numam-dpdk/drivers/net/bnxt/bnxt_rxr.c
Ruifeng Wang 56bbd6ac84 net/bnxt: use compiler atomics for statistics
Converted rte_atomic usages to compiler atomic built-ins.

Signed-off-by: Ruifeng Wang <ruifeng.wang@arm.com>
Reviewed-by: Kathleen Capella <kathleen.capella@arm.com>
Reviewed-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
2022-05-23 02:48:34 +02:00

1418 lines
37 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2014-2021 Broadcom
* All rights reserved.
*/
#include <inttypes.h>
#include <stdbool.h>
#include <rte_bitmap.h>
#include <rte_byteorder.h>
#include <rte_malloc.h>
#include <rte_memory.h>
#include <rte_alarm.h>
#include "bnxt.h"
#include "bnxt_reps.h"
#include "bnxt_ring.h"
#include "bnxt_rxr.h"
#include "bnxt_rxq.h"
#include "hsi_struct_def_dpdk.h"
#include "bnxt_hwrm.h"
#include <bnxt_tf_common.h>
#include <ulp_mark_mgr.h>
/*
* RX Ring handling
*/
static inline struct rte_mbuf *__bnxt_alloc_rx_data(struct rte_mempool *mb)
{
struct rte_mbuf *data;
data = rte_mbuf_raw_alloc(mb);
return data;
}
static inline int bnxt_alloc_rx_data(struct bnxt_rx_queue *rxq,
struct bnxt_rx_ring_info *rxr,
uint16_t raw_prod)
{
uint16_t prod = RING_IDX(rxr->rx_ring_struct, raw_prod);
struct rx_prod_pkt_bd *rxbd;
struct rte_mbuf **rx_buf;
struct rte_mbuf *mbuf;
rxbd = &rxr->rx_desc_ring[prod];
rx_buf = &rxr->rx_buf_ring[prod];
mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
if (!mbuf) {
__atomic_fetch_add(&rxq->rx_mbuf_alloc_fail, 1, __ATOMIC_RELAXED);
return -ENOMEM;
}
*rx_buf = mbuf;
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
return 0;
}
static inline int bnxt_alloc_ag_data(struct bnxt_rx_queue *rxq,
struct bnxt_rx_ring_info *rxr,
uint16_t raw_prod)
{
uint16_t prod = RING_IDX(rxr->ag_ring_struct, raw_prod);
struct rx_prod_pkt_bd *rxbd;
struct rte_mbuf **rx_buf;
struct rte_mbuf *mbuf;
rxbd = &rxr->ag_desc_ring[prod];
rx_buf = &rxr->ag_buf_ring[prod];
if (rxbd == NULL) {
PMD_DRV_LOG(ERR, "Jumbo Frame. rxbd is NULL\n");
return -EINVAL;
}
if (rx_buf == NULL) {
PMD_DRV_LOG(ERR, "Jumbo Frame. rx_buf is NULL\n");
return -EINVAL;
}
mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
if (!mbuf) {
__atomic_fetch_add(&rxq->rx_mbuf_alloc_fail, 1, __ATOMIC_RELAXED);
return -ENOMEM;
}
*rx_buf = mbuf;
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
return 0;
}
static inline void bnxt_reuse_rx_mbuf(struct bnxt_rx_ring_info *rxr,
struct rte_mbuf *mbuf)
{
uint16_t prod, raw_prod = RING_NEXT(rxr->rx_raw_prod);
struct rte_mbuf **prod_rx_buf;
struct rx_prod_pkt_bd *prod_bd;
prod = RING_IDX(rxr->rx_ring_struct, raw_prod);
prod_rx_buf = &rxr->rx_buf_ring[prod];
RTE_ASSERT(*prod_rx_buf == NULL);
RTE_ASSERT(mbuf != NULL);
*prod_rx_buf = mbuf;
prod_bd = &rxr->rx_desc_ring[prod];
prod_bd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
rxr->rx_raw_prod = raw_prod;
}
static inline
struct rte_mbuf *bnxt_consume_rx_buf(struct bnxt_rx_ring_info *rxr,
uint16_t cons)
{
struct rte_mbuf **cons_rx_buf;
struct rte_mbuf *mbuf;
cons_rx_buf = &rxr->rx_buf_ring[RING_IDX(rxr->rx_ring_struct, cons)];
RTE_ASSERT(*cons_rx_buf != NULL);
mbuf = *cons_rx_buf;
*cons_rx_buf = NULL;
return mbuf;
}
static void bnxt_rx_ring_reset(void *arg)
{
struct bnxt *bp = arg;
int i, rc = 0;
struct bnxt_rx_queue *rxq;
for (i = 0; i < (int)bp->rx_nr_rings; i++) {
struct bnxt_rx_ring_info *rxr;
rxq = bp->rx_queues[i];
if (!rxq || !rxq->in_reset)
continue;
rxr = rxq->rx_ring;
/* Disable and flush TPA before resetting the RX ring */
if (rxr->tpa_info)
bnxt_hwrm_vnic_tpa_cfg(bp, rxq->vnic, false);
rc = bnxt_hwrm_rx_ring_reset(bp, i);
if (rc) {
PMD_DRV_LOG(ERR, "Rx ring%d reset failed\n", i);
continue;
}
bnxt_rx_queue_release_mbufs(rxq);
rxr->rx_raw_prod = 0;
rxr->ag_raw_prod = 0;
rxr->rx_next_cons = 0;
bnxt_init_one_rx_ring(rxq);
bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
bnxt_db_write(&rxr->ag_db, rxr->ag_raw_prod);
if (rxr->tpa_info)
bnxt_hwrm_vnic_tpa_cfg(bp, rxq->vnic, true);
rxq->in_reset = 0;
}
}
static void bnxt_sched_ring_reset(struct bnxt_rx_queue *rxq)
{
rxq->in_reset = 1;
rte_eal_alarm_set(1, bnxt_rx_ring_reset, (void *)rxq->bp);
}
static void bnxt_tpa_get_metadata(struct bnxt *bp,
struct bnxt_tpa_info *tpa_info,
struct rx_tpa_start_cmpl *tpa_start,
struct rx_tpa_start_cmpl_hi *tpa_start1)
{
tpa_info->cfa_code_valid = 0;
tpa_info->vlan_valid = 0;
tpa_info->hash_valid = 0;
tpa_info->l4_csum_valid = 0;
if (likely(tpa_start->flags_type &
rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS_RSS_VALID))) {
