9e9cf349fa
For "processed_pkts" and "total_latency" functions, no operations should keep the order that being executed before loading "worker[i].processed_pkts". Thus rmb is unnecessary before loading. For "perf_launch_lcores" function, wmb after that the main lcore updates the variable "t->done", which represents the end of the test signal, is unnecessary. Because after the main lcore updates this siginal variable, it will jump out of the launch function loop, and wait other lcores stop or return error in the main function(evt_main.c). During this time, there is no important storing operation and thus no need for wmb. Signed-off-by: Feifei Wang <feifei.wang2@arm.com> Reviewed-by: Ruifeng Wang <ruifeng.wang@arm.com> Acked-by: Pavan Nikhilesh <pbhagavatula@marvell.com>
836 lines
21 KiB
C
836 lines
21 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2017 Cavium, Inc
|
|
*/
|
|
|
|
#include "test_perf_common.h"
|
|
|
|
int
|
|
perf_test_result(struct evt_test *test, struct evt_options *opt)
|
|
{
|
|
RTE_SET_USED(opt);
|
|
int i;
|
|
uint64_t total = 0;
|
|
struct test_perf *t = evt_test_priv(test);
|
|
|
|
printf("Packet distribution across worker cores :\n");
|
|
for (i = 0; i < t->nb_workers; i++)
|
|
total += t->worker[i].processed_pkts;
|
|
for (i = 0; i < t->nb_workers; i++)
|
|
printf("Worker %d packets: "CLGRN"%"PRIx64" "CLNRM"percentage:"
|
|
CLGRN" %3.2f\n"CLNRM, i,
|
|
t->worker[i].processed_pkts,
|
|
(((double)t->worker[i].processed_pkts)/total)
|
|
* 100);
|
|
|
|
return t->result;
|
|
}
|
|
|
|
static inline int
|
|
perf_producer(void *arg)
|
|
{
|
|
int i;
|
|
struct prod_data *p = arg;
|
|
struct test_perf *t = p->t;
|
|
struct evt_options *opt = t->opt;
|
|
const uint8_t dev_id = p->dev_id;
|
|
const uint8_t port = p->port_id;
|
|
struct rte_mempool *pool = t->pool;
|
|
const uint64_t nb_pkts = t->nb_pkts;
|
|
const uint32_t nb_flows = t->nb_flows;
|
|
uint32_t flow_counter = 0;
|
|
uint64_t count = 0;
|
|
struct perf_elt *m[BURST_SIZE + 1] = {NULL};
|
|
struct rte_event ev;
|
|
|
|
if (opt->verbose_level > 1)
|
|
printf("%s(): lcore %d dev_id %d port=%d queue %d\n", __func__,
|
|
rte_lcore_id(), dev_id, port, p->queue_id);
|
|
|
|
ev.event = 0;
|
|
ev.op = RTE_EVENT_OP_NEW;
|
|
ev.queue_id = p->queue_id;
|
|
ev.sched_type = t->opt->sched_type_list[0];
|
|
ev.priority = RTE_EVENT_DEV_PRIORITY_NORMAL;
|
|
ev.event_type = RTE_EVENT_TYPE_CPU;
|
|
ev.sub_event_type = 0; /* stage 0 */
|
|
|
|
while (count < nb_pkts && t->done == false) {
|
|
if (rte_mempool_get_bulk(pool, (void **)m, BURST_SIZE) < 0)
|
|
continue;
|
|
for (i = 0; i < BURST_SIZE; i++) {
|
|
ev.flow_id = flow_counter++ % nb_flows;
|
|
ev.event_ptr = m[i];
|
|
m[i]->timestamp = rte_get_timer_cycles();
|
|
while (rte_event_enqueue_burst(dev_id,
|
|
port, &ev, 1) != 1) {
|
|
if (t->done)
|
|
break;
|
|
rte_pause();
|
|
m[i]->timestamp = rte_get_timer_cycles();
|
|
}
|
|
}
|
|
count += BURST_SIZE;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int
|
|
perf_event_timer_producer(void *arg)
|
|
{
|
|
int i;
|
|
struct prod_data *p = arg;
|
|
struct test_perf *t = p->t;
|
|
struct evt_options *opt = t->opt;
|
|
uint32_t flow_counter = 0;
|
|
uint64_t count = 0;
|
|
uint64_t arm_latency = 0;
|
|
const uint8_t nb_timer_adptrs = opt->nb_timer_adptrs;
|
|
const uint32_t nb_flows = t->nb_flows;
|
|
const uint64_t nb_timers = opt->nb_timers;
|
|
struct rte_mempool *pool = t->pool;
|
|
struct perf_elt *m[BURST_SIZE + 1] = {NULL};
|
|
struct rte_event_timer_adapter **adptr = t->timer_adptr;
|
|
struct rte_event_timer tim;
|
|
uint64_t timeout_ticks = opt->expiry_nsec / opt->timer_tick_nsec;
|
|
|
|
memset(&tim, 0, sizeof(struct rte_event_timer));
|
|
timeout_ticks = opt->optm_timer_tick_nsec ?
