numam-dpdk/lib/librte_eal/common/eal_common_fbarray.c
Stephen Hemminger a9aa14d9aa eal: fix comments spelling
Fix spelling errors in comments (found with codespell).

Note that "inbetween" is not correct in English and should
either be two words or better yet, the in can be dropped.
https://www.grammarly.com/blog/in-between-or-inbetween/

Fixes: 12f45fa7e29b ("eal/arm: read timer from PMU if enabled")
Fixes: 096ffd811fe2 ("eal/x86: use lock-prefixed instructions for SMP barrier")
Fixes: 1d406458db47 ("mem: make segment preallocation OS-specific")
Fixes: bb372060dad4 ("malloc: make heap a doubly-linked list")
Fixes: 7353ee7344b4 ("fbarray: add API to find biggest used or free chunks")
Cc: stable@dpdk.org

Signed-off-by: Stephen Hemminger <stephen@networkplumber.org>
2020-04-24 19:29:06 +02:00

1511 lines
35 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017-2018 Intel Corporation
*/
#include <fcntl.h>
#include <inttypes.h>
#include <limits.h>
#include <sys/mman.h>
#include <stdint.h>
#include <errno.h>
#include <sys/file.h>
#include <string.h>
#include <rte_common.h>
#include <rte_log.h>
#include <rte_errno.h>
#include <rte_spinlock.h>
#include <rte_tailq.h>
#include "eal_filesystem.h"
#include "eal_private.h"
#include "rte_fbarray.h"
#define MASK_SHIFT 6ULL
#define MASK_ALIGN (1ULL << MASK_SHIFT)
#define MASK_LEN_TO_IDX(x) ((x) >> MASK_SHIFT)
#define MASK_LEN_TO_MOD(x) ((x) - RTE_ALIGN_FLOOR(x, MASK_ALIGN))
#define MASK_GET_IDX(idx, mod) ((idx << MASK_SHIFT) + mod)
/*
* We use this to keep track of created/attached memory areas to prevent user
* errors in API usage.
*/
struct mem_area {
TAILQ_ENTRY(mem_area) next;
void *addr;
size_t len;
int fd;
};
TAILQ_HEAD(mem_area_head, mem_area);
/* local per-process tailq */
static struct mem_area_head mem_area_tailq =
TAILQ_HEAD_INITIALIZER(mem_area_tailq);
static rte_spinlock_t mem_area_lock = RTE_SPINLOCK_INITIALIZER;
/*
* This is a mask that is always stored at the end of array, to provide fast
* way of finding free/used spots without looping through each element.
*/
struct used_mask {
unsigned int n_masks;
uint64_t data[];
};
static size_t
calc_mask_size(unsigned int len)
{
/* mask must be multiple of MASK_ALIGN, even though length of array
* itself may not be aligned on that boundary.
*/
len = RTE_ALIGN_CEIL(len, MASK_ALIGN);
return sizeof(struct used_mask) +
sizeof(uint64_t) * MASK_LEN_TO_IDX(len);
}
static size_t
calc_data_size(size_t page_sz, unsigned int elt_sz, unsigned int len)
{
size_t data_sz = elt_sz * len;
size_t msk_sz = calc_mask_size(len);
return RTE_ALIGN_CEIL(data_sz + msk_sz, page_sz);
}
static struct used_mask *
get_used_mask(void *data, unsigned int elt_sz, unsigned int len)
{
return (struct used_mask *) RTE_PTR_ADD(data, elt_sz * len);
}
static int
resize_and_map(int fd, void *addr, size_t len)
{
char path[PATH_MAX];
void *map_addr;
if (ftruncate(fd, len)) {
RTE_LOG(ERR, EAL, "Cannot truncate %s\n", path);
/* pass errno up the chain */
rte_errno = errno;
return -1;
}
map_addr = mmap(addr, len, PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_FIXED, fd, 0);
if (map_addr != addr) {
RTE_LOG(ERR, EAL, "mmap() failed: %s\n", strerror(errno));
/* pass errno up the chain */
rte_errno = errno;
return -1;
}
return 0;
}
static int
overlap(const struct mem_area *ma, const void *start, size_t len)
{
const void *end = RTE_PTR_ADD(start, len);
const void *ma_start = ma->addr;
const void *ma_end = RTE_PTR_ADD(ma->addr, ma->len);
/* start overlap? */
if (start >= ma_start && start < ma_end)
return 1;
/* end overlap? */
if (end >= ma_start && end < ma_end)
return 1;
return 0;
}
static int
find_next_n(const struct rte_fbarray *arr, unsigned int start, unsigned int n,
bool used)
{
const struct used_mask *msk = get_used_mask(arr->data, arr->elt_sz,
arr->len);
unsigned int msk_idx, lookahead_idx, first, first_mod;
unsigned int last, last_mod;
uint64_t last_msk, ignore_msk;
/*
* mask only has granularity of MASK_ALIGN, but start may not be aligned
* on that boundary, so construct a special mask to exclude anything we
* don't want to see to avoid confusing ctz.
*/
first = MASK_LEN_TO_IDX(start);
first_mod = MASK_LEN_TO_MOD(start);
ignore_msk = ~((1ULL << first_mod) - 1);
/* array length may not be aligned, so calculate ignore mask for last
* mask index.
