a083f8cc77
Since the kernel modules are moved to kernel/ directory, there is no need anymore for the sub-directory eal/ in linux/, freebsd/ and windows/. Signed-off-by: Thomas Monjalon <thomas@monjalon.net> Acked-by: David Marchand <david.marchand@redhat.com>
2482 lines
67 KiB
C
2482 lines
67 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2010-2014 Intel Corporation.
|
|
* Copyright(c) 2013 6WIND S.A.
|
|
*/
|
|
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <stdarg.h>
|
|
#include <stdbool.h>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <stdint.h>
|
|
#include <inttypes.h>
|
|
#include <string.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/file.h>
|
|
#include <sys/resource.h>
|
|
#include <unistd.h>
|
|
#include <limits.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/time.h>
|
|
#include <signal.h>
|
|
#include <setjmp.h>
|
|
#ifdef F_ADD_SEALS /* if file sealing is supported, so is memfd */
|
|
#include <linux/memfd.h>
|
|
#define MEMFD_SUPPORTED
|
|
#endif
|
|
#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
|
|
#include <numa.h>
|
|
#include <numaif.h>
|
|
#endif
|
|
|
|
#include <rte_errno.h>
|
|
#include <rte_log.h>
|
|
#include <rte_memory.h>
|
|
#include <rte_launch.h>
|
|
#include <rte_eal.h>
|
|
#include <rte_per_lcore.h>
|
|
#include <rte_lcore.h>
|
|
#include <rte_common.h>
|
|
#include <rte_string_fns.h>
|
|
|
|
#include "eal_private.h"
|
|
#include "eal_memalloc.h"
|
|
#include "eal_memcfg.h"
|
|
#include "eal_internal_cfg.h"
|
|
#include "eal_filesystem.h"
|
|
#include "eal_hugepages.h"
|
|
#include "eal_options.h"
|
|
|
|
#define PFN_MASK_SIZE 8
|
|
|
|
/**
|
|
* @file
|
|
* Huge page mapping under linux
|
|
*
|
|
* To reserve a big contiguous amount of memory, we use the hugepage
|
|
* feature of linux. For that, we need to have hugetlbfs mounted. This
|
|
* code will create many files in this directory (one per page) and
|
|
* map them in virtual memory. For each page, we will retrieve its
|
|
* physical address and remap it in order to have a virtual contiguous
|
|
* zone as well as a physical contiguous zone.
|
|
*/
|
|
|
|
static int phys_addrs_available = -1;
|
|
|
|
#define RANDOMIZE_VA_SPACE_FILE "/proc/sys/kernel/randomize_va_space"
|
|
|
|
uint64_t eal_get_baseaddr(void)
|
|
{
|
|
/*
|
|
* Linux kernel uses a really high address as starting address for
|
|
* serving mmaps calls. If there exists addressing limitations and IOVA
|
|
* mode is VA, this starting address is likely too high for those
|
|
* devices. However, it is possible to use a lower address in the
|
|
* process virtual address space as with 64 bits there is a lot of
|
|
* available space.
|
|
*
|
|
* Current known limitations are 39 or 40 bits. Setting the starting
|
|
* address at 4GB implies there are 508GB or 1020GB for mapping the
|
|
* available hugepages. This is likely enough for most systems, although
|
|
* a device with addressing limitations should call
|
|
* rte_mem_check_dma_mask for ensuring all memory is within supported
|
|
* range.
|
|
*/
|
|
return 0x100000000ULL;
|
|
}
|
|
|
|
/*
|
|
* Get physical address of any mapped virtual address in the current process.
|
|
*/
|
|
phys_addr_t
|
|
rte_mem_virt2phy(const void *virtaddr)
|
|
{
|
|
int fd, retval;
|
|
uint64_t page, physaddr;
|
|
unsigned long virt_pfn;
|
|
int page_size;
|
|
off_t offset;
|
|
|
|
if (phys_addrs_available == 0)
|
|
return RTE_BAD_IOVA;
|
|
|
|
/* standard page size */
|
|
page_size = getpagesize();
|
|
|
|
fd = open("/proc/self/pagemap", O_RDONLY);
|
|
if (fd < 0) {
|
|
RTE_LOG(INFO, EAL, "%s(): cannot open /proc/self/pagemap: %s\n",
|
|
__func__, strerror(errno));
|
|
return RTE_BAD_IOVA;
|
|
}
|
|
|
|
virt_pfn = (unsigned long)virtaddr / page_size;
|
|
offset = sizeof(uint64_t) * virt_pfn;
|
|
if (lseek(fd, offset, SEEK_SET) == (off_t) -1) {
|
|
RTE_LOG(INFO, EAL, "%s(): seek error in /proc/self/pagemap: %s\n",
|
|
__func__, strerror(errno));
|
|
close(fd);
|
|
return RTE_BAD_IOVA;
|
|
}
|
|
|
|
retval = read(fd, &page, PFN_MASK_SIZE);
|
|
close(fd);
|
|
if (retval < 0) {
|
|
RTE_LOG(INFO, EAL, "%s(): cannot read /proc/self/pagemap: %s\n",
|
|
__func__, strerror(errno));
|
|
return RTE_BAD_IOVA;
|
|
} else if (retval != PFN_MASK_SIZE) {
|
|
RTE_LOG(INFO, EAL, "%s(): read %d bytes from /proc/self/pagemap "
|
|
"but expected %d:\n",
|
|
__func__, retval, PFN_MASK_SIZE);
|
|
return RTE_BAD_IOVA;
|
|
}
|
|
|
|
/*
|
|
* the pfn (page frame number) are bits 0-54 (see
|
|
* pagemap.txt in linux Documentation)
|
|
*/
|
|
if ((page & 0x7fffffffffffffULL) == 0)
|
|
return RTE_BAD_IOVA;
|
|
|
|
physaddr = ((page & 0x7fffffffffffffULL) * page_size)
|
|
+ ((unsigned long)virtaddr % page_size);
|
|
|
|
return physaddr;
|
|
}
|
|
|
|
rte_iova_t
|
|
rte_mem_virt2iova(const void *virtaddr)
|
|
{
|
|
if (rte_eal_iova_mode() == RTE_IOVA_VA)
|
|
return (uintptr_t)virtaddr;
|
|
return rte_mem_virt2phy(virtaddr);
|
|
}
|
|
|
|
/*
|
|
* For each hugepage in hugepg_tbl, fill the physaddr value. We find
|
|
* it by browsing the /proc/self/pagemap special file.
|
|
*/
|
|
static int
|
|
find_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
|
|
{
|
|
unsigned int i;
|
|
phys_addr_t addr;
|
|
|
|
for (i = 0; i < hpi->num_pages[0]; i++) {
|
|
addr = rte_mem_virt2phy(hugepg_tbl[i].orig_va);
|
|
if (addr == RTE_BAD_PHYS_ADDR)
|
|
return -1;
|
|
hugepg_tbl[i].physaddr = addr;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* For each hugepage in hugepg_tbl, fill the physaddr value sequentially.
|
|
*/
|
|
static int
|
|
set_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
|
|
{
|
|
unsigned int i;
|
|
static phys_addr_t addr;
|
|
|
|
for (i = 0; i < hpi->num_pages[0]; i++) {
|
|
hugepg_tbl[i].physaddr = addr;
|
|
addr += hugepg_tbl[i].size;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check whether address-space layout randomization is enabled in
|
|
* the kernel. This is important for multi-process as it can prevent
|
|
* two processes mapping data to the same virtual address
|
|
* Returns:
|
|
* 0 - address space randomization disabled
|
|
* 1/2 - address space randomization enabled
|
|
* negative error code on error
|
|
*/
|
|
static int
|
|
aslr_enabled(void)
|
|
{
|
|
char c;
|
|
int retval, fd = open(RANDOMIZE_VA_SPACE_FILE, O_RDONLY);
|
|
if (fd < 0)
|
|
return -errno;
|
|
retval = read(fd, &c, 1);
|
|
close(fd);
|
|
if (retval < 0)
|
|
return -errno;
|
|
if (retval == 0)
|
|
return -EIO;
|
|
switch (c) {
|
|
case '0' : return 0;
|
|
case '1' : return 1;
|
|
case '2' : return 2;
|
|
default: return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static sigjmp_buf huge_jmpenv;
|
|
|
|
static void huge_sigbus_handler(int signo __rte_unused)
|
|
{
|
|
siglongjmp(huge_jmpenv, 1);
|
|
}
|
|
|
|
/* Put setjmp into a wrap method to avoid compiling error. Any non-volatile,
|
|
* non-static local variable in the stack frame calling sigsetjmp might be
|
|
* clobbered by a call to longjmp.
|
|
*/
|
|
static int huge_wrap_sigsetjmp(void)
|
|
{
|
|
return sigsetjmp(huge_jmpenv, 1);
|
|
}
|
|
|
|
#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
|
|
/* Callback for numa library. */
|
|
void numa_error(char *where)
|
|
{
|
|
RTE_LOG(ERR, EAL, "%s failed: %s\n", where, strerror(errno));
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Mmap all hugepages of hugepage table: it first open a file in
|
|
* hugetlbfs, then mmap() hugepage_sz data in it. If orig is set, the
|
|
* virtual address is stored in hugepg_tbl[i].orig_va, else it is stored
|
|
* in hugepg_tbl[i].final_va. The second mapping (when orig is 0) tries to
|
|
* map contiguous physical blocks in contiguous virtual blocks.
|
|
*/
|
|
static unsigned
|
|
map_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi,
|
|
uint64_t *essential_memory __rte_unused)
|
|
{
|
|
int fd;
|
|
unsigned i;
|
|
void *virtaddr;
|
|
#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
|
|
int node_id = -1;
|
|
int essential_prev = 0;
|
|
int oldpolicy;
|
|
struct bitmask *oldmask = NULL;
|
|
bool have_numa = true;
|
|
unsigned long maxnode = 0;
|
|
|
|
/* Check if kernel supports NUMA. */
|
|
if (numa_available() != 0) {
|
|
RTE_LOG(DEBUG, EAL, "NUMA is not supported.\n");
|
|
have_numa = false;
|
|
}
|
|
|
|
if (have_numa) {
|
|
RTE_LOG(DEBUG, EAL, "Trying to obtain current memory policy.\n");
|
|
oldmask = numa_allocate_nodemask();
|
|
if (get_mempolicy(&oldpolicy, oldmask->maskp,
|
|
oldmask->size + 1, 0, 0) < 0) {
|
|
RTE_LOG(ERR, EAL,
|
|
"Failed to get current mempolicy: %s. "
|
|
"Assuming MPOL_DEFAULT.\n", strerror(errno));
|
|
oldpolicy = MPOL_DEFAULT;
|
|
}
|
|
for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
|
|
if (internal_config.socket_mem[i])
|
|
maxnode = i + 1;
|
|
}
|
|
#endif
|
|
|
|
for (i = 0; i < hpi->num_pages[0]; i++) {
|
|
struct hugepage_file *hf = &hugepg_tbl[i];
|
|
uint64_t hugepage_sz = hpi->hugepage_sz;
|
|
|
|
#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
|
|
if (maxnode) {
|
|
unsigned int j;
|
|
|
|
for (j = 0; j < maxnode; j++)
|
|
if (essential_memory[j])
|
|
break;
|
|
|
|
if (j == maxnode) {
|
|
node_id = (node_id + 1) % maxnode;
|
|
while (!internal_config.socket_mem[node_id]) {
|
|
node_id++;
|
|
node_id %= maxnode;
|
|
}
|
|
essential_prev = 0;
|
|
} else {
|
|
node_id = j;
|
|
essential_prev = essential_memory[j];
|
|
|
|
if (essential_memory[j] < hugepage_sz)
|
|
essential_memory[j] = 0;
|
|
else
|
|
essential_memory[j] -= hugepage_sz;
|
|
}
|
|
|
|
RTE_LOG(DEBUG, EAL,
|
|
"Setting policy MPOL_PREFERRED for socket %d\n",
|
|
node_id);
|
|
numa_set_preferred(node_id);
|
|
}
|
|
#endif
|
|
|
|
hf->file_id = i;
|
|
hf->size = hugepage_sz;
|
|
eal_get_hugefile_path(hf->filepath, sizeof(hf->filepath),
|
|
hpi->hugedir, hf->file_id);
|
|
hf->filepath[sizeof(hf->filepath) - 1] = '\0';
|
|
|
|
/* try to create hugepage file */
|
|
fd = open(hf->filepath, O_CREAT | O_RDWR, 0600);
|
|
if (fd < 0) {
|
|
RTE_LOG(DEBUG, EAL, "%s(): open failed: %s\n", __func__,
|
|
strerror(errno));
|
|
goto out;
|
|
}
|
|
|
|
/* map the segment, and populate page tables,
|
|
* the kernel fills this segment with zeros. we don't care where
|
|
* this gets mapped - we already have contiguous memory areas
|
|
* ready for us to map into.
