ip6_b, sizeof(sa->dst.ip.ip6.ip6_b));
|
|
memcpy(sa->ipv6_spec.hdr.src_addr,
|
|
sa->src.ip.ip6.ip6_b, sizeof(sa->src.ip.ip6.ip6_b));
|
|
sa->pattern[2].type = RTE_FLOW_ITEM_TYPE_ESP;
|
|
sa->pattern[2].spec = &sa->esp_spec;
|
|
sa->pattern[2].mask = &rte_flow_item_esp_mask;
|
|
sa->esp_spec.hdr.spi = rte_cpu_to_be_32(sa->spi);
|
|
sa->pattern[3].type = RTE_FLOW_ITEM_TYPE_END;
|
|
} else if (IS_IP4(sa->flags)) {
|
|
sa->pattern[1].mask = &rte_flow_item_ipv4_mask;
|
|
sa->pattern[1].type = RTE_FLOW_ITEM_TYPE_IPV4;
|
|
sa->pattern[1].spec = &sa->ipv4_spec;
|
|
sa->ipv4_spec.hdr.dst_addr = sa->dst.ip.ip4;
|
|
sa->ipv4_spec.hdr.src_addr = sa->src.ip.ip4;
|
|
sa->pattern[2].type = RTE_FLOW_ITEM_TYPE_ESP;
|
|
sa->pattern[2].spec = &sa->esp_spec;
|
|
sa->pattern[2].mask = &rte_flow_item_esp_mask;
|
|
sa->esp_spec.hdr.spi = rte_cpu_to_be_32(sa->spi);
|
|
sa->pattern[3].type = RTE_FLOW_ITEM_TYPE_END;
|
|
}
|
|
sa->action[1].type = RTE_FLOW_ACTION_TYPE_END;
|
|
|
|
ret = rte_flow_validate(sa->portid, &sa->attr, sa->pattern, sa->action,
|
|
&err);
|
|
if (ret < 0) {
|
|
RTE_LOG(ERR, IPSEC, "Flow validation failed %s\n", err.message);
|
|
return ret;
|
|
}
|
|
|
|
sa->flow = rte_flow_create(sa->portid, &sa->attr, sa->pattern,
|
|
sa->action, &err);
|
|
if (!sa->flow) {
|
|
RTE_LOG(ERR, IPSEC, "Flow creation failed %s\n", err.message);
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* queue crypto-ops into PMD queue.
|
|
*/
|
|
void
|
|
enqueue_cop_burst(struct cdev_qp *cqp)
|
|
{
|
|
uint32_t i, len, ret;
|
|
|
|
len = cqp->len;
|
|
ret = rte_cryptodev_enqueue_burst(cqp->id, cqp->qp, cqp->buf, len);
|
|
if (ret < len) {
|
|
RTE_LOG_DP(DEBUG, IPSEC, "Cryptodev %u queue %u:"
|
|
" enqueued %u crypto ops out of %u\n",
|
|
cqp->id, cqp->qp, ret, len);
|
|
/* drop packets that we fail to enqueue */
|
|
for (i = ret; i < len; i++)
|
|
free_pkts(&cqp->buf[i]->sym->m_src, 1);
|
|
}
|
|
cqp->in_flight += ret;
|
|
cqp->len = 0;
|
|
}
|
|
|
|
static inline void
|
|
enqueue_cop(struct cdev_qp *cqp, struct rte_crypto_op *cop)
|
|
{
|
|
cqp->buf[cqp->len++] = cop;
|
|
|
|
if (cqp->len == MAX_PKT_BURST)
|
|
enqueue_cop_burst(cqp);
|
|
}
|
|
|
|
static inline void
|
|
ipsec_enqueue(ipsec_xform_fn xform_func, struct ipsec_ctx *ipsec_ctx,
|
|
struct rte_mbuf *pkts[], void *sas[],
|
|
uint16_t nb_pkts)
|
|
{
|
|
int32_t ret = 0, i;
|
|
struct ipsec_mbuf_metadata *priv;
|
|
struct rte_crypto_sym_op *sym_cop;
|
|
struct ipsec_sa *sa;
|
|
struct rte_ipsec_session *ips;
|
|
|
|
for (i = 0; i < nb_pkts; i++) {
|
|
if (unlikely(sas[i] == NULL)) {
|
|
free_pkts(&pkts[i], 1);
|
|
continue;
|
|
}
|
|
|
|
rte_prefetch0(sas[i]);
|
|
rte_prefetch0(pkts[i]);
|
|
|
|
priv = get_priv(pkts[i]);
|
|
sa = ipsec_mask_saptr(sas[i]);
|
|
priv->sa = sa;
|
|
ips = ipsec_get_primary_session(sa);
|
|
|
|
switch (ips->type) {
|
|
case RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL:
|
|
priv->cop.type = RTE_CRYPTO_OP_TYPE_SYMMETRIC;
|
|
priv->cop.status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
|
|
|
|
rte_prefetch0(&priv->sym_cop);
|
|
|
|
if (unlikely(ips->security.ses == NULL)) {
|
|
free_pkts(&pkts[i], 1);
|
|
continue;
|
|
}
|
|
|
|
if (unlikely((pkts[i]->packet_type &
|
|
(RTE_PTYPE_TUNNEL_MASK |
|
|
RTE_PTYPE_L4_MASK)) ==
|
|
MBUF_PTYPE_TUNNEL_ESP_IN_UDP &&
|
|
sa->udp_encap != 1)) {
|
|
free_pkts(&pkts[i], 1);
|
|
continue;
|
|
}
|
|
|
|
sym_cop = get_sym_cop(&priv->cop);
|
|
sym_cop->m_src = pkts[i];
|
|
|
|
rte_security_attach_session(&priv->cop,
|
|
ips->security.ses);
|
|
break;
|
|
|
|
case RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO:
|
|
RTE_LOG(ERR, IPSEC, "CPU crypto is not supported by the"
|
|
" legacy mode.");
|
|
free_pkts(&pkts[i], 1);
|
|
continue;
|
|
|
|
case RTE_SECURITY_ACTION_TYPE_NONE:
|
|
|
|
priv->cop.type = RTE_CRYPTO_OP_TYPE_SYMMETRIC;
|
|
priv->cop.status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
|
|
|
|
rte_prefetch0(&priv->sym_cop);
|
|
|
|
if (unlikely(ips->crypto.ses == NULL)) {
|
|
free_pkts(&pkts[i], 1);
|
|
continue;
|
|
}
|
|
|
|
rte_crypto_op_attach_sym_session(&priv->cop,
|
|
ips->crypto.ses);
|
|
|
|
ret = xform_func(pkts[i], sa, &priv->cop);
|
|
if (unlikely(ret)) {
|
|
free_pkts(&pkts[i], 1);
|
|
continue;
|
|
}
|
|
break;
|
|
case RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL:
|
|
RTE_ASSERT(ips->security.ses != NULL);
|
|
ipsec_ctx->ol_pkts[ipsec_ctx->ol_pkts_cnt++] = pkts[i];
|
|
if (ips->security.ol_flags &
|
|
RTE_SECURITY_TX_OLOAD_NEED_MDATA)
|
|
rte_security_set_pkt_metadata(
|
|
ips->security.ctx, ips->security.ses,
|
|
pkts[i], NULL);
|
|
continue;
|
|
case RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO:
|
|
RTE_ASSERT(ips->security.ses != NULL);
|
|
priv->cop.type = RTE_CRYPTO_OP_TYPE_SYMMETRIC;
|
|
priv->cop.status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
|
|
|
|
rte_prefetch0(&priv->sym_cop);
|
|
rte_security_attach_session(&priv->cop,
|
|
ips->security.ses);
|
|
|
|
ret = xform_func(pkts[i], sa, &priv->cop);
|
|
if (unlikely(ret)) {
|
|
free_pkts(&pkts[i], 1);
|
|
continue;
|
|
}
|
|
|
|
ipsec_ctx->ol_pkts[ipsec_ctx->ol_pkts_cnt++] = pkts[i];
|
|
if (ips->security.ol_flags &
|
|
RTE_SECURITY_TX_OLOAD_NEED_MDATA)
|
|
rte_security_set_pkt_metadata(
|
|
ips->security.ctx, ips->security.ses,
|
|
pkts[i], NULL);
|
|
continue;
|
|
}
|
|
|
|
enqueue_cop(sa->cqp[ipsec_ctx->lcore_id], &priv->cop);
|
|
}
|
|
}
|
|
|
|
static inline int32_t
|
|
ipsec_inline_dequeue(ipsec_xform_fn xform_func, struct ipsec_ctx *ipsec_ctx,
|
|
struct rte_mbuf *pkts[], uint16_t max_pkts)
|
|
{
|
|
int32_t nb_pkts, ret;
|
|
struct ipsec_mbuf_metadata *priv;
|
|
struct ipsec_sa *sa;
|
|
struct rte_mbuf *pkt;
|
|
|
|
nb_pkts = 0;
|
|