|
|
(timeout_ticks * opt->timer_tick_nsec)
|
|
/ opt->optm_timer_tick_nsec : timeout_ticks;
|
|
timeout_ticks += timeout_ticks ? 0 : 1;
|
|
tim.ev.event_type = RTE_EVENT_TYPE_TIMER;
|
|
tim.ev.op = RTE_EVENT_OP_NEW;
|
|
tim.ev.sched_type = t->opt->sched_type_list[0];
|
|
tim.ev.queue_id = p->queue_id;
|
|
tim.ev.priority = RTE_EVENT_DEV_PRIORITY_NORMAL;
|
|
tim.state = RTE_EVENT_TIMER_NOT_ARMED;
|
|
tim.timeout_ticks = timeout_ticks;
|
|
|
|
if (opt->verbose_level > 1)
|
|
printf("%s(): lcore %d\n", __func__, rte_lcore_id());
|
|
|
|
while (count < nb_timers && t->done == false) {
|
|
if (rte_mempool_get_bulk(pool, (void **)m, BURST_SIZE) < 0)
|
|
continue;
|
|
for (i = 0; i < BURST_SIZE; i++) {
|
|
rte_prefetch0(m[i + 1]);
|
|
m[i]->tim = tim;
|
|
m[i]->tim.ev.flow_id = flow_counter++ % nb_flows;
|
|
m[i]->tim.ev.event_ptr = m[i];
|
|
m[i]->timestamp = rte_get_timer_cycles();
|
|
while (rte_event_timer_arm_burst(
|
|
adptr[flow_counter % nb_timer_adptrs],
|
|
(struct rte_event_timer **)&m[i], 1) != 1) {
|
|
if (t->done)
|
|
break;
|
|
m[i]->timestamp = rte_get_timer_cycles();
|
|
}
|
|
arm_latency += rte_get_timer_cycles() - m[i]->timestamp;
|
|
}
|
|
count += BURST_SIZE;
|
|
}
|
|
fflush(stdout);
|
|
rte_delay_ms(1000);
|
|
printf("%s(): lcore %d Average event timer arm latency = %.3f us\n",
|
|
__func__, rte_lcore_id(),
|
|
count ? (float)(arm_latency / count) /
|
|
(rte_get_timer_hz() / 1000000) : 0);
|
|
return 0;
|
|
}
|
|
|
|
static inline int
|
|
perf_event_timer_producer_burst(void *arg)
|
|
{
|
|
int i;
|
|
struct prod_data *p = arg;
|
|
struct test_perf *t = p->t;
|
|
struct evt_options *opt = t->opt;
|
|
uint32_t flow_counter = 0;
|
|
uint64_t count = 0;
|
|
uint64_t arm_latency = 0;
|
|
const uint8_t nb_timer_adptrs = opt->nb_timer_adptrs;
|
|
const uint32_t nb_flows = t->nb_flows;
|
|
const uint64_t nb_timers = opt->nb_timers;
|
|
struct rte_mempool *pool = t->pool;
|
|
struct perf_elt *m[BURST_SIZE + 1] = {NULL};
|
|
struct rte_event_timer_adapter **adptr = t->timer_adptr;
|
|
struct rte_event_timer tim;
|
|
uint64_t timeout_ticks = opt->expiry_nsec / opt->timer_tick_nsec;
|
|
|
|
memset(&tim, 0, sizeof(struct rte_event_timer));
|
|
timeout_ticks = opt->optm_timer_tick_nsec ?