|
|
*/
|
|
virtaddr = mmap(NULL, hugepage_sz, PROT_READ | PROT_WRITE,
|
|
MAP_SHARED | MAP_POPULATE, fd, 0);
|
|
if (virtaddr == MAP_FAILED) {
|
|
RTE_LOG(DEBUG, EAL, "%s(): mmap failed: %s\n", __func__,
|
|
strerror(errno));
|
|
close(fd);
|
|
goto out;
|
|
}
|
|
|
|
hf->orig_va = virtaddr;
|
|
|
|
/* In linux, hugetlb limitations, like cgroup, are
|
|
* enforced at fault time instead of mmap(), even
|
|
* with the option of MAP_POPULATE. Kernel will send
|
|
* a SIGBUS signal. To avoid to be killed, save stack
|
|
* environment here, if SIGBUS happens, we can jump
|
|
* back here.
|
|
*/
|
|
if (huge_wrap_sigsetjmp()) {
|
|
RTE_LOG(DEBUG, EAL, "SIGBUS: Cannot mmap more "
|
|
"hugepages of size %u MB\n",
|
|
(unsigned int)(hugepage_sz / 0x100000));
|
|
munmap(virtaddr, hugepage_sz);
|
|
close(fd);
|
|
unlink(hugepg_tbl[i].filepath);
|
|
#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
|
|
if (maxnode)
|
|
essential_memory[node_id] =
|
|
essential_prev;
|
|
#endif
|
|
goto out;
|
|
}
|
|
*(int *)virtaddr = 0;
|
|
|
|
/* set shared lock on the file. */
|
|
if (flock(fd, LOCK_SH) < 0) {
|
|
RTE_LOG(DEBUG, EAL, "%s(): Locking file failed:%s \n",
|
|
__func__, strerror(errno));
|
|
close(fd);
|
|
goto out;
|
|
}
|
|
|
|
close(fd);
|
|
}
|
|
|
|
out:
|
|
#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
|
|
if (maxnode) {
|
|
RTE_LOG(DEBUG, EAL,
|
|
"Restoring previous memory policy: %d\n", oldpolicy);
|
|
if (oldpolicy == MPOL_DEFAULT) {
|
|
numa_set_localalloc();
|
|
} else if (set_mempolicy(oldpolicy, oldmask->maskp,
|
|
oldmask->size + 1) < 0) {
|
|
RTE_LOG(ERR, EAL, "Failed to restore mempolicy: %s\n",
|
|
strerror(errno));
|
|
numa_set_localalloc();
|
|
}
|
|
}
|
|
if (oldmask != NULL)
|
|
numa_free_cpumask(oldmask);
|
|
#endif
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
* Parse /proc/self/numa_maps to get the NUMA socket ID for each huge
|
|
* page.
|
|
*/
|
|
static int
|
|
find_numasocket(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
|
|
{
|
|
int socket_id;
|
|
char *end, *nodestr;
|
|
unsigned i, hp_count = 0;
|
|
uint64_t virt_addr;
|
|
char buf[BUFSIZ];
|
|
char hugedir_str[PATH_MAX];
|
|
FILE *f;
|
|
|
|
f = fopen("/proc/self/numa_maps", "r");
|
|
if (f == NULL) {
|
|
RTE_LOG(NOTICE, EAL, "NUMA support not available"
|
|
" consider that all memory is in socket_id 0\n");
|
|
return 0;
|
|
}
|
|
|
|
snprintf(hugedir_str, sizeof(hugedir_str),
|
|
"%s/%s", hpi->hugedir, eal_get_hugefile_prefix());
|
|
|
|
/* parse numa map */
|
|
while (fgets(buf, sizeof(buf), f) != NULL) {
|
|
|
|
/* ignore non huge page */
|
|
if (strstr(buf, " huge ") == NULL &&
|
|
strstr(buf, hugedir_str) == NULL)
|
|
continue;
|
|
|
|
/* get zone addr */
|
|
virt_addr = strtoull(buf, &end, 16);
|
|
if (virt_addr == 0 || end == buf) {
|
|
RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
|
|
goto error;
|
|
}
|
|
|
|
/* get node id (socket id) */
|
|
nodestr = strstr(buf, " N");
|
|
if (nodestr == NULL) {
|
|
RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
|
|
goto error;
|
|
}
|
|
nodestr += 2;
|
|
end = strstr(nodestr, "=");
|
|
if (end == NULL) {
|
|
RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
|
|
goto error;
|
|
}
|
|
end[0] = '\0';
|
|
end = NULL;
|
|
|
|
socket_id = strtoul(nodestr, &end, 0);
|
|
if ((nodestr[0] == '\0') || (end == NULL) || (*end != '\0')) {
|
|
RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
|
|
goto error;
|
|
}
|
|
|
|
/* if we find this page in our mappings, set socket_id */
|
|
for (i = 0; i < hpi->num_pages[0]; i++) {
|
|
void *va = (void *)(unsigned long)virt_addr;
|
|
if (hugepg_tbl[i].orig_va == va) {
|
|
hugepg_tbl[i].socket_id = socket_id;
|
|
hp_count++;
|
|
#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
|
|
RTE_LOG(DEBUG, EAL,
|
|
"Hugepage %s is on socket %d\n",
|
|
hugepg_tbl[i].filepath, socket_id);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
if (hp_count < hpi->num_pages[0])
|
|
goto error;
|
|
|
|
fclose(f);
|
|
return 0;
|
|
|
|
error:
|
|
fclose(f);
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
cmp_physaddr(const void *a, const void *b)
|
|
{
|
|
#ifndef RTE_ARCH_PPC_64
|
|
const struct hugepage_file *p1 = a;
|
|
const struct hugepage_file *p2 = b;
|
|
#else
|
|
/* PowerPC needs memory sorted in reverse order from x86 */
|
|
const struct hugepage_file *p1 = b;
|
|
const struct hugepage_file *p2 = a;
|
|
#endif
|
|
if (p1->physaddr < p2->physaddr)
|
|
return -1;
|
|
else if (p1->physaddr > p2->physaddr)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Uses mmap to create a shared memory area for storage of data
|
|
* Used in this file to store the hugepage file map on disk
|
|
*/
|
|
static void *
|
|
create_shared_memory(const char *filename, const size_t mem_size)
|
|
{
|
|
void *retval;
|
|
int fd;
|
|
|
|
/* if no shared files mode is used, create anonymous memory instead */
|
|
if (internal_config.no_shconf) {
|
|
retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
|
|
if (retval == MAP_FAILED)
|
|
return NULL;
|
|
return retval;
|
|
}
|
|
|
|
fd = open(filename, O_CREAT | O_RDWR, 0600);
|
|
if (fd < 0)
|
|
return NULL;
|
|
if (ftruncate(fd, mem_size) < 0) {
|
|
close(fd);
|
|
return NULL;
|
|
}
|
|
retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
|
|
close(fd);
|
|
if (retval == MAP_FAILED)
|
|
return NULL;
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* this copies *active* hugepages from one hugepage table to another.
|
|
* destination is typically the shared memory.
|
|
*/
|
|
static int
|
|
copy_hugepages_to_shared_mem(struct hugepage_file * dst, int dest_size,
|
|
const struct hugepage_file * src, int src_size)
|
|
{
|
|
int src_pos, dst_pos = 0;
|
|
|
|
for (src_pos = 0; src_pos < src_size; src_pos++) {
|
|
if (src[src_pos].orig_va != NULL) {
|
|
/* error on overflow attempt */
|
|
if (dst_pos == dest_size)
|
|
return -1;
|
|
memcpy(&dst[dst_pos], &src[src_pos], sizeof(struct hugepage_file));
|
|
dst_pos++;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
unlink_hugepage_files(struct hugepage_file *hugepg_tbl,
|
|
unsigned num_hp_info)
|
|
{
|
|
unsigned socket, size;
|
|
int page, nrpages = 0;
|
|
|
|
/* get total number of hugepages */
|
|
for (size = 0; size < num_hp_info; size++)
|
|
for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
|
|
nrpages +=
|
|
internal_config.hugepage_info[size].num_pages[socket];
|
|
|
|
for (page = 0; page < nrpages; page++) {
|
|
struct hugepage_file *hp = &hugepg_tbl[page];
|
|
|
|
if (hp->orig_va != NULL && unlink(hp->filepath)) {
|
|
RTE_LOG(WARNING, EAL, "%s(): Removing %s failed: %s\n",
|
|
__func__, hp->filepath, strerror(errno));
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* unmaps hugepages that are not going to be used. since we originally allocate
|
|
* ALL hugepages (not just those we need), additional unmapping needs to be done.
|
|
*/
|
|
static int
|
|
unmap_unneeded_hugepages(struct hugepage_file *hugepg_tbl,
|
|
struct hugepage_info *hpi,
|
|
unsigned num_hp_info)
|
|
{
|
|
unsigned socket, size;
|
|
int page, nrpages = 0;
|
|
|
|
/* get total number of hugepages */
|
|
for (size = 0; size < num_hp_info; size++)
|
|
for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
|
|
nrpages += internal_config.hugepage_info[size].num_pages[socket];
|
|
|
|
for (size = 0; size < num_hp_info; size++) {
|
|
for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
|
|
unsigned pages_found = 0;
|
|
|
|
/* traverse until we have unmapped all the unused pages */
|
|
for (page = 0; page < nrpages; page++) {
|
|
struct hugepage_file *hp = &hugepg_tbl[page];
|
|
|
|
/* find a page that matches the criteria */
|
|
if ((hp->size == hpi[size].hugepage_sz) &&
|
|
(hp->socket_id == (int) socket)) {
|
|
|
|
/* if we skipped enough pages, unmap the rest */
|
|
if (pages_found == hpi[size].num_pages[socket]) {
|
|
uint64_t unmap_len;
|
|
|
|
unmap_len = hp->size;
|
|
|
|
/* get start addr and len of the remaining segment */
|
|
munmap(hp->orig_va,
|
|
(size_t)unmap_len);
|
|
|
|
hp->orig_va = NULL;
|
|
if (unlink(hp->filepath) == -1) {
|
|
RTE_LOG(ERR, EAL, "%s(): Removing %s failed: %s\n",
|
|
__func__, hp->filepath, strerror(errno));
|
|
return -1;
|
|
}
|
|
} else {
|
|
/* lock the page and skip */
|
|
pages_found++;
|
|
}
|
|
|
|
} /* match page */
|
|
} /* foreach page */
|
|
} /* foreach socket */
|
|
} /* foreach pagesize */
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
remap_segment(struct hugepage_file *hugepages, int seg_start, int seg_end)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
struct rte_memseg_list *msl;
|
|
struct rte_fbarray *arr;
|
|
int cur_page, seg_len;
|
|
unsigned int msl_idx;
|
|
int ms_idx;
|
|
uint64_t page_sz;
|
|
size_t memseg_len;
|
|
int socket_id;
|
|
|
|
page_sz = hugepages[seg_start].size;
|
|
socket_id = hugepages[seg_start].socket_id;
|
|
seg_len = seg_end - seg_start;
|
|
|
|
RTE_LOG(DEBUG, EAL, "Attempting to map %" PRIu64 "M on socket %i\n",
|
|
(seg_len * page_sz) >> 20ULL, socket_id);
|
|
|
|
/* find free space in memseg lists */
|
|
for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) {
|
|
bool empty;
|
|
msl = &mcfg->memsegs[msl_idx];
|
|
arr = &msl->memseg_arr;
|
|
|
|
if (msl->page_sz != page_sz)
|
|
continue;
|
|
if (msl->socket_id != socket_id)
|
|
continue;
|
|
|
|
/* leave space for a hole if array is not empty */
|
|
empty = arr->count == 0;
|
|
ms_idx = rte_fbarray_find_next_n_free(arr, 0,
|
|
seg_len + (empty ? 0 : 1));
|
|
|
|
/* memseg list is full? */
|
|
if (ms_idx < 0)
|
|
continue;
|
|
|
|
/* leave some space between memsegs, they are not IOVA
|
|
* contiguous, so they shouldn't be VA contiguous either.
