99a2dd955f
There is no reason for the DPDK libraries to all have 'librte_' prefix on the directory names. This prefix makes the directory names longer and also makes it awkward to add features referring to individual libraries in the build - should the lib names be specified with or without the prefix. Therefore, we can just remove the library prefix and use the library's unique name as the directory name, i.e. 'eal' rather than 'librte_eal' Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
412 lines
12 KiB
C
412 lines
12 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2010-2014 Intel Corporation
|
|
*/
|
|
|
|
#ifndef __RTE_RED_H_INCLUDED__
|
|
#define __RTE_RED_H_INCLUDED__
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
/**
|
|
* @file
|
|
* RTE Random Early Detection (RED)
|
|
*
|
|
*
|
|
***/
|
|
|
|
#include <stdint.h>
|
|
#include <limits.h>
|
|
#include <rte_common.h>
|
|
#include <rte_debug.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_branch_prediction.h>
|
|
|
|
#define RTE_RED_SCALING 10 /**< Fraction size for fixed-point */
|
|
#define RTE_RED_S (1 << 22) /**< Packet size multiplied by number of leaf queues */
|
|
#define RTE_RED_MAX_TH_MAX 1023 /**< Max threshold limit in fixed point format */
|
|
#define RTE_RED_WQ_LOG2_MIN 1 /**< Min inverse filter weight value */
|
|
#define RTE_RED_WQ_LOG2_MAX 12 /**< Max inverse filter weight value */
|
|
#define RTE_RED_MAXP_INV_MIN 1 /**< Min inverse mark probability value */
|
|
#define RTE_RED_MAXP_INV_MAX 255 /**< Max inverse mark probability value */
|
|
#define RTE_RED_2POW16 (1<<16) /**< 2 power 16 */
|
|
#define RTE_RED_INT16_NBITS (sizeof(uint16_t) * CHAR_BIT)
|
|
#define RTE_RED_WQ_LOG2_NUM (RTE_RED_WQ_LOG2_MAX - RTE_RED_WQ_LOG2_MIN + 1)
|
|
|
|
/**
|
|
* Externs
|
|
*
|
|
*/
|
|
extern uint32_t rte_red_rand_val;
|
|
extern uint32_t rte_red_rand_seed;
|
|
extern uint16_t rte_red_log2_1_minus_Wq[RTE_RED_WQ_LOG2_NUM];
|
|
extern uint16_t rte_red_pow2_frac_inv[16];
|
|
|
|
/**
|
|
* RED configuration parameters passed by user
|
|
*
|
|
*/
|
|
struct rte_red_params {
|
|
uint16_t min_th; /**< Minimum threshold for queue (max_th) */
|
|
uint16_t max_th; /**< Maximum threshold for queue (max_th) */
|
|
uint16_t maxp_inv; /**< Inverse of packet marking probability maximum value (maxp = 1 / maxp_inv) */
|
|
uint16_t wq_log2; /**< Negated log2 of queue weight (wq = 1 / (2 ^ wq_log2)) */
|
|
};
|
|
|
|
/**
|
|
* RED configuration parameters
|
|
*/
|
|
struct rte_red_config {
|
|
uint32_t min_th; /**< min_th scaled in fixed-point format */
|
|
uint32_t max_th; /**< max_th scaled in fixed-point format */
|
|
uint32_t pa_const; /**< Precomputed constant value used for pa calculation (scaled in fixed-point format) */
|
|
uint8_t maxp_inv; /**< maxp_inv */
|
|
uint8_t wq_log2; /**< wq_log2 */
|
|
};
|
|
|
|
/**
|
|
* RED run-time data
|
|
*/
|
|
struct rte_red {
|
|
uint32_t avg; /**< Average queue size (avg), scaled in fixed-point format */
|
|
uint32_t count; /**< Number of packets since last marked packet (count) */
|
|
uint64_t q_time; /**< Start of the queue idle time (q_time) */
|
|
};
|
|
|
|
/**
|
|
* @brief Initialises run-time data
|
|
*
|
|
* @param red [in,out] data pointer to RED runtime data
|
|
*
|
|
* @return Operation status
|
|
* @retval 0 success
|
|
* @retval !0 error
|
|
*/
|
|
int
|
|
rte_red_rt_data_init(struct rte_red *red);
|
|
|
|
/**
|
|
* @brief Configures a single RED configuration parameter structure.