|
|
(timeout_ticks * opt->timer_tick_nsec)
|
|
/ opt->optm_timer_tick_nsec : timeout_ticks;
|
|
timeout_ticks += timeout_ticks ? 0 : 1;
|
|
tim.ev.event_type = RTE_EVENT_TYPE_TIMER;
|
|
tim.ev.op = RTE_EVENT_OP_NEW;
|
|
tim.ev.sched_type = t->opt->sched_type_list[0];
|
|
tim.ev.queue_id = p->queue_id;
|
|
tim.ev.priority = RTE_EVENT_DEV_PRIORITY_NORMAL;
|
|
tim.state = RTE_EVENT_TIMER_NOT_ARMED;
|
|
tim.timeout_ticks = timeout_ticks;
|
|
|
|
if (opt->verbose_level > 1)
|
|
printf("%s(): lcore %d\n", __func__, rte_lcore_id());
|
|
|
|
while (count < nb_timers && t->done == false) {
|
|
if (rte_mempool_get_bulk(pool, (void **)m, BURST_SIZE) < 0)
|
|
continue;
|
|
for (i = 0; i < BURST_SIZE; i++) {
|
|
rte_prefetch0(m[i + 1]);
|
|
m[i]->tim = tim;
|
|
m[i]->tim.ev.flow_id = flow_counter++ % nb_flows;
|
|
m[i]->tim.ev.event_ptr = m[i];
|
|
m[i]->timestamp = rte_get_timer_cycles();
|
|
}
|
|
rte_event_timer_arm_tmo_tick_burst(
|
|
adptr[flow_counter % nb_timer_adptrs],
|
|
(struct rte_event_timer **)m,
|
|
tim.timeout_ticks,
|
|
BURST_SIZE);
|
|
arm_latency += rte_get_timer_cycles() - m[i - 1]->timestamp;
|
|
count += BURST_SIZE;
|
|
}
|
|
fflush(stdout);
|
|
rte_delay_ms(1000);
|
|
printf("%s(): lcore %d Average event timer arm latency = %.3f us\n",
|
|
__func__, rte_lcore_id(),
|
|
count ? (float)(arm_latency / count) /
|
|
(rte_get_timer_hz() / 1000000) : 0);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
perf_producer_wrapper(void *arg)
|
|
{
|
|
struct prod_data *p = arg;
|
|
struct test_perf *t = p->t;
|
|
/* Launch the producer function only in case of synthetic producer. */
|
|
if (t->opt->prod_type == EVT_PROD_TYPE_SYNT)
|
|
return perf_producer(arg);
|
|
else if (t->opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR &&
|
|
!t->opt->timdev_use_burst)
|
|
return perf_event_timer_producer(arg);
|
|
else if (t->opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR &&
|
|
t->opt->timdev_use_burst)
|
|
return perf_event_timer_producer_burst(arg);
|
|
return 0;
|
|
}
|
|
|
|
static inline uint64_t
|
|
processed_pkts(struct test_perf *t)
|
|
{
|
|
uint8_t i;
|
|
uint64_t total = 0;
|
|
|
|
for (i = 0; i < t->nb_workers; i++)
|
|
total += t->worker[i].processed_pkts;
|
|
|
|
return total;
|
|
}
|
|
|
|
static inline uint64_t
|
|
total_latency(struct test_perf *t)
|
|
{
|
|
uint8_t i;
|
|
uint64_t total = 0;
|
|
|
|
for (i = 0; i < t->nb_workers; i++)
|
|
total += t->worker[i].latency;
|
|
|
|
return total;
|
|
}
|
|
|
|
|
|
int
|
|
perf_launch_lcores(struct evt_test *test, struct evt_options *opt,
|
|
int (*worker)(void *))
|
|
{
|
|
int ret, lcore_id;
|
|
struct test_perf *t = evt_test_priv(test);
|
|
|
|
int port_idx = 0;
|
|
/* launch workers */
|
|
RTE_LCORE_FOREACH_WORKER(lcore_id) {
|
|
if (!(opt->wlcores[lcore_id]))
|
|
continue;
|
|
|
|
ret = rte_eal_remote_launch(worker,
|
|
&t->worker[port_idx], lcore_id);
|
|
if (ret) {
|
|
evt_err("failed to launch worker %d", lcore_id);
|
|
return ret;
|
|
}
|
|
port_idx++;
|
|
}
|
|
|
|
/* launch producers */
|
|
RTE_LCORE_FOREACH_WORKER(lcore_id) {
|
|
if (!(opt->plcores[lcore_id]))
|
|
continue;
|
|
|
|