|
|
*/
|
|
if (!empty)
|
|
ms_idx++;
|
|
break;
|
|
}
|
|
if (msl_idx == RTE_MAX_MEMSEG_LISTS) {
|
|
RTE_LOG(ERR, EAL, "Could not find space for memseg. Please increase %s and/or %s in configuration.\n",
|
|
RTE_STR(CONFIG_RTE_MAX_MEMSEG_PER_TYPE),
|
|
RTE_STR(CONFIG_RTE_MAX_MEM_PER_TYPE));
|
|
return -1;
|
|
}
|
|
|
|
#ifdef RTE_ARCH_PPC_64
|
|
/* for PPC64 we go through the list backwards */
|
|
for (cur_page = seg_end - 1; cur_page >= seg_start;
|
|
cur_page--, ms_idx++) {
|
|
#else
|
|
for (cur_page = seg_start; cur_page < seg_end; cur_page++, ms_idx++) {
|
|
#endif
|
|
struct hugepage_file *hfile = &hugepages[cur_page];
|
|
struct rte_memseg *ms = rte_fbarray_get(arr, ms_idx);
|
|
void *addr;
|
|
int fd;
|
|
|
|
fd = open(hfile->filepath, O_RDWR);
|
|
if (fd < 0) {
|
|
RTE_LOG(ERR, EAL, "Could not open '%s': %s\n",
|
|
hfile->filepath, strerror(errno));
|
|
return -1;
|
|
}
|
|
/* set shared lock on the file. */
|
|
if (flock(fd, LOCK_SH) < 0) {
|
|
RTE_LOG(DEBUG, EAL, "Could not lock '%s': %s\n",
|
|
hfile->filepath, strerror(errno));
|
|
close(fd);
|
|
return -1;
|
|
}
|
|
memseg_len = (size_t)page_sz;
|
|
addr = RTE_PTR_ADD(msl->base_va, ms_idx * memseg_len);
|
|
|
|
/* we know this address is already mmapped by memseg list, so
|
|
* using MAP_FIXED here is safe
|
|
*/
|
|
addr = mmap(addr, page_sz, PROT_READ | PROT_WRITE,
|
|
MAP_SHARED | MAP_POPULATE | MAP_FIXED, fd, 0);
|
|
if (addr == MAP_FAILED) {
|
|
RTE_LOG(ERR, EAL, "Couldn't remap '%s': %s\n",
|
|
hfile->filepath, strerror(errno));
|
|
close(fd);
|
|
return -1;
|
|
}
|
|
|
|
/* we have a new address, so unmap previous one */
|
|
#ifndef RTE_ARCH_64
|
|
/* in 32-bit legacy mode, we have already unmapped the page */
|
|
if (!internal_config.legacy_mem)
|
|
munmap(hfile->orig_va, page_sz);
|
|
#else
|
|
munmap(hfile->orig_va, page_sz);
|
|
#endif
|
|
|
|
hfile->orig_va = NULL;
|
|
hfile->final_va = addr;
|
|
|
|
/* rewrite physical addresses in IOVA as VA mode */
|
|
if (rte_eal_iova_mode() == RTE_IOVA_VA)
|
|
hfile->physaddr = (uintptr_t)addr;
|
|
|
|
/* set up memseg data */
|
|
ms->addr = addr;
|
|
ms->hugepage_sz = page_sz;
|
|
ms->len = memseg_len;
|
|
ms->iova = hfile->physaddr;
|
|
ms->socket_id = hfile->socket_id;
|
|
ms->nchannel = rte_memory_get_nchannel();
|
|
ms->nrank = rte_memory_get_nrank();
|
|
|
|
rte_fbarray_set_used(arr, ms_idx);
|
|
|
|
/* store segment fd internally */
|
|
if (eal_memalloc_set_seg_fd(msl_idx, ms_idx, fd) < 0)
|
|
RTE_LOG(ERR, EAL, "Could not store segment fd: %s\n",
|
|
rte_strerror(rte_errno));
|
|
}
|
|
RTE_LOG(DEBUG, EAL, "Allocated %" PRIu64 "M on socket %i\n",
|
|
(seg_len * page_sz) >> 20, socket_id);
|
|
return 0;
|
|
}
|
|
|
|
static uint64_t
|
|
get_mem_amount(uint64_t page_sz, uint64_t max_mem)
|
|
{
|
|
uint64_t area_sz, max_pages;
|
|
|
|
/* limit to RTE_MAX_MEMSEG_PER_LIST pages or RTE_MAX_MEM_MB_PER_LIST */
|
|
max_pages = RTE_MAX_MEMSEG_PER_LIST;
|
|
max_mem = RTE_MIN((uint64_t)RTE_MAX_MEM_MB_PER_LIST << 20, max_mem);
|
|
|
|
area_sz = RTE_MIN(page_sz * max_pages, max_mem);
|
|
|
|
/* make sure the list isn't smaller than the page size */
|
|
area_sz = RTE_MAX(area_sz, page_sz);
|
|
|
|
return RTE_ALIGN(area_sz, page_sz);
|
|
}
|
|
|
|
static int
|
|
free_memseg_list(struct rte_memseg_list *msl)
|
|
{
|
|
if (rte_fbarray_destroy(&msl->memseg_arr)) {
|
|
RTE_LOG(ERR, EAL, "Cannot destroy memseg list\n");
|
|
return -1;
|
|
}
|
|
memset(msl, 0, sizeof(*msl));
|
|
return 0;
|
|
}
|
|
|
|
#define MEMSEG_LIST_FMT "memseg-%" PRIu64 "k-%i-%i"
|
|
static int
|
|
alloc_memseg_list(struct rte_memseg_list *msl, uint64_t page_sz,
|
|
int n_segs, int socket_id, int type_msl_idx)
|
|
{
|
|
char name[RTE_FBARRAY_NAME_LEN];
|
|
|
|
snprintf(name, sizeof(name), MEMSEG_LIST_FMT, page_sz >> 10, socket_id,
|
|
type_msl_idx);
|
|
if (rte_fbarray_init(&msl->memseg_arr, name, n_segs,
|
|
sizeof(struct rte_memseg))) {
|
|
RTE_LOG(ERR, EAL, "Cannot allocate memseg list: %s\n",
|
|
rte_strerror(rte_errno));
|
|
return -1;
|
|
}
|
|
|
|
msl->page_sz = page_sz;
|
|
msl->socket_id = socket_id;
|
|
msl->base_va = NULL;
|
|
msl->heap = 1; /* mark it as a heap segment */
|
|
|
|
RTE_LOG(DEBUG, EAL, "Memseg list allocated: 0x%zxkB at socket %i\n",
|
|
(size_t)page_sz >> 10, socket_id);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
alloc_va_space(struct rte_memseg_list *msl)
|
|
{
|
|
uint64_t page_sz;
|
|
size_t mem_sz;
|
|
void *addr;
|
|
int flags = 0;
|
|
|
|
page_sz = msl->page_sz;
|
|
mem_sz = page_sz * msl->memseg_arr.len;
|
|
|
|
addr = eal_get_virtual_area(msl->base_va, &mem_sz, page_sz, 0, flags);
|
|
if (addr == NULL) {
|
|
if (rte_errno == EADDRNOTAVAIL)
|
|
RTE_LOG(ERR, EAL, "Could not mmap %llu bytes at [%p] - "
|
|
"please use '--" OPT_BASE_VIRTADDR "' option\n",
|
|
(unsigned long long)mem_sz, msl->base_va);
|
|
else
|
|
RTE_LOG(ERR, EAL, "Cannot reserve memory\n");
|
|
return -1;
|
|
}
|
|
msl->base_va = addr;
|
|
msl->len = mem_sz;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Our VA space is not preallocated yet, so preallocate it here. We need to know
|
|
* how many segments there are in order to map all pages into one address space,
|
|
* and leave appropriate holes between segments so that rte_malloc does not
|
|
* concatenate them into one big segment.
|
|
*
|
|
* we also need to unmap original pages to free up address space.
|
|
*/
|
|
static int __rte_unused
|
|
prealloc_segments(struct hugepage_file *hugepages, int n_pages)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
int cur_page, seg_start_page, end_seg, new_memseg;
|
|
unsigned int hpi_idx, socket, i;
|
|
int n_contig_segs, n_segs;
|
|
int msl_idx;
|
|
|
|
/* before we preallocate segments, we need to free up our VA space.
|
|
* we're not removing files, and we already have information about
|
|
* PA-contiguousness, so it is safe to unmap everything.
|
|
*/
|
|
for (cur_page = 0; cur_page < n_pages; cur_page++) {
|
|
struct hugepage_file *hpi = &hugepages[cur_page];
|
|
munmap(hpi->orig_va, hpi->size);
|
|
hpi->orig_va = NULL;
|
|
}
|
|
|
|
/* we cannot know how many page sizes and sockets we have discovered, so
|
|
* loop over all of them
|
|
*/
|
|
for (hpi_idx = 0; hpi_idx < internal_config.num_hugepage_sizes;
|
|
hpi_idx++) {
|
|
uint64_t page_sz =
|
|
internal_config.hugepage_info[hpi_idx].hugepage_sz;
|
|
|
|
for (i = 0; i < rte_socket_count(); i++) {
|
|
struct rte_memseg_list *msl;
|
|
|
|
socket = rte_socket_id_by_idx(i);
|
|
n_contig_segs = 0;
|
|
n_segs = 0;
|
|
seg_start_page = -1;
|
|
|
|
for (cur_page = 0; cur_page < n_pages; cur_page++) {
|
|
struct hugepage_file *prev, *cur;
|
|
int prev_seg_start_page = -1;
|
|
|
|
cur = &hugepages[cur_page];
|
|
prev = cur_page == 0 ? NULL :
|
|
&hugepages[cur_page - 1];
|
|
|
|
new_memseg = 0;
|
|
end_seg = 0;
|
|
|
|
if (cur->size == 0)
|
|
end_seg = 1;
|
|
else if (cur->socket_id != (int) socket)
|
|
end_seg = 1;
|
|
else if (cur->size != page_sz)
|
|
end_seg = 1;
|
|
else if (cur_page == 0)
|
|
new_memseg = 1;
|
|
#ifdef RTE_ARCH_PPC_64
|
|
/* On PPC64 architecture, the mmap always start
|
|
* from higher address to lower address. Here,
|
|
* physical addresses are in descending order.
|
|
*/
|
|
else if ((prev->physaddr - cur->physaddr) !=
|
|
cur->size)
|
|
new_memseg = 1;
|
|
#else
|
|
else if ((cur->physaddr - prev->physaddr) !=
|
|
cur->size)
|
|
new_memseg = 1;
|
|
#endif
|
|
if (new_memseg) {
|
|
/* if we're already inside a segment,
|
|
* new segment means end of current one
|
|
*/
|
|
if (seg_start_page != -1) {
|
|
end_seg = 1;
|
|
prev_seg_start_page =
|
|
seg_start_page;
|
|
}
|
|
seg_start_page = cur_page;
|
|
}
|
|
|
|
if (end_seg) {
|
|
if (prev_seg_start_page != -1) {
|
|
/* we've found a new segment */
|
|
n_contig_segs++;
|
|
n_segs += cur_page -
|
|
prev_seg_start_page;
|
|
} else if (seg_start_page != -1) {
|
|
/* we didn't find new segment,
|
|
* but did end current one
|
|
*/
|
|
n_contig_segs++;
|
|
n_segs += cur_page -
|
|
seg_start_page;
|
|
seg_start_page = -1;
|
|
continue;
|
|
} else {
|
|
/* we're skipping this page */
|
|
continue;
|
|
}
|
|
}
|
|
/* segment continues */
|
|
}
|
|
/* check if we missed last segment */
|
|
if (seg_start_page != -1) {
|
|
n_contig_segs++;
|
|
n_segs += cur_page - seg_start_page;
|
|
}
|
|
|
|
/* if no segments were found, do not preallocate */
|
|
if (n_segs == 0)
|
|
continue;
|
|
|
|
/* we now have total number of pages that we will
|
|
* allocate for this segment list. add separator pages
|
|
* to the total count, and preallocate VA space.