tpa_info->hash_valid = 1;
tpa_info->rss_hash = rte_le_to_cpu_32(tpa_start->rss_hash);
}
if (bp->vnic_cap_flags & BNXT_VNIC_CAP_RX_CMPL_V2) {
struct rx_tpa_start_v2_cmpl *v2_tpa_start = (void *)tpa_start;
struct rx_tpa_start_v2_cmpl_hi *v2_tpa_start1 =
(void *)tpa_start1;
if (v2_tpa_start->agg_id &
RX_TPA_START_V2_CMPL_METADATA1_VALID) {
tpa_info->vlan_valid = 1;
tpa_info->vlan =
rte_le_to_cpu_16(v2_tpa_start1->metadata0);
}
if (v2_tpa_start1->flags2 & RX_CMP_FLAGS2_L4_CSUM_ALL_OK_MASK)
tpa_info->l4_csum_valid = 1;
return;
}
tpa_info->cfa_code_valid = 1;
tpa_info->cfa_code = rte_le_to_cpu_16(tpa_start1->cfa_code);
if (tpa_start1->flags2 &
rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_META_FORMAT_VLAN)) {
tpa_info->vlan_valid = 1;
tpa_info->vlan = rte_le_to_cpu_32(tpa_start1->metadata);
}
if (likely(tpa_start1->flags2 &
rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_L4_CS_CALC)))
tpa_info->l4_csum_valid = 1;
}
static void bnxt_tpa_start(struct bnxt_rx_queue *rxq,
struct rx_tpa_start_cmpl *tpa_start,
struct rx_tpa_start_cmpl_hi *tpa_start1)
{
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
uint16_t agg_id;
uint16_t data_cons;
struct bnxt_tpa_info *tpa_info;
struct rte_mbuf *mbuf;
agg_id = bnxt_tpa_start_agg_id(rxq->bp, tpa_start);
data_cons = tpa_start->opaque;
tpa_info = &rxr->tpa_info[agg_id];
if (unlikely(data_cons != rxr->rx_next_cons)) {
PMD_DRV_LOG(ERR, "TPA cons %x, expected cons %x\n",
data_cons, rxr->rx_next_cons);
bnxt_sched_ring_reset(rxq);
return;
}
mbuf = bnxt_consume_rx_buf(rxr, data_cons);
bnxt_reuse_rx_mbuf(rxr, tpa_info->mbuf);
tpa_info->agg_count = 0;
tpa_info->mbuf = mbuf;
tpa_info->len = rte_le_to_cpu_32(tpa_start->len);
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
mbuf->nb_segs = 1;
mbuf->next = NULL;
mbuf->pkt_len = rte_le_to_cpu_32(tpa_start->len);
mbuf->data_len = mbuf->pkt_len;
mbuf->port = rxq->port_id;
mbuf->ol_flags = RTE_MBUF_F_RX_LRO;
bnxt_tpa_get_metadata(rxq->bp, tpa_info, tpa_start, tpa_start1);
if (likely(tpa_info->hash_valid)) {
mbuf->hash.rss = tpa_info->rss_hash;
mbuf->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
} else if (tpa_info->cfa_code_valid) {
mbuf->hash.fdir.id = tpa_info->cfa_code;
mbuf->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
}
if (tpa_info->vlan_valid && BNXT_RX_VLAN_STRIP_EN(rxq->bp)) {
mbuf->vlan_tci = tpa_info->vlan;
mbuf->ol_flags |= RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED;
}
if (likely(tpa_info->l4_csum_valid))
mbuf->ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
/* recycle next mbuf */
data_cons = RING_NEXT(data_cons);
bnxt_reuse_rx_mbuf(rxr, bnxt_consume_rx_buf(rxr, data_cons));
rxr->rx_next_cons = RING_IDX(rxr->rx_ring_struct,
RING_NEXT(data_cons));
}
static int bnxt_agg_bufs_valid(struct bnxt_cp_ring_info *cpr,
uint8_t agg_bufs, uint32_t raw_cp_cons)
{
uint16_t last_cp_cons;
struct rx_pkt_cmpl *agg_cmpl;
raw_cp_cons = ADV_RAW_CMP(raw_cp_cons, agg_bufs);
last_cp_cons = RING_CMP(cpr->cp_ring_struct, raw_cp_cons);
agg_cmpl = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[last_cp_cons];
return bnxt_cpr_cmp_valid(agg_cmpl, raw_cp_cons,
cpr->cp_ring_struct->ring_size);
}
/* TPA consume agg buffer out of order, allocate connected data only */
static int bnxt_prod_ag_mbuf(struct bnxt_rx_queue *rxq)
{
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
uint16_t raw_next = RING_NEXT(rxr->ag_raw_prod);
uint16_t bmap_next = RING_IDX(rxr->ag_ring_struct, raw_next);
/* TODO batch allocation for better performance */
while (rte_bitmap_get(rxr->ag_bitmap, bmap_next)) {
if (unlikely(bnxt_alloc_ag_data(rxq, rxr, raw_next))) {
PMD_DRV_LOG(ERR, "agg mbuf alloc failed: prod=0x%x\n",
raw_next);
break;
}
rte_bitmap_clear(rxr->ag_bitmap, bmap_next);
rxr->ag_raw_prod = raw_next;
raw_next = RING_NEXT(raw_next);
bmap_next = RING_IDX(rxr->ag_ring_struct, raw_next);
}
return 0;
}
static int bnxt_rx_pages(struct bnxt_rx_queue *rxq,
struct rte_mbuf *mbuf, uint32_t *tmp_raw_cons,
uint8_t agg_buf, struct bnxt_tpa_info *tpa_info)
{
struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
int i;
uint16_t cp_cons, ag_cons;
struct rx_pkt_cmpl *rxcmp;
struct rte_mbuf *last = mbuf;
bool is_p5_tpa = tpa_info && BNXT_CHIP_P5(rxq->bp);
for (i = 0; i < agg_buf; i++) {
struct rte_mbuf **ag_buf;
struct rte_mbuf *ag_mbuf;
if (is_p5_tpa) {
rxcmp = (void *)&tpa_info->agg_arr[i];
} else {
*tmp_raw_cons = NEXT_RAW_CMP(*tmp_raw_cons);
