numam-dpdk/lib/gro/gro_tcp4.c
Dmitry Kozlyuk 04d43857ea net: rename Ethernet header fields
Definition of `rte_ether_addr` structure used a workaround allowing DPDK
and Windows SDK headers to be used in the same file, because Windows SDK
defines `s_addr` as a macro. Rename `s_addr` to `src_addr` and `d_addr`
to `dst_addr` to avoid the conflict and remove the workaround.
Deprecation notice:
https://mails.dpdk.org/archives/dev/2021-July/215270.html

Signed-off-by: Dmitry Kozlyuk <dmitry.kozliuk@gmail.com>
2021-10-08 14:58:11 +02:00

379 lines
9.0 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017 Intel Corporation
*/
#include <rte_malloc.h>
#include <rte_mbuf.h>
#include <rte_cycles.h>
#include <rte_ethdev.h>
#include "gro_tcp4.h"
void *
gro_tcp4_tbl_create(uint16_t socket_id,
uint16_t max_flow_num,
uint16_t max_item_per_flow)
{
struct gro_tcp4_tbl *tbl;
size_t size;
uint32_t entries_num, i;
entries_num = max_flow_num * max_item_per_flow;
entries_num = RTE_MIN(entries_num, GRO_TCP4_TBL_MAX_ITEM_NUM);
if (entries_num == 0)
return NULL;
tbl = rte_zmalloc_socket(__func__,
sizeof(struct gro_tcp4_tbl),
RTE_CACHE_LINE_SIZE,
socket_id);
if (tbl == NULL)
return NULL;
size = sizeof(struct gro_tcp4_item) * entries_num;
tbl->items = rte_zmalloc_socket(__func__,
size,
RTE_CACHE_LINE_SIZE,
socket_id);
if (tbl->items == NULL) {
rte_free(tbl);
return NULL;
}
tbl->max_item_num = entries_num;
size = sizeof(struct gro_tcp4_flow) * entries_num;
tbl->flows = rte_zmalloc_socket(__func__,
size,
RTE_CACHE_LINE_SIZE,
socket_id);
if (tbl->flows == NULL) {
rte_free(tbl->items);
rte_free(tbl);
return NULL;
}
/* INVALID_ARRAY_INDEX indicates an empty flow */
for (i = 0; i < entries_num; i++)
tbl->flows[i].start_index = INVALID_ARRAY_INDEX;
tbl->max_flow_num = entries_num;
return tbl;
}
void
gro_tcp4_tbl_destroy(void *tbl)
{
struct gro_tcp4_tbl *tcp_tbl = tbl;
if (tcp_tbl) {
rte_free(tcp_tbl->items);
rte_free(tcp_tbl->flows);
}
rte_free(tcp_tbl);
}
static inline uint32_t
find_an_empty_item(struct gro_tcp4_tbl *tbl)
{
uint32_t i;
uint32_t max_item_num = tbl->max_item_num;
for (i = 0; i < max_item_num; i++)
if (tbl->items[i].firstseg == NULL)
return i;
return INVALID_ARRAY_INDEX;
}
static inline uint32_t
find_an_empty_flow(struct gro_tcp4_tbl *tbl)
{
uint32_t i;
uint32_t max_flow_num = tbl->max_flow_num;
for (i = 0; i < max_flow_num; i++)
if (tbl->flows[i].start_index == INVALID_ARRAY_INDEX)
return i;
return INVALID_ARRAY_INDEX;
}
static inline uint32_t
insert_new_item(struct gro_tcp4_tbl *tbl,
struct rte_mbuf *pkt,
uint64_t start_time,
uint32_t prev_idx,
uint32_t sent_seq,
uint16_t ip_id,
uint8_t is_atomic)
{
uint32_t item_idx;
item_idx = find_an_empty_item(tbl);
if (item_idx == INVALID_ARRAY_INDEX)
return INVALID_ARRAY_INDEX;
tbl->items[item_idx].firstseg = pkt;
tbl->items[item_idx].lastseg = rte_pktmbuf_lastseg(pkt);
tbl->items[item_idx].start_time = start_time;
tbl->items[item_idx].next_pkt_idx = INVALID_ARRAY_INDEX;
tbl->items[item_idx].sent_seq = sent_seq;