|
|
*/
|
|
n_segs += n_contig_segs - 1;
|
|
|
|
/* now, preallocate VA space for these segments */
|
|
|
|
/* first, find suitable memseg list for this */
|
|
for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS;
|
|
msl_idx++) {
|
|
msl = &mcfg->memsegs[msl_idx];
|
|
|
|
if (msl->base_va != NULL)
|
|
continue;
|
|
break;
|
|
}
|
|
if (msl_idx == RTE_MAX_MEMSEG_LISTS) {
|
|
RTE_LOG(ERR, EAL, "Not enough space in memseg lists, please increase %s\n",
|
|
RTE_STR(CONFIG_RTE_MAX_MEMSEG_LISTS));
|
|
return -1;
|
|
}
|
|
|
|
/* now, allocate fbarray itself */
|
|
if (alloc_memseg_list(msl, page_sz, n_segs, socket,
|
|
msl_idx) < 0)
|
|
return -1;
|
|
|
|
/* finally, allocate VA space */
|
|
if (alloc_va_space(msl) < 0)
|
|
return -1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We cannot reallocate memseg lists on the fly because PPC64 stores pages
|
|
* backwards, therefore we have to process the entire memseg first before
|
|
* remapping it into memseg list VA space.
|
|
*/
|
|
static int
|
|
remap_needed_hugepages(struct hugepage_file *hugepages, int n_pages)
|
|
{
|
|
int cur_page, seg_start_page, new_memseg, ret;
|
|
|
|
seg_start_page = 0;
|
|
for (cur_page = 0; cur_page < n_pages; cur_page++) {
|
|
struct hugepage_file *prev, *cur;
|
|
|
|
new_memseg = 0;
|
|
|
|
cur = &hugepages[cur_page];
|
|
prev = cur_page == 0 ? NULL : &hugepages[cur_page - 1];
|
|
|
|
/* if size is zero, no more pages left */
|
|
if (cur->size == 0)
|
|
break;
|
|
|
|
if (cur_page == 0)
|
|
new_memseg = 1;
|
|
else if (cur->socket_id != prev->socket_id)
|
|
new_memseg = 1;
|
|
else if (cur->size != prev->size)
|
|
new_memseg = 1;
|
|
#ifdef RTE_ARCH_PPC_64
|
|
/* On PPC64 architecture, the mmap always start from higher
|
|
* address to lower address. Here, physical addresses are in
|
|
* descending order.
|
|
*/
|
|
else if ((prev->physaddr - cur->physaddr) != cur->size)
|
|
new_memseg = 1;
|
|
#else
|
|
else if ((cur->physaddr - prev->physaddr) != cur->size)
|
|
new_memseg = 1;
|
|
#endif
|
|
|
|
if (new_memseg) {
|
|
/* if this isn't the first time, remap segment */
|
|
if (cur_page != 0) {
|
|
ret = remap_segment(hugepages, seg_start_page,
|
|
cur_page);
|
|
if (ret != 0)
|
|
return -1;
|
|
}
|
|
/* remember where we started */
|
|
seg_start_page = cur_page;
|
|
}
|
|
/* continuation of previous memseg */
|
|
}
|
|
/* we were stopped, but we didn't remap the last segment, do it now */
|
|
if (cur_page != 0) {
|
|
ret = remap_segment(hugepages, seg_start_page,
|
|
cur_page);
|
|
if (ret != 0)
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
__rte_unused /* function is unused on 32-bit builds */
|
|
static inline uint64_t
|
|
get_socket_mem_size(int socket)
|
|
{
|
|
uint64_t size = 0;
|
|
unsigned i;
|
|
|
|
for (i = 0; i < internal_config.num_hugepage_sizes; i++){
|
|
struct hugepage_info *hpi = &internal_config.hugepage_info[i];
|
|
size += hpi->hugepage_sz * hpi->num_pages[socket];
|
|
}
|
|
|
|
return size;
|
|
}
|
|
|
|
/*
|
|
* This function is a NUMA-aware equivalent of calc_num_pages.
|
|
* It takes in the list of hugepage sizes and the
|
|
* number of pages thereof, and calculates the best number of
|
|
* pages of each size to fulfill the request for <memory> ram
|
|
*/
|
|
static int
|
|
calc_num_pages_per_socket(uint64_t * memory,
|
|
struct hugepage_info *hp_info,
|
|
struct hugepage_info *hp_used,
|
|
unsigned num_hp_info)
|
|
{
|
|
unsigned socket, j, i = 0;
|
|
unsigned requested, available;
|
|
int total_num_pages = 0;
|
|
uint64_t remaining_mem, cur_mem;
|
|
uint64_t total_mem = internal_config.memory;
|
|
|
|
if (num_hp_info == 0)
|
|
return -1;
|
|
|
|
/* if specific memory amounts per socket weren't requested */
|
|
if (internal_config.force_sockets == 0) {
|
|
size_t total_size;
|
|
#ifdef RTE_ARCH_64
|
|
int cpu_per_socket[RTE_MAX_NUMA_NODES];
|
|
size_t default_size;
|
|
unsigned lcore_id;
|
|
|
|
/* Compute number of cores per socket */
|
|
memset(cpu_per_socket, 0, sizeof(cpu_per_socket));
|
|
RTE_LCORE_FOREACH(lcore_id) {
|
|
cpu_per_socket[rte_lcore_to_socket_id(lcore_id)]++;
|
|
}
|
|
|
|
/*
|
|
* Automatically spread requested memory amongst detected sockets according
|
|
* to number of cores from cpu mask present on each socket
|
|
*/
|
|
total_size = internal_config.memory;
|
|
for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
|
|
|
|
/* Set memory amount per socket */
|
|
default_size = (internal_config.memory * cpu_per_socket[socket])
|
|
/ rte_lcore_count();
|
|
|
|
/* Limit to maximum available memory on socket */
|
|
default_size = RTE_MIN(default_size, get_socket_mem_size(socket));
|
|
|
|
/* Update sizes */
|
|
memory[socket] = default_size;
|
|
total_size -= default_size;
|
|
}
|
|
|
|
/*
|
|
* If some memory is remaining, try to allocate it by getting all
|
|
* available memory from sockets, one after the other
|
|
*/
|
|
for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
|
|
/* take whatever is available */
|
|
default_size = RTE_MIN(get_socket_mem_size(socket) - memory[socket],
|
|
total_size);
|
|
|
|
/* Update sizes */
|
|
memory[socket] += default_size;
|
|
total_size -= default_size;
|
|
}
|
|
#else
|
|
/* in 32-bit mode, allocate all of the memory only on master
|
|
* lcore socket
|
|
*/
|
|
total_size = internal_config.memory;
|
|
for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0;
|
|
socket++) {
|
|
struct rte_config *cfg = rte_eal_get_configuration();
|
|
unsigned int master_lcore_socket;
|
|
|
|
master_lcore_socket =
|
|
rte_lcore_to_socket_id(cfg->master_lcore);
|
|
|
|
if (master_lcore_socket != socket)
|
|
continue;
|
|
|
|
/* Update sizes */
|
|
memory[socket] = total_size;
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_mem != 0; socket++) {
|
|
/* skips if the memory on specific socket wasn't requested */
|
|
for (i = 0; i < num_hp_info && memory[socket] != 0; i++){
|
|
strlcpy(hp_used[i].hugedir, hp_info[i].hugedir,
|
|
sizeof(hp_used[i].hugedir));
|
|
hp_used[i].num_pages[socket] = RTE_MIN(
|
|
memory[socket] / hp_info[i].hugepage_sz,
|
|
hp_info[i].num_pages[socket]);
|
|
|
|
cur_mem = hp_used[i].num_pages[socket] *
|
|
hp_used[i].hugepage_sz;
|
|
|
|
memory[socket] -= cur_mem;
|
|
total_mem -= cur_mem;
|
|
|
|
total_num_pages += hp_used[i].num_pages[socket];
|
|
|
|
/* check if we have met all memory requests */
|
|
if (memory[socket] == 0)
|
|
break;
|
|
|
|
/* check if we have any more pages left at this size, if so
|
|
* move on to next size */
|
|
if (hp_used[i].num_pages[socket] == hp_info[i].num_pages[socket])
|
|
continue;
|
|
/* At this point we know that there are more pages available that are
|
|
* bigger than the memory we want, so lets see if we can get enough
|
|
* from other page sizes.
|
|
*/
|
|
remaining_mem = 0;
|
|
for (j = i+1; j < num_hp_info; j++)
|
|
remaining_mem += hp_info[j].hugepage_sz *
|
|
hp_info[j].num_pages[socket];
|
|
|
|
/* is there enough other memory, if not allocate another page and quit */
|
|
if (remaining_mem < memory[socket]){
|
|
cur_mem = RTE_MIN(memory[socket],
|
|
hp_info[i].hugepage_sz);
|
|
memory[socket] -= cur_mem;
|
|
total_mem -= cur_mem;
|
|
hp_used[i].num_pages[socket]++;
|
|
total_num_pages++;
|
|
break; /* we are done with this socket*/
|
|
}
|
|
}
|
|
/* if we didn't satisfy all memory requirements per socket */
|
|
if (memory[socket] > 0 &&
|
|
internal_config.socket_mem[socket] != 0) {
|
|
/* to prevent icc errors */
|
|
requested = (unsigned) (internal_config.socket_mem[socket] /
|
|
0x100000);
|
|
available = requested -
|
|
((unsigned) (memory[socket] / 0x100000));
|
|
RTE_LOG(ERR, EAL, "Not enough memory available on socket %u! "
|
|
"Requested: %uMB, available: %uMB\n", socket,
|
|
requested, available);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* if we didn't satisfy total memory requirements */
|
|
if (total_mem > 0) {
|
|
requested = (unsigned) (internal_config.memory / 0x100000);
|
|
available = requested - (unsigned) (total_mem / 0x100000);
|
|
RTE_LOG(ERR, EAL, "Not enough memory available! Requested: %uMB,"
|
|
" available: %uMB\n", requested, available);
|
|
return -1;
|
|
}
|
|
return total_num_pages;
|
|
}
|
|
|
|
static inline size_t
|
|
eal_get_hugepage_mem_size(void)
|
|
{
|
|
uint64_t size = 0;
|
|
unsigned i, j;
|
|
|
|
for (i = 0; i < internal_config.num_hugepage_sizes; i++) {
|
|
struct hugepage_info *hpi = &internal_config.hugepage_info[i];
|
|
if (strnlen(hpi->hugedir, sizeof(hpi->hugedir)) != 0) {
|
|
for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
|
|
size += hpi->hugepage_sz * hpi->num_pages[j];
|
|
}
|
|
}
|
|
}
|
|
|
|
return (size < SIZE_MAX) ? (size_t)(size) : SIZE_MAX;
|
|
}
|
|
|
|
static struct sigaction huge_action_old;
|
|
static int huge_need_recover;
|
|
|
|
static void
|
|
huge_register_sigbus(void)
|
|
{
|
|
sigset_t mask;
|
|
struct sigaction action;
|
|
|
|
sigemptyset(&mask);
|
|
sigaddset(&mask, SIGBUS);
|
|
action.sa_flags = 0;
|
|
action.sa_mask = mask;
|
|
action.sa_handler = huge_sigbus_handler;
|
|
|
|
huge_need_recover = !sigaction(SIGBUS, &action, &huge_action_old);
|
|
}
|
|
|
|
static void
|
|
huge_recover_sigbus(void)
|
|
{
|
|
if (huge_need_recover) {
|
|
sigaction(SIGBUS, &huge_action_old, NULL);
|
|
huge_need_recover = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Prepare physical memory mapping: fill configuration structure with
|
|
* these infos, return 0 on success.