cp_cons = RING_CMP(cpr->cp_ring_struct, *tmp_raw_cons);
rxcmp = (struct rx_pkt_cmpl *)
&cpr->cp_desc_ring[cp_cons];
}
#ifdef BNXT_DEBUG
bnxt_dump_cmpl(cp_cons, rxcmp);
#endif
ag_cons = rxcmp->opaque;
RTE_ASSERT(ag_cons <= rxr->ag_ring_struct->ring_mask);
ag_buf = &rxr->ag_buf_ring[ag_cons];
ag_mbuf = *ag_buf;
RTE_ASSERT(ag_mbuf != NULL);
ag_mbuf->data_len = rte_le_to_cpu_16(rxcmp->len);
mbuf->nb_segs++;
mbuf->pkt_len += ag_mbuf->data_len;
last->next = ag_mbuf;
last = ag_mbuf;
*ag_buf = NULL;
/*
* As aggregation buffer consumed out of order in TPA module,
* use bitmap to track freed slots to be allocated and notified
* to NIC
*/
rte_bitmap_set(rxr->ag_bitmap, ag_cons);
}
last->next = NULL;
bnxt_prod_ag_mbuf(rxq);
return 0;
}
static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
uint32_t *raw_cons, void *cmp)
{
struct rx_pkt_cmpl *rxcmp = cmp;
uint32_t tmp_raw_cons = *raw_cons;
uint8_t cmp_type, agg_bufs = 0;
cmp_type = CMP_TYPE(rxcmp);
if (cmp_type == CMPL_BASE_TYPE_RX_L2) {
agg_bufs = BNXT_RX_L2_AGG_BUFS(rxcmp);
} else if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
struct rx_tpa_end_cmpl *tpa_end = cmp;
if (BNXT_CHIP_P5(bp))
return 0;
agg_bufs = BNXT_TPA_END_AGG_BUFS(tpa_end);
}
if (agg_bufs) {
if (!bnxt_agg_bufs_valid(cpr, agg_bufs, tmp_raw_cons))
return -EBUSY;
}
*raw_cons = tmp_raw_cons;
return 0;
}
static inline struct rte_mbuf *bnxt_tpa_end(
struct bnxt_rx_queue *rxq,
uint32_t *raw_cp_cons,
struct rx_tpa_end_cmpl *tpa_end,
struct rx_tpa_end_cmpl_hi *tpa_end1)
{
struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
uint16_t agg_id;
struct rte_mbuf *mbuf;
uint8_t agg_bufs;
uint8_t payload_offset;
struct bnxt_tpa_info *tpa_info;
if (unlikely(rxq->in_reset)) {
PMD_DRV_LOG(ERR, "rxq->in_reset: raw_cp_cons:%d\n",
*raw_cp_cons);
bnxt_discard_rx(rxq->bp, cpr, raw_cp_cons, tpa_end);
return NULL;
}
if (BNXT_CHIP_P5(rxq->bp)) {
struct rx_tpa_v2_end_cmpl *th_tpa_end;
struct rx_tpa_v2_end_cmpl_hi *th_tpa_end1;
th_tpa_end = (void *)tpa_end;
th_tpa_end1 = (void *)tpa_end1;
agg_id = BNXT_TPA_END_AGG_ID_TH(th_tpa_end);
agg_bufs = BNXT_TPA_END_AGG_BUFS_TH(th_tpa_end1);
payload_offset = th_tpa_end1->payload_offset;
} else {
agg_id = BNXT_TPA_END_AGG_ID(tpa_end);
agg_bufs = BNXT_TPA_END_AGG_BUFS(tpa_end);
if (!bnxt_agg_bufs_valid(cpr, agg_bufs, *raw_cp_cons))
return NULL;
payload_offset = tpa_end->payload_offset;
}
tpa_info = &rxr->tpa_info[agg_id];
mbuf = tpa_info->mbuf;
RTE_ASSERT(mbuf != NULL);
if (agg_bufs) {
bnxt_rx_pages(rxq, mbuf, raw_cp_cons, agg_bufs, tpa_info);
}
mbuf->l4_len = payload_offset;
struct rte_mbuf *new_data = __bnxt_alloc_rx_data(rxq->mb_pool);
RTE_ASSERT(new_data != NULL);
if (!new_data) {
__atomic_fetch_add(&rxq->rx_mbuf_alloc_fail, 1, __ATOMIC_RELAXED);
return NULL;
}
tpa_info->mbuf = new_data;
return mbuf;
}
uint32_t bnxt_ptype_table[BNXT_PTYPE_TBL_DIM] __rte_cache_aligned;
static void __rte_cold
bnxt_init_ptype_table(void)
{
uint32_t *pt = bnxt_ptype_table;
static bool initialized;
int ip6, tun, type;
uint32_t l3;
int i;
if (initialized)
return;
for (i = 0; i < BNXT_PTYPE_TBL_DIM; i++) {
if (i & BNXT_PTYPE_TBL_VLAN_MSK)
pt[i] = RTE_PTYPE_L2_ETHER_VLAN;
else
pt[i] = RTE_PTYPE_L2_ETHER;
ip6 = !!(i & BNXT_PTYPE_TBL_IP_VER_MSK);
tun = !!(i & BNXT_PTYPE_TBL_TUN_MSK);
type = (i & BNXT_PTYPE_TBL_TYPE_MSK) >> BNXT_PTYPE_TBL_TYPE_SFT;
if (!tun && !ip6)
l3 = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
else if (!tun && ip6)
l3 = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
else if (tun && !ip6)
l3 = RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
else
l3 = RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
switch (type) {
case BNXT_PTYPE_TBL_TYPE_ICMP:
if (tun)
pt[i] |= l3 | RTE_PTYPE_INNER_L4_ICMP;
else
pt[i] |= l3 | RTE_PTYPE_L4_ICMP;
break;
case BNXT_PTYPE_TBL_TYPE_TCP:
if (tun)
pt[i] |= l3 | RTE_PTYPE_INNER_L4_TCP;
else
pt[i] |= l3 | RTE_PTYPE_L4_TCP;
break;
case BNXT_PTYPE_TBL_TYPE_UDP:
if (tun)
pt[i] |= l3 | RTE_PTYPE_INNER_L4_UDP;
else
pt[i] |= l3 | RTE_PTYPE_L4_UDP;
break;
case BNXT_PTYPE_TBL_TYPE_IP:
pt[i] |= l3;
break;
}
}
initialized = true;
}
static uint32_t
bnxt_parse_pkt_type(struct rx_pkt_cmpl *rxcmp, struct rx_pkt_cmpl_hi *rxcmp1)
{
uint32_t flags_type, flags2;
uint8_t index;
flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
flags2 = rte_le_to_cpu_32(rxcmp1->flags2);
/* Validate ptype table indexing at build time. */
bnxt_check_ptype_constants();
/*
* Index format:
* bit 0: Set if IP tunnel encapsulated packet.