*/
last = MASK_LEN_TO_IDX(arr->len);
last_mod = MASK_LEN_TO_MOD(arr->len);
last_msk = ~(-1ULL << last_mod);
for (msk_idx = first; msk_idx < msk->n_masks; msk_idx++) {
uint64_t cur_msk, lookahead_msk;
unsigned int run_start, clz, left;
bool found = false;
/*
* The process of getting n consecutive bits for arbitrary n is
* a bit involved, but here it is in a nutshell:
*
* 1. let n be the number of consecutive bits we're looking for
* 2. check if n can fit in one mask, and if so, do n-1
* rshift-ands to see if there is an appropriate run inside
* our current mask
* 2a. if we found a run, bail out early
* 2b. if we didn't find a run, proceed
* 3. invert the mask and count leading zeroes (that is, count
* how many consecutive set bits we had starting from the
* end of current mask) as k
* 3a. if k is 0, continue to next mask
* 3b. if k is not 0, we have a potential run
* 4. to satisfy our requirements, next mask must have n-k
* consecutive set bits right at the start, so we will do
* (n-k-1) rshift-ands and check if first bit is set.
*
* Step 4 will need to be repeated if (n-k) > MASK_ALIGN until
* we either run out of masks, lose the run, or find what we
* were looking for.
*/
cur_msk = msk->data[msk_idx];
left = n;
/* if we're looking for free spaces, invert the mask */
if (!used)
cur_msk = ~cur_msk;
/* combine current ignore mask with last index ignore mask */
if (msk_idx == last)
ignore_msk |= last_msk;
/* if we have an ignore mask, ignore once */
if (ignore_msk) {
cur_msk &= ignore_msk;
ignore_msk = 0;
}
/* if n can fit in within a single mask, do a search */
if (n <= MASK_ALIGN) {
uint64_t tmp_msk = cur_msk;
unsigned int s_idx;
for (s_idx = 0; s_idx < n - 1; s_idx++)
tmp_msk &= tmp_msk >> 1ULL;
/* we found what we were looking for */
if (tmp_msk != 0) {
run_start = __builtin_ctzll(tmp_msk);
return MASK_GET_IDX(msk_idx, run_start);
}
}
/*
* we didn't find our run within the mask, or n > MASK_ALIGN,
* so we're going for plan B.
*/
/* count leading zeroes on inverted mask */
if (~cur_msk == 0)
clz = sizeof(cur_msk) * 8;
else
clz = __builtin_clzll(~cur_msk);
/* if there aren't any runs at the end either, just continue */
if (clz == 0)
continue;
/* we have a partial run at the end, so try looking ahead */
run_start = MASK_ALIGN - clz;
left -= clz;
for (lookahead_idx = msk_idx + 1; lookahead_idx < msk->n_masks;
lookahead_idx++) {
unsigned int s_idx, need;
lookahead_msk = msk->data[lookahead_idx];
/* if we're looking for free space, invert the mask */
if (!used)
lookahead_msk = ~lookahead_msk;
/* figure out how many consecutive bits we need here */
need = RTE_MIN(left, MASK_ALIGN);
for (s_idx = 0; s_idx < need - 1; s_idx++)
lookahead_msk &= lookahead_msk >> 1ULL;
/* if first bit is not set, we've lost the run */
if ((lookahead_msk & 1) == 0) {
/*
* we've scanned this far, so we know there are
* no runs in the space we've lookahead-scanned
* as well, so skip that on next iteration.
*/
ignore_msk = ~((1ULL << need) - 1);
msk_idx = lookahead_idx;
break;
}
left -= need;
/* check if we've found what we were looking for */
if (left == 0) {
found = true;
break;
}
}
/* we didn't find anything, so continue */
if (!found)
continue;
return MASK_GET_IDX(msk_idx, run_start);
}
/* we didn't find anything */
rte_errno = used ? ENOENT : ENOSPC;
return -1;
}
static int
find_next(const struct rte_fbarray *arr, unsigned int start, bool used)
{
const struct used_mask *msk = get_used_mask(arr->data, arr->elt_sz,
arr->len);
unsigned int idx, first, first_mod;
unsigned int last, last_mod;
uint64_t last_msk, ignore_msk;
/*
* mask only has granularity of MASK_ALIGN, but start may not be aligned
* on that boundary, so construct a special mask to exclude anything we
* don't want to see to avoid confusing ctz.
*/
first = MASK_LEN_TO_IDX(start);
first_mod = MASK_LEN_TO_MOD(start);
ignore_msk = ~((1ULL << first_mod) - 1ULL);
/* array length may not be aligned, so calculate ignore mask for last
* mask index.
*/
last = MASK_LEN_TO_IDX(arr->len);
last_mod = MASK_LEN_TO_MOD(arr->len);
last_msk = ~(-(1ULL) << last_mod);
for (idx = first; idx < msk->n_masks; idx++) {
uint64_t cur = msk->data[idx];
int found;
/* if we're looking for free entries, invert mask */
if (!used)
cur = ~cur;
if (idx == last)
cur &= last_msk;
/* ignore everything before start on first iteration */
if (idx == first)
cur &= ignore_msk;
/* check if we have any entries */
if (cur == 0)
continue;
/*
* find first set bit - that will correspond to whatever it is
* that we're looking for.