|
|
* 1. map N huge pages in separate files in hugetlbfs
|
|
* 2. find associated physical addr
|
|
* 3. find associated NUMA socket ID
|
|
* 4. sort all huge pages by physical address
|
|
* 5. remap these N huge pages in the correct order
|
|
* 6. unmap the first mapping
|
|
* 7. fill memsegs in configuration with contiguous zones
|
|
*/
|
|
static int
|
|
eal_legacy_hugepage_init(void)
|
|
{
|
|
struct rte_mem_config *mcfg;
|
|
struct hugepage_file *hugepage = NULL, *tmp_hp = NULL;
|
|
struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES];
|
|
struct rte_fbarray *arr;
|
|
struct rte_memseg *ms;
|
|
|
|
uint64_t memory[RTE_MAX_NUMA_NODES];
|
|
|
|
unsigned hp_offset;
|
|
int i, j;
|
|
int nr_hugefiles, nr_hugepages = 0;
|
|
void *addr;
|
|
|
|
memset(used_hp, 0, sizeof(used_hp));
|
|
|
|
/* get pointer to global configuration */
|
|
mcfg = rte_eal_get_configuration()->mem_config;
|
|
|
|
/* hugetlbfs can be disabled */
|
|
if (internal_config.no_hugetlbfs) {
|
|
void *prealloc_addr;
|
|
size_t mem_sz;
|
|
struct rte_memseg_list *msl;
|
|
int n_segs, cur_seg, fd, flags;
|
|
#ifdef MEMFD_SUPPORTED
|
|
int memfd;
|
|
#endif
|
|
uint64_t page_sz;
|
|
|
|
/* nohuge mode is legacy mode */
|
|
internal_config.legacy_mem = 1;
|
|
|
|
/* nohuge mode is single-file segments mode */
|
|
internal_config.single_file_segments = 1;
|
|
|
|
/* create a memseg list */
|
|
msl = &mcfg->memsegs[0];
|
|
|
|
page_sz = RTE_PGSIZE_4K;
|
|
n_segs = internal_config.memory / page_sz;
|
|
|
|
if (rte_fbarray_init(&msl->memseg_arr, "nohugemem", n_segs,
|
|
sizeof(struct rte_memseg))) {
|
|
RTE_LOG(ERR, EAL, "Cannot allocate memseg list\n");
|
|
return -1;
|
|
}
|
|
|
|
/* set up parameters for anonymous mmap */
|
|
fd = -1;
|
|
flags = MAP_PRIVATE | MAP_ANONYMOUS;
|
|
|
|
#ifdef MEMFD_SUPPORTED
|
|
/* create a memfd and store it in the segment fd table */
|
|
memfd = memfd_create("nohuge", 0);
|
|
if (memfd < 0) {
|
|
RTE_LOG(DEBUG, EAL, "Cannot create memfd: %s\n",
|
|
strerror(errno));
|
|
RTE_LOG(DEBUG, EAL, "Falling back to anonymous map\n");
|
|
} else {
|
|
/* we got an fd - now resize it */
|
|
if (ftruncate(memfd, internal_config.memory) < 0) {
|
|
RTE_LOG(ERR, EAL, "Cannot resize memfd: %s\n",
|
|
strerror(errno));
|
|
RTE_LOG(ERR, EAL, "Falling back to anonymous map\n");
|
|
close(memfd);
|
|
} else {
|
|
/* creating memfd-backed file was successful.
|
|
* we want changes to memfd to be visible to
|
|
* other processes (such as vhost backend), so
|
|
* map it as shared memory.
|
|
*/
|
|
RTE_LOG(DEBUG, EAL, "Using memfd for anonymous memory\n");
|
|
fd = memfd;
|
|
flags = MAP_SHARED;
|
|
}
|
|
}
|
|
#endif
|
|
/* preallocate address space for the memory, so that it can be
|
|
* fit into the DMA mask.
|
|
*/
|
|
mem_sz = internal_config.memory;
|
|
prealloc_addr = eal_get_virtual_area(
|
|
NULL, &mem_sz, page_sz, 0, 0);
|
|
if (prealloc_addr == NULL) {
|
|
RTE_LOG(ERR, EAL,
|
|
"%s: reserving memory area failed: "
|
|
"%s\n",
|
|
__func__, strerror(errno));
|
|
return -1;
|
|
}
|
|
addr = mmap(prealloc_addr, mem_sz, PROT_READ | PROT_WRITE,
|
|
flags | MAP_FIXED, fd, 0);
|
|
if (addr == MAP_FAILED || addr != prealloc_addr) {
|
|
RTE_LOG(ERR, EAL, "%s: mmap() failed: %s\n", __func__,
|
|
strerror(errno));
|
|
munmap(prealloc_addr, mem_sz);
|
|
return -1;
|
|
}
|
|
msl->base_va = addr;
|
|
msl->page_sz = page_sz;
|
|
msl->socket_id = 0;
|
|
msl->len = mem_sz;
|
|
msl->heap = 1;
|
|
|
|
/* we're in single-file segments mode, so only the segment list
|
|
* fd needs to be set up.
|
|
*/
|
|
if (fd != -1) {
|
|
if (eal_memalloc_set_seg_list_fd(0, fd) < 0) {
|
|
RTE_LOG(ERR, EAL, "Cannot set up segment list fd\n");
|
|
/* not a serious error, proceed */
|
|
}
|
|
}
|
|
|
|
/* populate memsegs. each memseg is one page long */
|
|
for (cur_seg = 0; cur_seg < n_segs; cur_seg++) {
|
|
arr = &msl->memseg_arr;
|
|
|
|
ms = rte_fbarray_get(arr, cur_seg);
|
|
if (rte_eal_iova_mode() == RTE_IOVA_VA)
|
|
ms->iova = (uintptr_t)addr;
|
|
else
|
|
ms->iova = RTE_BAD_IOVA;
|
|
ms->addr = addr;
|
|
ms->hugepage_sz = page_sz;
|
|
ms->socket_id = 0;
|
|
ms->len = page_sz;
|
|
|
|
rte_fbarray_set_used(arr, cur_seg);
|
|
|
|
addr = RTE_PTR_ADD(addr, (size_t)page_sz);
|
|
}
|
|
if (mcfg->dma_maskbits &&
|
|
rte_mem_check_dma_mask_thread_unsafe(mcfg->dma_maskbits)) {
|
|
RTE_LOG(ERR, EAL,
|
|
"%s(): couldn't allocate memory due to IOVA exceeding limits of current DMA mask.\n",
|
|
__func__);
|
|
if (rte_eal_iova_mode() == RTE_IOVA_VA &&
|
|
rte_eal_using_phys_addrs())
|
|
RTE_LOG(ERR, EAL,
|
|
"%s(): Please try initializing EAL with --iova-mode=pa parameter.\n",
|
|
__func__);
|
|
goto fail;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* calculate total number of hugepages available. at this point we haven't
|
|
* yet started sorting them so they all are on socket 0 */
|
|
for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
|
|
/* meanwhile, also initialize used_hp hugepage sizes in used_hp */
|
|
used_hp[i].hugepage_sz = internal_config.hugepage_info[i].hugepage_sz;
|
|
|
|
nr_hugepages += internal_config.hugepage_info[i].num_pages[0];
|
|
}
|
|
|
|
/*
|
|
* allocate a memory area for hugepage table.
|
|
* this isn't shared memory yet. due to the fact that we need some
|
|
* processing done on these pages, shared memory will be created
|
|
* at a later stage.
|
|
*/
|
|
tmp_hp = malloc(nr_hugepages * sizeof(struct hugepage_file));
|
|
if (tmp_hp == NULL)
|
|
goto fail;
|
|
|
|
memset(tmp_hp, 0, nr_hugepages * sizeof(struct hugepage_file));
|
|
|
|
hp_offset = 0; /* where we start the current page size entries */
|
|
|
|
huge_register_sigbus();
|
|
|
|
/* make a copy of socket_mem, needed for balanced allocation. */
|
|
for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
|
|
memory[i] = internal_config.socket_mem[i];
|
|
|
|
/* map all hugepages and sort them */
|
|
for (i = 0; i < (int)internal_config.num_hugepage_sizes; i ++){
|
|
unsigned pages_old, pages_new;
|
|
struct hugepage_info *hpi;
|
|
|
|
/*
|
|
* we don't yet mark hugepages as used at this stage, so
|
|
* we just map all hugepages available to the system
|
|
* all hugepages are still located on socket 0
|
|
*/
|
|
hpi = &internal_config.hugepage_info[i];
|
|
|
|
if (hpi->num_pages[0] == 0)
|
|
continue;
|
|
|
|
/* map all hugepages available */
|
|
pages_old = hpi->num_pages[0];
|
|
pages_new = map_all_hugepages(&tmp_hp[hp_offset], hpi, memory);
|
|
if (pages_new < pages_old) {
|
|
RTE_LOG(DEBUG, EAL,
|
|
"%d not %d hugepages of size %u MB allocated\n",
|
|
pages_new, pages_old,
|
|
(unsigned)(hpi->hugepage_sz / 0x100000));
|
|
|
|
int pages = pages_old - pages_new;
|
|
|
|
nr_hugepages -= pages;
|
|
hpi->num_pages[0] = pages_new;
|
|
if (pages_new == 0)
|
|
continue;
|
|
}
|
|
|
|
if (rte_eal_using_phys_addrs() &&
|
|
rte_eal_iova_mode() != RTE_IOVA_VA) {
|
|
/* find physical addresses for each hugepage */
|
|
if (find_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
|
|
RTE_LOG(DEBUG, EAL, "Failed to find phys addr "
|
|
"for %u MB pages\n",
|
|
(unsigned int)(hpi->hugepage_sz / 0x100000));
|
|
goto fail;
|
|
}
|
|
} else {
|
|
/* set physical addresses for each hugepage */
|
|
if (set_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
|
|
RTE_LOG(DEBUG, EAL, "Failed to set phys addr "
|
|
"for %u MB pages\n",
|
|
(unsigned int)(hpi->hugepage_sz / 0x100000));
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
if (find_numasocket(&tmp_hp[hp_offset], hpi) < 0){
|
|
RTE_LOG(DEBUG, EAL, "Failed to find NUMA socket for %u MB pages\n",
|
|
(unsigned)(hpi->hugepage_sz / 0x100000));
|
|
goto fail;
|
|
}
|
|
|
|
qsort(&tmp_hp[hp_offset], hpi->num_pages[0],
|
|
sizeof(struct hugepage_file), cmp_physaddr);
|
|
|
|
/* we have processed a num of hugepages of this size, so inc offset */
|
|
hp_offset += hpi->num_pages[0];
|
|
}
|
|
|
|
huge_recover_sigbus();
|
|
|
|
if (internal_config.memory == 0 && internal_config.force_sockets == 0)
|
|
internal_config.memory = eal_get_hugepage_mem_size();
|
|
|
|
nr_hugefiles = nr_hugepages;
|
|
|
|
|
|
/* clean out the numbers of pages */
|
|
for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++)
|
|
for (j = 0; j < RTE_MAX_NUMA_NODES; j++)
|
|
internal_config.hugepage_info[i].num_pages[j] = 0;
|
|
|
|
/* get hugepages for each socket */
|
|
for (i = 0; i < nr_hugefiles; i++) {
|
|
int socket = tmp_hp[i].socket_id;
|
|
|
|
/* find a hugepage info with right size and increment num_pages */
|
|
const int nb_hpsizes = RTE_MIN(MAX_HUGEPAGE_SIZES,
|
|
(int)internal_config.num_hugepage_sizes);
|
|
for (j = 0; j < nb_hpsizes; j++) {
|
|
if (tmp_hp[i].size ==
|
|
internal_config.hugepage_info[j].hugepage_sz) {
|
|
internal_config.hugepage_info[j].num_pages[socket]++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* make a copy of socket_mem, needed for number of pages calculation */
|
|
for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
|
|
memory[i] = internal_config.socket_mem[i];
|
|
|
|
/* calculate final number of pages */
|
|
nr_hugepages = calc_num_pages_per_socket(memory,
|
|
internal_config.hugepage_info, used_hp,
|
|
internal_config.num_hugepage_sizes);
|
|
|
|
/* error if not enough memory available */
|
|
if (nr_hugepages < 0)
|
|
goto fail;
|
|
|
|
/* reporting in! */
|
|
for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
|
|
for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
|
|
if (used_hp[i].num_pages[j] > 0) {
|
|
RTE_LOG(DEBUG, EAL,
|
|
"Requesting %u pages of size %uMB"
|
|
" from socket %i\n",
|
|
used_hp[i].num_pages[j],
|
|
(unsigned)
|
|
(used_hp[i].hugepage_sz / 0x100000),
|
|
j);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* create shared memory */
|
|
hugepage = create_shared_memory(eal_hugepage_data_path(),
|
|
nr_hugefiles * sizeof(struct hugepage_file));
|
|
|
|
if (hugepage == NULL) {
|
|
RTE_LOG(ERR, EAL, "Failed to create shared memory!\n");
|
|
goto fail;
|
|
}
|
|
memset(hugepage, 0, nr_hugefiles * sizeof(struct hugepage_file));
|
|
|
|
/*
|
|
* unmap pages that we won't need (looks at used_hp).