* bit 1: Set if IPv6 packet, clear if IPv4.
* bit 2: Set if VLAN tag present.
* bits 3-6: Four-bit hardware packet type field.
*/
index = BNXT_CMPL_ITYPE_TO_IDX(flags_type) |
BNXT_CMPL_VLAN_TUN_TO_IDX(flags2) |
BNXT_CMPL_IP_VER_TO_IDX(flags2);
return bnxt_ptype_table[index];
}
static void __rte_cold
bnxt_init_ol_flags_tables(struct bnxt_rx_queue *rxq)
{
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
struct rte_eth_conf *dev_conf;
bool outer_cksum_enabled;
uint64_t offloads;
uint32_t *pt;
int i;
dev_conf = &rxq->bp->eth_dev->data->dev_conf;
offloads = dev_conf->rxmode.offloads;
outer_cksum_enabled = !!(offloads & (RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM |
RTE_ETH_RX_OFFLOAD_OUTER_UDP_CKSUM));
/* Initialize ol_flags table. */
pt = rxr->ol_flags_table;
for (i = 0; i < BNXT_OL_FLAGS_TBL_DIM; i++) {
pt[i] = 0;
if (BNXT_RX_VLAN_STRIP_EN(rxq->bp)) {
if (i & RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN)
pt[i] |= RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED;
}
if (i & (RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC << 3)) {
/* Tunnel case. */
if (outer_cksum_enabled) {
if (i & RX_PKT_CMPL_FLAGS2_IP_CS_CALC)
pt[i] |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
if (i & RX_PKT_CMPL_FLAGS2_L4_CS_CALC)
pt[i] |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
if (i & RX_PKT_CMPL_FLAGS2_T_L4_CS_CALC)
pt[i] |= RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD;
} else {
if (i & RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC)
pt[i] |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
if (i & RX_PKT_CMPL_FLAGS2_T_L4_CS_CALC)
pt[i] |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
}
} else {
/* Non-tunnel case. */
if (i & RX_PKT_CMPL_FLAGS2_IP_CS_CALC)
pt[i] |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
if (i & RX_PKT_CMPL_FLAGS2_L4_CS_CALC)
pt[i] |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
}
}
/* Initialize checksum error table. */
pt = rxr->ol_flags_err_table;
for (i = 0; i < BNXT_OL_FLAGS_ERR_TBL_DIM; i++) {
pt[i] = 0;
if (i & (RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC << 2)) {
/* Tunnel case. */
if (outer_cksum_enabled) {
if (i & (RX_PKT_CMPL_ERRORS_IP_CS_ERROR >> 4))
pt[i] |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
if (i & (RX_PKT_CMPL_ERRORS_T_IP_CS_ERROR >> 4))
pt[i] |= RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD;
if (i & (RX_PKT_CMPL_ERRORS_L4_CS_ERROR >> 4))
pt[i] |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
if (i & (RX_PKT_CMPL_ERRORS_T_L4_CS_ERROR >> 4))
pt[i] |= RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD;
} else {
if (i & (RX_PKT_CMPL_ERRORS_T_IP_CS_ERROR >> 4))
pt[i] |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
if (i & (RX_PKT_CMPL_ERRORS_T_L4_CS_ERROR >> 4))
pt[i] |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
}
} else {
/* Non-tunnel case. */
if (i & (RX_PKT_CMPL_ERRORS_IP_CS_ERROR >> 4))
pt[i] |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
if (i & (RX_PKT_CMPL_ERRORS_L4_CS_ERROR >> 4))
pt[i] |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
}
}
}
static void
bnxt_set_ol_flags(struct bnxt_rx_ring_info *rxr, struct rx_pkt_cmpl *rxcmp,
struct rx_pkt_cmpl_hi *rxcmp1, struct rte_mbuf *mbuf)
{
uint16_t flags_type, errors, flags;
uint64_t ol_flags;
flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
flags = rte_le_to_cpu_32(rxcmp1->flags2) &
(RX_PKT_CMPL_FLAGS2_IP_CS_CALC |
RX_PKT_CMPL_FLAGS2_L4_CS_CALC |
RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC |
RX_PKT_CMPL_FLAGS2_T_L4_CS_CALC |
RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN);
flags |= (flags & RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC) << 3;
errors = rte_le_to_cpu_16(rxcmp1->errors_v2) &
(RX_PKT_CMPL_ERRORS_IP_CS_ERROR |
RX_PKT_CMPL_ERRORS_L4_CS_ERROR |
RX_PKT_CMPL_ERRORS_T_IP_CS_ERROR |
RX_PKT_CMPL_ERRORS_T_L4_CS_ERROR);
errors = (errors >> 4) & flags;
ol_flags = rxr->ol_flags_table[flags & ~errors];
if (unlikely(errors)) {
errors |= (flags & RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC) << 2;
ol_flags |= rxr->ol_flags_err_table[errors];
}
if (flags_type & RX_PKT_CMPL_FLAGS_RSS_VALID) {
mbuf->hash.rss = rte_le_to_cpu_32(rxcmp->rss_hash);
ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
}
#ifdef RTE_LIBRTE_IEEE1588
if (unlikely((flags_type & RX_PKT_CMPL_FLAGS_MASK) ==
RX_PKT_CMPL_FLAGS_ITYPE_PTP_W_TIMESTAMP))
ol_flags |= RTE_MBUF_F_RX_IEEE1588_PTP | RTE_MBUF_F_RX_IEEE1588_TMST;
#endif
mbuf->ol_flags = ol_flags;
}
#ifdef RTE_LIBRTE_IEEE1588
static void
bnxt_get_rx_ts_p5(struct bnxt *bp, uint32_t rx_ts_cmpl)
{
struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
uint64_t last_hwrm_time;
uint64_t pkt_time = 0;
if (!BNXT_CHIP_P5(bp) || !ptp)
return;
/* On Thor, Rx timestamps are provided directly in the
* Rx completion records to the driver. Only 32 bits of
* the timestamp is present in the completion. Driver needs
* to read the current 48 bit free running timer using the
* HWRM_PORT_TS_QUERY command and combine the upper 16 bits
* from the HWRM response with the lower 32 bits in the
* Rx completion to produce the 48 bit timestamp for the Rx packet
*/
last_hwrm_time = ptp->current_time;
pkt_time = (last_hwrm_time & BNXT_PTP_CURRENT_TIME_MASK) | rx_ts_cmpl;
if (rx_ts_cmpl < (uint32_t)last_hwrm_time) {
/* timer has rolled over */
pkt_time += (1ULL << 32);
}
ptp->rx_timestamp = pkt_time;
}
#endif
static uint32_t
bnxt_ulp_set_mark_in_mbuf(struct bnxt *bp, struct rx_pkt_cmpl_hi *rxcmp1,
struct rte_mbuf *mbuf, uint32_t *vfr_flag)
{
uint32_t cfa_code;
uint32_t meta_fmt;
uint32_t meta;
bool gfid = false;
uint32_t mark_id;
uint32_t flags2;
uint32_t gfid_support = 0;
int rc;
if (BNXT_GFID_ENABLED(bp))
gfid_support = 1;
cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code);
flags2 = rte_le_to_cpu_32(rxcmp1->flags2);
meta = rte_le_to_cpu_32(rxcmp1->metadata);
/*
* The flags field holds extra bits of info from [6:4]
* which indicate if the flow is in TCAM or EM or EEM
*/
meta_fmt = (flags2 & BNXT_CFA_META_FMT_MASK) >>
BNXT_CFA_META_FMT_SHFT;
switch (meta_fmt) {
case 0:
if (gfid_support) {
/* Not an LFID or GFID, a flush cmd. */
goto skip_mark;
} else {
/* LFID mode, no vlan scenario */
gfid = false;
}
break;
case 4:
case 5:
/*
* EM/TCAM case
* Assume that EM doesn't support Mark due to GFID
* collisions with EEM. Simply return without setting the mark
* in the mbuf.
*/
if (BNXT_CFA_META_EM_TEST(meta)) {
/*This is EM hit {EM(1), GFID[27:16], 19'd0 or vtag } */
gfid = true;
meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
cfa_code |= meta << BNXT_CFA_CODE_META_SHIFT;
} else {
/*
* It is a TCAM entry, so it is an LFID.
* The TCAM IDX and Mode can also be determined
* by decoding the meta_data. We are not
* using these for now.
*/
}
break;
case 6:
case 7:
/* EEM Case, only using gfid in EEM for now. */
gfid = true;
/*
* For EEM flows, The first part of cfa_code is 16 bits.
* The second part is embedded in the
* metadata field from bit 19 onwards. The driver needs to
* ignore the first 19 bits of metadata and use the next 12
* bits as higher 12 bits of cfa_code.
*/
meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
cfa_code |= meta << BNXT_CFA_CODE_META_SHIFT;
break;
default:
/* For other values, the cfa_code is assumed to be an LFID. */
break;
}
rc = ulp_mark_db_mark_get(bp->ulp_ctx, gfid,
cfa_code, vfr_flag, &mark_id);
if (!rc) {
/* VF to VFR Rx path. So, skip mark_id injection in mbuf */
if (vfr_flag && *vfr_flag)
return mark_id;
/* Got the mark, write it to the mbuf and return */
mbuf->hash.fdir.hi = mark_id;
*bnxt_cfa_code_dynfield(mbuf) = cfa_code & 0xffffffffull;
mbuf->hash.fdir.id = rxcmp1->cfa_code;
mbuf->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
return mark_id;
}
skip_mark:
mbuf->hash.fdir.hi = 0;
mbuf->hash.fdir.id = 0;
return 0;
}
void bnxt_set_mark_in_mbuf(struct bnxt *bp,
struct rx_pkt_cmpl_hi *rxcmp1,
struct rte_mbuf *mbuf)
{
uint32_t cfa_code = 0;
if (unlikely(bp->mark_table == NULL))
return;
cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code);
if (!cfa_code)
return;
if (cfa_code && !bp->mark_table[cfa_code].valid)
return;
mbuf->hash.fdir.hi = bp->mark_table[cfa_code].mark_id;
mbuf->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
}
static int bnxt_rx_pkt(struct rte_mbuf **rx_pkt,
struct bnxt_rx_queue *rxq, uint32_t *raw_cons)
{
struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
struct rx_pkt_cmpl *rxcmp;
struct rx_pkt_cmpl_hi *rxcmp1;
uint32_t tmp_raw_cons = *raw_cons;
uint16_t cons, raw_prod, cp_cons =
RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
struct rte_mbuf *mbuf;
int rc = 0;
uint8_t agg_buf = 0;
uint16_t cmp_type;
uint32_t vfr_flag = 0, mark_id = 0;
struct bnxt *bp = rxq->bp;
rxcmp = (struct rx_pkt_cmpl *)
&cpr->cp_desc_ring[cp_cons];
cmp_type = CMP_TYPE(rxcmp);
if (cmp_type == RX_TPA_V2_ABUF_CMPL_TYPE_RX_TPA_AGG) {
struct rx_tpa_v2_abuf_cmpl *rx_agg = (void *)rxcmp;
uint16_t agg_id = rte_cpu_to_le_16(rx_agg->agg_id);
struct bnxt_tpa_info *tpa_info;
tpa_info = &rxr->tpa_info[agg_id];
RTE_ASSERT(tpa_info->agg_count < 16);
tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
rc = -EINVAL; /* Continue w/o new mbuf */
goto next_rx;
}
tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