*/
found = __builtin_ctzll(cur);
return MASK_GET_IDX(idx, found);
}
/* we didn't find anything */
rte_errno = used ? ENOENT : ENOSPC;
return -1;
}
static int
find_contig(const struct rte_fbarray *arr, unsigned int start, bool used)
{
const struct used_mask *msk = get_used_mask(arr->data, arr->elt_sz,
arr->len);
unsigned int idx, first, first_mod;
unsigned int last, last_mod;
uint64_t last_msk;
unsigned int need_len, result = 0;
/* array length may not be aligned, so calculate ignore mask for last
* mask index.
*/
last = MASK_LEN_TO_IDX(arr->len);
last_mod = MASK_LEN_TO_MOD(arr->len);
last_msk = ~(-(1ULL) << last_mod);
first = MASK_LEN_TO_IDX(start);
first_mod = MASK_LEN_TO_MOD(start);
for (idx = first; idx < msk->n_masks; idx++, result += need_len) {
uint64_t cur = msk->data[idx];
unsigned int run_len;
need_len = MASK_ALIGN;
/* if we're looking for free entries, invert mask */
if (!used)
cur = ~cur;
/* if this is last mask, ignore everything after last bit */
if (idx == last)
cur &= last_msk;
/* ignore everything before start on first iteration */
if (idx == first) {
cur >>= first_mod;
/* at the start, we don't need the full mask len */
need_len -= first_mod;
}
/* we will be looking for zeroes, so invert the mask */
cur = ~cur;
/* if mask is zero, we have a complete run */
if (cur == 0)
continue;
/*
* see if current run ends before mask end.
*/
run_len = __builtin_ctzll(cur);
/* add however many zeroes we've had in the last run and quit */
if (run_len < need_len) {
result += run_len;
break;
}
}
return result;
}
static int
find_prev_n(const struct rte_fbarray *arr, unsigned int start, unsigned int n,
bool used)
{
const struct used_mask *msk = get_used_mask(arr->data, arr->elt_sz,
arr->len);
unsigned int msk_idx, lookbehind_idx, first, first_mod;
uint64_t ignore_msk;
/*
* mask only has granularity of MASK_ALIGN, but start may not be aligned
* on that boundary, so construct a special mask to exclude anything we
* don't want to see to avoid confusing ctz.
*/
first = MASK_LEN_TO_IDX(start);
first_mod = MASK_LEN_TO_MOD(start);
/* we're going backwards, so mask must start from the top */
ignore_msk = first_mod == MASK_ALIGN - 1 ?
-1ULL : /* prevent overflow */
~(-1ULL << (first_mod + 1));
/* go backwards, include zero */
msk_idx = first;
do {
uint64_t cur_msk, lookbehind_msk;
unsigned int run_start, run_end, ctz, left;
bool found = false;
/*
* The process of getting n consecutive bits from the top for
* arbitrary n is a bit involved, but here it is in a nutshell:
*
* 1. let n be the number of consecutive bits we're looking for
* 2. check if n can fit in one mask, and if so, do n-1
* lshift-ands to see if there is an appropriate run inside
* our current mask
* 2a. if we found a run, bail out early
* 2b. if we didn't find a run, proceed
* 3. invert the mask and count trailing zeroes (that is, count
* how many consecutive set bits we had starting from the
* start of current mask) as k
* 3a. if k is 0, continue to next mask
* 3b. if k is not 0, we have a potential run
* 4. to satisfy our requirements, next mask must have n-k
* consecutive set bits at the end, so we will do (n-k-1)
* lshift-ands and check if last bit is set.
*
* Step 4 will need to be repeated if (n-k) > MASK_ALIGN until
* we either run out of masks, lose the run, or find what we
* were looking for.
*/
cur_msk = msk->data[msk_idx];
left = n;
/* if we're looking for free spaces, invert the mask */
if (!used)
cur_msk = ~cur_msk;
/* if we have an ignore mask, ignore once */
if (ignore_msk) {
cur_msk &= ignore_msk;
ignore_msk = 0;
}
/* if n can fit in within a single mask, do a search */
if (n <= MASK_ALIGN) {
uint64_t tmp_msk = cur_msk;
unsigned int s_idx;
for (s_idx = 0; s_idx < n - 1; s_idx++)
tmp_msk &= tmp_msk << 1ULL;
/* we found what we were looking for */
if (tmp_msk != 0) {
/* clz will give us offset from end of mask, and
* we only get the end of our run, not start,
* so adjust result to point to where start
* would have been.
*/
run_start = MASK_ALIGN -
__builtin_clzll(tmp_msk) - n;
return MASK_GET_IDX(msk_idx, run_start);
}
}
/*
* we didn't find our run within the mask, or n > MASK_ALIGN,
* so we're going for plan B.