|
|
*
|
|
* @param red_cfg [in,out] config pointer to a RED configuration parameter structure
|
|
* @param wq_log2 [in] log2 of the filter weight, valid range is:
|
|
* RTE_RED_WQ_LOG2_MIN <= wq_log2 <= RTE_RED_WQ_LOG2_MAX
|
|
* @param min_th [in] queue minimum threshold in number of packets
|
|
* @param max_th [in] queue maximum threshold in number of packets
|
|
* @param maxp_inv [in] inverse maximum mark probability
|
|
*
|
|
* @return Operation status
|
|
* @retval 0 success
|
|
* @retval !0 error
|
|
*/
|
|
int
|
|
rte_red_config_init(struct rte_red_config *red_cfg,
|
|
const uint16_t wq_log2,
|
|
const uint16_t min_th,
|
|
const uint16_t max_th,
|
|
const uint16_t maxp_inv);
|
|
|
|
/**
|
|
* @brief Generate random number for RED
|
|
*
|
|
* Implementation based on:
|
|
* http://software.intel.com/en-us/articles/fast-random-number-generator-on-the-intel-pentiumr-4-processor/
|
|
*
|
|
* 10 bit shift has been found through empirical tests (was 16).
|
|
*
|
|
* @return Random number between 0 and (2^22 - 1)
|
|
*/
|
|
static inline uint32_t
|
|
rte_fast_rand(void)
|
|
{
|
|
rte_red_rand_seed = (214013 * rte_red_rand_seed) + 2531011;
|
|
return rte_red_rand_seed >> 10;
|
|
}
|
|
|
|
/**
|
|
* @brief calculate factor to scale average queue size when queue
|
|
* becomes empty
|
|
*
|
|
* @param wq_log2 [in] where EWMA filter weight wq = 1/(2 ^ wq_log2)
|
|
* @param m [in] exponent in the computed value (1 - wq) ^ m
|
|
*
|
|
* @return computed value
|
|
* @retval ((1 - wq) ^ m) scaled in fixed-point format
|
|
*/
|
|
static inline uint16_t
|
|
__rte_red_calc_qempty_factor(uint8_t wq_log2, uint16_t m)
|
|
{
|
|
uint32_t n = 0;
|
|
uint32_t f = 0;
|
|
|
|
/**
|
|
* Basic math tells us that:
|
|
* a^b = 2^(b * log2(a) )
|
|
*
|
|
* in our case:
|
|
* a = (1-Wq)
|
|
* b = m
|
|
* Wq = 1/ (2^log2n)
|
|
*
|
|
* So we are computing this equation:
|
|
* factor = 2 ^ ( m * log2(1-Wq))
|
|
*
|
|
* First we are computing:
|
|
* n = m * log2(1-Wq)
|
|
*
|
|
* To avoid dealing with signed numbers log2 values are positive
|
|
* but they should be negative because (1-Wq) is always < 1.
|
|
* Contents of log2 table values are also scaled for precision.
|
|
*/
|
|
|
|
n = m * rte_red_log2_1_minus_Wq[wq_log2 - RTE_RED_WQ_LOG2_MIN];
|
|
|
|
/**
|
|
* The tricky part is computing 2^n, for this I split n into
|
|
* integer part and fraction part.
|
|
* f - is fraction part of n
|
|
* n - is integer part of original n
|
|
*
|
|
* Now using basic math we compute 2^n:
|
|
* 2^(f+n) = 2^f * 2^n
|
|
* 2^f - we use lookup table
|
|
* 2^n - can be replaced with bit shift right operations
|
|
*/
|
|
|
|
f = (n >> 6) & 0xf;
|
|
n >>= 10;
|
|
|
|
if (n < RTE_RED_SCALING)
|
|
return (uint16_t) ((rte_red_pow2_frac_inv[f] + (1 << (n - 1))) >> n);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* @brief Updates queue average in condition when queue is empty
|
|
*
|
|
* Note: packet is never dropped in this particular case.