cp_cons = RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
rxcmp1 = (struct rx_pkt_cmpl_hi *)&cpr->cp_desc_ring[cp_cons];
if (!bnxt_cpr_cmp_valid(rxcmp1, tmp_raw_cons,
cpr->cp_ring_struct->ring_size))
return -EBUSY;
if (cmp_type == RX_TPA_START_CMPL_TYPE_RX_TPA_START ||
cmp_type == RX_TPA_START_V2_CMPL_TYPE_RX_TPA_START_V2) {
bnxt_tpa_start(rxq, (struct rx_tpa_start_cmpl *)rxcmp,
(struct rx_tpa_start_cmpl_hi *)rxcmp1);
rc = -EINVAL; /* Continue w/o new mbuf */
goto next_rx;
} else if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
mbuf = bnxt_tpa_end(rxq, &tmp_raw_cons,
(struct rx_tpa_end_cmpl *)rxcmp,
(struct rx_tpa_end_cmpl_hi *)rxcmp1);
if (unlikely(!mbuf))
return -EBUSY;
*rx_pkt = mbuf;
goto next_rx;
} else if ((cmp_type != CMPL_BASE_TYPE_RX_L2) &&
(cmp_type != CMPL_BASE_TYPE_RX_L2_V2)) {
rc = -EINVAL;
goto next_rx;
}
agg_buf = BNXT_RX_L2_AGG_BUFS(rxcmp);
if (agg_buf && !bnxt_agg_bufs_valid(cpr, agg_buf, tmp_raw_cons))
return -EBUSY;
raw_prod = rxr->rx_raw_prod;
cons = rxcmp->opaque;
if (unlikely(cons != rxr->rx_next_cons)) {
bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp);
PMD_DRV_LOG(ERR, "RX cons %x != expected cons %x\n",
cons, rxr->rx_next_cons);
bnxt_sched_ring_reset(rxq);
rc = -EBUSY;
goto next_rx;
}
mbuf = bnxt_consume_rx_buf(rxr, cons);
if (mbuf == NULL)
return -EBUSY;
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
mbuf->nb_segs = 1;
mbuf->next = NULL;
mbuf->pkt_len = rxcmp->len;
mbuf->data_len = mbuf->pkt_len;
mbuf->port = rxq->port_id;
#ifdef RTE_LIBRTE_IEEE1588
if (unlikely((rte_le_to_cpu_16(rxcmp->flags_type) &
RX_PKT_CMPL_FLAGS_MASK) ==
RX_PKT_CMPL_FLAGS_ITYPE_PTP_W_TIMESTAMP))
bnxt_get_rx_ts_p5(rxq->bp, rxcmp1->reorder);
#endif
if (cmp_type == CMPL_BASE_TYPE_RX_L2_V2) {
bnxt_parse_csum_v2(mbuf, rxcmp1);
bnxt_parse_pkt_type_v2(mbuf, rxcmp, rxcmp1);
bnxt_rx_vlan_v2(mbuf, rxcmp, rxcmp1);
/* TODO Add support for cfa_code parsing */
goto reuse_rx_mbuf;
}
bnxt_set_ol_flags(rxr, rxcmp, rxcmp1, mbuf);
mbuf->packet_type = bnxt_parse_pkt_type(rxcmp, rxcmp1);
bnxt_set_vlan(rxcmp1, mbuf);
if (BNXT_TRUFLOW_EN(bp))
mark_id = bnxt_ulp_set_mark_in_mbuf(rxq->bp, rxcmp1, mbuf,
&vfr_flag);
else
bnxt_set_mark_in_mbuf(rxq->bp, rxcmp1, mbuf);
reuse_rx_mbuf:
if (agg_buf)
bnxt_rx_pages(rxq, mbuf, &tmp_raw_cons, agg_buf, NULL);
#ifdef BNXT_DEBUG
if (rxcmp1->errors_v2 & RX_CMP_L2_ERRORS) {
/* Re-install the mbuf back to the rx ring */
bnxt_reuse_rx_mbuf(rxr, cons, mbuf);
rc = -EIO;
goto next_rx;
}
#endif
/*
* TODO: Redesign this....
* If the allocation fails, the packet does not get received.
* Simply returning this will result in slowly falling behind
* on the producer ring buffers.
* Instead, "filling up" the producer just before ringing the
* doorbell could be a better solution since it will let the
* producer ring starve until memory is available again pushing
* the drops into hardware and getting them out of the driver
* allowing recovery to a full producer ring.
*
* This could also help with cache usage by preventing per-packet
* calls in favour of a tight loop with the same function being called
* in it.
*/
raw_prod = RING_NEXT(raw_prod);
if (bnxt_alloc_rx_data(rxq, rxr, raw_prod)) {
PMD_DRV_LOG(ERR, "mbuf alloc failed with prod=0x%x\n",
raw_prod);
rc = -ENOMEM;
goto rx;
}
rxr->rx_raw_prod = raw_prod;
rx:
rxr->rx_next_cons = RING_IDX(rxr->rx_ring_struct, RING_NEXT(cons));
if (BNXT_TRUFLOW_EN(bp) && (BNXT_VF_IS_TRUSTED(bp) || BNXT_PF(bp)) &&
vfr_flag) {
bnxt_vfr_recv(mark_id, rxq->queue_id, mbuf);
/* Now return an error so that nb_rx_pkts is not
* incremented.
* This packet was meant to be given to the representor.
* So no need to account the packet and give it to
* parent Rx burst function.
*/
rc = -ENODEV;
goto next_rx;
}
/*
* All MBUFs are allocated with the same size under DPDK,
* no optimization for rx_copy_thresh
*/
*rx_pkt = mbuf;
next_rx:
*raw_cons = tmp_raw_cons;
return rc;
}
uint16_t bnxt_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct bnxt_rx_queue *rxq = rx_queue;
struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
uint16_t rx_raw_prod = rxr->rx_raw_prod;
uint16_t ag_raw_prod = rxr->ag_raw_prod;
uint32_t raw_cons = cpr->cp_raw_cons;
bool alloc_failed = false;
uint32_t cons;
int nb_rx_pkts = 0;
int nb_rep_rx_pkts = 0;
struct rx_pkt_cmpl *rxcmp;
int rc = 0;
bool evt = false;
if (unlikely(is_bnxt_in_error(rxq->bp)))
return 0;
/* If Rx Q was stopped return */
if (unlikely(!rxq->rx_started))
return 0;
#if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
/*
* Replenish buffers if needed when a transition has been made from
* vector- to non-vector- receive processing.