ret = rte_eal_remote_launch(perf_producer_wrapper,
|
|
&t->prod[port_idx], lcore_id);
|
|
if (ret) {
|
|
evt_err("failed to launch perf_producer %d", lcore_id);
|
|
return ret;
|
|
}
|
|
port_idx++;
|
|
}
|
|
|
|
const uint64_t total_pkts = t->outstand_pkts;
|
|
|
|
uint64_t dead_lock_cycles = rte_get_timer_cycles();
|
|
int64_t dead_lock_remaining = total_pkts;
|
|
const uint64_t dead_lock_sample = rte_get_timer_hz() * 5;
|
|
|
|
uint64_t perf_cycles = rte_get_timer_cycles();
|
|
int64_t perf_remaining = total_pkts;
|
|
const uint64_t perf_sample = rte_get_timer_hz();
|
|
|
|
static float total_mpps;
|
|
static uint64_t samples;
|
|
|
|
const uint64_t freq_mhz = rte_get_timer_hz() / 1000000;
|
|
int64_t remaining = t->outstand_pkts - processed_pkts(t);
|
|
|
|
while (t->done == false) {
|
|
const uint64_t new_cycles = rte_get_timer_cycles();
|
|
|
|
if ((new_cycles - perf_cycles) > perf_sample) {
|
|
const uint64_t latency = total_latency(t);
|
|
const uint64_t pkts = processed_pkts(t);
|
|
|
|
remaining = t->outstand_pkts - pkts;
|
|
float mpps = (float)(perf_remaining-remaining)/1000000;
|
|
|
|
perf_remaining = remaining;
|
|
perf_cycles = new_cycles;
|
|
total_mpps += mpps;
|
|
++samples;
|
|
if (opt->fwd_latency && pkts > 0) {
|
|
printf(CLGRN"\r%.3f mpps avg %.3f mpps [avg fwd latency %.3f us] "CLNRM,
|
|
mpps, total_mpps/samples,
|
|
(float)(latency/pkts)/freq_mhz);
|
|
} else {
|
|
printf(CLGRN"\r%.3f mpps avg %.3f mpps"CLNRM,
|
|
mpps, total_mpps/samples);
|
|
}
|
|
fflush(stdout);
|
|
|
|
if (remaining <= 0) {
|
|
t->result = EVT_TEST_SUCCESS;
|
|
if (opt->prod_type == EVT_PROD_TYPE_SYNT ||
|
|
opt->prod_type ==
|
|
EVT_PROD_TYPE_EVENT_TIMER_ADPTR) {
|
|
t->done = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (new_cycles - dead_lock_cycles > dead_lock_sample &&
|
|
(opt->prod_type == EVT_PROD_TYPE_SYNT ||
|
|
opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR)) {
|
|
remaining = t->outstand_pkts - processed_pkts(t);
|
|
if (dead_lock_remaining == remaining) {
|
|
rte_event_dev_dump(opt->dev_id, stdout);
|
|
evt_err("No schedules for seconds, deadlock");
|
|
t->done = true;
|
|
break;
|
|
}
|
|
dead_lock_remaining = remaining;
|
|
dead_lock_cycles = new_cycles;
|
|
}
|
|
}
|
|
printf("\n");
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
perf_event_rx_adapter_setup(struct evt_options *opt, uint8_t stride,
|
|
struct rte_event_port_conf prod_conf)
|
|
{
|
|
int ret = 0;
|
|
uint16_t prod;
|
|
struct rte_event_eth_rx_adapter_queue_conf queue_conf;
|
|
|
|
memset(&queue_conf, 0,
|
|
sizeof(struct rte_event_eth_rx_adapter_queue_conf));
|
|
queue_conf.ev.sched_type = opt->sched_type_list[0];
|
|
RTE_ETH_FOREACH_DEV(prod) {
|
|
uint32_t cap;
|
|
|
|
ret = rte_event_eth_rx_adapter_caps_get(opt->dev_id,
|
|
prod, &cap);
|
|
if (ret) {
|
|
evt_err("failed to get event rx adapter[%d]"
|
|
" capabilities",
|
|
opt->dev_id);
|
|
return ret;
|
|
}
|
|
queue_conf.ev.queue_id = prod * stride;
|
|
ret = rte_event_eth_rx_adapter_create(prod, opt->dev_id,
|
|
&prod_conf);
|
|
if (ret) {
|
|
evt_err("failed to create rx adapter[%d]", prod);
|
|
return ret;