*/
/* count trailing zeroes on inverted mask */
if (~cur_msk == 0)
ctz = sizeof(cur_msk) * 8;
else
ctz = __builtin_ctzll(~cur_msk);
/* if there aren't any runs at the start either, just
* continue
*/
if (ctz == 0)
continue;
/* we have a partial run at the start, so try looking behind */
run_end = MASK_GET_IDX(msk_idx, ctz);
left -= ctz;
/* go backwards, include zero */
lookbehind_idx = msk_idx - 1;
/* we can't lookbehind as we've run out of masks, so stop */
if (msk_idx == 0)
break;
do {
const uint64_t last_bit = 1ULL << (MASK_ALIGN - 1);
unsigned int s_idx, need;
lookbehind_msk = msk->data[lookbehind_idx];
/* if we're looking for free space, invert the mask */
if (!used)
lookbehind_msk = ~lookbehind_msk;
/* figure out how many consecutive bits we need here */
need = RTE_MIN(left, MASK_ALIGN);
for (s_idx = 0; s_idx < need - 1; s_idx++)
lookbehind_msk &= lookbehind_msk << 1ULL;
/* if last bit is not set, we've lost the run */
if ((lookbehind_msk & last_bit) == 0) {
/*
* we've scanned this far, so we know there are
* no runs in the space we've lookbehind-scanned
* as well, so skip that on next iteration.
*/
ignore_msk = -1ULL << need;
msk_idx = lookbehind_idx;
break;
}
left -= need;
/* check if we've found what we were looking for */
if (left == 0) {
found = true;
break;
}
} while ((lookbehind_idx--) != 0); /* decrement after check to
* include zero
*/
/* we didn't find anything, so continue */
if (!found)
continue;
/* we've found what we were looking for, but we only know where
* the run ended, so calculate start position.
*/
return run_end - n;
} while (msk_idx-- != 0); /* decrement after check to include zero */
/* we didn't find anything */
rte_errno = used ? ENOENT : ENOSPC;
return -1;
}
static int
find_prev(const struct rte_fbarray *arr, unsigned int start, bool used)
{
const struct used_mask *msk = get_used_mask(arr->data, arr->elt_sz,
arr->len);
unsigned int idx, first, first_mod;
uint64_t ignore_msk;
/*
* mask only has granularity of MASK_ALIGN, but start may not be aligned
* on that boundary, so construct a special mask to exclude anything we
* don't want to see to avoid confusing clz.
*/
first = MASK_LEN_TO_IDX(start);
first_mod = MASK_LEN_TO_MOD(start);
/* we're going backwards, so mask must start from the top */
ignore_msk = first_mod == MASK_ALIGN - 1 ?
-1ULL : /* prevent overflow */
~(-1ULL << (first_mod + 1));
/* go backwards, include zero */
idx = first;
do {
uint64_t cur = msk->data[idx];
int found;
/* if we're looking for free entries, invert mask */
if (!used)
cur = ~cur;
/* ignore everything before start on first iteration */
if (idx == first)
cur &= ignore_msk;
/* check if we have any entries */
if (cur == 0)
continue;
/*
* find last set bit - that will correspond to whatever it is
* that we're looking for. we're counting trailing zeroes, thus
* the value we get is counted from end of mask, so calculate
* position from start of mask.
*/
found = MASK_ALIGN - __builtin_clzll(cur) - 1;
return MASK_GET_IDX(idx, found);
} while (idx-- != 0); /* decrement after check to include zero*/
/* we didn't find anything */
rte_errno = used ? ENOENT : ENOSPC;
return -1;
}
static int
find_rev_contig(const struct rte_fbarray *arr, unsigned int start, bool used)
{
const struct used_mask *msk = get_used_mask(arr->data, arr->elt_sz,
arr->len);
unsigned int idx, first, first_mod;
unsigned int need_len, result = 0;
first = MASK_LEN_TO_IDX(start);
first_mod = MASK_LEN_TO_MOD(start);
/* go backwards, include zero */
idx = first;
do {
uint64_t cur = msk->data[idx];
unsigned int run_len;
need_len = MASK_ALIGN;
/* if we're looking for free entries, invert mask */
if (!used)
cur = ~cur;
/* ignore everything after start on first iteration */
if (idx == first) {
unsigned int end_len = MASK_ALIGN - first_mod - 1;
cur <<= end_len;
/* at the start, we don't need the full mask len */
need_len -= end_len;
}
/* we will be looking for zeroes, so invert the mask */
cur = ~cur;
/* if mask is zero, we have a complete run */
if (cur == 0)
goto endloop;
/*
* see where run ends, starting from the end.
