numam-dpdk/lib/librte_eal/common/eal_common_memory.c
Anatoly Burakov 221b67bca0 eal: use memseg walk instead of iteration
Reduce dependency on internal details of EAL memory subsystem, and
simplify code.

Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com>
Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com>
Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com>
Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 19:48:15 +02:00

262 lines
6.6 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <errno.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <unistd.h>
#include <inttypes.h>
#include <sys/mman.h>
#include <sys/queue.h>
#include <rte_memory.h>
#include <rte_eal.h>
#include <rte_eal_memconfig.h>
#include <rte_errno.h>
#include <rte_log.h>
#include "eal_private.h"
#include "eal_internal_cfg.h"
/*
* Try to mmap *size bytes in /dev/zero. If it is successful, return the
* pointer to the mmap'd area and keep *size unmodified. Else, retry
* with a smaller zone: decrease *size by hugepage_sz until it reaches
* 0. In this case, return NULL. Note: this function returns an address
* which is a multiple of hugepage size.
*/
static uint64_t baseaddr_offset;
static uint64_t system_page_sz;
void *
eal_get_virtual_area(void *requested_addr, size_t *size,
size_t page_sz, int flags, int mmap_flags)
{
bool addr_is_hint, allow_shrink, unmap, no_align;
uint64_t map_sz;
void *mapped_addr, *aligned_addr;
if (system_page_sz == 0)
system_page_sz = sysconf(_SC_PAGESIZE);
mmap_flags |= MAP_PRIVATE | MAP_ANONYMOUS;
RTE_LOG(DEBUG, EAL, "Ask a virtual area of 0x%zx bytes\n", *size);
addr_is_hint = (flags & EAL_VIRTUAL_AREA_ADDR_IS_HINT) > 0;
allow_shrink = (flags & EAL_VIRTUAL_AREA_ALLOW_SHRINK) > 0;
unmap = (flags & EAL_VIRTUAL_AREA_UNMAP) > 0;
if (requested_addr == NULL && internal_config.base_virtaddr != 0) {
requested_addr = (void *) (internal_config.base_virtaddr +
(size_t)baseaddr_offset);
requested_addr = RTE_PTR_ALIGN(requested_addr, page_sz);
addr_is_hint = true;
}
/* if requested address is not aligned by page size, or if requested
* address is NULL, add page size to requested length as we may get an
* address that's aligned by system page size, which can be smaller than
* our requested page size. additionally, we shouldn't try to align if
* system page size is the same as requested page size.
*/
no_align = (requested_addr != NULL &&
((uintptr_t)requested_addr & (page_sz - 1)) == 0) ||
page_sz == system_page_sz;
do {
map_sz = no_align ? *size : *size + page_sz;
mapped_addr = mmap(requested_addr, map_sz, PROT_READ,
mmap_flags, -1, 0);
if (mapped_addr == MAP_FAILED && allow_shrink)
*size -= page_sz;
} while (allow_shrink && mapped_addr == MAP_FAILED && *size > 0);
/* align resulting address - if map failed, we will ignore the value
* anyway, so no need to add additional checks.
*/
aligned_addr = no_align ? mapped_addr :
RTE_PTR_ALIGN(mapped_addr, page_sz);
if (*size == 0) {
RTE_LOG(ERR, EAL, "Cannot get a virtual area of any size: %s\n",
strerror(errno));
rte_errno = errno;
return NULL;
} else if (mapped_addr == MAP_FAILED) {
RTE_LOG(ERR, EAL, "Cannot get a virtual area: %s\n",
strerror(errno));
/* pass errno up the call chain */
rte_errno = errno;
return NULL;
} else if (requested_addr != NULL && !addr_is_hint &&
aligned_addr != requested_addr) {
RTE_LOG(ERR, EAL, "Cannot get a virtual area at requested address: %p (got %p)\n",
requested_addr, aligned_addr);
munmap(mapped_addr, map_sz);
rte_errno = EADDRNOTAVAIL;
return NULL;
} else if (requested_addr != NULL && addr_is_hint &&
aligned_addr != requested_addr) {
RTE_LOG(WARNING, EAL, "WARNING! Base virtual address hint (%p != %p) not respected!\n",
requested_addr, aligned_addr);
RTE_LOG(WARNING, EAL, " This may cause issues with mapping memory into secondary processes\n");
}
if (unmap)
munmap(mapped_addr, map_sz);
RTE_LOG(DEBUG, EAL, "Virtual area found at %p (size = 0x%zx)\n",
aligned_addr, *size);
baseaddr_offset += *size;
return aligned_addr;
}
/*
* Return a pointer to a read-only table of struct rte_physmem_desc
* elements, containing the layout of all addressable physical
* memory. The last element of the table contains a NULL address.