|
|
*
|
|
* @param red_cfg [in] config pointer to a RED configuration parameter structure
|
|
* @param red [in,out] data pointer to RED runtime data
|
|
* @param time [in] current time stamp
|
|
*
|
|
* @return Operation status
|
|
* @retval 0 enqueue the packet
|
|
* @retval 1 drop the packet based on max threshold criterion
|
|
* @retval 2 drop the packet based on mark probability criterion
|
|
*/
|
|
static inline int
|
|
rte_red_enqueue_empty(const struct rte_red_config *red_cfg,
|
|
struct rte_red *red,
|
|
const uint64_t time)
|
|
{
|
|
uint64_t time_diff = 0, m = 0;
|
|
|
|
RTE_ASSERT(red_cfg != NULL);
|
|
RTE_ASSERT(red != NULL);
|
|
|
|
red->count ++;
|
|
|
|
/**
|
|
* We compute avg but we don't compare avg against
|
|
* min_th or max_th, nor calculate drop probability
|
|
*/
|
|
time_diff = time - red->q_time;
|
|
|
|
/**
|
|
* m is the number of packets that might have arrived while the queue was empty.
|
|
* In this case we have time stamps provided by scheduler in byte units (bytes
|
|
* transmitted on network port). Such time stamp translates into time units as
|
|
* port speed is fixed but such approach simplifies the code.
|
|
*/
|
|
m = time_diff / RTE_RED_S;
|
|
|
|
/**
|
|
* Check that m will fit into 16-bit unsigned integer
|
|
*/
|
|
if (m >= RTE_RED_2POW16) {
|
|
red->avg = 0;
|
|
} else {
|
|
red->avg = (red->avg >> RTE_RED_SCALING) * __rte_red_calc_qempty_factor(red_cfg->wq_log2, (uint16_t) m);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Drop probability (Sally Floyd and Van Jacobson):
|
|
*
|
|
* pb = (1 / maxp_inv) * (avg - min_th) / (max_th - min_th)
|
|
* pa = pb / (2 - count * pb)
|
|
*
|
|
*
|
|
* (1 / maxp_inv) * (avg - min_th)
|
|
* ---------------------------------
|
|
* max_th - min_th
|
|
* pa = -----------------------------------------------
|
|
* count * (1 / maxp_inv) * (avg - min_th)
|
|
* 2 - -----------------------------------------
|
|
* max_th - min_th
|
|
*
|
|
*
|
|
* avg - min_th
|
|
* pa = -----------------------------------------------------------
|
|
* 2 * (max_th - min_th) * maxp_inv - count * (avg - min_th)
|
|
*
|
|
*
|
|
* We define pa_const as: pa_const = 2 * (max_th - min_th) * maxp_inv. Then:
|
|
*
|
|
*
|
|
* avg - min_th
|
|
* pa = -----------------------------------
|
|
* pa_const - count * (avg - min_th)
|
|
*/
|
|
|
|
/**
|
|
* @brief make a decision to drop or enqueue a packet based on mark probability
|
|
* criteria
|
|
*
|
|
* @param red_cfg [in] config pointer to structure defining RED parameters
|
|
* @param red [in,out] data pointer to RED runtime data
|
|
*
|
|
* @return operation status
|
|
* @retval 0 enqueue the packet
|
|
* @retval 1 drop the packet
|
|
*/
|
|
static inline int
|
|
__rte_red_drop(const struct rte_red_config *red_cfg, struct rte_red *red)
|
|
{
|
|
uint32_t pa_num = 0; /* numerator of drop-probability */
|
|
uint32_t pa_den = 0; /* denominator of drop-probability */
|
|
uint32_t pa_num_count = 0;
|
|
|
|
pa_num = (red->avg - red_cfg->min_th) >> (red_cfg->wq_log2);
|
|
|
|
pa_num_count = red->count * pa_num;
|
|
|
|
if (red_cfg->pa_const <= pa_num_count)
|
|
return 1;
|
|
|
|
pa_den = red_cfg->pa_const - pa_num_count;
|
|
|
|
/* If drop, generate and save random number to be used next time */
|
|
if (unlikely((rte_red_rand_val % pa_den) < pa_num)) {
|
|
rte_red_rand_val = rte_fast_rand();
