numam-dpdk/app/test-compress-perf/comp_perf_test_throughput.c
Artur Trybula 2695db95a1 test/compress: add cycle-count mode to perf tool
This commit adds cycle-count mode to the compression perf tool.
The new mode enhances the compression performance tool to allow
cycle-count measurement of both hardware and softwate PMDs.

Signed-off-by: Artur Trybula <arturx.trybula@intel.com>
Acked-by: Fiona Trahe <fiona.trahe@intel.com>
2020-02-05 15:20:51 +01:00

409 lines
9.8 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Intel Corporation
*/
#include <rte_malloc.h>
#include <rte_eal.h>
#include <rte_log.h>
#include <rte_cycles.h>
#include <rte_compressdev.h>
#include "comp_perf_test_throughput.h"
void
cperf_throughput_test_destructor(void *arg)
{
if (arg) {
comp_perf_free_memory(
((struct cperf_benchmark_ctx *)arg)->ver.options,
&((struct cperf_benchmark_ctx *)arg)->ver.mem);
rte_free(arg);
}
}
void *
cperf_throughput_test_constructor(uint8_t dev_id, uint16_t qp_id,
struct comp_test_data *options)
{
struct cperf_benchmark_ctx *ctx = NULL;
ctx = rte_malloc(NULL, sizeof(struct cperf_benchmark_ctx), 0);
if (ctx == NULL)
return NULL;
ctx->ver.mem.dev_id = dev_id;
ctx->ver.mem.qp_id = qp_id;
ctx->ver.options = options;
ctx->ver.silent = 1; /* ver. part will be silent */
if (!comp_perf_allocate_memory(ctx->ver.options, &ctx->ver.mem)
&& !prepare_bufs(ctx->ver.options, &ctx->ver.mem))
return ctx;
cperf_throughput_test_destructor(ctx);
return NULL;
}
static int
main_loop(struct cperf_benchmark_ctx *ctx, enum rte_comp_xform_type type)
{
struct comp_test_data *test_data = ctx->ver.options;
struct cperf_mem_resources *mem = &ctx->ver.mem;
uint8_t dev_id = mem->dev_id;
uint32_t i, iter, num_iter;
struct rte_comp_op **ops, **deq_ops;
void *priv_xform = NULL;
struct rte_comp_xform xform;
struct rte_mbuf **input_bufs, **output_bufs;
int res = 0;
int allocated = 0;
uint32_t out_seg_sz;
if (test_data == NULL || !test_data->burst_sz) {
RTE_LOG(ERR, USER1,
"Unknown burst size\n");
return -1;
}
ops = rte_zmalloc_socket(NULL,
2 * mem->total_bufs * sizeof(struct rte_comp_op *),
0, rte_socket_id());
if (ops == NULL) {
RTE_LOG(ERR, USER1,
"Can't allocate memory for ops strucures\n");
return -1;
}
deq_ops = &ops[mem->total_bufs];
if (type == RTE_COMP_COMPRESS) {
xform = (struct rte_comp_xform) {
.type = RTE_COMP_COMPRESS,
.compress = {
.algo = RTE_COMP_ALGO_DEFLATE,
.deflate.huffman = test_data->huffman_enc,
.level = test_data->level,
.window_size = test_data->window_sz,
.chksum = RTE_COMP_CHECKSUM_NONE,
.hash_algo = RTE_COMP_HASH_ALGO_NONE
}
};
input_bufs = mem->decomp_bufs;
output_bufs = mem->comp_bufs;
out_seg_sz = test_data->out_seg_sz;
} else {
xform = (struct rte_comp_xform) {
.type = RTE_COMP_DECOMPRESS,
.decompress = {
.algo = RTE_COMP_ALGO_DEFLATE,
.chksum = RTE_COMP_CHECKSUM_NONE,
.window_size = test_data->window_sz,
.hash_algo = RTE_COMP_HASH_ALGO_NONE
}
};
input_bufs = mem->comp_bufs;
output_bufs = mem->decomp_bufs;
out_seg_sz = test_data->seg_sz;
}
/* Create private xform */
if (rte_compressdev_private_xform_create(dev_id, &xform,
&priv_xform) < 0) {