|
|
* also, sets final_va to NULL on pages that were unmapped.
|
|
*/
|
|
if (unmap_unneeded_hugepages(tmp_hp, used_hp,
|
|
internal_config.num_hugepage_sizes) < 0) {
|
|
RTE_LOG(ERR, EAL, "Unmapping and locking hugepages failed!\n");
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* copy stuff from malloc'd hugepage* to the actual shared memory.
|
|
* this procedure only copies those hugepages that have orig_va
|
|
* not NULL. has overflow protection.
|
|
*/
|
|
if (copy_hugepages_to_shared_mem(hugepage, nr_hugefiles,
|
|
tmp_hp, nr_hugefiles) < 0) {
|
|
RTE_LOG(ERR, EAL, "Copying tables to shared memory failed!\n");
|
|
goto fail;
|
|
}
|
|
|
|
#ifndef RTE_ARCH_64
|
|
/* for legacy 32-bit mode, we did not preallocate VA space, so do it */
|
|
if (internal_config.legacy_mem &&
|
|
prealloc_segments(hugepage, nr_hugefiles)) {
|
|
RTE_LOG(ERR, EAL, "Could not preallocate VA space for hugepages\n");
|
|
goto fail;
|
|
}
|
|
#endif
|
|
|
|
/* remap all pages we do need into memseg list VA space, so that those
|
|
* pages become first-class citizens in DPDK memory subsystem
|
|
*/
|
|
if (remap_needed_hugepages(hugepage, nr_hugefiles)) {
|
|
RTE_LOG(ERR, EAL, "Couldn't remap hugepage files into memseg lists\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* free the hugepage backing files */
|
|
if (internal_config.hugepage_unlink &&
|
|
unlink_hugepage_files(tmp_hp, internal_config.num_hugepage_sizes) < 0) {
|
|
RTE_LOG(ERR, EAL, "Unlinking hugepage files failed!\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* free the temporary hugepage table */
|
|
free(tmp_hp);
|
|
tmp_hp = NULL;
|
|
|
|
munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
|
|
hugepage = NULL;
|
|
|
|
/* we're not going to allocate more pages, so release VA space for
|
|
* unused memseg lists
|
|
*/
|
|
for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
|
|
struct rte_memseg_list *msl = &mcfg->memsegs[i];
|
|
size_t mem_sz;
|
|
|
|
/* skip inactive lists */
|
|
if (msl->base_va == NULL)
|
|
continue;
|
|
/* skip lists where there is at least one page allocated */
|
|
if (msl->memseg_arr.count > 0)
|
|
continue;
|
|
/* this is an unused list, deallocate it */
|
|
mem_sz = msl->len;
|
|
munmap(msl->base_va, mem_sz);
|
|
msl->base_va = NULL;
|
|
msl->heap = 0;
|
|
|
|
/* destroy backing fbarray */
|
|
rte_fbarray_destroy(&msl->memseg_arr);
|
|
}
|
|
|
|
if (mcfg->dma_maskbits &&
|
|
rte_mem_check_dma_mask_thread_unsafe(mcfg->dma_maskbits)) {
|
|
RTE_LOG(ERR, EAL,
|
|
"%s(): couldn't allocate memory due to IOVA exceeding limits of current DMA mask.\n",
|
|
__func__);
|
|
goto fail;
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
huge_recover_sigbus();
|
|
free(tmp_hp);
|
|
if (hugepage != NULL)
|
|
munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
|
|
|
|
return -1;
|
|
}
|
|
|
|
static int __rte_unused
|
|
hugepage_count_walk(const struct rte_memseg_list *msl, void *arg)
|
|
{
|
|
struct hugepage_info *hpi = arg;
|
|
|
|
if (msl->page_sz != hpi->hugepage_sz)
|
|
return 0;
|
|
|
|
hpi->num_pages[msl->socket_id] += msl->memseg_arr.len;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
limits_callback(int socket_id, size_t cur_limit, size_t new_len)
|
|
{
|
|
RTE_SET_USED(socket_id);
|
|
RTE_SET_USED(cur_limit);
|
|
RTE_SET_USED(new_len);
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
eal_hugepage_init(void)
|
|
{
|
|
struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES];
|
|
uint64_t memory[RTE_MAX_NUMA_NODES];
|
|
int hp_sz_idx, socket_id;
|
|
|
|
memset(used_hp, 0, sizeof(used_hp));
|
|
|
|
for (hp_sz_idx = 0;
|
|
hp_sz_idx < (int) internal_config.num_hugepage_sizes;
|
|
hp_sz_idx++) {
|
|
#ifndef RTE_ARCH_64
|
|
struct hugepage_info dummy;
|
|
unsigned int i;
|
|
#endif
|
|
/* also initialize used_hp hugepage sizes in used_hp */
|
|
struct hugepage_info *hpi;
|
|
hpi = &internal_config.hugepage_info[hp_sz_idx];
|
|
used_hp[hp_sz_idx].hugepage_sz = hpi->hugepage_sz;
|
|
|
|
#ifndef RTE_ARCH_64
|
|
/* for 32-bit, limit number of pages on socket to whatever we've
|
|
* preallocated, as we cannot allocate more.
|
|
*/
|
|
memset(&dummy, 0, sizeof(dummy));
|
|
dummy.hugepage_sz = hpi->hugepage_sz;
|
|
if (rte_memseg_list_walk(hugepage_count_walk, &dummy) < 0)
|
|
return -1;
|
|
|
|
for (i = 0; i < RTE_DIM(dummy.num_pages); i++) {
|
|
hpi->num_pages[i] = RTE_MIN(hpi->num_pages[i],
|
|
dummy.num_pages[i]);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* make a copy of socket_mem, needed for balanced allocation. */
|
|
for (hp_sz_idx = 0; hp_sz_idx < RTE_MAX_NUMA_NODES; hp_sz_idx++)
|
|
memory[hp_sz_idx] = internal_config.socket_mem[hp_sz_idx];
|
|
|
|
/* calculate final number of pages */
|
|
if (calc_num_pages_per_socket(memory,
|
|
internal_config.hugepage_info, used_hp,
|
|
internal_config.num_hugepage_sizes) < 0)
|
|
return -1;
|
|
|
|
for (hp_sz_idx = 0;
|
|
hp_sz_idx < (int)internal_config.num_hugepage_sizes;
|
|
hp_sz_idx++) {
|
|
for (socket_id = 0; socket_id < RTE_MAX_NUMA_NODES;
|
|
socket_id++) {
|
|
struct rte_memseg **pages;
|
|
struct hugepage_info *hpi = &used_hp[hp_sz_idx];
|
|
unsigned int num_pages = hpi->num_pages[socket_id];
|
|
unsigned int num_pages_alloc;
|
|
|
|
if (num_pages == 0)
|
|
continue;
|
|
|
|
RTE_LOG(DEBUG, EAL, "Allocating %u pages of size %" PRIu64 "M on socket %i\n",
|
|
num_pages, hpi->hugepage_sz >> 20, socket_id);
|
|
|
|
/* we may not be able to allocate all pages in one go,
|
|
* because we break up our memory map into multiple
|
|
* memseg lists. therefore, try allocating multiple
|
|
* times and see if we can get the desired number of
|
|
* pages from multiple allocations.
|
|
*/
|
|
|
|
num_pages_alloc = 0;
|
|
do {
|
|
int i, cur_pages, needed;
|
|
|
|
needed = num_pages - num_pages_alloc;
|
|
|
|
pages = malloc(sizeof(*pages) * needed);
|
|
|
|
/* do not request exact number of pages */
|
|
cur_pages = eal_memalloc_alloc_seg_bulk(pages,
|
|
needed, hpi->hugepage_sz,
|
|
socket_id, false);
|
|
if (cur_pages <= 0) {
|
|
free(pages);
|
|
return -1;
|
|
}
|
|
|
|
/* mark preallocated pages as unfreeable */
|
|
for (i = 0; i < cur_pages; i++) {
|
|
struct rte_memseg *ms = pages[i];
|
|
ms->flags |= RTE_MEMSEG_FLAG_DO_NOT_FREE;
|
|
}
|
|
free(pages);
|
|
|
|
num_pages_alloc += cur_pages;
|
|
} while (num_pages_alloc != num_pages);
|
|
}
|
|
}
|
|
/* if socket limits were specified, set them */
|
|
if (internal_config.force_socket_limits) {
|
|
unsigned int i;
|
|
for (i = 0; i < RTE_MAX_NUMA_NODES; i++) {
|
|
uint64_t limit = internal_config.socket_limit[i];
|
|
if (limit == 0)
|
|
continue;
|
|
if (rte_mem_alloc_validator_register("socket-limit",
|
|
limits_callback, i, limit))
|
|
RTE_LOG(ERR, EAL, "Failed to register socket limits validator callback\n");
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* uses fstat to report the size of a file on disk
|
|
*/
|
|
static off_t
|
|
getFileSize(int fd)
|
|
{
|
|
struct stat st;
|
|
if (fstat(fd, &st) < 0)
|
|
return 0;
|
|
return st.st_size;
|
|
}
|
|
|
|
/*
|
|
* This creates the memory mappings in the secondary process to match that of
|
|
* the server process. It goes through each memory segment in the DPDK runtime
|
|
* configuration and finds the hugepages which form that segment, mapping them
|
|
* in order to form a contiguous block in the virtual memory space
|
|
*/
|
|
static int
|
|
eal_legacy_hugepage_attach(void)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
struct hugepage_file *hp = NULL;
|
|
unsigned int num_hp = 0;
|
|
unsigned int i = 0;
|
|
unsigned int cur_seg;
|
|
off_t size = 0;
|
|
int fd, fd_hugepage = -1;
|
|
|
|
if (aslr_enabled() > 0) {
|
|
RTE_LOG(WARNING, EAL, "WARNING: Address Space Layout Randomization "
|
|
"(ASLR) is enabled in the kernel.\n");
|
|
RTE_LOG(WARNING, EAL, " This may cause issues with mapping memory "
|
|
"into secondary processes\n");
|
|
}
|
|
|
|
fd_hugepage = open(eal_hugepage_data_path(), O_RDONLY);
|
|
if (fd_hugepage < 0) {
|
|
RTE_LOG(ERR, EAL, "Could not open %s\n",
|
|
eal_hugepage_data_path());
|
|
goto error;
|
|
}
|
|
|
|
size = getFileSize(fd_hugepage);
|
|
hp = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd_hugepage, 0);
|
|
if (hp == MAP_FAILED) {
|
|
RTE_LOG(ERR, EAL, "Could not mmap %s\n",
|
|
eal_hugepage_data_path());
|
|
goto error;
|
|
}
|
|
|
|
num_hp = size / sizeof(struct hugepage_file);
|
|
RTE_LOG(DEBUG, EAL, "Analysing %u files\n", num_hp);
|
|
|
|
/* map all segments into memory to make sure we get the addrs. the
|
|
* segments themselves are already in memseg list (which is shared and
|
|
* has its VA space already preallocated), so we just need to map
|
|
* everything into correct addresses.