tbl->items[item_idx].ip_id = ip_id;
tbl->items[item_idx].nb_merged = 1;
tbl->items[item_idx].is_atomic = is_atomic;
tbl->item_num++;
/* if the previous packet exists, chain them together. */
if (prev_idx != INVALID_ARRAY_INDEX) {
tbl->items[item_idx].next_pkt_idx =
tbl->items[prev_idx].next_pkt_idx;
tbl->items[prev_idx].next_pkt_idx = item_idx;
}
return item_idx;
}
static inline uint32_t
delete_item(struct gro_tcp4_tbl *tbl, uint32_t item_idx,
uint32_t prev_item_idx)
{
uint32_t next_idx = tbl->items[item_idx].next_pkt_idx;
/* NULL indicates an empty item */
tbl->items[item_idx].firstseg = NULL;
tbl->item_num--;
if (prev_item_idx != INVALID_ARRAY_INDEX)
tbl->items[prev_item_idx].next_pkt_idx = next_idx;
return next_idx;
}
static inline uint32_t
insert_new_flow(struct gro_tcp4_tbl *tbl,
struct tcp4_flow_key *src,
uint32_t item_idx)
{
struct tcp4_flow_key *dst;
uint32_t flow_idx;
flow_idx = find_an_empty_flow(tbl);
if (unlikely(flow_idx == INVALID_ARRAY_INDEX))
return INVALID_ARRAY_INDEX;
dst = &(tbl->flows[flow_idx].key);
rte_ether_addr_copy(&(src->eth_saddr), &(dst->eth_saddr));
rte_ether_addr_copy(&(src->eth_daddr), &(dst->eth_daddr));
dst->ip_src_addr = src->ip_src_addr;
dst->ip_dst_addr = src->ip_dst_addr;
dst->recv_ack = src->recv_ack;
dst->src_port = src->src_port;
dst->dst_port = src->dst_port;
tbl->flows[flow_idx].start_index = item_idx;
tbl->flow_num++;
return flow_idx;
}
/*
* update the packet length for the flushed packet.
*/
static inline void
update_header(struct gro_tcp4_item *item)
{
struct rte_ipv4_hdr *ipv4_hdr;
struct rte_mbuf *pkt = item->firstseg;
ipv4_hdr = (struct rte_ipv4_hdr *)(rte_pktmbuf_mtod(pkt, char *) +
pkt->l2_len);
ipv4_hdr->total_length = rte_cpu_to_be_16(pkt->pkt_len -
pkt->l2_len);
}
int32_t
gro_tcp4_reassemble(struct rte_mbuf *pkt,
struct gro_tcp4_tbl *tbl,
uint64_t start_time)
{
struct rte_ether_hdr *eth_hdr;
struct rte_ipv4_hdr *ipv4_hdr;
struct rte_tcp_hdr *tcp_hdr;
uint32_t sent_seq;
int32_t tcp_dl;
uint16_t ip_id, hdr_len, frag_off;
uint8_t is_atomic;
struct tcp4_flow_key key;
uint32_t cur_idx, prev_idx, item_idx;
uint32_t i, max_flow_num, remaining_flow_num;
int cmp;
uint8_t find;
/*
* Don't process the packet whose TCP header length is greater
* than 60 bytes or less than 20 bytes.
*/
if (unlikely(INVALID_TCP_HDRLEN(pkt->l4_len)))
return -1;
eth_hdr = rte_pktmbuf_mtod(pkt, struct rte_ether_hdr *);
ipv4_hdr = (struct rte_ipv4_hdr *)((char *)eth_hdr + pkt->l2_len);
tcp_hdr = (struct rte_tcp_hdr *)((char *)ipv4_hdr + pkt->l3_len);
hdr_len = pkt->l2_len + pkt->l3_len + pkt->l4_len;
/*
* Don't process the packet which has FIN, SYN, RST, PSH, URG, ECE
* or CWR set.
*/
if (tcp_hdr->tcp_flags != RTE_TCP_ACK_FLAG)
return -1;
/*
* Don't process the packet whose payload length is less than or
* equal to 0.
*/
tcp_dl = pkt->pkt_len - hdr_len;
if (tcp_dl <= 0)
return -1;
/*
* Save IPv4 ID for the packet whose DF bit is 0. For the packet
* whose DF bit is 1, IPv4 ID is ignored.