|
|
}
|
|
ret = rte_event_eth_rx_adapter_queue_add(prod, prod, -1,
|
|
&queue_conf);
|
|
if (ret) {
|
|
evt_err("failed to add rx queues to adapter[%d]", prod);
|
|
return ret;
|
|
}
|
|
|
|
if (!(cap & RTE_EVENT_ETH_RX_ADAPTER_CAP_INTERNAL_PORT)) {
|
|
uint32_t service_id;
|
|
|
|
rte_event_eth_rx_adapter_service_id_get(prod,
|
|
&service_id);
|
|
ret = evt_service_setup(service_id);
|
|
if (ret) {
|
|
evt_err("Failed to setup service core"
|
|
" for Rx adapter\n");
|
|
return ret;
|
|
}
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
perf_event_timer_adapter_setup(struct test_perf *t)
|
|
{
|
|
int i;
|
|
int ret;
|
|
struct rte_event_timer_adapter_info adapter_info;
|
|
struct rte_event_timer_adapter *wl;
|
|
uint8_t nb_producers = evt_nr_active_lcores(t->opt->plcores);
|
|
uint8_t flags = RTE_EVENT_TIMER_ADAPTER_F_ADJUST_RES;
|
|
|
|
if (nb_producers == 1)
|
|
flags |= RTE_EVENT_TIMER_ADAPTER_F_SP_PUT;
|
|
|
|
for (i = 0; i < t->opt->nb_timer_adptrs; i++) {
|
|
struct rte_event_timer_adapter_conf config = {
|
|
.event_dev_id = t->opt->dev_id,
|
|
.timer_adapter_id = i,
|
|
.timer_tick_ns = t->opt->timer_tick_nsec,
|
|
.max_tmo_ns = t->opt->max_tmo_nsec,
|
|
.nb_timers = t->opt->pool_sz,
|
|
.flags = flags,
|
|
};
|
|
|
|
wl = rte_event_timer_adapter_create(&config);
|
|
if (wl == NULL) {
|
|
evt_err("failed to create event timer ring %d", i);
|
|
return rte_errno;
|
|
}
|
|
|
|
memset(&adapter_info, 0,
|
|
sizeof(struct rte_event_timer_adapter_info));
|
|
rte_event_timer_adapter_get_info(wl, &adapter_info);
|
|
t->opt->optm_timer_tick_nsec = adapter_info.min_resolution_ns;
|
|
|
|
if (!(adapter_info.caps &
|
|
RTE_EVENT_TIMER_ADAPTER_CAP_INTERNAL_PORT)) {
|
|
uint32_t service_id = -1U;
|
|
|
|
rte_event_timer_adapter_service_id_get(wl,
|
|
&service_id);
|
|
ret = evt_service_setup(service_id);
|
|
if (ret) {
|
|
evt_err("Failed to setup service core"
|
|
" for timer adapter\n");
|
|
return ret;
|
|
}
|
|
rte_service_runstate_set(service_id, 1);
|
|
}
|
|
t->timer_adptr[i] = wl;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
perf_event_dev_port_setup(struct evt_test *test, struct evt_options *opt,
|
|
uint8_t stride, uint8_t nb_queues,
|
|
const struct rte_event_port_conf *port_conf)
|
|
{
|
|
struct test_perf *t = evt_test_priv(test);
|
|
uint16_t port, prod;
|
|
int ret = -1;
|
|
|
|
/* setup one port per worker, linking to all queues */
|
|
for (port = 0; port < evt_nr_active_lcores(opt->wlcores);
|
|
port++) {
|
|
struct worker_data *w = &t->worker[port];
|
|
|
|
w->dev_id = opt->dev_id;
|
|
w->port_id = port;
|
|
w->t = t;
|
|
w->processed_pkts = 0;
|
|
w->latency = 0;
|
|
|
|
ret = rte_event_port_setup(opt->dev_id, port, port_conf);
|
|
if (ret) {
|
|
evt_err("failed to setup port %d", port);
|
|
return ret;
|
|
}
|
|
|
|
ret = rte_event_port_link(opt->dev_id, port, NULL, NULL, 0);
|
|
if (ret != nb_queues) {
|
|
evt_err("failed to link all queues to port %d", port);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* port for producers, no links */
|
|
if (opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR) {
|
|