*/
run_len = __builtin_clzll(cur);
/* add however many zeroes we've had in the last run and quit */
if (run_len < need_len) {
result += run_len;
break;
}
endloop:
result += need_len;
} while (idx-- != 0); /* decrement after check to include zero */
return result;
}
static int
set_used(struct rte_fbarray *arr, unsigned int idx, bool used)
{
struct used_mask *msk;
uint64_t msk_bit = 1ULL << MASK_LEN_TO_MOD(idx);
unsigned int msk_idx = MASK_LEN_TO_IDX(idx);
bool already_used;
int ret = -1;
if (arr == NULL || idx >= arr->len) {
rte_errno = EINVAL;
return -1;
}
msk = get_used_mask(arr->data, arr->elt_sz, arr->len);
ret = 0;
/* prevent array from changing under us */
rte_rwlock_write_lock(&arr->rwlock);
already_used = (msk->data[msk_idx] & msk_bit) != 0;
/* nothing to be done */
if (used == already_used)
goto out;
if (used) {
msk->data[msk_idx] |= msk_bit;
arr->count++;
} else {
msk->data[msk_idx] &= ~msk_bit;
arr->count--;
}
out:
rte_rwlock_write_unlock(&arr->rwlock);
return ret;
}
static int
fully_validate(const char *name, unsigned int elt_sz, unsigned int len)
{
if (name == NULL || elt_sz == 0 || len == 0 || len > INT_MAX) {
rte_errno = EINVAL;
return -1;
}
if (strnlen(name, RTE_FBARRAY_NAME_LEN) == RTE_FBARRAY_NAME_LEN) {
rte_errno = ENAMETOOLONG;
return -1;
}
return 0;
}
int
rte_fbarray_init(struct rte_fbarray *arr, const char *name, unsigned int len,
unsigned int elt_sz)
{
size_t page_sz, mmap_len;
char path[PATH_MAX];
struct used_mask *msk;
struct mem_area *ma = NULL;
void *data = NULL;
int fd = -1;
if (arr == NULL) {
rte_errno = EINVAL;
return -1;
}
if (fully_validate(name, elt_sz, len))
return -1;
/* allocate mem area before doing anything */
ma = malloc(sizeof(*ma));
if (ma == NULL) {
rte_errno = ENOMEM;
return -1;
}
page_sz = sysconf(_SC_PAGESIZE);
if (page_sz == (size_t)-1) {
free(ma);
return -1;
}
/* calculate our memory limits */
mmap_len = calc_data_size(page_sz, elt_sz, len);
data = eal_get_virtual_area(NULL, &mmap_len, page_sz, 0, 0);
if (data == NULL) {
free(ma);
return -1;
}
rte_spinlock_lock(&mem_area_lock);
fd = -1;
if (internal_config.no_shconf) {
/* remap virtual area as writable */
void *new_data = mmap(data, mmap_len, PROT_READ | PROT_WRITE,
MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, fd, 0);
if (new_data == MAP_FAILED) {
RTE_LOG(DEBUG, EAL, "%s(): couldn't remap anonymous memory: %s\n",
__func__, strerror(errno));
goto fail;
}
} else {
eal_get_fbarray_path(path, sizeof(path), name);
/*
* Each fbarray is unique to process namespace, i.e. the
* filename depends on process prefix. Try to take out a lock
* and see if we succeed. If we don't, someone else is using it
* already.
*/
fd = open(path, O_CREAT | O_RDWR, 0600);
if (fd < 0) {
RTE_LOG(DEBUG, EAL, "%s(): couldn't open %s: %s\n",
__func__, path, strerror(errno));
rte_errno = errno;
goto fail;
} else if (flock(fd, LOCK_EX | LOCK_NB)) {
RTE_LOG(DEBUG, EAL, "%s(): couldn't lock %s: %s\n",
__func__, path, strerror(errno));
rte_errno = EBUSY;
goto fail;
}
/* take out a non-exclusive lock, so that other processes could
* still attach to it, but no other process could reinitialize
* it.
*/
if (flock(fd, LOCK_SH | LOCK_NB)) {
rte_errno = errno;
goto fail;
}
if (resize_and_map(fd, data, mmap_len))
goto fail;
}
ma->addr = data;
ma->len = mmap_len;
ma->fd = fd;
/* do not close fd - keep it until detach/destroy */
TAILQ_INSERT_TAIL(&mem_area_tailq, ma, next);
/* initialize the data */
memset(data, 0, mmap_len);
/* populate data structure */
strlcpy(arr->name, name, sizeof(arr->name));
arr->data = data;
arr->len = len;
arr->elt_sz = elt_sz;
arr->count = 0;
msk = get_used_mask(data, elt_sz, len);
msk->n_masks = MASK_LEN_TO_IDX(RTE_ALIGN_CEIL(len, MASK_ALIGN));
rte_rwlock_init(&arr->rwlock);
rte_spinlock_unlock(&mem_area_lock);
return 0;
fail:
if (data)
munmap(data, mmap_len);
if (fd >= 0)
close(fd);
free(ma);
rte_spinlock_unlock(&mem_area_lock);
return -1;
}
int
rte_fbarray_attach(struct rte_fbarray *arr)
{
struct mem_area *ma = NULL, *tmp = NULL;
size_t page_sz, mmap_len;
char path[PATH_MAX];
void *data = NULL;
int fd = -1;
if (arr == NULL) {
rte_errno = EINVAL;
return -1;
}
/*
* we don't need to synchronize attach as two values we need (element
* size and array length) are constant for the duration of life of
* the array, so the parts we care about will not race.