RTE_LOG(ERR, USER1, "Private xform could not be created\n");
res = -1;
goto end;
}
uint64_t tsc_start, tsc_end, tsc_duration;
num_iter = test_data->num_iter;
tsc_start = tsc_end = tsc_duration = 0;
tsc_start = rte_rdtsc_precise();
for (iter = 0; iter < num_iter; iter++) {
uint32_t total_ops = mem->total_bufs;
uint32_t remaining_ops = mem->total_bufs;
uint32_t total_deq_ops = 0;
uint32_t total_enq_ops = 0;
uint16_t ops_unused = 0;
uint16_t num_enq = 0;
uint16_t num_deq = 0;
while (remaining_ops > 0) {
uint16_t num_ops = RTE_MIN(remaining_ops,
test_data->burst_sz);
uint16_t ops_needed = num_ops - ops_unused;
/*
* Move the unused operations from the previous
* enqueue_burst call to the front, to maintain order
*/
if ((ops_unused > 0) && (num_enq > 0)) {
size_t nb_b_to_mov =
ops_unused * sizeof(struct rte_comp_op *);
memmove(ops, &ops[num_enq], nb_b_to_mov);
}
/* Allocate compression operations */
if (ops_needed && !rte_comp_op_bulk_alloc(
mem->op_pool,
&ops[ops_unused],
ops_needed)) {
RTE_LOG(ERR, USER1,
"Could not allocate enough operations\n");
res = -1;
goto end;
}
allocated += ops_needed;
for (i = 0; i < ops_needed; i++) {
/*
* Calculate next buffer to attach to operation
*/
uint32_t buf_id = total_enq_ops + i +
ops_unused;
uint16_t op_id = ops_unused + i;
/* Reset all data in output buffers */
struct rte_mbuf *m = output_bufs[buf_id];
m->pkt_len = out_seg_sz * m->nb_segs;
while (m) {
m->data_len = m->buf_len - m->data_off;
m = m->next;
}
ops[op_id]->m_src = input_bufs[buf_id];
ops[op_id]->m_dst = output_bufs[buf_id];
ops[op_id]->src.offset = 0;
ops[op_id]->src.length =
rte_pktmbuf_pkt_len(input_bufs[buf_id]);
ops[op_id]->dst.offset = 0;
ops[op_id]->flush_flag = RTE_COMP_FLUSH_FINAL;
ops[op_id]->input_chksum = buf_id;
ops[op_id]->private_xform = priv_xform;
}
if (unlikely(test_data->perf_comp_force_stop))
goto end;
num_enq = rte_compressdev_enqueue_burst(dev_id,
mem->qp_id, ops,
num_ops);
if (num_enq == 0) {
struct rte_compressdev_stats stats;
rte_compressdev_stats_get(dev_id, &stats);
if (stats.enqueue_err_count) {
res = -1;
goto end;
}
}
ops_unused = num_ops - num_enq;
remaining_ops -= num_enq;
total_enq_ops += num_enq;
num_deq = rte_compressdev_dequeue_burst(dev_id,
mem->qp_id,
deq_ops,
test_data->burst_sz);
total_deq_ops += num_deq;
if (iter == num_iter - 1) {
for (i = 0; i < num_deq; i++) {
struct rte_comp_op *op = deq_ops[i];
if (op->status !=
RTE_COMP_OP_STATUS_SUCCESS) {
RTE_LOG(ERR, USER1,
"Some operations were not successful\n");
goto end;
}
struct rte_mbuf *m = op->m_dst;
m->pkt_len = op->produced;
uint32_t remaining_data = op->produced;
uint16_t data_to_append;
while (remaining_data > 0) {
data_to_append =
RTE_MIN(remaining_data,
out_seg_sz);
m->data_len = data_to_append;
remaining_data -=
data_to_append;
m = m->next;
}
}
}
rte_mempool_put_bulk(mem->op_pool,
(void **)deq_ops, num_deq);
allocated -= num_deq;
}
/* Dequeue the last operations */
while (total_deq_ops < total_ops) {
if (unlikely(test_data->perf_comp_force_stop))
goto end;
num_deq = rte_compressdev_dequeue_burst(dev_id,
mem->qp_id,
deq_ops,
test_data->burst_sz);
if (num_deq == 0) {
struct rte_compressdev_stats stats;