for ( ; port < perf_nb_event_ports(opt); port++) {
|
|
struct prod_data *p = &t->prod[port];
|
|
p->t = t;
|
|
}
|
|
|
|
ret = perf_event_rx_adapter_setup(opt, stride, *port_conf);
|
|
if (ret)
|
|
return ret;
|
|
} else if (opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) {
|
|
prod = 0;
|
|
for ( ; port < perf_nb_event_ports(opt); port++) {
|
|
struct prod_data *p = &t->prod[port];
|
|
p->queue_id = prod * stride;
|
|
p->t = t;
|
|
prod++;
|
|
}
|
|
|
|
ret = perf_event_timer_adapter_setup(t);
|
|
if (ret)
|
|
return ret;
|
|
} else {
|
|
prod = 0;
|
|
for ( ; port < perf_nb_event_ports(opt); port++) {
|
|
struct prod_data *p = &t->prod[port];
|
|
|
|
p->dev_id = opt->dev_id;
|
|
p->port_id = port;
|
|
p->queue_id = prod * stride;
|
|
p->t = t;
|
|
|
|
ret = rte_event_port_setup(opt->dev_id, port,
|
|
port_conf);
|
|
if (ret) {
|
|
evt_err("failed to setup port %d", port);
|
|
return ret;
|
|
}
|
|
prod++;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
perf_opt_check(struct evt_options *opt, uint64_t nb_queues)
|
|
{
|
|
unsigned int lcores;
|
|
|
|
/* N producer + N worker + main when producer cores are used
|
|
* Else N worker + main when Rx adapter is used
|
|
*/
|
|
lcores = opt->prod_type == EVT_PROD_TYPE_SYNT ? 3 : 2;
|
|
|
|
if (rte_lcore_count() < lcores) {
|
|
evt_err("test need minimum %d lcores", lcores);
|
|
return -1;
|
|
}
|
|
|
|
/* Validate worker lcores */
|
|
if (evt_lcores_has_overlap(opt->wlcores, rte_get_main_lcore())) {
|
|
evt_err("worker lcores overlaps with main lcore");
|
|
return -1;
|
|
}
|
|
if (evt_lcores_has_overlap_multi(opt->wlcores, opt->plcores)) {
|
|
evt_err("worker lcores overlaps producer lcores");
|
|
return -1;
|
|
}
|
|
if (evt_has_disabled_lcore(opt->wlcores)) {
|
|
evt_err("one or more workers lcores are not enabled");
|
|
return -1;
|
|
}
|
|
if (!evt_has_active_lcore(opt->wlcores)) {
|
|
evt_err("minimum one worker is required");
|
|
return -1;
|
|
}
|
|
|
|
if (opt->prod_type == EVT_PROD_TYPE_SYNT ||
|
|
opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) {
|
|
/* Validate producer lcores */
|
|
if (evt_lcores_has_overlap(opt->plcores,
|
|
rte_get_main_lcore())) {
|
|
evt_err("producer lcores overlaps with main lcore");
|
|
return -1;
|
|
}
|
|
if (evt_has_disabled_lcore(opt->plcores)) {
|
|
evt_err("one or more producer lcores are not enabled");
|
|
return -1;
|
|
}
|
|
if (!evt_has_active_lcore(opt->plcores)) {
|
|
evt_err("minimum one producer is required");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if (evt_has_invalid_stage(opt))
|
|
return -1;
|
|
|
|
if (evt_has_invalid_sched_type(opt))
|
|
return -1;
|
|
|
|
if (nb_queues > EVT_MAX_QUEUES) {
|
|
evt_err("number of queues exceeds %d", EVT_MAX_QUEUES);
|
|
return -1;
|
|
}
|
|
if (perf_nb_event_ports(opt) > EVT_MAX_PORTS) {
|
|
evt_err("number of ports exceeds %d", EVT_MAX_PORTS);
|
|
return -1;
|
|
}
|
|
|
|
/* Fixups */
|
|
if ((opt->nb_stages == 1 &&
|
|
opt->prod_type != EVT_PROD_TYPE_EVENT_TIMER_ADPTR) &&
|
|
opt->fwd_latency) {
|
|
evt_info("fwd_latency is valid when nb_stages > 1, disabling");
|
|
opt->fwd_latency = 0;
|
|
}
|
|
|
|