*/
if (fully_validate(arr->name, arr->elt_sz, arr->len))
return -1;
ma = malloc(sizeof(*ma));
if (ma == NULL) {
rte_errno = ENOMEM;
return -1;
}
page_sz = sysconf(_SC_PAGESIZE);
if (page_sz == (size_t)-1) {
free(ma);
return -1;
}
mmap_len = calc_data_size(page_sz, arr->elt_sz, arr->len);
/* check the tailq - maybe user has already mapped this address space */
rte_spinlock_lock(&mem_area_lock);
TAILQ_FOREACH(tmp, &mem_area_tailq, next) {
if (overlap(tmp, arr->data, mmap_len)) {
rte_errno = EEXIST;
goto fail;
}
}
/* we know this memory area is unique, so proceed */
data = eal_get_virtual_area(arr->data, &mmap_len, page_sz, 0, 0);
if (data == NULL)
goto fail;
eal_get_fbarray_path(path, sizeof(path), arr->name);
fd = open(path, O_RDWR);
if (fd < 0) {
rte_errno = errno;
goto fail;
}
/* lock the file, to let others know we're using it */
if (flock(fd, LOCK_SH | LOCK_NB)) {
rte_errno = errno;
goto fail;
}
if (resize_and_map(fd, data, mmap_len))
goto fail;
/* store our new memory area */
ma->addr = data;
ma->fd = fd; /* keep fd until detach/destroy */
ma->len = mmap_len;
TAILQ_INSERT_TAIL(&mem_area_tailq, ma, next);
/* we're done */
rte_spinlock_unlock(&mem_area_lock);
return 0;
fail:
if (data)
munmap(data, mmap_len);
if (fd >= 0)
close(fd);
free(ma);
rte_spinlock_unlock(&mem_area_lock);
return -1;
}
int
rte_fbarray_detach(struct rte_fbarray *arr)
{
struct mem_area *tmp = NULL;
size_t mmap_len;
int ret = -1;
if (arr == NULL) {
rte_errno = EINVAL;
return -1;
}
/*
* we don't need to synchronize detach as two values we need (element
* size and total capacity) are constant for the duration of life of
* the array, so the parts we care about will not race. if the user is
* detaching while doing something else in the same process, we can't
* really do anything about it, things will blow up either way.
*/
size_t page_sz = sysconf(_SC_PAGESIZE);
if (page_sz == (size_t)-1)
return -1;
mmap_len = calc_data_size(page_sz, arr->elt_sz, arr->len);
/* does this area exist? */
rte_spinlock_lock(&mem_area_lock);
TAILQ_FOREACH(tmp, &mem_area_tailq, next) {
if (tmp->addr == arr->data && tmp->len == mmap_len)
break;
}
if (tmp == NULL) {
rte_errno = ENOENT;
ret = -1;
goto out;
}
munmap(arr->data, mmap_len);
/* area is unmapped, close fd and remove the tailq entry */
if (tmp->fd >= 0)
close(tmp->fd);
TAILQ_REMOVE(&mem_area_tailq, tmp, next);
free(tmp);
ret = 0;
out:
rte_spinlock_unlock(&mem_area_lock);
return ret;
}
int
rte_fbarray_destroy(struct rte_fbarray *arr)
{
struct mem_area *tmp = NULL;
size_t mmap_len;
int fd, ret;
char path[PATH_MAX];
if (arr == NULL) {
rte_errno = EINVAL;
return -1;
}
/*
* we don't need to synchronize detach as two values we need (element
* size and total capacity) are constant for the duration of life of
* the array, so the parts we care about will not race. if the user is
* detaching while doing something else in the same process, we can't
* really do anything about it, things will blow up either way.
*/
size_t page_sz = sysconf(_SC_PAGESIZE);
if (page_sz == (size_t)-1)
return -1;
mmap_len = calc_data_size(page_sz, arr->elt_sz, arr->len);
/* does this area exist? */
rte_spinlock_lock(&mem_area_lock);
TAILQ_FOREACH(tmp, &mem_area_tailq, next) {
if (tmp->addr == arr->data && tmp->len == mmap_len)
break;
}
if (tmp == NULL) {
rte_errno = ENOENT;
ret = -1;
goto out;
}
/* with no shconf, there were never any files to begin with */
if (!internal_config.no_shconf) {
/*
* attempt to get an exclusive lock on the file, to ensure it
* has been detached by all other processes
*/
fd = tmp->fd;
if (flock(fd, LOCK_EX | LOCK_NB)) {
RTE_LOG(DEBUG, EAL, "Cannot destroy fbarray - another process is using it\n");
rte_errno = EBUSY;
ret = -1;
goto out;
}
/* we're OK to destroy the file */
eal_get_fbarray_path(path, sizeof(path), arr->name);
if (unlink(path)) {
RTE_LOG(DEBUG, EAL, "Cannot unlink fbarray: %s\n",
strerror(errno));
rte_errno = errno;
/*
* we're still holding an exclusive lock, so drop it to
* shared.