|
|
*/
|
|
for (i = 0; i < num_hp; i++) {
|
|
struct hugepage_file *hf = &hp[i];
|
|
size_t map_sz = hf->size;
|
|
void *map_addr = hf->final_va;
|
|
int msl_idx, ms_idx;
|
|
struct rte_memseg_list *msl;
|
|
struct rte_memseg *ms;
|
|
|
|
/* if size is zero, no more pages left */
|
|
if (map_sz == 0)
|
|
break;
|
|
|
|
fd = open(hf->filepath, O_RDWR);
|
|
if (fd < 0) {
|
|
RTE_LOG(ERR, EAL, "Could not open %s: %s\n",
|
|
hf->filepath, strerror(errno));
|
|
goto error;
|
|
}
|
|
|
|
map_addr = mmap(map_addr, map_sz, PROT_READ | PROT_WRITE,
|
|
MAP_SHARED | MAP_FIXED, fd, 0);
|
|
if (map_addr == MAP_FAILED) {
|
|
RTE_LOG(ERR, EAL, "Could not map %s: %s\n",
|
|
hf->filepath, strerror(errno));
|
|
goto fd_error;
|
|
}
|
|
|
|
/* set shared lock on the file. */
|
|
if (flock(fd, LOCK_SH) < 0) {
|
|
RTE_LOG(DEBUG, EAL, "%s(): Locking file failed: %s\n",
|
|
__func__, strerror(errno));
|
|
goto mmap_error;
|
|
}
|
|
|
|
/* find segment data */
|
|
msl = rte_mem_virt2memseg_list(map_addr);
|
|
if (msl == NULL) {
|
|
RTE_LOG(DEBUG, EAL, "%s(): Cannot find memseg list\n",
|
|
__func__);
|
|
goto mmap_error;
|
|
}
|
|
ms = rte_mem_virt2memseg(map_addr, msl);
|
|
if (ms == NULL) {
|
|
RTE_LOG(DEBUG, EAL, "%s(): Cannot find memseg\n",
|
|
__func__);
|
|
goto mmap_error;
|
|
}
|
|
|
|
msl_idx = msl - mcfg->memsegs;
|
|
ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
|
|
if (ms_idx < 0) {
|
|
RTE_LOG(DEBUG, EAL, "%s(): Cannot find memseg idx\n",
|
|
__func__);
|
|
goto mmap_error;
|
|
}
|
|
|
|
/* store segment fd internally */
|
|
if (eal_memalloc_set_seg_fd(msl_idx, ms_idx, fd) < 0)
|
|
RTE_LOG(ERR, EAL, "Could not store segment fd: %s\n",
|
|
rte_strerror(rte_errno));
|
|
}
|
|
/* unmap the hugepage config file, since we are done using it */
|
|
munmap(hp, size);
|
|
close(fd_hugepage);
|
|
return 0;
|
|
|
|
mmap_error:
|
|
munmap(hp[i].final_va, hp[i].size);
|
|
fd_error:
|
|
close(fd);
|
|
error:
|
|
/* unwind mmap's done so far */
|
|
for (cur_seg = 0; cur_seg < i; cur_seg++)
|
|
munmap(hp[cur_seg].final_va, hp[cur_seg].size);
|
|
|
|
if (hp != NULL && hp != MAP_FAILED)
|
|
munmap(hp, size);
|
|
if (fd_hugepage >= 0)
|
|
close(fd_hugepage);
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
eal_hugepage_attach(void)
|
|
{
|
|
if (eal_memalloc_sync_with_primary()) {
|
|
RTE_LOG(ERR, EAL, "Could not map memory from primary process\n");
|
|
if (aslr_enabled() > 0)
|
|
RTE_LOG(ERR, EAL, "It is recommended to disable ASLR in the kernel and retry running both primary and secondary processes\n");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
rte_eal_hugepage_init(void)
|
|
{
|
|
return internal_config.legacy_mem ?
|
|
eal_legacy_hugepage_init() :
|
|
eal_hugepage_init();
|
|
}
|
|
|
|
int
|
|
rte_eal_hugepage_attach(void)
|
|
{
|
|
return internal_config.legacy_mem ?
|
|
eal_legacy_hugepage_attach() :
|
|
eal_hugepage_attach();
|
|
}
|
|
|
|
int
|
|
rte_eal_using_phys_addrs(void)
|
|
{
|
|
if (phys_addrs_available == -1) {
|
|
uint64_t tmp = 0;
|
|
|
|
if (rte_eal_has_hugepages() != 0 &&
|
|
rte_mem_virt2phy(&tmp) != RTE_BAD_PHYS_ADDR)
|
|
phys_addrs_available = 1;
|
|
else
|
|
phys_addrs_available = 0;
|
|
}
|
|
return phys_addrs_available;
|
|
}
|
|
|
|
static int __rte_unused
|
|
memseg_primary_init_32(void)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
int active_sockets, hpi_idx, msl_idx = 0;
|
|
unsigned int socket_id, i;
|
|
struct rte_memseg_list *msl;
|
|
uint64_t extra_mem_per_socket, total_extra_mem, total_requested_mem;
|
|
uint64_t max_mem;
|
|
|
|
/* no-huge does not need this at all */
|
|
if (internal_config.no_hugetlbfs)
|
|
return 0;
|
|
|
|
/* this is a giant hack, but desperate times call for desperate
|
|
* measures. in legacy 32-bit mode, we cannot preallocate VA space,
|
|
* because having upwards of 2 gigabytes of VA space already mapped will
|
|
* interfere with our ability to map and sort hugepages.
|
|
*
|
|
* therefore, in legacy 32-bit mode, we will be initializing memseg
|
|
* lists much later - in eal_memory.c, right after we unmap all the
|
|
* unneeded pages. this will not affect secondary processes, as those
|
|
* should be able to mmap the space without (too many) problems.
|
|
*/
|
|
if (internal_config.legacy_mem)
|
|
return 0;
|
|
|
|
/* 32-bit mode is a very special case. we cannot know in advance where
|
|
* the user will want to allocate their memory, so we have to do some
|
|
* heuristics.
|
|
*/
|
|
active_sockets = 0;
|
|
total_requested_mem = 0;
|
|
if (internal_config.force_sockets)
|
|
for (i = 0; i < rte_socket_count(); i++) {
|
|
uint64_t mem;
|
|
|
|
socket_id = rte_socket_id_by_idx(i);
|
|
mem = internal_config.socket_mem[socket_id];
|
|
|
|
if (mem == 0)
|
|
continue;
|
|
|
|
active_sockets++;
|
|
total_requested_mem += mem;
|
|
}
|
|
else
|
|
total_requested_mem = internal_config.memory;
|
|
|
|
max_mem = (uint64_t)RTE_MAX_MEM_MB << 20;
|
|
if (total_requested_mem > max_mem) {
|
|
RTE_LOG(ERR, EAL, "Invalid parameters: 32-bit process can at most use %uM of memory\n",
|
|
(unsigned int)(max_mem >> 20));
|
|
return -1;
|
|
}
|
|
total_extra_mem = max_mem - total_requested_mem;
|
|
extra_mem_per_socket = active_sockets == 0 ? total_extra_mem :
|
|
total_extra_mem / active_sockets;
|
|
|
|
/* the allocation logic is a little bit convoluted, but here's how it
|
|
* works, in a nutshell:
|
|
* - if user hasn't specified on which sockets to allocate memory via
|
|
* --socket-mem, we allocate all of our memory on master core socket.
|
|
* - if user has specified sockets to allocate memory on, there may be
|
|
* some "unused" memory left (e.g. if user has specified --socket-mem
|
|
* such that not all memory adds up to 2 gigabytes), so add it to all
|
|
* sockets that are in use equally.
|
|
*
|
|
* page sizes are sorted by size in descending order, so we can safely
|
|
* assume that we dispense with bigger page sizes first.
|
|
*/
|
|
|
|
/* create memseg lists */
|
|
for (i = 0; i < rte_socket_count(); i++) {
|
|
int hp_sizes = (int) internal_config.num_hugepage_sizes;
|
|
uint64_t max_socket_mem, cur_socket_mem;
|
|
unsigned int master_lcore_socket;
|
|
struct rte_config *cfg = rte_eal_get_configuration();
|
|
bool skip;
|
|
|
|
socket_id = rte_socket_id_by_idx(i);
|
|
|
|
#ifndef RTE_EAL_NUMA_AWARE_HUGEPAGES
|
|
/* we can still sort pages by socket in legacy mode */
|
|
if (!internal_config.legacy_mem && socket_id > 0)
|
|
break;
|
|
#endif
|
|
|
|
/* if we didn't specifically request memory on this socket */
|
|
skip = active_sockets != 0 &&
|
|
internal_config.socket_mem[socket_id] == 0;
|
|
/* ...or if we didn't specifically request memory on *any*
|
|
* socket, and this is not master lcore
|
|
*/
|
|
master_lcore_socket = rte_lcore_to_socket_id(cfg->master_lcore);
|
|
skip |= active_sockets == 0 && socket_id != master_lcore_socket;
|
|
|
|
if (skip) {
|
|
RTE_LOG(DEBUG, EAL, "Will not preallocate memory on socket %u\n",
|
|
socket_id);
|
|
continue;
|
|
}
|
|
|
|
/* max amount of memory on this socket */
|
|
max_socket_mem = (active_sockets != 0 ?
|
|
internal_config.socket_mem[socket_id] :
|
|
internal_config.memory) +
|
|
extra_mem_per_socket;
|
|
cur_socket_mem = 0;
|
|
|
|
for (hpi_idx = 0; hpi_idx < hp_sizes; hpi_idx++) {
|
|
uint64_t max_pagesz_mem, cur_pagesz_mem = 0;
|
|
uint64_t hugepage_sz;
|
|
struct hugepage_info *hpi;
|
|
int type_msl_idx, max_segs, total_segs = 0;
|
|
|
|
hpi = &internal_config.hugepage_info[hpi_idx];
|
|
hugepage_sz = hpi->hugepage_sz;
|
|
|
|
/* check if pages are actually available */
|
|
if (hpi->num_pages[socket_id] == 0)
|
|
continue;
|
|
|
|
max_segs = RTE_MAX_MEMSEG_PER_TYPE;
|
|
max_pagesz_mem = max_socket_mem - cur_socket_mem;
|
|
|
|
/* make it multiple of page size */
|
|
max_pagesz_mem = RTE_ALIGN_FLOOR(max_pagesz_mem,
|
|
hugepage_sz);
|
|
|
|
RTE_LOG(DEBUG, EAL, "Attempting to preallocate "
|
|
"%" PRIu64 "M on socket %i\n",
|
|
max_pagesz_mem >> 20, socket_id);
|
|
|
|
type_msl_idx = 0;
|
|
while (cur_pagesz_mem < max_pagesz_mem &&
|
|
total_segs < max_segs) {
|
|
uint64_t cur_mem;
|
|
unsigned int n_segs;
|
|
|
|
if (msl_idx >= RTE_MAX_MEMSEG_LISTS) {
|
|
RTE_LOG(ERR, EAL,
|
|
"No more space in memseg lists, please increase %s\n",
|
|
RTE_STR(CONFIG_RTE_MAX_MEMSEG_LISTS));
|
|
return -1;
|
|
}
|
|
|
|
msl = &mcfg->memsegs[msl_idx];
|
|
|
|
cur_mem = get_mem_amount(hugepage_sz,
|
|
max_pagesz_mem);
|
|
n_segs = cur_mem / hugepage_sz;
|
|
|
|
if (alloc_memseg_list(msl, hugepage_sz, n_segs,
|
|
socket_id, type_msl_idx)) {
|
|
/* failing to allocate a memseg list is
|
|
* a serious error.