if (opt->fwd_latency && !opt->q_priority) {
|
|
evt_info("enabled queue priority for latency measurement");
|
|
opt->q_priority = 1;
|
|
}
|
|
if (opt->nb_pkts == 0)
|
|
opt->nb_pkts = INT64_MAX/evt_nr_active_lcores(opt->plcores);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
perf_opt_dump(struct evt_options *opt, uint8_t nb_queues)
|
|
{
|
|
evt_dump("nb_prod_lcores", "%d", evt_nr_active_lcores(opt->plcores));
|
|
evt_dump_producer_lcores(opt);
|
|
evt_dump("nb_worker_lcores", "%d", evt_nr_active_lcores(opt->wlcores));
|
|
evt_dump_worker_lcores(opt);
|
|
evt_dump_nb_stages(opt);
|
|
evt_dump("nb_evdev_ports", "%d", perf_nb_event_ports(opt));
|
|
evt_dump("nb_evdev_queues", "%d", nb_queues);
|
|
evt_dump_queue_priority(opt);
|
|
evt_dump_sched_type_list(opt);
|
|
evt_dump_producer_type(opt);
|
|
}
|
|
|
|
void
|
|
perf_eventdev_destroy(struct evt_test *test, struct evt_options *opt)
|
|
{
|
|
int i;
|
|
struct test_perf *t = evt_test_priv(test);
|
|
|
|
if (opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) {
|
|
for (i = 0; i < opt->nb_timer_adptrs; i++)
|
|
rte_event_timer_adapter_stop(t->timer_adptr[i]);
|
|
}
|
|
rte_event_dev_stop(opt->dev_id);
|
|
rte_event_dev_close(opt->dev_id);
|
|
}
|
|
|
|
static inline void
|
|
perf_elt_init(struct rte_mempool *mp, void *arg __rte_unused,
|
|
void *obj, unsigned i __rte_unused)
|
|
{
|
|
memset(obj, 0, mp->elt_size);
|
|
}
|
|
|
|
#define NB_RX_DESC 128
|
|
#define NB_TX_DESC 512
|
|
int
|
|
perf_ethdev_setup(struct evt_test *test, struct evt_options *opt)
|
|
{
|
|
uint16_t i;
|
|
int ret;
|
|
struct test_perf *t = evt_test_priv(test);
|
|
struct rte_eth_conf port_conf = {
|
|
.rxmode = {
|
|
.mq_mode = ETH_MQ_RX_RSS,
|
|
.max_rx_pkt_len = RTE_ETHER_MAX_LEN,
|
|
.split_hdr_size = 0,
|
|
},
|
|
.rx_adv_conf = {
|
|
.rss_conf = {
|
|
.rss_key = NULL,
|
|
.rss_hf = ETH_RSS_IP,
|
|
},
|
|
},
|
|
};
|
|
|
|
if (opt->prod_type == EVT_PROD_TYPE_SYNT ||
|
|
opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR)
|
|
return 0;
|
|
|
|
if (!rte_eth_dev_count_avail()) {
|
|
evt_err("No ethernet ports found.");
|
|
return -ENODEV;
|
|
}
|
|
|
|
RTE_ETH_FOREACH_DEV(i) {
|
|
struct rte_eth_dev_info dev_info;
|
|
struct rte_eth_conf local_port_conf = port_conf;
|
|
|
|
ret = rte_eth_dev_info_get(i, &dev_info);
|
|
if (ret != 0) {
|
|
evt_err("Error during getting device (port %u) info: %s\n",
|
|
i, strerror(-ret));
|
|
return ret;
|
|
}
|
|
|
|
local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
|
|
dev_info.flow_type_rss_offloads;
|
|
if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
|
|
port_conf.rx_adv_conf.rss_conf.rss_hf) {
|
|
evt_info("Port %u modified RSS hash function based on hardware support,"
|
|
"requested:%#"PRIx64" configured:%#"PRIx64"\n",
|
|
i,
|
|
port_conf.rx_adv_conf.rss_conf.rss_hf,
|
|
local_port_conf.rx_adv_conf.rss_conf.rss_hf);
|
|
}
|
|
|
|
if (rte_eth_dev_configure(i, 1, 1, &local_port_conf) < 0) {
|
|
evt_err("Failed to configure eth port [%d]", i);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (rte_eth_rx_queue_setup(i, 0, NB_RX_DESC,
|
|
rte_socket_id(), NULL, t->pool) < 0) {