*/
flock(fd, LOCK_SH | LOCK_NB);
ret = -1;
goto out;
}
close(fd);
}
munmap(arr->data, mmap_len);
/* area is unmapped, remove the tailq entry */
TAILQ_REMOVE(&mem_area_tailq, tmp, next);
free(tmp);
ret = 0;
/* reset the fbarray structure */
memset(arr, 0, sizeof(*arr));
out:
rte_spinlock_unlock(&mem_area_lock);
return ret;
}
void *
rte_fbarray_get(const struct rte_fbarray *arr, unsigned int idx)
{
void *ret = NULL;
if (arr == NULL) {
rte_errno = EINVAL;
return NULL;
}
if (idx >= arr->len) {
rte_errno = EINVAL;
return NULL;
}
ret = RTE_PTR_ADD(arr->data, idx * arr->elt_sz);
return ret;
}
int
rte_fbarray_set_used(struct rte_fbarray *arr, unsigned int idx)
{
return set_used(arr, idx, true);
}
int
rte_fbarray_set_free(struct rte_fbarray *arr, unsigned int idx)
{
return set_used(arr, idx, false);
}
int
rte_fbarray_is_used(struct rte_fbarray *arr, unsigned int idx)
{
struct used_mask *msk;
int msk_idx;
uint64_t msk_bit;
int ret = -1;
if (arr == NULL || idx >= arr->len) {
rte_errno = EINVAL;
return -1;
}
/* prevent array from changing under us */
rte_rwlock_read_lock(&arr->rwlock);
msk = get_used_mask(arr->data, arr->elt_sz, arr->len);
msk_idx = MASK_LEN_TO_IDX(idx);
msk_bit = 1ULL << MASK_LEN_TO_MOD(idx);
ret = (msk->data[msk_idx] & msk_bit) != 0;
rte_rwlock_read_unlock(&arr->rwlock);
return ret;
}
static int
fbarray_find(struct rte_fbarray *arr, unsigned int start, bool next, bool used)
{
int ret = -1;
if (arr == NULL || start >= arr->len) {
rte_errno = EINVAL;
return -1;
}
/* prevent array from changing under us */
rte_rwlock_read_lock(&arr->rwlock);
/* cheap checks to prevent doing useless work */
if (!used) {
if (arr->len == arr->count) {
rte_errno = ENOSPC;
goto out;
}
if (arr->count == 0) {
ret = start;
goto out;
}
} else {
if (arr->count == 0) {
rte_errno = ENOENT;
goto out;
}
if (arr->len == arr->count) {
ret = start;
goto out;
}
}
if (next)
ret = find_next(arr, start, used);
else
ret = find_prev(arr, start, used);
out:
rte_rwlock_read_unlock(&arr->rwlock);
return ret;
}
int
rte_fbarray_find_next_free(struct rte_fbarray *arr, unsigned int start)
{
return fbarray_find(arr, start, true, false);
}
int
rte_fbarray_find_next_used(struct rte_fbarray *arr, unsigned int start)
{
return fbarray_find(arr, start, true, true);
}
int
rte_fbarray_find_prev_free(struct rte_fbarray *arr, unsigned int start)
{
return fbarray_find(arr, start, false, false);
}
int
rte_fbarray_find_prev_used(struct rte_fbarray *arr, unsigned int start)
{
return fbarray_find(arr, start, false, true);
}
static int
fbarray_find_n(struct rte_fbarray *arr, unsigned int start, unsigned int n,
bool next, bool used)
{
int ret = -1;
if (arr == NULL || start >= arr->len || n > arr->len || n == 0) {
rte_errno = EINVAL;
return -1;
}
if (next && (arr->len - start) < n) {
rte_errno = used ? ENOENT : ENOSPC;
return -1;
}
if (!next && start < (n - 1)) {
rte_errno = used ? ENOENT : ENOSPC;
return -1;
}
/* prevent array from changing under us */
rte_rwlock_read_lock(&arr->rwlock);
/* cheap checks to prevent doing useless work */
if (!used) {
if (arr->len == arr->count || arr->len - arr->count < n) {
rte_errno = ENOSPC;
goto out;
}
if (arr->count == 0) {
ret = next ? start : start - n + 1;
goto out;
}
} else {
if (arr->count < n) {
rte_errno = ENOENT;
goto out;
}
if (arr->count == arr->len) {
ret = next ? start : start - n + 1;
goto out;
}
}
if (next)
ret = find_next_n(arr, start, n, used);
else
ret = find_prev_n(arr, start, n, used);
out:
rte_rwlock_read_unlock(&arr->rwlock);
return ret;
}
int
rte_fbarray_find_next_n_free(struct rte_fbarray *arr, unsigned int start,
unsigned int n)
{
return fbarray_find_n(arr, start, n, true, false);
}
int
rte_fbarray_find_next_n_used(struct rte_fbarray *arr, unsigned int start,
unsigned int n)
{
return fbarray_find_n(arr, start, n, true, true);
}
int
rte_fbarray_find_prev_n_free(struct rte_fbarray *arr, unsigned int start,
unsigned int n)
{
return fbarray_find_n(arr, start, n, false, false);
}
int
rte_fbarray_find_prev_n_used(struct rte_fbarray *arr, unsigned int start,
unsigned int n)
{
return fbarray_find_n(arr, start, n, false, true);
}
static int
fbarray_find_contig(struct rte_fbarray *arr, unsigned int start, bool next,
bool used)
{
int ret = -1;
if (arr == NULL || start >= arr->len) {
rte_errno = EINVAL;
return -1;
}
/* prevent array from changing under us */
rte_rwlock_read_lock(&arr->rwlock);
/* cheap checks to prevent doing useless work */
if (used) {
if (arr->count == 0) {
ret = 0;
goto out;
}
if (next && arr->count == arr->len) {
ret = arr->len - start;
goto out;
}
if (!next && arr->count == arr->len) {
ret = start + 1;
goto out;
}
} else {
if (arr->len == arr->count) {
ret = 0;
goto out;
}
if (next && arr->count == 0) {
ret = arr->len - start;
goto out;
}
if (!next && arr->count == 0) {
ret = start + 1;
goto out;
}
}
if (next)
ret = find_contig(arr, start, used);
else
ret = find_rev_contig(arr, start, used);
out:
rte_rwlock_read_unlock(&arr->rwlock);
return ret;
}
static int
fbarray_find_biggest(struct rte_fbarray *arr, unsigned int start, bool used,
bool rev)
{
int cur_idx, next_idx, cur_len, biggest_idx, biggest_len;
/* don't stack if conditions, use function pointers instead */
int (*find_func)(struct rte_fbarray *, unsigned int);
int (*find_contig_func)(struct rte_fbarray *, unsigned int);
if (arr == NULL || start >= arr->len) {
rte_errno = EINVAL;
return -1;
}
/* the other API calls already do their fair share of cheap checks, so
* no need to do them here.