rte_compressdev_stats_get(dev_id, &stats);
if (stats.dequeue_err_count) {
res = -1;
goto end;
}
}
total_deq_ops += num_deq;
if (iter == num_iter - 1) {
for (i = 0; i < num_deq; i++) {
struct rte_comp_op *op = deq_ops[i];
if (op->status !=
RTE_COMP_OP_STATUS_SUCCESS) {
RTE_LOG(ERR, USER1,
"Some operations were not successful\n");
goto end;
}
struct rte_mbuf *m = op->m_dst;
m->pkt_len = op->produced;
uint32_t remaining_data = op->produced;
uint16_t data_to_append;
while (remaining_data > 0) {
data_to_append =
RTE_MIN(remaining_data,
out_seg_sz);
m->data_len = data_to_append;
remaining_data -=
data_to_append;
m = m->next;
}
}
}
rte_mempool_put_bulk(mem->op_pool,
(void **)deq_ops, num_deq);
allocated -= num_deq;
}
}
tsc_end = rte_rdtsc_precise();
tsc_duration = tsc_end - tsc_start;
if (type == RTE_COMP_COMPRESS)
ctx->comp_tsc_duration[test_data->level] =
tsc_duration / num_iter;
else
ctx->decomp_tsc_duration[test_data->level] =
tsc_duration / num_iter;
end:
rte_mempool_put_bulk(mem->op_pool, (void **)ops, allocated);
rte_compressdev_private_xform_free(dev_id, priv_xform);
rte_free(ops);
if (test_data->perf_comp_force_stop) {
RTE_LOG(ERR, USER1,
"lcore: %d Perf. test has been aborted by user\n",
mem->lcore_id);
res = -1;
}
return res;
}
int
cperf_throughput_test_runner(void *test_ctx)
{
struct cperf_benchmark_ctx *ctx = test_ctx;
struct comp_test_data *test_data = ctx->ver.options;
uint32_t lcore = rte_lcore_id();
static rte_atomic16_t display_once = RTE_ATOMIC16_INIT(0);
int i, ret = EXIT_SUCCESS;
ctx->ver.mem.lcore_id = lcore;
/*
* printing information about current compression thread
*/
if (rte_atomic16_test_and_set(&ctx->ver.mem.print_info_once))
printf(" lcore: %u,"
" driver name: %s,"
" device name: %s,"
" device id: %u,"
" socket id: %u,"
" queue pair id: %u\n",
lcore,
ctx->ver.options->driver_name,
rte_compressdev_name_get(ctx->ver.mem.dev_id),
ctx->ver.mem.dev_id,
rte_compressdev_socket_id(ctx->ver.mem.dev_id),
ctx->ver.mem.qp_id);
/*
* First the verification part is needed
*/
if (cperf_verify_test_runner(&ctx->ver)) {
ret = EXIT_FAILURE;
goto end;
}
/*
* Run the tests twice, discarding the first performance
* results, before the cache is warmed up
*/
for (i = 0; i < 2; i++) {
if (main_loop(ctx, RTE_COMP_COMPRESS) < 0) {
ret = EXIT_FAILURE;
goto end;
}
}
for (i = 0; i < 2; i++) {
if (main_loop(ctx, RTE_COMP_DECOMPRESS) < 0) {
ret = EXIT_FAILURE;
goto end;
}
}
ctx->comp_tsc_byte =
(double)(ctx->comp_tsc_duration[test_data->level]) /
test_data->input_data_sz;
ctx->decomp_tsc_byte =
(double)(ctx->decomp_tsc_duration[test_data->level]) /
test_data->input_data_sz;
ctx->comp_gbps = rte_get_tsc_hz() / ctx->comp_tsc_byte * 8 /
1000000000;
ctx->decomp_gbps = rte_get_tsc_hz() / ctx->decomp_tsc_byte * 8 /
1000000000;
if (rte_atomic16_test_and_set(&display_once)) {
printf("\n%12s%6s%12s%17s%15s%16s\n",
"lcore id", "Level", "Comp size", "Comp ratio [%]",
"Comp [Gbps]", "Decomp [Gbps]");
}
printf("%12u%6u%12zu%17.2f%15.2f%16.2f\n",
ctx->ver.mem.lcore_id,
test_data->level, ctx->ver.comp_data_sz, ctx->ver.ratio,
ctx->comp_gbps,
ctx->decomp_gbps);
end:
return ret;
}