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* No drop */
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* @brief Decides if new packet should be enqeued or dropped in queue non-empty case
|
|
*
|
|
* @param red_cfg [in] config pointer to a RED configuration parameter structure
|
|
* @param red [in,out] data pointer to RED runtime data
|
|
* @param q [in] current queue size (measured in packets)
|
|
*
|
|
* @return Operation status
|
|
* @retval 0 enqueue the packet
|
|
* @retval 1 drop the packet based on max threshold criterion
|
|
* @retval 2 drop the packet based on mark probability criterion
|
|
*/
|
|
static inline int
|
|
rte_red_enqueue_nonempty(const struct rte_red_config *red_cfg,
|
|
struct rte_red *red,
|
|
const unsigned q)
|
|
{
|
|
RTE_ASSERT(red_cfg != NULL);
|
|
RTE_ASSERT(red != NULL);
|
|
|
|
/**
|
|
* EWMA filter (Sally Floyd and Van Jacobson):
|
|
* avg = (1 - wq) * avg + wq * q
|
|
* avg = avg + q * wq - avg * wq
|
|
*
|
|
* We select: wq = 2^(-n). Let scaled version of avg be: avg_s = avg * 2^(N+n). We get:
|
|
* avg_s = avg_s + q * 2^N - avg_s * 2^(-n)
|
|
*
|
|
* By using shift left/right operations, we get:
|
|
* avg_s = avg_s + (q << N) - (avg_s >> n)
|
|
* avg_s += (q << N) - (avg_s >> n)
|
|
*/
|
|
|
|
/* avg update */
|
|
red->avg += (q << RTE_RED_SCALING) - (red->avg >> red_cfg->wq_log2);
|
|
|
|
/* avg < min_th: do not mark the packet */
|
|
if (red->avg < red_cfg->min_th) {
|
|
red->count ++;
|
|
return 0;
|
|
}
|
|
|
|
/* min_th <= avg < max_th: mark the packet with pa probability */
|
|
if (red->avg < red_cfg->max_th) {
|
|
if (!__rte_red_drop(red_cfg, red)) {
|
|
red->count ++;
|
|
return 0;
|
|
}
|
|
|
|
red->count = 0;
|
|
return 2;
|
|
}
|
|
|
|
/* max_th <= avg: always mark the packet */
|
|
red->count = 0;
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* @brief Decides if new packet should be enqeued or dropped
|
|
* Updates run time data based on new queue size value.
|
|
* Based on new queue average and RED configuration parameters
|
|
* gives verdict whether to enqueue or drop the packet.
|
|
*
|
|
* @param red_cfg [in] config pointer to a RED configuration parameter structure
|
|
* @param red [in,out] data pointer to RED runtime data
|
|
* @param q [in] updated queue size in packets
|
|
* @param time [in] current time stamp
|
|
*
|
|
* @return Operation status
|
|
* @retval 0 enqueue the packet
|
|
* @retval 1 drop the packet based on max threshold criteria
|
|
* @retval 2 drop the packet based on mark probability criteria
|
|
*/
|
|
static inline int
|
|
rte_red_enqueue(const struct rte_red_config *red_cfg,
|
|
struct rte_red *red,
|
|
const unsigned q,
|
|
const uint64_t time)
|
|
{
|
|
RTE_ASSERT(red_cfg != NULL);
|
|
RTE_ASSERT(red != NULL);
|
|
|
|
if (q != 0) {
|
|
return rte_red_enqueue_nonempty(red_cfg, red, q);
|
|
} else {
|
|
return rte_red_enqueue_empty(red_cfg, red, time);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Callback to records time that queue became empty
|
|
*
|
|
* @param red [in,out] data pointer to RED runtime data
|
|
* @param time [in] current time stamp
|
|
*/
|
|
static inline void
|
|
rte_red_mark_queue_empty(struct rte_red *red, const uint64_t time)
|
|
{
|
|
red->q_time = time;
|
|
}
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif /* __RTE_RED_H_INCLUDED__ */
|