*/
/* the API's called are thread-safe, but something may still happen
* between the API calls, so lock the fbarray. all other API's are
* read-locking the fbarray, so read lock here is OK.
*/
rte_rwlock_read_lock(&arr->rwlock);
/* pick out appropriate functions */
if (used) {
if (rev) {
find_func = rte_fbarray_find_prev_used;
find_contig_func = rte_fbarray_find_rev_contig_used;
} else {
find_func = rte_fbarray_find_next_used;
find_contig_func = rte_fbarray_find_contig_used;
}
} else {
if (rev) {
find_func = rte_fbarray_find_prev_free;
find_contig_func = rte_fbarray_find_rev_contig_free;
} else {
find_func = rte_fbarray_find_next_free;
find_contig_func = rte_fbarray_find_contig_free;
}
}
cur_idx = start;
biggest_idx = -1; /* default is error */
biggest_len = 0;
for (;;) {
cur_idx = find_func(arr, cur_idx);
/* block found, check its length */
if (cur_idx >= 0) {
cur_len = find_contig_func(arr, cur_idx);
/* decide where we go next */
next_idx = rev ? cur_idx - cur_len : cur_idx + cur_len;
/* move current index to start of chunk */
cur_idx = rev ? next_idx + 1 : cur_idx;
if (cur_len > biggest_len) {
biggest_idx = cur_idx;
biggest_len = cur_len;
}
cur_idx = next_idx;
/* in reverse mode, next_idx may be -1 if chunk started
* at array beginning. this means there's no more work
* to do.
*/
if (cur_idx < 0)
break;
} else {
/* nothing more to find, stop. however, a failed API
* call has set rte_errno, which we want to ignore, as
* reaching the end of fbarray is not an error.
*/
rte_errno = 0;
break;
}
}
/* if we didn't find anything at all, set rte_errno */
if (biggest_idx < 0)
rte_errno = used ? ENOENT : ENOSPC;
rte_rwlock_read_unlock(&arr->rwlock);
return biggest_idx;
}
int
rte_fbarray_find_biggest_free(struct rte_fbarray *arr, unsigned int start)
{
return fbarray_find_biggest(arr, start, false, false);
}
int
rte_fbarray_find_biggest_used(struct rte_fbarray *arr, unsigned int start)
{
return fbarray_find_biggest(arr, start, true, false);
}
int
rte_fbarray_find_rev_biggest_free(struct rte_fbarray *arr, unsigned int start)
{
return fbarray_find_biggest(arr, start, false, true);
}
int
rte_fbarray_find_rev_biggest_used(struct rte_fbarray *arr, unsigned int start)
{
return fbarray_find_biggest(arr, start, true, true);
}
int
rte_fbarray_find_contig_free(struct rte_fbarray *arr, unsigned int start)
{
return fbarray_find_contig(arr, start, true, false);
}
int
rte_fbarray_find_contig_used(struct rte_fbarray *arr, unsigned int start)
{
return fbarray_find_contig(arr, start, true, true);
}
int
rte_fbarray_find_rev_contig_free(struct rte_fbarray *arr, unsigned int start)
{
return fbarray_find_contig(arr, start, false, false);
}
int
rte_fbarray_find_rev_contig_used(struct rte_fbarray *arr, unsigned int start)
{
return fbarray_find_contig(arr, start, false, true);
}
int
rte_fbarray_find_idx(const struct rte_fbarray *arr, const void *elt)
{
void *end;
int ret = -1;
/*
* no need to synchronize as it doesn't matter if underlying data
* changes - we're doing pointer arithmetic here.
*/
if (arr == NULL || elt == NULL) {
rte_errno = EINVAL;
return -1;
}
end = RTE_PTR_ADD(arr->data, arr->elt_sz * arr->len);
if (elt < arr->data || elt >= end) {
rte_errno = EINVAL;
return -1;
}
ret = RTE_PTR_DIFF(elt, arr->data) / arr->elt_sz;
return ret;
}
void
rte_fbarray_dump_metadata(struct rte_fbarray *arr, FILE *f)
{
struct used_mask *msk;
unsigned int i;
if (arr == NULL || f == NULL) {
rte_errno = EINVAL;
return;
}
if (fully_validate(arr->name, arr->elt_sz, arr->len)) {
fprintf(f, "Invalid file-backed array\n");
goto out;
}
/* prevent array from changing under us */
rte_rwlock_read_lock(&arr->rwlock);
fprintf(f, "File-backed array: %s\n", arr->name);
fprintf(f, "size: %i occupied: %i elt_sz: %i\n",
arr->len, arr->count, arr->elt_sz);
msk = get_used_mask(arr->data, arr->elt_sz, arr->len);
for (i = 0; i < msk->n_masks; i++)
fprintf(f, "msk idx %i: 0x%016" PRIx64 "\n", i, msk->data[i]);
out:
rte_rwlock_read_unlock(&arr->rwlock);
}