|
|
*/
|
|
RTE_LOG(ERR, EAL, "Cannot allocate memseg list\n");
|
|
return -1;
|
|
}
|
|
|
|
if (alloc_va_space(msl)) {
|
|
/* if we couldn't allocate VA space, we
|
|
* can try with smaller page sizes.
|
|
*/
|
|
RTE_LOG(ERR, EAL, "Cannot allocate VA space for memseg list, retrying with different page size\n");
|
|
/* deallocate memseg list */
|
|
if (free_memseg_list(msl))
|
|
return -1;
|
|
break;
|
|
}
|
|
|
|
total_segs += msl->memseg_arr.len;
|
|
cur_pagesz_mem = total_segs * hugepage_sz;
|
|
type_msl_idx++;
|
|
msl_idx++;
|
|
}
|
|
cur_socket_mem += cur_pagesz_mem;
|
|
}
|
|
if (cur_socket_mem == 0) {
|
|
RTE_LOG(ERR, EAL, "Cannot allocate VA space on socket %u\n",
|
|
socket_id);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __rte_unused
|
|
memseg_primary_init(void)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
struct memtype {
|
|
uint64_t page_sz;
|
|
int socket_id;
|
|
} *memtypes = NULL;
|
|
int i, hpi_idx, msl_idx, ret = -1; /* fail unless told to succeed */
|
|
struct rte_memseg_list *msl;
|
|
uint64_t max_mem, max_mem_per_type;
|
|
unsigned int max_seglists_per_type;
|
|
unsigned int n_memtypes, cur_type;
|
|
|
|
/* no-huge does not need this at all */
|
|
if (internal_config.no_hugetlbfs)
|
|
return 0;
|
|
|
|
/*
|
|
* figuring out amount of memory we're going to have is a long and very
|
|
* involved process. the basic element we're operating with is a memory
|
|
* type, defined as a combination of NUMA node ID and page size (so that
|
|
* e.g. 2 sockets with 2 page sizes yield 4 memory types in total).
|
|
*
|
|
* deciding amount of memory going towards each memory type is a
|
|
* balancing act between maximum segments per type, maximum memory per
|
|
* type, and number of detected NUMA nodes. the goal is to make sure
|
|
* each memory type gets at least one memseg list.
|
|
*
|
|
* the total amount of memory is limited by RTE_MAX_MEM_MB value.
|
|
*
|
|
* the total amount of memory per type is limited by either
|
|
* RTE_MAX_MEM_MB_PER_TYPE, or by RTE_MAX_MEM_MB divided by the number
|
|
* of detected NUMA nodes. additionally, maximum number of segments per
|
|
* type is also limited by RTE_MAX_MEMSEG_PER_TYPE. this is because for
|
|
* smaller page sizes, it can take hundreds of thousands of segments to
|
|
* reach the above specified per-type memory limits.
|
|
*
|
|
* additionally, each type may have multiple memseg lists associated
|
|
* with it, each limited by either RTE_MAX_MEM_MB_PER_LIST for bigger
|
|
* page sizes, or RTE_MAX_MEMSEG_PER_LIST segments for smaller ones.
|
|
*
|
|
* the number of memseg lists per type is decided based on the above
|
|
* limits, and also taking number of detected NUMA nodes, to make sure
|
|
* that we don't run out of memseg lists before we populate all NUMA
|
|
* nodes with memory.
|
|
*
|
|
* we do this in three stages. first, we collect the number of types.
|
|
* then, we figure out memory constraints and populate the list of
|
|
* would-be memseg lists. then, we go ahead and allocate the memseg
|
|
* lists.
|
|
*/
|
|
|
|
/* create space for mem types */
|
|
n_memtypes = internal_config.num_hugepage_sizes * rte_socket_count();
|
|
memtypes = calloc(n_memtypes, sizeof(*memtypes));
|
|
if (memtypes == NULL) {
|
|
RTE_LOG(ERR, EAL, "Cannot allocate space for memory types\n");
|
|
return -1;
|
|
}
|
|
|
|
/* populate mem types */
|
|
cur_type = 0;
|
|
for (hpi_idx = 0; hpi_idx < (int) internal_config.num_hugepage_sizes;
|
|
hpi_idx++) {
|
|
struct hugepage_info *hpi;
|
|
uint64_t hugepage_sz;
|
|
|
|
hpi = &internal_config.hugepage_info[hpi_idx];
|
|
hugepage_sz = hpi->hugepage_sz;
|
|
|
|
for (i = 0; i < (int) rte_socket_count(); i++, cur_type++) {
|
|
int socket_id = rte_socket_id_by_idx(i);
|
|
|
|
#ifndef RTE_EAL_NUMA_AWARE_HUGEPAGES
|
|
/* we can still sort pages by socket in legacy mode */
|
|
if (!internal_config.legacy_mem && socket_id > 0)
|
|
break;
|
|
#endif
|
|
memtypes[cur_type].page_sz = hugepage_sz;
|
|
memtypes[cur_type].socket_id = socket_id;
|
|
|
|
RTE_LOG(DEBUG, EAL, "Detected memory type: "
|
|
"socket_id:%u hugepage_sz:%" PRIu64 "\n",
|
|
socket_id, hugepage_sz);
|
|
}
|
|
}
|
|
/* number of memtypes could have been lower due to no NUMA support */
|
|
n_memtypes = cur_type;
|
|
|
|
/* set up limits for types */
|
|
max_mem = (uint64_t)RTE_MAX_MEM_MB << 20;
|
|
max_mem_per_type = RTE_MIN((uint64_t)RTE_MAX_MEM_MB_PER_TYPE << 20,
|
|
max_mem / n_memtypes);
|
|
/*
|
|
* limit maximum number of segment lists per type to ensure there's
|
|
* space for memseg lists for all NUMA nodes with all page sizes
|
|
*/
|
|
max_seglists_per_type = RTE_MAX_MEMSEG_LISTS / n_memtypes;
|
|
|
|
if (max_seglists_per_type == 0) {
|
|
RTE_LOG(ERR, EAL, "Cannot accommodate all memory types, please increase %s\n",
|
|
RTE_STR(CONFIG_RTE_MAX_MEMSEG_LISTS));
|
|
goto out;
|
|
}
|
|
|
|
/* go through all mem types and create segment lists */
|
|
msl_idx = 0;
|
|
for (cur_type = 0; cur_type < n_memtypes; cur_type++) {
|
|
unsigned int cur_seglist, n_seglists, n_segs;
|
|
unsigned int max_segs_per_type, max_segs_per_list;
|
|
struct memtype *type = &memtypes[cur_type];
|
|
uint64_t max_mem_per_list, pagesz;
|
|
int socket_id;
|
|
|
|
pagesz = type->page_sz;
|
|
socket_id = type->socket_id;
|
|
|
|
/*
|
|
* we need to create segment lists for this type. we must take
|
|
* into account the following things:
|
|
*
|
|
* 1. total amount of memory we can use for this memory type
|
|
* 2. total amount of memory per memseg list allowed
|
|
* 3. number of segments needed to fit the amount of memory
|
|
* 4. number of segments allowed per type
|
|
* 5. number of segments allowed per memseg list
|
|
* 6. number of memseg lists we are allowed to take up
|
|
*/
|
|
|
|
/* calculate how much segments we will need in total */
|
|
max_segs_per_type = max_mem_per_type / pagesz;
|
|
/* limit number of segments to maximum allowed per type */
|
|
max_segs_per_type = RTE_MIN(max_segs_per_type,
|
|
(unsigned int)RTE_MAX_MEMSEG_PER_TYPE);
|
|
/* limit number of segments to maximum allowed per list */
|
|
max_segs_per_list = RTE_MIN(max_segs_per_type,
|
|
(unsigned int)RTE_MAX_MEMSEG_PER_LIST);
|
|
|
|
/* calculate how much memory we can have per segment list */
|
|
max_mem_per_list = RTE_MIN(max_segs_per_list * pagesz,
|
|
(uint64_t)RTE_MAX_MEM_MB_PER_LIST << 20);
|
|
|
|
/* calculate how many segments each segment list will have */
|
|
n_segs = RTE_MIN(max_segs_per_list, max_mem_per_list / pagesz);
|
|
|
|
/* calculate how many segment lists we can have */
|
|
n_seglists = RTE_MIN(max_segs_per_type / n_segs,
|
|
max_mem_per_type / max_mem_per_list);
|
|
|
|
/* limit number of segment lists according to our maximum */
|
|
n_seglists = RTE_MIN(n_seglists, max_seglists_per_type);
|
|
|
|
RTE_LOG(DEBUG, EAL, "Creating %i segment lists: "
|
|
"n_segs:%i socket_id:%i hugepage_sz:%" PRIu64 "\n",
|
|
n_seglists, n_segs, socket_id, pagesz);
|
|
|
|
/* create all segment lists */
|
|
for (cur_seglist = 0; cur_seglist < n_seglists; cur_seglist++) {
|
|
if (msl_idx >= RTE_MAX_MEMSEG_LISTS) {
|
|
RTE_LOG(ERR, EAL,
|
|
"No more space in memseg lists, please increase %s\n",
|
|
RTE_STR(CONFIG_RTE_MAX_MEMSEG_LISTS));
|
|
goto out;
|
|
}
|
|
msl = &mcfg->memsegs[msl_idx++];
|
|
|
|
if (alloc_memseg_list(msl, pagesz, n_segs,
|
|
socket_id, cur_seglist))
|
|
goto out;
|
|
|
|
if (alloc_va_space(msl)) {
|
|
RTE_LOG(ERR, EAL, "Cannot allocate VA space for memseg list\n");
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
/* we're successful */
|
|
ret = 0;
|
|
out:
|
|
free(memtypes);
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
memseg_secondary_init(void)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
int msl_idx = 0;
|
|
struct rte_memseg_list *msl;
|
|
|
|
for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) {
|
|
|
|
msl = &mcfg->memsegs[msl_idx];
|
|
|
|
/* skip empty memseg lists */
|
|
if (msl->memseg_arr.len == 0)
|
|
continue;
|
|
|
|
if (rte_fbarray_attach(&msl->memseg_arr)) {
|
|
RTE_LOG(ERR, EAL, "Cannot attach to primary process memseg lists\n");
|
|
return -1;
|
|
}
|
|
|
|
/* preallocate VA space */
|
|
if (alloc_va_space(msl)) {
|
|
RTE_LOG(ERR, EAL, "Cannot preallocate VA space for hugepage memory\n");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
rte_eal_memseg_init(void)
|
|
{
|
|
/* increase rlimit to maximum */
|
|
struct rlimit lim;
|
|
|
|
if (getrlimit(RLIMIT_NOFILE, &lim) == 0) {
|
|
/* set limit to maximum */
|
|
lim.rlim_cur = lim.rlim_max;
|
|
|
|
if (setrlimit(RLIMIT_NOFILE, &lim) < 0) {
|
|
RTE_LOG(DEBUG, EAL, "Setting maximum number of open files failed: %s\n",
|
|
strerror(errno));
|
|
} else {
|
|
RTE_LOG(DEBUG, EAL, "Setting maximum number of open files to %"
|
|
PRIu64 "\n",
|
|
(uint64_t)lim.rlim_cur);
|
|
}
|
|
} else {
|
|
RTE_LOG(ERR, EAL, "Cannot get current resource limits\n");
|
|
}
|
|
#ifndef RTE_EAL_NUMA_AWARE_HUGEPAGES
|
|
if (!internal_config.legacy_mem && rte_socket_count() > 1) {
|
|
RTE_LOG(WARNING, EAL, "DPDK is running on a NUMA system, but is compiled without NUMA support.\n");
|
|
RTE_LOG(WARNING, EAL, "This will have adverse consequences for performance and usability.\n");
|
|
RTE_LOG(WARNING, EAL, "Please use --"OPT_LEGACY_MEM" option, or recompile with NUMA support.\n");
|
|
}
|
|
#endif
|
|
|
|
return rte_eal_process_type() == RTE_PROC_PRIMARY ?
|
|
#ifndef RTE_ARCH_64
|
|
memseg_primary_init_32() :
|
|
#else
|
|
memseg_primary_init() :
|
|
#endif
|
|
memseg_secondary_init();
|
|
}
|