*/
const struct rte_memseg *
rte_eal_get_physmem_layout(void)
{
return rte_eal_get_configuration()->mem_config->memseg;
}
static int
physmem_size(const struct rte_memseg *ms, void *arg)
{
uint64_t *total_len = arg;
*total_len += ms->len;
return 0;
}
/* get the total size of memory */
uint64_t
rte_eal_get_physmem_size(void)
{
uint64_t total_len = 0;
rte_memseg_walk(physmem_size, &total_len);
return total_len;
}
static int
dump_memseg(const struct rte_memseg *ms, void *arg)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
int i = ms - mcfg->memseg;
FILE *f = arg;
if (i < 0 || i >= RTE_MAX_MEMSEG)
return -1;
fprintf(f, "Segment %u: IOVA:0x%"PRIx64", len:%zu, "
"virt:%p, socket_id:%"PRId32", "
"hugepage_sz:%"PRIu64", nchannel:%"PRIx32", "
"nrank:%"PRIx32"\n", i,
mcfg->memseg[i].iova,
mcfg->memseg[i].len,
mcfg->memseg[i].addr,
mcfg->memseg[i].socket_id,
mcfg->memseg[i].hugepage_sz,
mcfg->memseg[i].nchannel,
mcfg->memseg[i].nrank);
return 0;
}
/* Dump the physical memory layout on console */
void
rte_dump_physmem_layout(FILE *f)
{
rte_memseg_walk(dump_memseg, f);
}
/* return the number of memory channels */
unsigned rte_memory_get_nchannel(void)
{
return rte_eal_get_configuration()->mem_config->nchannel;
}
/* return the number of memory rank */
unsigned rte_memory_get_nrank(void)
{
return rte_eal_get_configuration()->mem_config->nrank;
}
static int
rte_eal_memdevice_init(void)
{
struct rte_config *config;
if (rte_eal_process_type() == RTE_PROC_SECONDARY)
return 0;
config = rte_eal_get_configuration();
config->mem_config->nchannel = internal_config.force_nchannel;
config->mem_config->nrank = internal_config.force_nrank;
return 0;
}
/* Lock page in physical memory and prevent from swapping. */
int
rte_mem_lock_page(const void *virt)
{
unsigned long virtual = (unsigned long)virt;
int page_size = getpagesize();
unsigned long aligned = (virtual & ~(page_size - 1));
return mlock((void *)aligned, page_size);
}
int __rte_experimental
rte_memseg_walk(rte_memseg_walk_t func, void *arg)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
int i, ret;
for (i = 0; i < RTE_MAX_MEMSEG; i++) {
const struct rte_memseg *ms = &mcfg->memseg[i];
if (ms->addr == NULL)
continue;
ret = func(ms, arg);
if (ret < 0)
return -1;
if (ret > 0)
return 1;
}
return 0;
}
/* init memory subsystem */
int
rte_eal_memory_init(void)
{
RTE_LOG(DEBUG, EAL, "Setting up physically contiguous memory...\n");
const int retval = rte_eal_process_type() == RTE_PROC_PRIMARY ?
rte_eal_hugepage_init() :
rte_eal_hugepage_attach();
if (retval < 0)
return -1;
if (internal_config.no_shconf == 0 && rte_eal_memdevice_init() < 0)
return -1;
return 0;
}