|
|
evt_err("Failed to setup eth port [%d] rx_queue: %d.",
|
|
i, 0);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (rte_eth_tx_queue_setup(i, 0, NB_TX_DESC,
|
|
rte_socket_id(), NULL) < 0) {
|
|
evt_err("Failed to setup eth port [%d] tx_queue: %d.",
|
|
i, 0);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = rte_eth_promiscuous_enable(i);
|
|
if (ret != 0) {
|
|
evt_err("Failed to enable promiscuous mode for eth port [%d]: %s",
|
|
i, rte_strerror(-ret));
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void perf_ethdev_destroy(struct evt_test *test, struct evt_options *opt)
|
|
{
|
|
uint16_t i;
|
|
RTE_SET_USED(test);
|
|
|
|
if (opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR) {
|
|
RTE_ETH_FOREACH_DEV(i) {
|
|
rte_event_eth_rx_adapter_stop(i);
|
|
rte_eth_dev_stop(i);
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
perf_mempool_setup(struct evt_test *test, struct evt_options *opt)
|
|
{
|
|
struct test_perf *t = evt_test_priv(test);
|
|
|
|
if (opt->prod_type == EVT_PROD_TYPE_SYNT ||
|
|
opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) {
|
|
t->pool = rte_mempool_create(test->name, /* mempool name */
|
|
opt->pool_sz, /* number of elements*/
|
|
sizeof(struct perf_elt), /* element size*/
|
|
512, /* cache size*/
|
|
0, NULL, NULL,
|
|
perf_elt_init, /* obj constructor */
|
|
NULL, opt->socket_id, 0); /* flags */
|
|
} else {
|
|
t->pool = rte_pktmbuf_pool_create(test->name, /* mempool name */
|
|
opt->pool_sz, /* number of elements*/
|
|
512, /* cache size*/
|
|
0,
|
|
RTE_MBUF_DEFAULT_BUF_SIZE,
|
|
opt->socket_id); /* flags */
|
|
|
|
}
|
|
|
|
if (t->pool == NULL) {
|
|
evt_err("failed to create mempool");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
perf_mempool_destroy(struct evt_test *test, struct evt_options *opt)
|
|
{
|
|
RTE_SET_USED(opt);
|
|
struct test_perf *t = evt_test_priv(test);
|
|
|
|
rte_mempool_free(t->pool);
|
|
}
|
|
|
|
int
|
|
perf_test_setup(struct evt_test *test, struct evt_options *opt)
|
|
{
|
|
void *test_perf;
|
|
|
|
test_perf = rte_zmalloc_socket(test->name, sizeof(struct test_perf),
|
|
RTE_CACHE_LINE_SIZE, opt->socket_id);
|
|
if (test_perf == NULL) {
|
|
evt_err("failed to allocate test_perf memory");
|
|
goto nomem;
|
|
}
|
|
test->test_priv = test_perf;
|
|
|
|
struct test_perf *t = evt_test_priv(test);
|
|
|
|
if (opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) {
|
|
t->outstand_pkts = opt->nb_timers *
|
|
evt_nr_active_lcores(opt->plcores);
|
|
t->nb_pkts = opt->nb_timers;
|
|
} else {
|
|
t->outstand_pkts = opt->nb_pkts *
|
|
evt_nr_active_lcores(opt->plcores);
|
|
t->nb_pkts = opt->nb_pkts;
|
|
}
|
|
|
|
t->nb_workers = evt_nr_active_lcores(opt->wlcores);
|
|
t->done = false;
|
|
t->nb_flows = opt->nb_flows;
|
|
t->result = EVT_TEST_FAILED;
|
|
t->opt = opt;
|
|
memcpy(t->sched_type_list, opt->sched_type_list,
|
|
sizeof(opt->sched_type_list));
|
|
return 0;
|
|
nomem:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
void
|
|
perf_test_destroy(struct evt_test *test, struct evt_options *opt)
|
|
{
|
|
RTE_SET_USED(opt);
|
|
|
|
rte_free(test->test_priv);
|
|
}
|