*/
while (unlikely(rxq->rxrearm_nb)) {
if (!bnxt_alloc_rx_data(rxq, rxr, rxq->rxrearm_start)) {
rxr->rx_raw_prod = rxq->rxrearm_start;
bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
rxq->rxrearm_start++;
rxq->rxrearm_nb--;
} else {
/* Retry allocation on next call. */
break;
}
}
#endif
/* Handle RX burst request */
while (1) {
cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
if (!bnxt_cpr_cmp_valid(rxcmp, raw_cons,
cpr->cp_ring_struct->ring_size))
break;
if (CMP_TYPE(rxcmp) == CMPL_BASE_TYPE_HWRM_DONE) {
PMD_DRV_LOG(ERR, "Rx flush done\n");
} else if ((CMP_TYPE(rxcmp) >= CMPL_BASE_TYPE_RX_TPA_START_V2) &&
(CMP_TYPE(rxcmp) <= RX_TPA_V2_ABUF_CMPL_TYPE_RX_TPA_AGG)) {
rc = bnxt_rx_pkt(&rx_pkts[nb_rx_pkts], rxq, &raw_cons);
if (!rc)
nb_rx_pkts++;
else if (rc == -EBUSY) /* partial completion */
break;
else if (rc == -ENODEV) /* completion for representor */
nb_rep_rx_pkts++;
else if (rc == -ENOMEM) {
nb_rx_pkts++;
alloc_failed = true;
}
} else if (!BNXT_NUM_ASYNC_CPR(rxq->bp)) {
evt =
bnxt_event_hwrm_resp_handler(rxq->bp,
(struct cmpl_base *)rxcmp);
/* If the async event is Fatal error, return */
if (unlikely(is_bnxt_in_error(rxq->bp)))
goto done;
}
raw_cons = NEXT_RAW_CMP(raw_cons);
if (nb_rx_pkts == nb_pkts || nb_rep_rx_pkts == nb_pkts || evt)
break;
}
if (!nb_rx_pkts && !nb_rep_rx_pkts && !evt) {
/*
* For PMD, there is no need to keep on pushing to REARM
* the doorbell if there are no new completions
*/
goto done;
}
cpr->cp_raw_cons = raw_cons;
/* Ring the completion queue doorbell. */
bnxt_db_cq(cpr);
/* Ring the receive descriptor doorbell. */
if (rx_raw_prod != rxr->rx_raw_prod)
bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
/* Ring the AGG ring DB */
if (ag_raw_prod != rxr->ag_raw_prod)
bnxt_db_write(&rxr->ag_db, rxr->ag_raw_prod);
/* Attempt to alloc Rx buf in case of a previous allocation failure. */
if (alloc_failed) {
int cnt;
rx_raw_prod = RING_NEXT(rx_raw_prod);
for (cnt = 0; cnt < nb_rx_pkts + nb_rep_rx_pkts; cnt++) {
struct rte_mbuf **rx_buf;
uint16_t ndx;
ndx = RING_IDX(rxr->rx_ring_struct, rx_raw_prod + cnt);
rx_buf = &rxr->rx_buf_ring[ndx];
/* Buffer already allocated for this index. */
if (*rx_buf != NULL && *rx_buf != &rxq->fake_mbuf)
continue;
/* This slot is empty. Alloc buffer for Rx */
if (!bnxt_alloc_rx_data(rxq, rxr, rx_raw_prod + cnt)) {
rxr->rx_raw_prod = rx_raw_prod + cnt;
bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
} else {
PMD_DRV_LOG(ERR, "Alloc mbuf failed\n");
break;
}
}
}
done:
return nb_rx_pkts;
}
void bnxt_free_rx_rings(struct bnxt *bp)
{
int i;
struct bnxt_rx_queue *rxq;
if (!bp->rx_queues)
return;
for (i = 0; i < (int)bp->rx_nr_rings; i++) {
rxq = bp->rx_queues[i];
if (!rxq)
continue;
bnxt_free_ring(rxq->rx_ring->rx_ring_struct);
rte_free(rxq->rx_ring->rx_ring_struct);
/* Free the Aggregator ring */
bnxt_free_ring(rxq->rx_ring->ag_ring_struct);
rte_free(rxq->rx_ring->ag_ring_struct);
rxq->rx_ring->ag_ring_struct = NULL;
rte_free(rxq->rx_ring);
bnxt_free_ring(rxq->cp_ring->cp_ring_struct);
rte_free(rxq->cp_ring->cp_ring_struct);
rte_free(rxq->cp_ring);
rte_memzone_free(rxq->mz);
rxq->mz = NULL;
rte_free(rxq);
bp->rx_queues[i] = NULL;
}
}
int bnxt_init_rx_ring_struct(struct bnxt_rx_queue *rxq, unsigned int socket_id)
{
struct bnxt_cp_ring_info *cpr;
struct bnxt_rx_ring_info *rxr;
struct bnxt_ring *ring;
rxq->rx_buf_size = BNXT_MAX_PKT_LEN + sizeof(struct rte_mbuf);
if (rxq->rx_ring != NULL) {
rxr = rxq->rx_ring;
} else {
rxr = rte_zmalloc_socket("bnxt_rx_ring",
sizeof(struct bnxt_rx_ring_info),
RTE_CACHE_LINE_SIZE, socket_id);
if (rxr == NULL)
return -ENOMEM;
rxq->rx_ring = rxr;
}
if (rxr->rx_ring_struct == NULL) {
ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
sizeof(struct bnxt_ring),
RTE_CACHE_LINE_SIZE, socket_id);
if (ring == NULL)
return -ENOMEM;
rxr->rx_ring_struct = ring;
ring->ring_size = rte_align32pow2(rxq->nb_rx_desc);
ring->ring_mask = ring->ring_size - 1;
ring->bd = (void *)rxr->rx_desc_ring;
ring->bd_dma = rxr->rx_desc_mapping;
/* Allocate extra rx ring entries for vector rx. */
ring->vmem_size = sizeof(struct rte_mbuf *) *
(ring->ring_size + BNXT_RX_EXTRA_MBUF_ENTRIES);
ring->vmem = (void **)&rxr->rx_buf_ring;
ring->fw_ring_id = INVALID_HW_RING_ID;
}
if (rxq->cp_ring != NULL) {
cpr = rxq->cp_ring;
} else {
cpr = rte_zmalloc_socket("bnxt_rx_ring",
sizeof(struct bnxt_cp_ring_info),
RTE_CACHE_LINE_SIZE, socket_id);
if (cpr == NULL)
return -ENOMEM;
rxq->cp_ring = cpr;
}
if (cpr->cp_ring_struct == NULL) {
ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
sizeof(struct bnxt_ring),
RTE_CACHE_LINE_SIZE, socket_id);
if (ring == NULL)
return -ENOMEM;
cpr->cp_ring_struct = ring;
/* Allocate two completion slots per entry in desc ring. */
ring->ring_size = rxr->rx_ring_struct->ring_size * 2;
if (bnxt_need_agg_ring(rxq->bp->eth_dev))
ring->ring_size *= AGG_RING_SIZE_FACTOR;
ring->ring_size = rte_align32pow2(ring->ring_size);
ring->ring_mask = ring->ring_size - 1;
ring->bd = (void *)cpr->cp_desc_ring;
ring->bd_dma = cpr->cp_desc_mapping;
ring->vmem_size = 0;
ring->vmem = NULL;
ring->fw_ring_id = INVALID_HW_RING_ID;
}
if (!bnxt_need_agg_ring(rxq->bp->eth_dev))
return 0;
rxr = rxq->rx_ring;
/* Allocate Aggregator rings */
ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
sizeof(struct bnxt_ring),
RTE_CACHE_LINE_SIZE, socket_id);
if (ring == NULL)
return -ENOMEM;
rxr->ag_ring_struct = ring;
ring->ring_size = rte_align32pow2(rxq->nb_rx_desc *
AGG_RING_SIZE_FACTOR);
ring->ring_mask = ring->ring_size - 1;
ring->bd = (void *)rxr->ag_desc_ring;
ring->bd_dma = rxr->ag_desc_mapping;
ring->vmem_size = ring->ring_size * sizeof(struct rte_mbuf *);
ring->vmem = (void **)&rxr->ag_buf_ring;
ring->fw_ring_id = INVALID_HW_RING_ID;
return 0;
}
static void bnxt_init_rxbds(struct bnxt_ring *ring, uint32_t type,
uint16_t len)
{
uint32_t j;
struct rx_prod_pkt_bd *rx_bd_ring = (struct rx_prod_pkt_bd *)ring->bd;
if (!rx_bd_ring)
return;
for (j = 0; j < ring->ring_size; j++) {
rx_bd_ring[j].flags_type = rte_cpu_to_le_16(type);
rx_bd_ring[j].len = rte_cpu_to_le_16(len);
rx_bd_ring[j].opaque = j;
}
}
int bnxt_init_one_rx_ring(struct bnxt_rx_queue *rxq)
{
struct bnxt_rx_ring_info *rxr;
struct bnxt_ring *ring;
uint32_t raw_prod, type;
unsigned int i;
uint16_t size;
/* Initialize packet type table. */
bnxt_init_ptype_table();
size = rte_pktmbuf_data_room_size(rxq->mb_pool) - RTE_PKTMBUF_HEADROOM;
size = RTE_MIN(BNXT_MAX_PKT_LEN, size);
type = RX_PROD_PKT_BD_TYPE_RX_PROD_PKT;
rxr = rxq->rx_ring;
ring = rxr->rx_ring_struct;
bnxt_init_rxbds(ring, type, size);
/* Initialize offload flags parsing table. */
bnxt_init_ol_flags_tables(rxq);
raw_prod = rxr->rx_raw_prod;
for (i = 0; i < ring->ring_size; i++) {
if (unlikely(!rxr->rx_buf_ring[i])) {
if (bnxt_alloc_rx_data(rxq, rxr, raw_prod) != 0) {
PMD_DRV_LOG(WARNING,
"RxQ %d allocated %d of %d mbufs\n",
rxq->queue_id, i, ring->ring_size);
return -ENOMEM;
}
}
rxr->rx_raw_prod = raw_prod;
raw_prod = RING_NEXT(raw_prod);
}
/* Initialize dummy mbuf pointers for vector mode rx. */
for (i = ring->ring_size;
i < ring->ring_size + BNXT_RX_EXTRA_MBUF_ENTRIES; i++) {
rxr->rx_buf_ring[i] = &rxq->fake_mbuf;
}
/* Explicitly reset this driver internal tracker on a ring init */
rxr->rx_next_cons = 0;
if (!bnxt_need_agg_ring(rxq->bp->eth_dev))
return 0;
ring = rxr->ag_ring_struct;
type = RX_PROD_AGG_BD_TYPE_RX_PROD_AGG;
bnxt_init_rxbds(ring, type, size);
raw_prod = rxr->ag_raw_prod;
for (i = 0; i < ring->ring_size; i++) {
if (unlikely(!rxr->ag_buf_ring[i])) {
if (bnxt_alloc_ag_data(rxq, rxr, raw_prod) != 0) {
PMD_DRV_LOG(WARNING,
"RxQ %d allocated %d of %d mbufs\n",
rxq->queue_id, i, ring->ring_size);
return -ENOMEM;
}
}
rxr->ag_raw_prod = raw_prod;
raw_prod = RING_NEXT(raw_prod);
}
PMD_DRV_LOG(DEBUG, "AGG Done!\n");
if (rxr->tpa_info) {
unsigned int max_aggs = BNXT_TPA_MAX_AGGS(rxq->bp);
for (i = 0; i < max_aggs; i++) {
if (unlikely(!rxr->tpa_info[i].mbuf)) {
rxr->tpa_info[i].mbuf =
__bnxt_alloc_rx_data(rxq->mb_pool);
if (!rxr->tpa_info[i].mbuf) {
__atomic_fetch_add(&rxq->rx_mbuf_alloc_fail, 1,
__ATOMIC_RELAXED);
return -ENOMEM;
}
}
}
}
PMD_DRV_LOG(DEBUG, "TPA alloc Done!\n");
return 0;
}
/* Sweep the Rx completion queue till HWRM_DONE for ring flush is received.
* The mbufs will not be freed in this call.
* They will be freed during ring free as a part of mem cleanup.
*/
int bnxt_flush_rx_cmp(struct bnxt_cp_ring_info *cpr)
{
struct bnxt_ring *cp_ring_struct = cpr->cp_ring_struct;
uint32_t ring_mask = cp_ring_struct->ring_mask;
uint32_t raw_cons = cpr->cp_raw_cons;
struct rx_pkt_cmpl *rxcmp;
uint32_t nb_rx = 0;
uint32_t cons;
do {
cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
if (!bnxt_cpr_cmp_valid(rxcmp, raw_cons, ring_mask + 1))
break;
if (CMP_TYPE(rxcmp) == CMPL_BASE_TYPE_HWRM_DONE)
return 1;
raw_cons = NEXT_RAW_CMP(raw_cons);
nb_rx++;
} while (nb_rx < ring_mask);
cpr->cp_raw_cons = raw_cons;
/* Ring the completion queue doorbell. */
bnxt_db_cq(cpr);
return 0;
}