while (ipsec_ctx->ol_pkts_cnt > 0 && nb_pkts < max_pkts) {
|
|
pkt = ipsec_ctx->ol_pkts[--ipsec_ctx->ol_pkts_cnt];
|
|
rte_prefetch0(pkt);
|
|
priv = get_priv(pkt);
|
|
sa = priv->sa;
|
|
ret = xform_func(pkt, sa, &priv->cop);
|
|
if (unlikely(ret)) {
|
|
free_pkts(&pkt, 1);
|
|
continue;
|
|
}
|
|
pkts[nb_pkts++] = pkt;
|
|
}
|
|
|
|
return nb_pkts;
|
|
}
|
|
|
|
static inline int
|
|
ipsec_dequeue(ipsec_xform_fn xform_func, struct ipsec_ctx *ipsec_ctx,
|
|
struct rte_mbuf *pkts[], uint16_t max_pkts)
|
|
{
|
|
int32_t nb_pkts = 0, ret = 0, i, j, nb_cops;
|
|
struct ipsec_mbuf_metadata *priv;
|
|
struct rte_crypto_op *cops[max_pkts];
|
|
struct ipsec_sa *sa;
|
|
struct rte_mbuf *pkt;
|
|
|
|
for (i = 0; i < ipsec_ctx->nb_qps && nb_pkts < max_pkts; i++) {
|
|
struct cdev_qp *cqp;
|
|
|
|
cqp = &ipsec_ctx->tbl[ipsec_ctx->last_qp++];
|
|
if (ipsec_ctx->last_qp == ipsec_ctx->nb_qps)
|
|
ipsec_ctx->last_qp %= ipsec_ctx->nb_qps;
|
|
|
|
if (cqp->in_flight == 0)
|
|
continue;
|
|
|
|
nb_cops = rte_cryptodev_dequeue_burst(cqp->id, cqp->qp,
|
|
cops, max_pkts - nb_pkts);
|
|
|
|
cqp->in_flight -= nb_cops;
|
|
|
|
for (j = 0; j < nb_cops; j++) {
|
|
pkt = cops[j]->sym->m_src;
|
|
rte_prefetch0(pkt);
|
|
|
|
priv = get_priv(pkt);
|
|
sa = priv->sa;
|
|
|
|
RTE_ASSERT(sa != NULL);
|
|
|
|
if (ipsec_get_action_type(sa) ==
|
|
RTE_SECURITY_ACTION_TYPE_NONE) {
|
|
ret = xform_func(pkt, sa, cops[j]);
|
|
if (unlikely(ret)) {
|
|
free_pkts(&pkt, 1);
|
|
continue;
|
|
}
|
|
} else if (ipsec_get_action_type(sa) ==
|
|
RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL) {
|
|
if (cops[j]->status) {
|
|
free_pkts(&pkt, 1);
|
|
continue;
|
|
}
|
|
}
|
|
pkts[nb_pkts++] = pkt;
|
|
}
|
|
}
|
|
|
|
/* return packets */
|
|
return nb_pkts;
|
|
}
|
|
|
|
uint16_t
|
|
ipsec_inbound(struct ipsec_ctx *ctx, struct rte_mbuf *pkts[],
|
|
uint16_t nb_pkts, uint16_t len)
|
|
{
|
|
void *sas[nb_pkts];
|
|
|
|
inbound_sa_lookup(ctx->sa_ctx, pkts, sas, nb_pkts);
|
|
|
|
ipsec_enqueue(esp_inbound, ctx, pkts, sas, nb_pkts);
|
|
|
|
return ipsec_inline_dequeue(esp_inbound_post, ctx, pkts, len);
|
|
}
|
|
|
|
uint16_t
|
|
ipsec_inbound_cqp_dequeue(struct ipsec_ctx *ctx, struct rte_mbuf *pkts[],
|
|
uint16_t len)
|
|
{
|
|
return ipsec_dequeue(esp_inbound_post, ctx, pkts, len);
|
|
}
|
|
|
|
uint16_t
|
|
ipsec_outbound(struct ipsec_ctx *ctx, struct rte_mbuf *pkts[],
|
|
uint32_t sa_idx[], uint16_t nb_pkts, uint16_t len)
|
|
{
|
|
void *sas[nb_pkts];
|
|
|
|
outbound_sa_lookup(ctx->sa_ctx, sa_idx, sas, nb_pkts);
|
|
|
|
ipsec_enqueue(esp_outbound, ctx, pkts, sas, nb_pkts);
|
|
|
|
return ipsec_inline_dequeue(esp_outbound_post, ctx, pkts, len);
|
|
}
|
|
|
|
uint16_t
|
|
ipsec_outbound_cqp_dequeue(struct ipsec_ctx *ctx, struct rte_mbuf *pkts[],
|
|
uint16_t len)
|
|
{
|
|
return ipsec_dequeue(esp_outbound_post, ctx, pkts, len);
|
|
}
|