*/
frag_off = rte_be_to_cpu_16(ipv4_hdr->fragment_offset);
is_atomic = (frag_off & RTE_IPV4_HDR_DF_FLAG) == RTE_IPV4_HDR_DF_FLAG;
ip_id = is_atomic ? 0 : rte_be_to_cpu_16(ipv4_hdr->packet_id);
sent_seq = rte_be_to_cpu_32(tcp_hdr->sent_seq);
rte_ether_addr_copy(&(eth_hdr->src_addr), &(key.eth_saddr));
rte_ether_addr_copy(&(eth_hdr->dst_addr), &(key.eth_daddr));
key.ip_src_addr = ipv4_hdr->src_addr;
key.ip_dst_addr = ipv4_hdr->dst_addr;
key.src_port = tcp_hdr->src_port;
key.dst_port = tcp_hdr->dst_port;
key.recv_ack = tcp_hdr->recv_ack;
/* Search for a matched flow. */
max_flow_num = tbl->max_flow_num;
remaining_flow_num = tbl->flow_num;
find = 0;
for (i = 0; i < max_flow_num && remaining_flow_num; i++) {
if (tbl->flows[i].start_index != INVALID_ARRAY_INDEX) {
if (is_same_tcp4_flow(tbl->flows[i].key, key)) {
find = 1;
break;
}
remaining_flow_num--;
}
}
/*
* Fail to find a matched flow. Insert a new flow and store the
* packet into the flow.
*/
if (find == 0) {
item_idx = insert_new_item(tbl, pkt, start_time,
INVALID_ARRAY_INDEX, sent_seq, ip_id,
is_atomic);
if (item_idx == INVALID_ARRAY_INDEX)
return -1;
if (insert_new_flow(tbl, &key, item_idx) ==
INVALID_ARRAY_INDEX) {
/*
* Fail to insert a new flow, so delete the
* stored packet.
*/
delete_item(tbl, item_idx, INVALID_ARRAY_INDEX);
return -1;
}
return 0;
}
/*
* Check all packets in the flow and try to find a neighbor for
* the input packet.
*/
cur_idx = tbl->flows[i].start_index;
prev_idx = cur_idx;
do {
cmp = check_seq_option(&(tbl->items[cur_idx]), tcp_hdr,
sent_seq, ip_id, pkt->l4_len, tcp_dl, 0,
is_atomic);
if (cmp) {
if (merge_two_tcp4_packets(&(tbl->items[cur_idx]),
pkt, cmp, sent_seq, ip_id, 0))
return 1;
/*
* Fail to merge the two packets, as the packet
* length is greater than the max value. Store
* the packet into the flow.
*/
if (insert_new_item(tbl, pkt, start_time, prev_idx,
sent_seq, ip_id, is_atomic) ==
INVALID_ARRAY_INDEX)
return -1;
return 0;
}
prev_idx = cur_idx;
cur_idx = tbl->items[cur_idx].next_pkt_idx;
} while (cur_idx != INVALID_ARRAY_INDEX);
/* Fail to find a neighbor, so store the packet into the flow. */
if (insert_new_item(tbl, pkt, start_time, prev_idx, sent_seq,
ip_id, is_atomic) == INVALID_ARRAY_INDEX)
return -1;
return 0;
}
uint16_t
gro_tcp4_tbl_timeout_flush(struct gro_tcp4_tbl *tbl,
uint64_t flush_timestamp,
struct rte_mbuf **out,
uint16_t nb_out)
{
uint16_t k = 0;
uint32_t i, j;
uint32_t max_flow_num = tbl->max_flow_num;
for (i = 0; i < max_flow_num; i++) {
if (unlikely(tbl->flow_num == 0))
return k;
j = tbl->flows[i].start_index;
while (j != INVALID_ARRAY_INDEX) {
if (tbl->items[j].start_time <= flush_timestamp) {
out[k++] = tbl->items[j].firstseg;
if (tbl->items[j].nb_merged > 1)
update_header(&(tbl->items[j]));
/*
* Delete the packet and get the next
* packet in the flow.
*/
j = delete_item(tbl, j, INVALID_ARRAY_INDEX);
tbl->flows[i].start_index = j;
if (j == INVALID_ARRAY_INDEX)
tbl->flow_num--;
if (unlikely(k == nb_out))
return k;
} else
/*
* The left packets in this flow won't be
* timeout. Go to check other flows.
*/
break;
}
}
return k;
}
uint32_t
gro_tcp4_tbl_pkt_count(void *tbl)
{
struct gro_tcp4_tbl *gro_tbl = tbl;
if (gro_tbl)
return gro_tbl->item_num;
return 0;
}